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ABSTRACT

In pharmaceutical research and development decision-making related to drug candidate selection,
efficacy and safety is commonly supported through modelling and simulation (M&S). Among others,
physiologically-based pharmacokinetic models are used to describe drug absorption, distribution
and metabolism in human. Global sensitivity analysis (GSA) is gaining interest in the pharmaco-
logical M&S community as an important element for quality assessment of model-based inference.
Physiological models often present inter-correlated parameters. The inclusion of correlated factors
in GSA and the sensitivity indices interpretation has proven an issue for these models. Here we
devise and evaluate a latent variable approach for dealing with correlated factors in GSA. This
approach describes the correlation between two model inputs through the causal relationship of three
independent factors: the latent variable and the unique variances of the two correlated parameters.
Then, GSA is performed with the classical variance-based method. We applied the latent variable
approach to a set of algebraic models and a case from physiologically-based pharmacokinetics. Then,
we compared our approach to Sobol’s GSA assuming no correlations, Sobol’s GSA with groups and
the Kucherenko approach. The relative ease of implementation and interpretation makes this a simple
approach for carrying out GSA for models with correlated input factors.

Keywords latent variable · correlated factors · global sensitivity analysis · physiologically based pharmacokinetic
models · systems modelling · model-informed drug discovery and development
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1 Introduction

The use of sensitivity analysis (SA), including global SA (GSA), has gained interest from pharmaceutical industry,
regulators and academia in recent years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In pharmaceutical research and development
(R&D) decision-making for drug candidate selection, efficacy and safety is often supported by modelling and simulation
(M&S). This is referred to as model-informed drug discovery and development (MID3) [11]. SA is an indispensable
instrument for the quality assessment of model-based inference [12]. However, it is the authors’ opinion, that the
treatment and interpretation of correlated input parameters in GSA can be a barrier to wider use.

1.1 Modelling for decision-making in pharmaceutical R&D

Broadly, modelling activities in pharmaceutical R&D are centred around the study of disease, pharmacokinetics
(PK; in vivo drug absorption, distribution, metabolism and elimination, or ADME), structure-activity relationships,
pharmacodynamics (PD; temporal pharmacological effects) and more [11]. In this work, we focus on PK models.

PK models vary in complexity, ranging from simple empirical models, to complex models based on physiological
considerations [13, 14]. Empirical PK models use functions, such as sum of exponential terms, to describe the drug
concentration-time profiles. In these models the parameters are generally estimated from the data and have no clear
physiological meaning. Here we focus on the class of physiologically-based models, such as systems models of biology,
disease and pharmacology, that are applied throughout drug development. As these models are based on physiological
mechanisms, they can be used to extrapolate PK/PD effects from in vitro to in vivo, between species, populations and
scenarios [15].

Physiologically-based pharmacokinetic (PBPK) M&S provides a framework for mechanistic predictions of PK. PBPK
models consist of systems of ordinary differential equations based on mass balance (see also physiologically-based
toxicokinetics [16]). PBPK models are compartmental models in which each compartment corresponds to a specific
organ or tissue and is connected to other compartments through flow rates representing the blood circulation. This
structure reflects a representation of the true anatomical layout. Data on population demographics, tissue compo-
sition, organ function, drug metabolising enzymes, transporters and whole blood parameters are integrated with
drug and formulation-specific information to predict drug exposure over time [17]. PBPK M&S has been used to
replace/supplement clinical trials and inform labelling for numerous drugs, most notably for dosage recommendations
following metabolic drug-drug interactions [18, 19], avoiding adverse effects in patients.

Uncertainty and variability are prominent in biological data and an important consideration for decisions on drug
safety. For example, during drug development, when the drug is administered for the first time in humans (so called,
first-in-human trials), uncertainty affects the probability in risk predictions, therefore informing the dosing strategy. In
this context, uncertainty mainly relates to inter- and intra-experimental variability, experimental errors in laboratory
and physiological measures, and translation of parameters. Variability mainly relates to interindividual variability in
physiology, protein expression, genetics, interoccasion variability and more.

Correlations between input parameters are often implemented in PBPK models to account for physiological constraints,
otherwise causing implausible combinations of parameters [20, 21]. For example, organ weights and blood flows are
constrained by body weight and cardiac output. With the emergence of novel ‘omics techniques, the correlation of
proteins is also of increasing interest [22, 23].

1.2 Global sensitivity analysis for PBPK M&S: the issue of correlated input factors

Both the United States Food and Drug Administration (FDA) and European Medicines Agency (EMA) have highlighted
the importance of SA and GSA as best practice in PBPK to inform model development and refinement [1, 2]. GSA is
key for elucidating the relationship between the uncertainty and variability in model inputs and variation in a given
model output. Therefore, by extension, the method is also relevant for drug development and precision dosing in clinical
practice [3, 4, 9, 24, 25].

In this work, we focused on the variance-based GSA (also referred to as Sobol’s method) [3, 5]. This choice was made
as the variance-based GSA is able to handle nonlinear and nonmonotonic relationships between the input factors and
the model outputs [26, 27, 28]. Moreover, with this method it is possible to quantify the effect of each factor taken
singularly and the extent of its interaction effects. As we have reported in previous work, understanding the extent of
the interaction effects can be particularly important for an informed use of PBPK models during drug development [5].

The classical variance-based GSA works under the assumption that model inputs (commonly referred to as model
parameters in pharmacometrics) are independent [26, 28, 27]. Under this assumption, the variance decomposition is
unique [26] and reflects the structure of the model itself [29]. In this context, the variance-based sensitivity indices
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have a clear interpretation [27, 30]. However, most PBPK models violate the independence assumption [4, 20, 31]. In
practice this may lead to correlations being ignored in the analysis, or the use of one of several proposed methods for
GSA that deal with dependent inputs. Perhaps, the most simple and elegant way of treating dependent inputs in GSA is
by grouping the correlated factors and then performing a GSA with the independent groups. The intrinsic limitation of
this approach is that it is not possible to distinguish the contribution of the single variables within each group.

In the literature, several methods have been developed to deal with dependent inputs while retaining the information,
or sensitivity indices, of each individual factor. These methods typically fall into one of two classes: parametric and
non-parametric methods [32, 33]. The parametric methods, also called model-based methods, (e.g., [34, 35, 36]) assume
an a priori model for the input-output relation. Instead, the non-parametric approaches do not assume any specific shape
for this relation and thus, they are referred to as model-free or non model-based methods [33, 32]. These approaches
are by and large considered more suitable for computer-based modelling [33]. Generally, the non-parametric methods
employ a transformation technique for dealing with correlated factors’ distribution [33]. For example, Kucherenko et al.
[37] used copula transformations to generalise the first order and total Sobol indices for the case of dependent input
factors. Mara et al. [32] proposed the use of the Rosenblatt transformation, and Tarantola and Mara [38] used both the
Rosenblatt and Nataf transformation within the context of variance-based GSA. Moreover, other methods such as the
variogram analysis of response surfaces (VARS) and the Shapely effects have been extended for the case of correlated
input factors [33, 30].

