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1. Introduction

Order statistics play a vital role in many fields such as statistical inference, economics, reliabil-
ity theory and operations research. Consider a random sample X1, · · · , Xn from a population.
Then, the ith order statistic is denoted by Xi:n, where i = 1, · · · , n. In reliability theory, the
ith order statistic represents the lifetime of a (n − i + 1)-out-of-n system, which functions if
at least n − i + 1 of n components work. In particular, the order statistics X1:n and Xn:n

represent the lifetimes of series and parallel systems, respectively. Due to the correspondence
between the order statistics and the systems’ reliability, a lot of effort has been put to study
ordering results between order statistics in terms of many well known stochastic orders. In
this paper, we deal with the comparison of extreme order statistics arising from dependent
multiple-outlier scale models in the sense of the usual stochastic, reversed hazard rate, hazard
rate, star and Lorenz orders. A multiple-outlier model is a collection of random variables

X1, · · · , Xn such that Xi
st
= X, i = 1, · · · , p and Xi = Y, i = p + 1, · · · , n, where 1 ≤ p < n.

Here, the notation Xi
st
= X means that the distributions of Xi and X are same. Due to

the robustness of different estimators of model parameters, multiple-outlier models have been
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widely used by many researchers. Now, we present some developments on stochastic com-
parisons between order statistics arising from multiple-outlier models. Kochar and Xu (2011)
considered multiple-outlier exponential models. They showed that more heterogeneity among
the scale parameters of the model results more skewed order statistics. Zhao and Balakrishnan
(2012) took similar model and obtained ordering results between the largest order statistics
with respect to the likelihood ratio, reversed hazard rate, hazard rate and usual stochastic
orderings. Zhao and Balakrishnan (2015) discussed stochastic comparisons of the largest order
statistics from multiple-outlier gamma models in terms of various stochastic orderings such
as the likelihood ratio, hazard rate, star and dispersive orders. Kochar and Torrado (2015)
established likelihood ratio ordering between the largest order statistics arising from indepen-
dent multiple-outlier scale models. Sufficient conditions for the comparison of the lifetimes
of series systems with respect to dispersive order have been obtained by Fang et al. (2016).
They considered that the components of the series systems follow multiple-outlier Weibull
models. Amini-Seresht et al. (2016) studied multiple-outlier proportional hazard rate models
and developed ordering results with respect to the star, Lorenz and dispersive orders. Fur-
ther, they proved that more heterogeneity among the multiple-outlier components led to a
more skewed lifetime of a k-out-of-n system consisting of these components. Wang and Cheng
(2017) studied an open problem on mean residual life ordering between two parallel systems un-
der multiple-outlier exponential models which was proposed by Balakrishnan and Zhao (2013).

Let {X1, · · · , Xp, Xp+1, · · · , Xn} be a collection of n independent random variables fol-
lowing the multiple-outlier exponential model, where Xi, i = 1, · · · , p follow exponential
distribution with parameter λ1 and Xj, j = p + 1, · · · , n follow exponential distribution
with parameter λ2, with n = p + q. Further, let {Y1, · · · , Yp∗ , Yp∗+1, · · · , Yn∗} be a collec-
tion of n∗ independent random variables following the multiple-outlier exponential model,
where Yi, i = 1, · · · , p∗ follow exponential distribution with parameter λ∗1 and Yj, j =
p∗+1, · · · , n∗ follow exponential distribution with parameter λ∗2, with n∗ = p∗+q∗. Denote the
largest order statistics by Xn:n(p, q) and Yn∗:n∗(p

∗, q∗) arising from {X1, · · · , Xp, Xp+1, · · · , Xn}
and {Y1, · · · , Yp∗ , Yp∗+1, · · · , Yn∗}, respectively. Under this set-up, Balakrishnan and Torrado
(2016) obtained conditions under which the likelihood ratio order holds between Xn:n(p, q)
and Yn∗:n∗(p

∗, q∗). In particular, for (p∗, q∗) �w (p, q), they showed that

(λ1, · · · , λ1︸ ︷︷ ︸
p

, λ2, · · · , λ2︸ ︷︷ ︸
q

) �w (λ∗1, · · · , λ∗1︸ ︷︷ ︸
p

, λ∗2, · · · , λ∗2︸ ︷︷ ︸
q

)⇒ Xn:n(p, q) ≥lr Yn∗:n∗(p∗, q∗), (1.1)

when λ1 ≤ λ∗1 ≤ λ∗2 ≤ λ2 and 1 ≤ p∗ ≤ p ≤ q ≤ q∗. The authors also extended the re-
sult given by (1.1) to the case of the proportional hazard rate models. Recently, Torrado
(2017) developed the comparison result similar to (1.1) for the multiple-outlier scale models
when the random variables are independent. It is noted that almost all concerned research
in this area has been developed under the assumption of statistically independent component
lifetimes. However, there are some practical situations, where the condition of statistically
mutual independence among the component lifetimes is evidently unsuitable. For an example,
let us consider a mechanical system. The components of the system are suffering a com-
mon stress. Then, it is of huge interest to include statistical dependence among component
lifetimes into the study of stochastic comparison of the lifetimes of the series and parallel sys-

2



tems. Further, note that due to complexity of working with the dependent random variables,
marginal effort was put to the study of dependent multiple-outlier models by the researchers
(see Navarro et al. (2018)). These are the main motivations to investigate ordering properties
of the extreme order statistics arising from multiple-outlier dependent scale components. The
dependency structure among the random variables is modeled by the concept of Archimedean
copulas. We recall that a nonnegative random variable X with distribution function FX is
said to follow the scale model if there exists λ > 0 such that FX(x) = F (λx), where F is the
baseline distribution function and λ is the scale parameter.