The copula-based method, developed by Kucherenko and coworkers [37], has recently been proposed for PBPK models
and implemented in a commercial PBPK software [31, 39]. However, how to interpret variance-based GSA results
in presence of dependent variables is not straightforward and still debated among GSA practitioners. In presence of
correlation between the input factors, the correspondence between the variance-based indices and model structure
is lost and the variance decomposition can no longer provide a description of the model structure [29, 40, 41]. This
was illustrated by Oakley and O’Hagan in 2004 with the use of a simple example [29]. In this context, Pianosi et al.
reported that ‘counterintuitive results may be obtained’ [41]. Iooss and Lemaître reported that ‘SA for dependent inputs
has also been discussed by several authors [...], but this issue remains misunderstood’ [42]. Moreover, Iooss and
Prieur reported that ‘The so-called Sobol’ indices [...], present a difficult interpretation in the presence of statistical
dependence between inputs’ [30].

Several dedicated software platforms exist for PBPK M&S [43], providing accessible tools for non-expert users. As
GSA gains use in the community (such as through software implementation) the issue of interpretability becomes
increasingly relevant.

Here we propose a latent variable approach for treating correlated input parameters in variance-based GSA. The method
expresses the correlation between two parameters as causal relationships between uncorrelated variables. This is done
in order to allow the use of classical variance-based GSA and avoids the usage of methods whose interpretation is
still a matter of debate. Latent variable models and sub-varieties of them, such as factor analysis, path analysis and
structural equation modelling, are widely used in social sciences [44]. In latent variable models, the correlation between
more than one observed measure (or model parameter) is described by one, or more, unobserved (latent) variable(s).
Parameters are correlated as they share a common cause [45]. Here we focus on the case of two linearly correlated
random variables whose correlation is explained by one latent variable. With this approach, instead of two correlated
factors, three independent factors (the latent variable and the two independent variances of the correlated parameters)
are considered in the GSA.

The approach is then applied to a set of algebraic models and a whole-body PBPK model for the drug midazolam
(MDZ). MDZ is a sedative primarily metabolised by Cythochrome P450 (CYP) 3A4 and CYP3A5 [46]. The expression
of CYP3A5 is polymorphic and present in around 10-20% [47] of Caucasians where it is correlated with CYP3A4
through a shared mechanism for expression [48]. The latent variable approach was then compared with the classic
Sobol’s variance-based GSA, Sobol’s GSA performed by grouping together the correlated factors, and the Kucherenko
approach.
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2 Materials and Methods

2.1 Variance-based sensitivity analysis and the Kucherenko approach

Let us consider the generic model in Equation 1:

Y = f(X), (1)

where Y is the scalar model output, X is the vector including the k independent input factors (Xi, i = 1...k) and f is
the input-output relationship. In variance-based GSA (also known as Sobol’s GSA) two sensitivity indices are derived
from the decomposition of the variance (V ) of Y . These are the so called first order index (or main effect) Si and the
total effect (ST,i), in Equation system 2 [26, 28, 49].

Si =
VXi

(EX∼i
(Y |Xi))

V (Y )

STi =
EX∼i(VXi(Y |X∼i))

V (Y )

(2)

X∼i represents a vector including all the factors except Xi, while E is the expectation operator. Si is related with the
part of V (Y ) explained by the variation of Xi taken singularly and ST,i is the sum of Si with all the interaction effects
of Xi with the other inputs [27, 28]. When the parameters are independent, the relationships Si ≤ ST,i and

∑
Si ≤ 1

are always valid and ST,i − Si gives information about the extent of interaction effects involving Xi [27, 28].

The GSA method proposed by Kucherenko et al. [37] can consider models with dependent input factors. Here, the
main and total effects of the variance-based GSA are calculated with a copula-based method. With this approach, Si

includes the effects of the dependence of Xi with other factors [32] and can be higher than ST,i. As reported by [32],
ST,i includes only the effects of Xi that are not due to its dependence with X∼i. A given factor whose importance is
only due to the correlation with another factor would have ST,i = 0, but Si can be different from 0 [32]. Moreover,
ST,i approaches 0 as the correlation |ρ| → 1 [37]. A possible explanation for this behaviour is that as the correlation
approaches 1, the value of Xi is completely informed by X∼i and thus VXi(Y |X∼i) will tend to 0.

2.2 Latent variable approach for GSA

This approach expresses the inter-correlation between two parameters as causal relationships between uncorrelated
variables. Therefore allowing the use of classical variance-based GSA.

Latent variable methods partition the observed variance of each correlated parameter (observed variable) into two parts:
a common variance, caused by the latent variable and a unique variance, specific to the parameter itself [45]. In this
work, we focus on the case of two linearly correlated random variables whose correlation is explained by one latent
variable. The relationship between the observed, common and unique variances for two correlated parameters and one
latent variable is reported through a path diagram as shown in Figure 1 [44]. Following the notation of latent-variable
methodology, η is the latent variable, and is conventionally represented by a circle in the path diagram. Unidirectional
arrows represent the causal relationships between latent and dependent factors Xi, i = 1, 2 (depicted by a box) and εi
represents the unique variance associated with Xi [45]. X1 and X2 are considered linearly correlated, with a linear
(Pearson) correlation coefficient of ρ12. Here we assume that η, Xi and εi are distributed as in Equation system 3 and
that η and εi are independent.

η ∼ N (0, 1)

Xi ∼ N (0, 1)

εi ∼ N (0, σ2
i )

(3)

A common assumption is that the causal relationships between η and Xi are linear. In this case, it is possible to write
the following Equation system 4 [44, 45].

X1 = λ1 η + ε1
X2 = λ2 η + ε2

(4)

λ1 and λ2 are called the factor loadings and represent the correlations of X1 and X2 with η [50]. Given that our
hypothesis is that η and Xi are standard normal random variables, and that εi is distributed normally with a mean equal
to 0 and variance σ2

i , by calculating the variance of both sides of the equations in Equation system 4, it is possible to
derive that σ2

i = (1− λ2i ), i = 1, 2.

Now, to correctly express X1 and X2 as functions of η, we need to define λ1, λ2 and σ2
1 , σ2

2 . According to path analysis
theory, the correlation between X1 and X2 can be expressed as ρ12 = λ1 · λ2 [44]. With the hypotheses that ρ12 > 0
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Table 1: Assumptions for the use of the latent variable approach
Assumptionsa

Only two correlated input factors X1 and X2

A linear correlation between X1 and X2

η, ε1, ε2, X1, X2 normally distributed as in Equation 3
Linear relation between η and X1, X2, as in Equation 4
Same relation between X1, X2 and η, thus |λ1| = |λ2| = |λ| in Equation 4
a X1, X2 are the dependent input factors
η is the latent variable
ε1, ε2 are the unique variances

and that X1 and X2 have the same relationship with η, thus λ1 = λ2 = λ, it is possible to define λ as in Equation 5
[44].

λ =
√
ρ12 (5)

Another possible solution is λ = −√ρ12, where the latent variable has a negative correlation with both X1 and X2. In
case of ρ12 < 0, the absolute values of both factors loadings are equal to

√
ρ12, while their signs are opposite.

According to Equation 4, λ2 is the portion of the variance of Xi that is attributed to the latent factor. With our approach,
λ2 is the average variance extracted (AVE). AVE can be defined as ‘the average amount of variation that a latent
construct is able to explain in the observed variables’ [50]. Intuitively, this is the overall amount of variance that ‘is
taken’ from our dependent factors Xi and attributed to the latent variable η, in order to define the causal relationships
in Equation 4. The general AVE expression, corresponding to one latent variable and k unique variances, is reported
in Equation 6 [51]. Considering that σ2

i = 1− λ2i , AVE can be calculated as the average of the squares of the factor
loadings associated with the latent variable [50].

AV E =

∑k
i=1 λ

2
i∑k

i=1 λ
2
i +

∑k
i=1 σ

2
i

=
1

k

k∑
i=1

λ2i (6)

Considering that in our case k = 2 (two dependent factors) and λ1 · λ2 = ρ, we can derive the expression in Equation 7.

AV E =
1

2
(λ21 + λ22) =

1

2

(
λ21 +

ρ212
λ21

)
(7)

If we calculate the first derivative of AVE over λ1 and set it equal to zero, we can obtain the following expression in
Equation 8.

dAV E

dλ1
= λ1 −

ρ212
λ31

= 0

λ1 =
√
|ρ12|

λ2 = sign(ρ12) ·
√
|ρ12|

(8)

Where, sign(ρ12) is equal to +1 if ρ12 > 0, while it is equal to -1 if ρ12 < 0. If we calculate the second derivative we
can see that it is always positive, thus |λ1| = |λ2| corresponds to a minimum. With our hypothesis that X1 and X2 have
the same relationship with η, the AVE is minimised. This means that we are explaining the correlation between two
observed variables by attributing (on average) the minimum variance possible to the latent construct.

With the latent variable approach, instead of two correlated random variables (X1 and X2), three independent random
variables (η, ε1 and ε2) will be considered in the variance-based GSA. In this context, the impact of ε1 and ε2 on the
model output can be uniquely attributed to X1 and X2, respectively. Instead, it would be impossible to distinguish if
the impact of η on the model output is primarily mediated by X1 or X2.

For simplicity, we have considered standardised variables. However, the latent variable approach can easily be extended
to data in original units with the use of simple transformations. Nevertheless, in order to use this method several
assumptions must be satisfied (summarised in Table 1) and some limitations still exist. The sums of the random
variables representing the latent and independent variances must follow the distributions of Xi. This condition is
satisfied if both the parameters are normally distributed and it can easily be extended to the case of the two parameters
being log-normally distributed (although in this case log(X1) and log(X2) must be linearly correlated). However, the
condition in Equation system 4 is not easily satisfied for other types of distributions. The method presented here is valid
when considering two correlated factors and it can be extended to three mutually correlated factors, by using the so
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η

𝑋1

𝜀1

𝜆

𝑋2

𝜀2

𝜆

Figure 1: Relationship between the observed, common and unique variances for two correlated parameters and one
latent variable. X1 and X2 are the observed variables, η is the latent variable, ε1 and ε2 are the unique variances and λ
are the factor loadings.

called method of triads to derive a unique solution for the factor loadings [44]. However, it is possible that there is no
unique solution when more than three mutually correlated factors are considered [44]. In this situation, the application
of the latent variable approach for GSA would become more challenging.

2.3 Algebraic models

The latent variable approach was initially tested on three algebraic models, namely model 1, 2 and 3, in Equations 9, 10
and 11 respectively.

Y = X1 +X2 +X2 ·X3 (9)
Y = X1 +X2 +X1 ·X3 (10)
Y = X1 +X2 +X3 +X4 (11)

For all the models, all factors were considered to be normally distributed with means equal to 0 and variances equal to
1, Xi ∼ N (0, 1), i = 1, 2, 3, 4. X1 and X4 were considered linearly correlated, with a Pearson correlation coefficient
of ρ14. Model 1 and model 2 differ in the fact that in model 1, X1 is not involved in any interaction, while in model 2,
X1 interacts with X3.
X4 does not appear in the model 1 or model 2 equations, consequently, its ‘causal impact’1 on the model output Y must
be null. Intuitively, for both model 1 and 2, the results of a variance-based GSA in absence of correlation, considering
only X1, X2 and X3, will correctly reflect the structure of the model.

2.4 Whole-body PBPK model for midazolam

A whole-body PBPK model was developed, describing the pharmacokinetics of the drug MDZ following an intravenous
(IV) bolus injection in a population of human healthy subjects. The model is represented in Figure 2. This section
provides a brief description of the model. For a detailed account of the model equations, the parameters used for the
PBPK construction and the algorithm used for generating the population, see the Supplementary Material.

The typical equation used to describe the mass balance in a given organ or tissue t within a PBPK model is reported in
Equation 15. For a detailed description and the underlying theories of this model, called well-stirred perfusion-limited
PBPK, please refer to [52].

dxt
dt

= Qt

(
xart
Vart

− xt/Vt
Pt:p/B : P

)
(12)

Equation 15 is valid for all organs and tissues except the liver, the lungs, the arterial and venous blood. xt is the drug
amount in compartment t, while Vt is the volume. Subscript art stands for arterial blood. Qt is the blood flow to
compartment t. B : P is the blood-to-plasma ratio and Pt:p is the tissue-to-plasma partition coefficient.

1Here we refer to ‘causal impact’ as the impact of an input factor Xi on the model output Y that is not due to the dependence of
Xi with other factors.
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MDZ is primarily metabolised in the liver by the two enzymes, CYP3A4 and CYP3A5. For MDZ both enzymes
catalyse two reactions, leading to the formation of two metabolites,1-hydroxy midazolam (1-OH-MDZ) and 4-hydroxy
midazolam (4-OH-MDZ) [53, 46]. For this reason, two mass flows corresponding to MDZ metabolism leave the PBPK
system from the liver compartment, as represented in Equation system 18.

dxliv
dt

= Qliv

(
xart
Vart

− xliv/Vliv
Pliv:p/B : P

)
+
∑
t∈S

[
Qt

(
xt/Vt

Pt:p/B : P

)]
−MET3A4 −MET3A5

(13)

Subscript liv stands for liver, S represents the splanchnic organs (spleen, pancreas, stomach, small and large intestine).
cu,liv is the unbound liver concentration. MET3A4 and MET3A5 are the fluxes representing the reactions catalysed
by CYP3A4 and CYP3A5. All the chemical reactions are described using Michaelis-Menten equations [54]. The
Michaelis-Menten parameters for MDZ are taken from in vitro studies [46] and they are scaled to the in vivo context as
per [55]. One of the main parameters used for the in vitro to in vivo scaling is the microsomal protein per gram of liver
(MPPGL) (see supplementary materials for a detailed description of this process).

The population variability of physiological parameters such as the compartment volumes and blood flow was generated
with a simple algorithm having as inputs the sex of the subject, the height and the body mass index (BMI).

To simulate an IV bolus injection of 5 mg of MDZ, the initial condition of the venous blood compartment was set equal
to 5, while the remaining compartments were set to equal 0. The area under the curve (AUC) of the venous plasma
compartment was considered the output of interest for the GSA. The AUC is defined as in Equation 14.

AUC =

∫ tend

tin

xven(τ)

Vven ·B : P
dτ (14)

tin and tend were set to 0 and 24 · 7 h, respectively. The AUC is a measure of the cumulative exposure of a drug over
time. In PK, AUC is an important metric not only to represent exposure, but also to calculate a number of PK parameters
using non-compartmental analysis [56]. The distributions of the model parameters considered in this analysis are
reported in Table 2.