In this paper, we will develop different ordering results between the largest as well as
the smallest order statistics stemming from multiple-outlier dependent scale models with
respect to several stochastic orderings such as the usual stochastic, hazard rate, reversed
hazard rate, star and Lorenz orders. Let {X1, · · · , Xn∗1

, Xn∗1+1, · · · , Xn∗} be a set of de-
pendent and heterogeneous random observations. The observations are sharing a common
Archimedean copula with generator ψ1 and are taken from the multiple-outlier scale model,
where for i = 1, · · · , n∗1, Xi ∼ F1(λ1x) and for j = n∗1 + 1, · · · , n∗, Xj ∼ F2(λ2x), where
λ1, λ2 > 0. Note that F1(.) and F2(.) are two different baseline distribution functions.
Also, let {Y1, · · · , Yn∗1 , Yn∗1+1, · · · , Yn∗} be another set of dependent and heterogeneous ran-
dom observations sharing a common Archimedean copula with generator ψ2, drawn from the
multiple-outlier scale model, where for i = 1, · · · , n∗1, Yi ∼ F1(µ1x) and for j = n∗1 + 1, · · · , n∗,
Yj ∼ F2(µ2x), where µ1, µ2 > 0. Denote by r1, r̃1 and r2, r̃2 the hazard rate and reversed
hazard rate functions for F1 and F2, respectively. Further, denote Xn:n(n1, n2), Yn∗:n∗(n

∗
1, n

∗
2)

and X1:n(n1, n2), Y1:n∗(n
∗
1, n

∗
2) are the largest and the smallest order statistics, respectively

arising from {X1, · · · , Xn1 , Xn1+1, · · · , Xn} and {Y1, · · · , Yn∗1 , Yn∗1+1, · · · , Yn∗}, where 1 ≤ n1 ≤
n∗1 ≤ n∗2 ≤ n2, n = n1 + n2 and n∗ = n∗1 + n∗2. We aim to establish sufficient conditions, under
which the following implications hold:

(λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

) ⇒ Yn∗:n∗(n
∗
1, n

∗
2) ≤st [≤rh]Xn:n(n1, n2),

(λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

) ⇒ X1:n(n1, n2) ≤st Y1:n∗(n
∗
1, n

∗
2)

and

(u1, · · · , u1︸ ︷︷ ︸
n∗1

, u2, · · · , u2︸ ︷︷ ︸
n∗2

) �w (v1, · · · , v1︸ ︷︷ ︸
n∗1

, v2, · · · , v2︸ ︷︷ ︸
n∗2

)⇒ X1:n(n1, n2) ≤hr Y1:n∗(n
∗
1, n

∗
2),

where ui = log λi and vi = log µi, i = 1, 2.

The remainder of the paper is rolled out as follows. Some basic definitions and important
lemmas are provided in Section 2. Section 3 consists of two subsections. In Subsection 3.1, we
obtain sufficient conditions, under which two largest order statistics are comparable according
to the usual stochastic order, reversed hazard rate order, star order and Lorenz order, whereas
in Subsection 3.2, we study the usual stochastic order, hazard rate order, star order and Lorenz
order between two smallest order statistics. We also present some examples to illustrate the
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established results. Finally, we conclude the paper in Section 4.

Throughout the paper, we only concern about nonnegative random variables. Increasing
and decreasing mean nondecreasing and nonincreasing, respectively. Also, the prime ‘′’ stands
for the first order derivative.

2. Basic notions

In this section, we recall some basic definitions and well known concepts of stochastic orders
and majorization. Let x = (x1, · · · , xn) and y = (y1, · · · , yn) be two n-dimensional vectors
such that x ,y ∈ A, where A ⊂ Rn and Rn is an n-dimensional Euclidean space. Also, consider
the order coordinates of the vectors x and y as x1:n ≤ · · · ≤ xn:n and y1:n ≤ · · · ≤ yn:n,
respectively.

Definition 2.1. A vector x is said to be

• majorized by another vector y, (denoted by x �m y), if for each l = 1, · · · , n − 1, we
have

∑l
i=1 xi:n ≥

∑l
i=1 yi:n and

∑n
i=1 xi:n =

∑n
i=1 yi:n;

• weakly submajorized by another vector y, denoted by x �w y, if for each l = 1, · · · , n,
we have

∑n
i=l xi:n ≤

∑n
i=l yi:n;

• weakly supermajorized by another vector y, denoted by x �w y, if for each l = 1, · · · , n,
we have

∑l
i=1 xi:n ≥

∑l
i=1 yi:n.

Note that x �m y implies both x �w y and x �w y. For brief introduction of majorization
orders and their applications, we refer to Marshall et al. (2011). Now, we present notions of
stochastic orderings. Let X1 and X2 be two nonnegative random variables with probability
density functions (PDFs) fX1 and fX2 , cumulative density functions (CDFs) FX1 and FX2 ,
survival functions F̄X1 = 1 − FX1 and F̄X2 = 1 − FX2 , hazard rate functions rX1 = fX1/F̄X1

and rX2 = fX2/F̄X2 and reversed hazard rate functions r̃X1 = fX1/FX1 and r̃X2 = fX1/FX2 ,
respectively.

Definition 2.2. A random variable X1 is said to be smaller than X2 in the

• hazard rate order (denoted by X1 ≤hr X2) if rX1(x) ≥ rX2(x), for all x > 0;

• reversed hazard rate order (denoted by X1 ≤rh X2) if r̃X1(x) ≤ r̃X2(x), for all x > 0;

• usual stochastic order (denoted by X1 ≤st X2) if F̄X1(x) ≤ F̄X2(x), for all x;

• star order (denoted by X1 ≤∗ X2 or FX1(x) ≤∗ FX2(x)) if F−1
X2
FX1(x) is star shaped in

the sense that
F−1
X2

FX1
(x)

x
is increasing in x on the support of X1;

• Lorenz order (denoted by X1 ≤Lorenz X2) if

1

E(X1)

∫ F−1
X1

(u)

0

xdFX1(x) ≥ 1

E(X2)

∫ F−1
X2

(u)

0

xdFX2(x), for all u ∈ (0, 1].
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Note that both the hazard rate and reversed hazard rate orderings imply the usual stochas-
tic ordering. Also, star order implies Lorenz order (see Marshall and Olkin (2007)). One may
refer to Shaked and Shanthikumar (2007) for a detailed discussion on various stochastic or-
derings. The next definition is for the Schur-convex and Schur-concave functions.

Definition 2.3. A function Ψ : Rn → R is said to be Schur-convex (Schur-concave) in Rn if

x
m

� y ⇒ Ψ(x) ≥ (≤)Ψ(y), for all x, y ∈ Rn.

Throughout the article, we will use the notations. (i) D+ = {(x1, · · · , xn) : x1 ≥ x2 ≥
· · · ≥ xn > 0} and (ii) E+ = {(x1, · · · , xn) : 0 < x1 ≤ x2 ≤ · · · ≤ xn}. Denote by h′(z) = dh(z)

dz
.

The following consecutive lemmas due to Kundu et al. (2016) are useful to prove the results
in the subsequent sections. The partial derivative of h with respect to its kth argument is
denoted by h(k)(z) = ∂h(z)/∂zk, for k = 1, · · · , n.

Lemma 2.1. Let h : D+ → R be a function, continuously differentiable on the interior of D+.
Then, for x, y ∈ D+,

x �m y implies h(x) ≥ (≤) h(y),

if and only if h(k)(z) is decreasing (increasing) in k = 1, · · · , n.

Lemma 2.2. Let h : E+ → R be a function, continuously differentiable on the interior of E+.
Then, for x, y ∈ E+,

x �m y implies h(x) ≥ (≤) h(y),

if and only if h(k)(z) is increasing (decreasing) in k = 1, · · · , n.

The following lemma due to Saunders and Moran (1978) is useful to establish star order
between the order statistics.

Lemma 2.3. Let {Fλ|λ ∈ R} be a class of distribution functions, such that Fλ is supported
on some interval (a, b) ⊆ (0,∞) and has density fλ which does not vanish on any subinterval
of (a, b). Then,

Fλ ≤∗ Fλ∗ , λ ≤ λ∗

if and only if
F ′λ(x)

xfλ(x)
is decreasing in x,

where F ′λ is the derivative of Fλ with respect to λ.

To model the dependency structure among the random variables, the concept of copulas
plays a vital role. One of the important characteristics of the copula is that it involves the
information of the dependencies between the random variables apart from the behavior of
the marginal distributions. Archimedean copulas are important class of copulas. These are
used widely because of its simplicity. Let F and F̄ be the joint distribution function and the
joint survival function of the random vector X = (X1, · · · , Xn). Suppose there exist functions
C(z) : [0, 1]n → [0, 1] and Ĉ(z) : [0, 1]n → [0, 1] such that for all xi, i ∈ In, where In is the
index set

F (x1, · · · , xn) = C(F1(x1), · · · , Fn(xn))
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and
F̄ (x1, · · · , xn) = Ĉ(F̄1(x1), · · · , F̄n(xn))

hold, where z = (z1, · · · , zn). Then, C(z) and Ĉ(z) are said to be the copula and survival
copula of X, respectively. Here, F1, · · · , Fn and F̄1, · · · , F̄n are the univariate marginal dis-
tribution functions and survival functions of the random variables X1, · · · , Xn, respectively.
Now, let ψ : [0,∞) → [0, 1] be a nonincreasing and continuous function, satisfying ψ(0) = 1
and ψ(∞) = 0. Also, let ψ = φ−1 = sup{x ∈ R : φ(x) > v} be the right continuous inverse.
Further, suppose ψ satisfies the conditions (i) (−1)iψi(x) ≥ 0, i = 0, 1, · · · , d − 2 and (ii)
(−1)d−2ψd−2 is nonincreasing and convex. That implies the generator ψ is d-monotone. Then,
a copula Cψ is said to be an Archimedean copula if it can be written as the following form

Cψ(v1, · · · , vn) = ψ(φ(v1), · · · , φ(vn)), for all vi ∈ [0, 1], i ∈ In.

For further discussion on Archimedean copulas, one may refer to Nelsen (2006) and McNeil
and Nešlehová (2009).

Next lemma is taken from Li and Fang (2015), which has been used to prove the results
in Theorems 3.1, 3.3, 3.8 and 3.10.