Table 2: Variable parameters used for the MDZ PBPK model
Parameters distribution parameters distribution type units references

sexd 0, 1 uniforma

height (male)e 176.7 (6.15) normalb cm [57]
height (female)e 163.3 (5.85) normalb cm [57]
BMIf 18.5, 24.9 uniforma kg/m2 [58]
[CY P3A4]g 137 (41%) log-normalc (pmol CY P )/(mgMP ) [59]
[CY P3A5]g 103 (65%) log-normalc (pmol CY P )/(mgMP ) [59]
MPPGLh 39.79 (27%) log-normalc (mg prot)/(g liver) [60]
a For distribution parameters, minimum, maximum of the parameter.
c For distribution parameters, mean (standard deviation) of the normal variable.
c For distribution parameters, mean (CV) of the log-normal variable.
d If the extracted value is < 0.5 the subject is female (0), otherwise male (1).
e height for a 20 years old Italian population
f Body mass index corresponding to the nutritional status of ‘Normal weight’ according to the World Health Organization
g CYP abundance per mg of microsomal protein
h mg of microsomal proteins for gram of liver

2.5 Analysis overview

For the GSA, the following methods were applied to both the algebraic and the PBPK models:

• classical variance-based GSA considering all the parameters uncorrelated;
• variance-based GSA grouping together the two correlated parameters;
• the method developed by Kucherenko for computing the variance-based GSA indices in presence of correlation

[37];
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stomach

S intestine

liver

venous
blood

arterial
blood

brain

heart

kidney

adipose

lungs

bones

muscles

skin

gonads

pancreas

spleen

L intestine

drug dose

Figure 2: Structure of a general whole-body PBPK model. Each box corresponds to a specific compartment. The
red and blue arrows represent the arterial and venous blood flow, respectively. The black-dashed arrow represents
elimination through metabolism in the liver. The yellow arrow represent the drug intravenous administration. S intestine
and L intestine are the small and large intestine, respectively.

• the latent variable approach.

Concerning the algebraic models, the analysis was carried out varying ρ14, from -0.9 to 0.9. When ρ14 > 0, the latent
variable was considered to be positively correlated with both X1 and X4 (λ > 0). Instead, when ρ14 < 0, the latent
variable was considered to be positively correlated with X1 and negatively correlated with X4.

For the PBPK model, the (Pearson) correlation between the logarithms of CYP3A4 and CYP3A5 abundances ρ3A4,3A5

was considered to equal 0.52, based on proteomic data from human liver samples [61], for the variance-based GSA
with grouped factors, for the Kucherenko and the latent variable approaches. In this analysis, all simulated individuals
were assumed to express CYP3A5.

All analysis was performed in MATLAB R2020a2 [62]. The systems of differential equations were solved with the
ode15s MATLAB solver, for a timespan ranging from 0 to 24 ·7 h. GSA was performed using the software UQLab [63]
except for the variance-based GSA with groups, where an ‘ad hoc’ MATLAB code was developed. For the numerical
estimation of the sensitivity indices, within UQLab, the ‘homma’ estimator was used for the Sobol approach, while the

2The codes are made available at the following link https://github.com/NicolaMelillo/latent_variable_GSA.
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default estimator embedded in the software was used for the Kucherenko approach. Concerning the ‘ad hoc’ MATLAB
code, we used the estimator reported in [28] (the errata corrige version). For all the methods, the sample size was fixed
to 10,000. The uncertainty of the sensitivity indices estimates was assessed by using 1,000 bootstrap samples, with the
exception of the Kucherenko method, where the convergence plots were used.

9



A PREPRINT - DECEMBER 7, 2020

3 Results

3.1 Algebraic models

The GSA results for the algebraic models 1, 2 and 3, with ρ14 = 0.7 and ρ14 = 0.9, are reported in Tables 3, 4 and
5, respectively. In Figure 3 the GSA results obtained with the latent variable and the Kucherenko approaches for the
algebraic model 1 are given as a function of ρ14, ranging from -0.9 to 0.9. For the models 2 and 3, the equivalent
information is shown in Figure 4 and 5, respectively. Here we begin by reporting the results of model 1 and 2 and then,
model 3.

The parameter X4 does not appear in Equations 9 and 10. Regardless of presence or absence of correlation between X1

and X4 its ‘causal’ impact on the output should therefore be null. Hence, intuitively, the results of a variance-based
GSA with the classic Sobol’s method considering only X1, X2 and X3 should be the ones that truly represent the model
structure. Any differences in main and total effects for the Kucherenko approach, the latent variable approach and the
variance based GSA with grouped factors are therefore due to how these methods handle the correlation.

Concerning the Kucherenko approach, in Figure 3 the higher the absolute value of ρ14 is, the higher the main effect of
X4 is, while its total effect always remains equal to 0. This substantially confirms the findings of [32]. Moreover, as the
absolute value of the correlation increases, the total effect of X1 decreases, while the main effect remains stable. From
[32] we know that S1 includes the impact of the correlation of X1 with X4, while ST,1 just includes the ‘uncorrelated’
effects. From our example is possible to appreciate that the higher |ρ14| is, the lower the ‘uncorrelated’ effect of X1 is.
In this context it is actually challenging to distinguish between the ‘causal’ effect of X1 and X4 on Y and the effect due
to their dependence. Similar conclusions can be made for the model 2. By limiting the analysis to the Kucherenko
indices, it is challenging to understand how much X1 is involved in interaction effects and, ultimately, to determine any
ranking of importance of the parameters as can be used in practical applications.

Concerning the latent variable approach, presented in Figures 3 and 4, the higher the absolute value of ρ14 is, the
higher the importance of the latent variable over the unique variances. Ultimately, with ρ14 approaching 1 the whole
variance of both X1 and X4 becomes fully explained by the latent factor and thus, the residual variances’ effect on the
output variance tends to 0. Given that the latent variable affects both the correlated factors equally, it is not possible
to elucidate if the impact of η on the output variance is primarily mediated by X1 or X4. However, the impact of the
unique variances can be uniquely attributed to the correlated factors. In fact, for both models 1 and 2, both the main
and total effect of ε4 are always equal to zero, as seen in Figures 3 and 4. This is unlikely the case for traditional
variance-based GSA with groups (see Tables 3 and 4), where, independently of the values of ρ14, it is not possible to
determine the impact of the variable within the groups. Notably, if |ρ| is close to 1, the latent variable will fully explain
both X1 and X4, resembling the case of the grouping approach. Given that in both the grouping and the latent variable
approach we are performing a standard Sobol’s GSA with uncorrelated factors, the interpretation of the sensitivity
indices and the factor ranking is straightforward.

In model 1, X1 is not involved in any interactions. This is discernible when Si = ST,i. In this case, S1 = ST,1, as seen
in Table 3 and Figure 4. Neither η or ε1 are involved in any interactions. This is quite intuitive as the model is linear
and X1 is defined as the sum of the latent variable and the unique variance in the latent variable approach. However,
interaction effects between the latent variable and the unique variance will arise, for example, in case of X1 having a
nonlinear effect (e.g., quadratic) on Y 3. In model 2, X1 and X3 show interaction effects, as noted in the Sobol’s GSA
results. This happens when ST,i > Si. In Table 4 and Figure 4 we can see that both the latent variable and the unique
variance of X1 show interaction effects.

Concerning model 3, Table 5 and Figure 5, we observe that the sensitivity indices of X2 and X3 change in function of
ρ14. The traditional variance-based GSA that considers all the factors uncorrelated does not capture this effect. With
this simple example, we can see that ignoring the correlation within GSA could potentially bias the overall results of
the analysis. Traditional GSA with groups can capture this effect and thus, it can be an easy an reliable method for
treating correlations. However, as explained for models 1 and 2, it has the limitation of not distinguishing the impact of
the variables within the groups of correlated factors.

Concerning the Kucherenko approach, S1 and S4 are close to 0 when ρ14 is close to 0 and they both grow as |ρ14|
grows. Instead, ST,1 and ST,2 have almost a parabolic shape. Both the main and total effects of X1 and X4 are low for
strong negative correlation, probably because in this model the effect of X1 tends to cancel the one of X4 on Y and
vice versa. For a high positive correlation the total effects tend to zero, while the main effects are close to 0.6.

3If X1 = λη + ε and Y = X2
1 , it is straightforward to derive that Y = λ2 η2 + ε2 + 2ληε. In this case, there are interaction

effects between η and ε.
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Regarding the latent variable approach, one interesting observation is that the overall tendency of the unique variances
and latent variable sensitivity indices are similar to those of the total and main effects of X1 and X4 of the Kucherenko
approach, respectively. This probably happens because the unique variances represents the impact of the ‘uncorrelated’
part of the factors, similarly to the total effect of the Kucherenko approach. Instead, both the latent variable and the
main effect include the ‘dependent’ part of the factors. However, one important difference is that the latent variable
approach is a variance-based GSA performed with independent variables and thus, the indices are easily understandable,
this is unlikely the case for the Kucherenko approach. Finally, it is interesting to observe that for negative correlations
the impact of the latent variable is zero. This happens because the factor loadings (λ) are equal in module, but opposite
in sign and thus, the latent variable term is cancelled from Equation 11.
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Figure 3: Algebraic model 1 GSA results of the latent variable and the method presented by Kucherenko 2012 [37].

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
e

n
s
it
iv

it
y
 i
n

d
e

x

latent variable approach

1
 main

1
 total

X
2
 main

X
2
 total

X
3
 main

X
3
 total

4
 main

4
 total

 main

 total

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
e

n
s
it
iv

it
y
 i
n

d
e

x

Kucherenko approach

X
1
 main

X
1
 total

X
2
 main

X
2
 total

X
3
 main

X
3
 total

X
4
 main

X
4
 total

Figure 4: Algebraic model 2 GSA results of the latent variable and the method presented by Kucherenko 2012 [37].

3.2 Whole-body PBPK model for midazolam

The simulated MDZ plasma concentration-time profiles and AUCs for a population of 10,000 subjects are shown
in Figures 6 and 7, respectively. The GSA results of Sobol’s method without accounting for the correlation, of the
Kucherenko method, of the traditional variance-based GSA with groups and of the latent variable approach are presented
in Table 6.

According to the results from Sobol’s GSA, the most important parameters in explaining the variability in AUC are
(in order of importance) the MPPGL, CYP3A4 and CYP3A5 abundances. These factors are important because they
control the rate of metabolism in the liver. The fact that the metabolism-related parameters are the most important for
explaining variability in AUC suggests that the rate-limiting step of drug elimination is the metabolism and not, for
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Figure 5: Algebraic model 3 GSA results of the latent variable and the method presented by Kucherenko 2012 [37].

example, liver blood flow. Given that exposure drives drug effect, the interindividual variability in efficacy, due to PK,
is mainly explained by genetics in this case example. However, we need to consider that our population is composed by
healthy adults with a BMI corresponding to the nutritional status of ‘normal weight’ [58]. The inclusion of overweight
or obese subjects may impact the results of the GSA.

Concerning the GSA results obtained with the Kucherenko, the variance-based GSA with groups and the latent variable
approach, the sensitivity indices of MPPGL are slightly reduced as compared to Sobol’s GSA. This is most likely related
with the fact that the correlation between CYP3A4 and CYP3A5 tends to generate more ‘extreme’ individuals, i.e.,
poor metabolisers (with low CYP3A4 and low CYP3A5 abundances) and rapid metabolisers (with high CYP3A4 and
high CYP3A5 abundances). Thus, as it is possible to observe in Figure 7, the AUC distribution in case of correlation is
slightly wider with respect to the case of no correlation. These results are in agreement with our previous studies [4].

Concerning the Kucherenko analysis, it is difficult to confidently use either the main or the total effects for the purpose
of factor ranking. For example, by observing the main effect the two most important parameters are CYP3A4 and
CYP3A5 abundances. However, it is difficult to understand what the contributions of the variables themselves are
and what is due to the correlation. For this reason, in our example, there is a risk of overestimating the importance of
the enzymatic abundances and, by extension, underestimating the importance of the other factors. By using the total
effect for the factor ranking, there is instead the risk of underestimating the importance of the correlated factors and
overestimating the importance of the remaining inputs, as the total effects for the factors involved in the correlation tend
to 0 as |ρ| → 1 [37]. Moreover, by using these two indices, given that for both CYP3A4 and CYP3A5 abundances the
total effect is lower than the main effect, it is difficult to understand the effect of interactions.

In the latent variable approach, the factor ranking can be done by examining either the main or at the total effects. This
is possible because the correlation between CYP3A4 and CYP3A5 was expressed in terms of a functional relationship
between three independent factors, the latent variable and two independent variances. Thus, the classical variance-based
GSA was used. With this approach, the most important factor in explaining the AUC is η, followed by MPPGL and the
independent components of CYP3A4 and CYP3A5. By using either the main or the total effect for the factor ranking,
we can confidently assess that the main drivers for the plasma AUC are the metabolism-related parameters. Moreover,
with this method it is possible to appreciate the interaction effects, that in this case are mild and do not have a great
impact on the factor ranking. A downside of this approach is that η drives both CYP3A4 and CYP3A5 variability. For
this reason, given that the latent variable is one of the two most important parameters, it is not possible to appreciate if
its importance is primarily caused by the CYP3A4 or CYP3A5 mediated pathway. By investigating the independent
components of CYP3A4 and CYP3A5 abundances, it is noted that they do have a similar impact. Intuitively, if one of
the two factors was not important for the AUC, the independent component would be equal to zero (however, it is not
necessarily true for the opposite case).

The results of the PBPK simulations presented here aim to illustrate a GSA methodology, only. Therefore, we do not
recommend their use for other purposes.
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Table 3: Results for the algebraic model 1

Sobola Kucherenkob Latent variablea Groupeda

Factor main total main total main total main total

ρ14 = 0.7

Xc
1

0.34
(0.32,0.36)

0.33
(0.31,0.34) 0.33 0.17 0.11

(0.09,0.13)
0.1

(0.9,0.11)
0.31d

(0.29,0.33)
0.34d

(0.31,0.37)

X2
0.33

(0.31,0.35)
0.67

(0.64,0.7) 0.32 0.64 0.32
(0.3,0.35)

0.65
(0.63,0.67)

0.31
(0.28,0.33)

0.7
(0.67,0.72)

X3
0

(-0.03,0.02)
0.33

(0.31,0.35) 0 0.34 0.02
(-0.01,0.04)

0.33
(0.31,0.35)

-0.03
(-0.06,0)

0.32
(0.29,0.34)

Xc
4

0
(-0.02,0.02)

0
(0,0) 0.16 0 0.02

(0,0.03)
0

(0,0)

η
0.26

(0.24,0.28)
0.23

(0.22,0.25)
ρ14 = 0.9

Xc
1

0.33
(0.31,0.35)

0.35
(0.33,0.37) 0.33 0.06 0.05

(0.03,0.07)
0.04

(0.03,0.04)
0.33d

(0.31,0.35)
0.34d

(0.31,0.37)

X2
0.32

(0.29,0.34)
0.66

(0.64,0.69) 0.33 0.69 0.33
(0.31,0.35)

0.65
(0.63,0.68)

0.35
(0.33,0.38)

0.67
(0.64,0.7)

X3
-0.01

(-0.04,0.02)
0.33

(0.31,0.36) -0.01 0.35 0.02
(-0.01,0.04)

0.35
(0.33,0.37)