Lemma 2.4. For two n-dimensional Archimedean copulas Cψ1 and Cψ2, if φ2 ◦ ψ1 is super-
additive, then Cψ1(z) ≤ Cψ2(z), for all z ∈ [0, 1]n. A function f is said to be super-additive,
if f(x) + f(y) ≤ f(x+ y), for all x and y in the domain of f.

3. Main Results

This section is completely devoted to establish sufficient conditions, under which the extreme
order statistics arising from multiple outlier dependent scale models are comparable in different
stochastic senses. The usual stochastic, hazard rate, reversed hazard rate, star and Lorenz
orders are used in this sequel. Throughout this section, we denote two dimensional vectors by
bold symbols. For example, λ = (λ1, λ2) and µ = (µ1, µ2).

3.1 Orderings between the largest order statistics

This subsection addresses ordering results between the largest order statistics arising from
multiple-outlier models. The following three consecutive theorems present different condi-
tions, for which the usual stochastic order between the largest order statistics holds. Before
presenting the first result, we state the following assumption.

Assumption 3.1. Let X1, · · · , Xn∗ be n∗ dependent nonnegative random variables sharing
Archimedean copula with generator ψ1, with Xi ∼ F1(xλ1), for i = 1, · · · , n∗1 and Xj ∼
F2(xλ2), for j = n∗1 + 1, · · · , n∗. Also, let Y1, · · · , Yn∗ be n∗ dependent non-negative random
variables sharing Archimedean copula with generator ψ2, with Yi ∼ F1(xµ1), for i = 1, · · · , n∗1
and Yj ∼ F2(xµ2), for j = n∗1 + 1, · · · , n∗. Here, n∗1 + n∗2 = n∗, ψ1 = φ−1

1 and ψ2 = φ−1
2 .
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Theorem 3.1. Under the set-up as in Assumption 3.1, let r̃1(x) ≥ (≤)r̃2(x) and n∗1 ≥ (≤)n∗2.
Then,

(λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

)⇒ Yn∗:n∗(n
∗
1, n

∗
2) ≤st Xn∗:n∗(n

∗
1, n

∗
2),

provided λ, µ ∈ E+ (D+), φ2 ◦ ψ1 is super-additive, ψ1 or ψ2 is log-convex and r̃1(x) or r̃2(x)
is decreasing.

Proof. The distribution functions of Xn∗:n∗(n
∗
1, n

∗
2) and Yn∗:n∗(n

∗
1, n

∗
2) are respectively given by

FXn∗:n∗ (n
∗
1, n

∗
2)(x) = ψ1 [n∗1φ1 (F1 (xλ1)) + n∗2φ1 (F2 (xλ2))]

and
FYn∗:n∗ (n

∗
1, n

∗
2)(x) = ψ2 [n∗1φ2 (F1 (xµ1)) + n∗2φ2 (F2 (xµ2))] .

Denote A(λ, ψ1, x) = FXn∗:n∗ (n
∗
1, n

∗
2)(x) and B(µ, ψ2, x) = FYn∗:n∗ (n

∗
1, n

∗
2)(x). Using the fact

that φ2 ◦ ψ1 is super-additive, one can easily obtain A(µ, ψ1, x) ≤ B(µ, ψ2, x). Therefore, to
prove the desired result, we have to show that A(λ, ψ1, x) ≤ A(µ, ψ1, x). This is equivalent to
establish that the function A(λ, ψ1, x) is increasing and Schur-concave with respect to λ (see
Theorem A.8 of Marshall et al. (2011)). Further, on differentiating A(λ, ψ1, x) with respect
to λ1 partially, we get

∂A(λ, ψ1, x)

∂λ1

= xn∗1r̃1(xλ1)
ψ1 [φ1 [F1 (xλ1)]]

ψ′1 [φ1 [F1 (xλ1)]]
ψ′1 [n∗1φ1 (F1 (xλ1)) + n∗2φ1 (F2 (xλ2))] . (3.1)

From (3.1), it is not difficult to check that ∂A(λ,ψ1,x)
∂λ1

≥ 0. Similarly, ∂A(λ,ψ1,x)
∂λ2

≥ 0. Thus,
A(λ, ψ1, x) is increasing in λi, for i = 1, 2. To establish Schur-concavity of A(λ, ψ1, x), in view
of Lemma 2.2 (Lemma 2.1), we only need to show that for 1 ≤ i ≤ j ≤ n∗, the following
inequality holds:

∂A(λ, ψ1, x)

∂λi
− ∂A(λ, ψ1, x)

∂λj
≥ (≤)0, for λ ∈ E+ (D+). (3.2)

Next, consider three cases.
Case I: For 1 ≤ i ≤ j ≤ n∗1, λi = λj = λ1. In this case, ∂A(λ,ψ1,x)

∂λi
− ∂A(λ,ψ1,x)

∂λj
= 0.

Case II: For n∗1 + 1 ≤ i ≤ j ≤ n∗, λi = λj = λ2. Here, ∂A(λ,ψ1,x)
∂λi

− ∂A(λ,ψ1,x)
∂λj

= 0.

Case III: For 1 ≤ i ≤ n∗1 and n∗1 + 1 ≤ j ≤ n∗, λi = λ1 and λj = λ2. For this case,
consider λ1 ≤ (≥)λ2, which implies φ1(F1(xλ1)) ≥ (≤)φ1(F1(xλ2)). Further, under the given
assumption, we get φ1(F1(xλ2)) ≥ (≤)φ1(F2(xλ2)). Hence, φ1(F1(xλ1)) ≥ (≤)φ1(F2(xλ2)).
Again, ψ1 is log-convex. Therefore, we have

−ψ1(w)

ψ′1(w)

∣∣∣
w=φ1[F1(xλ1)]

≥ (≤)− ψ1(w)

ψ′1(w)

∣∣∣
w=φ1[F2(xλ2)]

. (3.3)

Moreover, r̃1(w) is decreasing in w > 0, hence

r̃1(xλ1) ≥ (≤)r̃1(xλ2). (3.4)
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Also, r̃1(x) ≥ (≤)r̃2(x) gives
r̃1(xλ2) ≥ (≤)r̃2(xλ2). (3.5)

Equations (3.4), (3.5) and n∗1 ≥ (≤)n∗2, together imply

n∗1r̃1(xλ1) ≥ (≤)n∗2r̃2(xλ2). (3.6)

Finally, combining (3.3) and (3.6), we obtain (3.2). This completes the proof of the theorem.

In the previous result, we assume that the dependence structures of two sets of samples hav-
ing multiple-outliers are different. Also, first n∗1 observations of {X1, · · · , Xn∗1

, Xn∗1+1, · · · , Xn∗}
have baseline distribution function F1 and remaining observations have baseline distribution
function F2. Similarly, for the other set of observations {Y1, · · · , Yn∗1 , Yn∗1+1, · · · , Yn∗}. The
following corollary, which is a direct consequence of Theorem 3.1 presents some special cases.

Corollary 3.1. In addition to Assumption 3.1, let ψ1 = ψ2 = ψ, n∗1 ≥ (≤)n∗2 and ψ be
log-convex. Further, let λ, µ ∈ E+ (D+). Then,

(i) (λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

) ⇒ Yn∗:n∗(n
∗
1, n

∗
2) ≤st Xn∗:n∗(n

∗
1, n

∗
2),

provided r̃1(x) or r̃2(x) is decreasing and r̃1(x) ≥ (≤)r̃2(x);

(ii) for r̃1 = r̃2 = r̃, we have

(λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

)⇒ Yn∗:n∗(n
∗
1, n

∗
2) ≤st Xn∗:n∗(n

∗
1, n

∗
2),

provided r̃(x) is decreasing.

The next theorem states that the ordering result holds between the largest order statistics
Xn:n(n1, n2) and Xn∗:n∗(n

∗
1, n

∗
2) according to the usual stochastic ordering. Here, the samples

are collected from multiple-outlier dependent scale models. Also, it is assumed that the
samples are sharing Archimedean copula with a common generator.

Assumption 3.2. Let X1, · · · , Xn∗ be n∗ dependent nonnegative random variables sharing
Archimedean copula with generator ψ1, such that Xi ∼ F1(xλ1), for i = 1, · · · , n∗1 and Xj ∼
F2(xλ2), for j = n∗1 + 1, · · · , n∗. We assume that there exist two natural numbers n1 and n2

such that 1 ≤ n1 ≤ n∗1 ≤ n∗2 ≤ n2. Also, n = n1 + n2, n
∗ = n∗1 + n∗2 and ψ1 = φ−1

1 .

Theorem 3.2. Let Assumption 3.2 hold with F1 ≥ F2. Then, for λ ∈ D+, we have

(n1, n2) �w (n∗1, n
∗
2)⇒ Xn∗:n∗(n

∗
1, n

∗
2) ≤st Xn:n(n1, n2).

Proof. The distribution functions of Xn:n(n1, n2) and Xn∗:n∗(n
∗
1, n

∗
2) can be written respectively

as
FXn:n(n1, n2)(x) = ψ1[n1φ1 (F1 (xλ1)) + n2φ1 (F2 (xλ2))]

8



and
FXn∗:n∗ (n

∗
1, n

∗
2)(x) = ψ1[n∗1φ1 (F1 (xλ1)) + n∗2φ1 (F2 (xλ2))].

To obtain the desired result, one needs to show FXn:n(n1, n2)(x) ≤ FXn∗:n∗ (n
∗
1, n

∗
2)(x). Equiv-

alently, we have to establish that (n∗1 − n1)φ1 (F1 (xλ1)) ≤ (n2 − n∗2)φ1 (F2 (xλ2)). Now,
(n1, n2) �w (n∗1, n

∗
2) ⇒ (n1 + n2) ≥ (n∗1 + n∗2) ⇒ (n2 − n∗2) ≥ (n∗1 − n1) ≥ 0. Also,

λ1 ≥ λ2 ⇒ φ1 (F2 (xλ2)) ≥ φ1 (F1 (xλ1)) ≥ 0. Using these arguments, we get the required
inequality. Hence, the proof is completed.

In Theorem 3.2, if we take the same baseline distribution, then the following corollary is
immediate.

Corollary 3.2. Let Assumption 3.2 hold with F1 = F2. Then, for λ ∈ D+, we have

(n1, n2) �w (n∗1, n
∗
2)⇒ Xn∗:n∗(n

∗
1, n

∗
2) ≤st Xn:n(n1, n2).