0
(-0.03,0.02)

0.33
(0.31,0.36)

Xc
4

-0.01
(-0.03,0.01)

0
(0,0) 0.27 0 0.01

(-0.01,0.03)
0

(0,0)

η
0.3

(0.28,0.32)
0.29

(0.27,0.3)
a values reported in the table are mean (2.5,97.5) percentiles calculated with 1000 bootstrap samples
b convergence plots are shown in the supplementary materials
c for the latent variable model, this refers to the unique variance
d this refers to the X1 and X4 group

Figure 6: Simulated population midazolam plasma concentration over time following an intravenous (IV) bolus dose of
5 mg. The simulation was performed with the PBPK model for 10,000 individuals. The physiological correlation was
considered between the abundances of CYP3A4 and CYP3A5.
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Table 4: Results for the algebraic model 2

Sobola Kucherenkob Latent variablea Groupeda

Factor main total main total main total main total

ρ14 = 0.7

Xc
1

0.34
(0.32,0.36)

0.68
(0.66,0.71) 0.32 0.34 0.11

(0.09,0.13)
0.2

(0.18,0.21)
0.33d

(0.3,0.35)
0.68d

(0.65,0.71)

X2
0.32

(0.3,0.34)
0.33

(0.32,0.35) 0.33 0.32 0.33
(0.31,0.35)

0.33
(0.31,0.35)

0.32
(0.3,0.34)

0.34
(0.31,0.37)

X3
0

(-0.02,0.03)
0.34

(0.32,0.36) 0 0.34 0.01
(-0.01,0.04)

0.33
(0.3,0.35)

-0.03
(-0.05,-0.01)

0.33
(0.31,0.35)

Xc
4

-0.01
(-0.03,0.01)

0
(0,0) 0.16 0 0.01

(-0.01,0.02)
0

(0,0)

η
0.24

(0.22,0.26)
0.47

(0.45,0.49)
ρ14 = 0.9

Xc
1

0.33
(0.31,0.35)

0.66
(0.63,0.69) 0.32 0.13 0.03

(0.01,0.05)
0.06

(0.05,0.07)
0.36d

(0.33,0.38)
0.65d

(0.62,0.68)

X2
0.32

(0.3,0.34)
0.34

(0.32,0.35) 0.32 0.33 0.32
(0.3,0.34)

0.33
(0.32,0.35)

0.35
(0.33,0.37)

0.32
(0.29,0.35)

X3
0

(-0.03,0.03)
0.34

(0.32,0.37) 0 0.35 -0.01
(-0.03,0.01)

0.34
(0.32,0.37)

0.01
(-0.01,0.04)

0.34
(0.32,0.37)

Xc
4

0
(-0.02,0.02)

0
(0,0) 0.25 0 0

(-0.02,0.02)
0

(0,0)

η
0.29

(0.27,0.32)
0.61

(0.59,0.64)
a values reported in the table are mean (2.5,97.5) percentiles calculated with 1000 bootstrap samples
b convergence plots are shown in the supplementary materials
c for the latent variable model, this refers to the unique variance
d this refers to the X1 and X4 group
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Figure 7: Simulated midazolam AUC distribution both in presence and absence of correlation between CYP3A4 and
CYP3A5 abundances. The simulation was performed with the PBPK model for 10,000 individuals.
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Table 5: Results for the algebraic model 3

Sobola Kucherenkob Latent variablea Groupeda

Factor main total main total main total main total

ρ14 = 0.7

Xc
1

0.25
(0.23,0.26)

0.25
(0.23,0.26) 0.55 0.1 0.07

(0.05,0.09)
0.05

(0.04,0.06)
0.62d

(0.6,0.64)
0.63d

(0.61,0.65)

X2
0.25

(0.23,0.26)
0.24

(0.23,0.26) 0.19 0.19 0.18
(0.16,0.2)

0.19
(0.18,0.2)

0.19
(0.17,0.21)

0.18
(0.16,0.2)

X3
0.26

(0.24,0.27)
0.25

(0.24,0.27) 0.18 0.19 0.2
(0.18,0.22)

0.19
(0.18,0.2)

0.18
(0.16,0.2)

0.19
(0.17,0.2)

Xc
4

0.26
(0.24,0.28)

0.25
(0.24,0.27) 0.54 0.1 0.06

(0.04,0.08)
0.05

(0.05,0.06)

η
0.51

(0.49,0.53)
0.51

(0.49,0.53)
ρ14 = 0.9

Xc
1

0.24
(0.22,0.26)

0.25
(0.24,0.26) 0.63 0.03 0.02

(0,0.04)
0.02

(0.02,0.02)
0.65d

(0.63,0.67)
0.65d

(0.63,0.67)

X2
0.24

(0.22,0.26)
0.25

(0.24,0.26) 0.17 0.17 0.18
(0.16,0.2)

0.17
(0.16,0.18)

0.17
(0.15,0.19)

0.17
(0.15,0.19)

X3
0.26

(0.24,0.28)
0.24

(0.23,0.25) 0.18 0.17 0.17
(0.15,0.19)

0.17
(0.16,0.18)

0.18
(0.16,0.2)

0.19
(0.17,0.21)

Xc
4

0.25
(0.23,0.27)

0.26
(0.25,0.28) 0.62 0.03 0.02

(0,0.04)
0.02

(0.01,0.02)

η
0.63

(0.61,0.64)
0.62

(0.6,0.64)
a values reported in the table are mean (2.5,97.5) percentiles calculated with 1000 bootstrap samples
b convergence plots are shown in the supplementary materials
c for the latent variable model, this refers to the unique variance
d this refers to the X1 and X4 group
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Table 6: GSA results for the MDZ PBPK model

Sobola Kucherenkob Latent variablea Groupeda

Factor main total main total main total main total

ρ3A4,3A5 = 0.52

sex 0
(-0.02,0.02)

0.02
(0.01,0.03) 0.01 0.02 0.03

(0.01,0.05)
0.02

(0.01,0.02)
0

(-0.02,0.02)
0.01

(-0.03,0.04)

height 0.01
(-0.01,0.03)

0.05
(0.04,0.05) 0.02 0.03 0.04

(0.02,0.06)
0.03

(0.02,0.04)
0.01

(-0.01,0.03)
0.01

(-0.02,0.05)

BMI 0.03
(0.01,0.05)

0.05
(0.04,0.06) 0.03 0.03 0.04

(0.02,0.07)
0.03

(0.02,0.05)
0.01

(-0.01,0.03)
0.03

(-0.01,0.06)

MPPGL 0.29
(0.27,0.31)

0.39
(0.37,0.41) 0.25 0.3 0.26

(0.24,0.29)
0.3

(0.27,0.32)
0.24

(0.22,0.27)
0.29

(0.26,0.32)

CYP3A4c 0.27
(0.25,0.3)

0.33
(0.31,0.35) 0.49 0.22 0.12

(0.1,0.15)
0.15

(0.13,0.17) 0.61b

(0.58,0.64)
0.69d

(0.67,0.72)
CYP3A5c 0.23

(0.2,0.25)
0.29

(0.27,0.31) 0.42 0.15 0.09
(0.07,0.09)

0.1
(0.09,0.12)

η
0.43

(0.41,0.46)
0.48

(0.46-0.5)
a values reported in the table are mean (2.5,97.5) percentiles calculated with 1000 bootstrap samples
b convergence plots are shown in the supplementary materials
c for the latent variable model, this refers to the unique variance
d refers to the group of CYP3A4 and CYP3A5
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4 Discussion

GSA is gaining use in modelling for pharmaceutics, especially in the field of PBPK M&S. Recent applications in
the literature [3, 4, 5, 6, 7, 8, 9, 31] and regulatory discussions [1, 2] have indicated the usefulness of these methods
and it is likely that GSA will become an important feature of modelling in pharmaceutical R&D and for regulatory
decision-making. This development is welcomed, indeed in the field of toxicology GSA is an important part of best
practices for risk assessment of dose metric predictions [6, 64, 65].