Next, we observe that two largest order statistics Xn:n(n1, n2) and Yn∗:n∗(n
∗
1, n

∗
2) are com-

parable with respect to the usual stochastic order. It is worth mentioning that the order
statistics are constructed from two multiple-outlier dependent samples having sample sizes n
and n∗. The pairs of the sizes of both the outliers (n1, n2) and (n∗1, n

∗
2) are assumed to be

connected according to the weakly submajorization order. The following assumption is useful
for the next theorem.

Assumption 3.3. Let X1, · · · , Xn be n nonnegative dependent random variables sharing
Archimedean copula with generator ψ1, such that Xi ∼ F1(xλ1), for i = 1, · · · , n1 and Xj ∼
F2(xλ2), for j = n1 + 1, · · · , n. Also, let Y1, · · · , Yn∗ be n∗ dependent nonnegative random vari-
ables sharing Archimedean copula with generator ψ2, such that Yi ∼ F1(xµ1), for i = 1, · · · , n∗1
and Yj ∼ F2(xµ2), for j = n∗1 + 1, · · · , n∗. Here, 1 ≤ n1 ≤ n∗1 ≤ n∗2 ≤ n2, n = n1 + n2 and
n∗ = n∗1 + n∗2.

Theorem 3.3. Assume that Assumption 3.3 hold with r̃1(x) ≤ r̃2(x). Let (n1, n2) �w (n∗1, n
∗
2).

Then,

(λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

)⇒ Yn∗:n∗(n
∗
1, n

∗
2) ≤st Xn:n(n1, n2),

provided λ, µ ∈ D+, φ2 ◦ ψ1 is super-additive, ψ1 or ψ2 is log-convex and r̃1(x) or r̃2(x) is
decreasing.

Proof. By Theorem 3.1, we have

(λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

)⇒ Yn∗:n∗(n
∗
1, n

∗
2) ≤st Xn∗:n∗(n

∗
1, n

∗
2). (3.7)

Further, from Theorem 3.2, we have

(n1, n2) �w (n∗1, n
∗
2)⇒ Xn∗:n∗(n

∗
1, n

∗
2) ≤st Xn:n(n1, n2). (3.8)

Upon combining inequalities given by (3.7) and (3.8), the required result readily follows.
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The result stated in Theorem 3.3 is general. However, if we take some restrictions on the
generators of the Archimedean copula and on the cumulative distribution functions, then we
get some particular results. These are presented in the following corollary, which follows from
Theorem 3.3.

Corollary 3.3. Let the set-up in Assumption 3.3 hold with (n1, n2) �w (n∗1, n
∗
2). Also, let

λ, µ ∈ D+, ψ1 = ψ2 = ψ and ψ be log-convex. Then,

(i) (λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

) ⇒ Yn∗:n∗(n
∗
1, n

∗
2) ≤st Xn:n(n1, n2),

provided r̃1(x) or r̃2(x) is decreasing and r̃1(x) ≤ r̃2(x).

(ii) (λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

) ⇒ Yn∗:n∗(n
∗
1, n

∗
2) ≤st Xn:n(n1, n2),

provided r̃1(x) = r̃2(x) = r̃(x) is decreasing.

We now present a numerical example, which provides an illustration of Theorem 3.3.

Example 3.1. Set λ = (λ1, λ2) = (5, 2), µ = (µ1, µ2) = (6, 3), (n1, n2) = (1, 11), (n∗1, n
∗
2) =

(5, 6), ψ1(x) = e−x
1
9 , ψ2(x) = e−x

1
10 , x > 0. Consider the baseline distribution functions

as F2(x) = 1 − e1−(1+x2)
1
5 and F1(x) = 1 − e−x, x > 0. Here, both the reversed hazard rate

functions r̃1 and r̃2 are decreasing and satisfy r̃1(x) ≤ r̃2(x), for x > 0. Further, ψ1 and ψ2

are log-convex, φ2 ◦ψ1 is super-additive. Thus, all the conditions of Theorem 3.3 are satisfied.
Now, we plot the graphs of FX12:12(1, 11)(x) and FY11:11(5, 6)(x) in Figure 1a, which shows that
Y11:11(5, 6) ≤st X12:12(1, 11) holds.
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x axis

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 2 4 6 8 10 12 14 16 18 20

x axis

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(b)

Figure 1: (a) Plots of the distribution functions FX12:12(1, 11)(x) and FY11:11(5, 6)(x) as in
Example 3.1. (b) Plot of FX9:9(1, 8)(x)− FY7:7(3, 4)(x) as in Counterexample 3.1.
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Next, we present a counterexample to illustrate that the result does not hold if r̃1(x) ≥
r̃2(x) and λ ∈ E+ in Theorem 3.3.

Counterexample 3.1. Consider λ = (λ1, λ2) = (2, 6), µ = (µ1, µ2) = (8, 2), (n1, n2) =

(1, 8), (n∗1, n
∗
2) = (3, 4), ψ1(x) = e−x

1
3 , ψ2(x) = e−x

1
10 , x > 0. Baseline distribution functions

are taken as F1(x) = 1− e−x and F2(x) = 1− (1 + 2x)−0.5, x > 0. It can be seen that all the
conditions of Theorem 3.3 are satisfied except λ ∈ D+ and r̃1(x) ≤ r̃2(x). Now, we plot the
graph of FX9:9(1, 8)(x)− FY7:7(3, 4)(x) in Figure 1b, which reveals that Y7:7(3, 4) �st X9:9(1, 8).

In the preceding theorems, we have derived sufficient conditions, under which the largest
order statistics from multiple-outlier dependent scale models obey the usual stochastic order.
However, naturally, it is of interest to extend the ordering results to some other stronger con-
cepts of the stochastic orders. In this part of the subsection, we establish sufficient conditions,
under which the reversed hazard rate order holds between the largest order statistics. The
following theorem shows that the largest order statistics Xn∗:n∗(n

∗
1, n

∗
2) and Yn∗:n∗(n

∗
1, n

∗
2) have

the reversed hazard rate ordering when the scale parameters are associated with the weakly su-
permajorization order. The samples are heterogeneous and follow multiple-outlier dependent
scale models.

Theorem 3.4. Let Assumption 3.1 hold with r1 = r2 = r, n∗1 ≥ (≤) n∗2 and ψ1 = ψ2 = ψ.
Also, suppose ψ is log-concave, 1−ψ

ψ′
is decreasing and 1−ψ

ψ′
[1−ψ
ψ′

]′ is increasing. Then,

(λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

)⇒ Yn∗:n∗(n
∗
1, n

∗
2) ≤rh Xn∗:n∗(n

∗
1, n

∗
2),

provided λ, µ ∈ E+ (D+), r(x) is decreasing and xr(x) is decreasing and convex.

Proof. Under the given assumption r1 = r2 = r implies F1 = F2 = F. The reversed hazard
rate function of Xn∗:n∗(n

∗
1, n

∗
2) is

r̃Xn∗:n∗ (n
∗
1, n

∗
2)(x) =

ψ′ [n∗1φ (F (xλ1)) + n∗2φ (F (xλ2))]

ψ [n∗1φ (F (xλ1)) + n∗2φ (F (xλ2))]

[
n∗1λ1f(xλ1)

ψ′[φ (F (xλ1))]
+

n∗2λ2f(xλ2)

ψ′[φ (F (xλ2))]

]
=

ψ′ [n∗1φ (F (xλ1)) + n∗2φ (F (xλ2))]

ψ [n∗1φ (F (xλ1)) + n∗2φ (F (xλ2))]

[
n∗1λ1r(xλ1)[1− ψ[φ (F (xλ1))]]

ψ′[φ (F (xλ1))]

+
n∗2λ2r(xλ2)[1− ψ[φ (F (xλ2))]]

ψ′[φ (F (xλ2))]

]
, (3.9)

where f is the probability density function corresponding to F. Denote z = n∗1φ (F (xλ1)) +
n∗2φ (F (xλ2)) . The partial derivative of r̃Xn∗:n∗ (n

∗
1, n

∗
2)(x) with respect to λ1 is obtained as

∂[r̃Xn∗:n∗ (n
∗
1, n

∗
2)(x)]

∂λ1

= n∗1xr(xλ1)
d

dz

[
ψ′(z)

ψ(z)

] [
1− ψ [φ [F (xλ1)]]

ψ′[φ (F (xλ1))]

][ n∗∑
i=1

λif (xλi)

ψ′[φ (F (xλi))]

]

+n∗1xλ1 [r(xλ1)]2
ψ′(z)

ψ(z)

[
1− ψ(v)

ψ′(v)

d

dv

[
1− ψ(v)

ψ′(v)

]]
v=φ(F (xλ1))

+n∗1
d

dw
[wr(w)]w=xλ1

[
1− ψ [φ [F (xλ1)]]

ψ′ [φ [F (xλ1)]]

]
ψ′(z)

ψ(z)
. (3.10)
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Utilizing Theorem A.8 of Marshall et al. (2011), to obtain the desired result, we need to prove
that r̃Xn∗:n∗ (n

∗
1, n

∗
2)(x) is decreasing and Schur-convex with respect to λ. Using the given

assumptions and Equation (3.10), the decreasing property of r̃Xn∗:n∗ (n
∗
1, n

∗
2)(x) with respect

to λ is obvious. Further, according to Lemma 2.2 (Lemma 2.1), to show Schur-convexity of
r̃Xn∗:n∗ (n

∗
1, n

∗
2)(x), we have to establish that for 1 ≤ i ≤ j ≤ n∗,[

∂[r̃Xn∗:n∗ (n
∗
1, n

∗
2)(x)]

∂λi
−
∂[r̃Xn∗:n∗ (n

∗
1, n

∗
2)(x)]

∂λj

]
≤ (≥)0, for λ ∈ E+ (D+). (3.11)

Now, consider the following three cases.

Case I: For 1 ≤ i ≤ j ≤ n∗1, λi = λj = λ1. Here,
∂[r̃Xn∗:n∗ (n∗1,n

∗
2)(x)]

∂λi
− ∂[r̃Xn∗:n∗ (n∗1,n

∗
2)(x)]

∂λj
= 0.

Case II: For n∗1 +1 ≤ i ≤ j ≤ n∗, λi = λj = λ2. Hence,
∂[r̃Xn∗:n∗ (n∗1,n

∗
2)(x)]

∂λi
− ∂[r̃Xn∗:n∗ (n∗1,n

∗
2)(x)]

∂λj
= 0.