In order for GSA to gain wider use, the issues of usability and interpretation of the results need to be considered. PBPK
M&S is an interdisciplinary effort highly reliant on experts in several domains, including medicinal chemistry, in vitro
drug metabolism, pharmacokinetics, pharmacology, toxicology, statistical and mathematical modelling, and more.
Further, modelling activities are an important tool for supporting a wide variety of decisions in R&D and regulatory
submissions. For this reason, dedicated user-friendly software platforms are widely used, facilitating standardisation
and easy access for non-expert users. We suspect that this is likely to hold true across many different domains, and
therefore relevant across areas of application. In this context, particular attention in communicating GSA results should
be paid.

Most whole-body PBPK models include several sets of correlated parameters, many of which constrain the models to
realistic parameter combinations. It is therefore important that these correlations are accounted for when performing
GSA. Several GSA methodologies have been proposed to account for dependent inputs [37, 36, 38, 32, 33] and the
method developed by Kucherenko was applied to PBPK models and implemented in a recent version of one of the
most widely used PBPK software platforms in pharmaceutical industry [10, 39]. However, considerable debate is still
ongoing amongst GSA practitioners on how to appropriately interpret the outcomes of these methods. We believe that
the use of methodologies whose interpretation is still a matter of debate, require appropriate care in cases where GSA is
called upon to support critical decisions, such as those relating to patient safety.

In this work, we propose a relatively simple method using a latent variable approach that deals with correlated input
variables in variance-based GSA. The method expresses the correlation between two factors as causal relationships
between a latent factor, η, and two unique variances. As a result this allows the use of classical Sobol’s GSA with
uncorrelated factors. In our opinion, the approach provides an intuitive process for implementation and interpretation as
illustrated in the analysis for MDZ. By ranking the factors according to the total effects of Sobol’s GSA, it was possible
to clearly interpret the sensitivity indices. This allows insights into the model behaviour and to understand what the
main drivers of variability are in a given output. By having a unique, easy and universally recognised interpretation of
the sensitivity indices, it is possible to use GSA for supporting decision-making with increased confidence.

One of several alternatives to the latent variable approach would be the use of traditional variance-based GSA with
groups. The main advantage is that this method allows treating more than two, or three, dependent factors and other
dependencies than the linear correlations. However, as highlighted in the results section, with this approach is not
possible to separately distinguish the impact of the dependent variables within a given group. Another alternative could
be to assign a unidirectional dependency between the two correlated factors as we have done in a previous study in the
context of PBPK models [4]. However, by doing so to describe the dependency, this will affect the relative significance
of one input over the other. The potentially arbitrary choice of assigning dependency will increase the importance of the
independent variable in the GSA and may produce misleading results. With the latent variable approach we renounce
any attempt to completely distinguish the impact of the two correlated inputs on a given model output. Instead, we
highlight the impact of the latent variable η (as the ‘common cause’) along with the independent part.

Here we also attempt to examine the shortcomings of the latent variable approach. In fact, the method presents some
limitations with regards to the number and the distribution of the factors that are mutually correlated, as described
in section 2. Moreover, the results of the latent variable approach need to be interpreted in light of the assumptions
summarised in Table 1. In case one or more of these assumption are not satisfied, the use of traditional GSA with
groups is likely a better choice. Despite this, we believe that the latent variable approach can be of use. This would be
true at least until further research is done and a clear, universally recognised interpretation of the sensitivity indices
have been agreed for more general GSA methods for dependent inputs that rely on fewer assumptions, such as the
approaches proposed by Kucherenko et al. [37] and Mara et al. [32].
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A Physiologically based pharmacokinetic (PBPK) model for midazolam

The typical equation used to describe the mass balance in a given organ or tissue t within a physiologically based
pharmacokinetic (PBPK) model is reported in Equation 15.

dxt
dt

= Qt

(
xart
Vart

− xt/Vt
Pt:p/B : P

)
(15)

Equation 15 is valid for all organs or tissues except the liver, the lungs, the arterial and venous blood. xt is the drug
amount in compartment t, while Vt is the volume. Subscript art denotes arterial blood. Qt is the blood flow to
compartment t. B : P is the blood-to-plasma ratio, that is an experimentally derived parameter representing the whole
blood drug concentration, divided by the plasma drug concentration at steady state. Pt:p is the tissue-to-plasma partition
coefficient and represents the tissue drug concentration divided by the plasma drug concentration at steady state. Given
the challenges in the experimental measurements of this parameter, several semi-empirical models have been developed
over the years, describing Pt:p as a function of drug and tissue properties [66]. In this work, the Berezhkovskiy model,
given in Equation 16, was used [67]:

Pt:p =
Dv,ow · (Vnl,t + 0.3 · Vph,t) + (Vw,t/fut + 0.7 · Vph,t)
Dv,ow · (Vnl,p + 0.3 · Vph,p) + (Vw,p/fup + 0.7 · Vph,p)

(16)

Vnl,t and Vnl,p are the volume fractions of neutral lipids in tissue and plasma, respectively; Vph,t and Vph,p are the
volume fractions of phospholipids in tissue and plasma; Vw,t and Vw,p are the water volume fractions in tissue and
plasma. Volume fractions are reported in Table 7. Dv,ow is the drug partition coefficient between vegetable oil
and water and it was obtained as follows logDv,ow = 1.115 · logPo,w, with logPo,w the octanol to water partition
coefficient [68]. fup and fut are the drug fraction unbound in plasma and tissue, with the latter calculated as:
fut = 1/(1 + 0.5 · (1− fup)/fup) [68]. All the drug related parameters are given in Table 9.

The equations for the lungs, arterial and venous blood are reported in equation system 17.

dxlungs
dt

= Qtot

(
xven
Vven

− xlungs/Vlungs
Plungs:p/B : P

)
dxart
dt

= Qtot

(
xlungs/Vlungs
Plungs:p/B : P

− xart
Vart

)
dxven
dt

=
∑
t∈T

[
Qt

(
xt/Vt

Pt:p/B : P

)]
−Qtot ·

xven
Vven

(17)

Subscript ven stands for venous blood. T represents all the tissues except lungs, arterial and venous blood, small and
large intestine, stomach, spleen and pancreas. The difference between lung and Equation 15 is that the lungs receive the
input from venous blood with a flux equal to Qtot, or cardiac output. The arterial blood compartment receives its input
from the lungs, while the venous blood compartment receives its input from the outputs of all organs defined in T .

Midazolam (MDZ) is primarily metabolised in the liver by the two enzymes, CYP3A4 and CYP3A5. For MDZ both
enzymes catalyse two reactions, leading to the formation of two metabolites,1-hydroxy midazolam (1-OH-MDZ) and
4-hydroxy midazolam (4-OH-MDZ) [53, 46]. For this reason, two mass flows corresponding to MDZ metabolism leave
the PBPK system from the liver compartment following intravenous drug administration, as represented in Equation
system 18.

dxliv
dt

= Qliv

(
xart
Vart

− xliv/Vliv
Pliv:p/B : P

)
+
∑
t∈S

[
Qt

(
xt/Vt

Pt:p/B : P

)]
−MET3A4 −MET3A5

MET3A4 =
Ṽmax,3A4,1−OH · cu,liv
KM,3A4,1−OH + cu,liv

+
Ṽmax,3A4,4−OH · cu,liv
KM,3A4,4−OH + cu,liv

MET3A5 =
Ṽmax,3A5,1−OH · cu,liv
KM,3A5,1−OH + cu,liv

+
Ṽmax,3A5,4−OH · cu,liv
KM,3A5,4−OH + cu,liv

(18)

Subscript liv stands for liver, S represents the splanchnic organs (spleen, pancreas, stomach, small and large intestine).
cu,liv is the unbound liver concentration, equal to xliv · fut/Vliv , where fut is the fraction unbound drug in the tissue.
MET3A4 and MET3A5 are the fluxes representing the reactions catalysed by CYP3A4 and CYP3A5. Subscripts
1−OH and 4−OH refer to the reactions leading to the formation of 1-OH-MDZ and 4-OH-MDZ. All the chemical
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reactions are described using Michaelis-Menten equations [54], where Ṽmax is the in vivo maximum reaction rate and
KM is the substrate concentration at which the rate is half of Ṽmax. Ṽmax is function of the in vivo enzyme abundance
and is derived in equation 19, as per [55].

Ṽmax = Vmax · [CY P ] ·MPPGL ·Wliv (19)
Vmax is the experimentally determined in vitro maximum rate per amount of CYP isoform, in
(pmol/min)/(pmol CY P ). [CY P ] is the enzyme amount per amount of microsomal protein4 (MP), in
(pmol CY P )/(mgMP ). MPPGL is the amount of microsomal protein per gram of liver, in (mgMP )/(g liver).
Finally, Wliv is the liver weight in grams.

For simulating the pharmacokinetics in a given population of subjects, the PBPK model parameters, such as organ
volumes and blood flows, need to be generated reflecting the population distribution. We developed a simple algorithm
for generating the organ volumes and blood flows. Briefly:

1. the sex of the subject is extracted;
2. according to the sex, the mean cardiac output and the parameters for height and body mass index (BMI)

distributions are fixed;
3. height and BMI of the subject are extracted;
4. the body weight (BW , in kg) is calculated as BW = BMI · h2, where h is the height in m;

5. the cardiac output (CO) is calculated as CO =
(

h
hmean

)0.75 ·COmean, with hmean and COmean the subjects’
mean height and cardiac output, respectively [69];

6. organ weights and blood flows were derived by multiplying BW and CO for the respective organs fractions,
given in Table 8;

7. organs volumes were derived by dividing the organ weights with organ densities, reported in Table 7.

4Vesicles derived from the endoplasmic reticulum abundant in drug metabolising enzymes.
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B PBPK parameters

Table 7: Organs composition
Organs neutral

lipids
fraction
[68]

phospholipids
fraction [68]

water
fraction
[68]

organ
densityc

Adipose 0.79 0.002 0.18 0.916
Bone 0.074 0.0011 0.439 1.4303
Brain 0.051 0.0565 0.77 1.0365
Heart 0.0115 0.0166 0.758 1.03
Muscle 0.0238 0.0072 0.76 1.041
Skin 0.0284 0.0111 0.718 1.1754
Spleen 0.0201 0.0198 0.788 1.054
Kidney 0.0207 0.0162 0.783 1.05
Gonadsa 0.0048 0.01 0.8 1e

Lung 0.003 0.009 0.811 1.0515
Stomachb 0.0487 0.0163 0.718 1.046
Small intestineb 0.0487 0.0163 0.718 1.046
Large intestineb 0.0487 0.0163 0.718 1.046
Liver 0.0348 0.0252 0.751 1.08f

Pancreas 0.0403d 0.009d 0.641d 1.045
Plasma 0.0035 0.00225 0.945 1e
a Values taken from Open Systems Pharmacology suite version 7.1.
b Values for stomach, small and large intestine were supposed equal.
c Calculated using specific gravity values from [70],
considering that water density is 1 kg/L.
d values taken from [71, 72]
e Gonads and blood density were fixed to 1.
f Value taken from [73].
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Table 8: Organs weight, blood flows and blood content

Organs weight fractionb blood flow fractiona blood fractionc

male female male female male female

Adipose 0.2040 0.3220 0.0530 0.0900 0.05 0.0850
Bone 0.1620 0.1520 0.0530 0.0500 0.07 0.07
Brain 0.0210 0.0230 0.1280 0.130 0.012 0.012
Heart 0.0057 0.0055 0.0430 0.05 0.01 0.01
Muscle 0.4430 0.3380 0.1810 0.12 0.14 0.105
Skin 0.0520 0.0450 0.0530 0.05 0.03 0.03
Spleen 0.0033 0.0037 0.0320 0.03 0.014 0.0104
Kidney 0.0060 0.0067 0.2170 0.2 0.02 0.02
Gonads 0.0006 0.0002 0.0005 0.0002 0.0004 0.0002
Lung 0.0180 0.0170 1 1 0.1050 0.1050
Stomach 0.0023 0.0027 0.0110 0.01 0.01 0.01
Small intestine 0.0100 0.0120 0.1060 0.12 0.038 0.038
Large intestine 0.0056 0.0069 0.0430 0.05 0.022 0.022
Liver 0.0320 0.0320 0.0690 0.07 0.1 0.1
Pancreas 0.0026 0.0028 0.0110 0.01 0.006 0.006
Blood 0.0767d 0.0683d - - (0,06,0.18)e (0.06,0.18)e
a Organ weight fraction (including blood content) on total body weight [69].
b Fraction of cardiac output directed to each organ [69].
c Fraction of blood weight (relative to total blood weight) [74].
d Blood fraction on total body weight [74].
e (arterial fraction, venous fraction) [74].

Table 9: Midazolam related parameters
Parameters value units references

B : P 0.66 [75]
fup 0.0303 [75]
molecular weight 325.77 g/mol [76]
log10Pow 3.13 [76]
Vmax,3A4,1 1.96 pmol/min/(pmol CY P ) [46]
KM,3A4,1 2.69 µM [46]
Vmax,3A4,4 2.52 pmol/min/(pmol CY P ) [46]
KM,3A4,4 29 µM [46]
Vmax,3A5,1 6.7 pmol/min/(pmol CY P ) [46]
KM,3A5,1 10.7 µM [46]
Vmax,3A5,4 0.52 pmol/min/(pmol CY P ) [46]
KM,3A5,4 12.1 µM [46]
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C Convergence of the Kucherenko indices

Figures 8 to 14 detail the convergence of the Kucherenko indices for the various models that were examined.

Figure 8: Convergence plot for the Kucherenko indices of the algebraic model 1, with ρ = 0.7

Figure 9: Convergence plot for the Kucherenko indices of the algebraic model 1, with ρ = 0.9
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Figure 10: Convergence plot for the Kucherenko indices of the algebraic model 2, with ρ = 0.7

Figure 11: Convergence plot for the Kucherenko indices of the algebraic model 2, with ρ = 0.9

Figure 12: Convergence plot for the Kucherenko indices of the algebraic model 3, with ρ = 0.7
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Figure 13: Convergence plot for the Kucherenko indices of the algebraic model 3, with ρ = 0.9

Figure 14: Convergence plot for the Kucherenko indices of the PBPK model for subjects expressing CYP3A5
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