Case III: For 1 ≤ i ≤ n∗1 and n∗1 + 1 ≤ j ≤ n∗, λi = λ1 and λj = λ2. Consider λ1 ≤ λ2,
which gives φ(F (xλ1)) ≥ φ(F (xλ2)). Here, we only discuss the proof when λ1 ≤ λ2. The other
case when λ1 ≥ λ2 can be proved in the similar way. The concavity property of lnψ provides
d
dz

[
ψ′(z)
ψ(z)

]
≤ 0. Again, using decreasing property of 1−ψ

ψ′
, we have

1− ψ(w)

ψ′(w)

∣∣∣
w=φ[F (xλ1)]

≤ 1− ψ(w)

ψ′(w)

∣∣∣
w=φ[F (xλ2)]

≤ 0. (3.12)

Further, it has been assumed that r(x) is decreasing, xr(x) is decreasing and convex. There-
fore, using n∗1 ≥ n∗2, we have

r(xλ1) ≥ r(xλ2), (3.13)

n∗1xλ1r(xλ1) ≥ n∗2xλ2r(xλ2) and (3.14)

n∗1
d

dw
[wr(w)]w=xλ1

≤ n∗2
d

dw
[wr(w)]w=xλ2

≤ 0. (3.15)

Moreover, 1−ψ(w)
ψ′(w)

d
dw

[1−ψ(w)
ψ′(w)

] is increasing. Therefore, we obtain the following inequality[
1− ψ(w)

ψ′(w)

d

dw

[
1− ψ(w)

ψ′(w)

]]
w=φ[F (xλ1)]

≥
[

1− ψ(w)

ψ′(w)

d

dw

[
1− ψ(w)

ψ′(w)

]]
w=φ[F (xλ2)]

≥ 0. (3.16)

Now, combining (3.12)-(3.16) and the given assumptions, we obtain that the inequality given
by (3.11) holds. This completes the proof.

In the next theorem, we show that the largest order statisticsXn:n(n1, n2) andXn∗:n∗(n
∗
1, n

∗
2)

are comparable according to the reversed hazard rate order.

Theorem 3.5. Let Assumption 3.2 hold with ψ1 = ψ and r1 = r2 = r. Then, for λ ∈ D+, we
have

(n1, n2) �w (n∗1, n
∗
2)⇒ Xn∗:n∗(n

∗
1, n

∗
2) ≤rh Xn:n(n1, n2),

provided lnψ is concave, 1−ψ
ψ′

and xr(x) are decreasing.
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Proof. The stated result will be proved, if we show that r̃Xn:n(n1, n2)(x) ≥ r̃Xn∗:n∗ (n
∗
1, n

∗
2)(x).

Equivalently,

ψ′

[
n∑
i=1

φ (F (xλi))

]

ψ

[
n∑
i=1

φ (F (xλi))

] × ψ

[
n∗∑
i=1

φ (F (xλi))

]

ψ′

[
n∗∑
i=1

φ (F (xλi))

] ≥
n∗∑
i=1

λir(xλi)[1− ψ[φ (F (xλi))]]

ψ′[φ (F (xλi))]
n∑
i=1

λir(xλi)[1− ψ[φ (F (xλi))]]

ψ′[φ (F (xλi))]

. (3.17)

The preceding inequality holds if the following two inequalities are satisfied,

ψ′
[∑n∗

i=1 φ (F (xλi))
]

ψ
[∑n∗

i=1 φ (F (xλi))
] ≥ ψ′ [

∑n
i=1 φ (F (xλi))]

ψ [
∑n

i=1 φ (F (xλi))]
⇔ (n∗1 − n1)φ(F (xλ1)) ≤ (n2 − n∗2)φ(F (xλ2))

(3.18)
and

n∗∑
i=1

λir(xλi)[1− ψ[φ (F (xλi))]]

ψ′[φ (F (xλi))]
≥

n∑
i=1

λir(xλi)[1− ψ[φ (F (xλi))]]

ψ′[φ (F (xλi))]

⇔ (n∗1 − n1)
λ1r(xλ1)[1− ψ[φ (F (xλ1))]]

ψ′[φ (F (xλ1))]
≥ (n2 − n∗2)

λ2r(xλ2)[1− ψ[φ (F (xλ2))]]

ψ′[φ (F (xλ2))]
.(3.19)

Furthermore,

(n1, n2) �w (n∗1, n
∗
2)⇒ (n1 + n2) ≥ (n∗1 + n∗2)⇒ (n2 − n∗2) ≥ (n∗1 − n1) ≥ 0. (3.20)

Also,
λ1 ≥ λ2 ⇒ φ (F (xλ2)) ≥ φ (F (xλ1)) ≥ 0.

Moreover, 1−ψ
ψ′

is decreasing. Thus,

1− ψ(w)

ψ′(w)

∣∣∣
w=φ[F (xλ2)]

≤ 1− ψ(w)

ψ′(w)

∣∣∣
w=φ[F (xλ1)]

≤ 0. (3.21)

Using the decreasing property of xr(x), we have

xλ1r(xλ1) ≤ xλ2r(xλ2). (3.22)

Combining Equations (3.20), (3.21) and (3.22), the inequality in (3.19) can be obtained. Using
(3.20) and the assumption that ψ is log-concave, we get the inequality (3.18). Hence, the proof
follows.

Now, we are ready to state a result which shows that the largest order statistics Xn:n(n1, n2)
and Yn∗:n∗(n

∗
1, n

∗
2) can be compared with respect to the reversed hazard rate order.

13



Theorem 3.6. Let the set-up in Assumption 3.3 hold with ψ1 = ψ2 = ψ and r1 = r2 = r.
Also, assume λ, µ ∈ D+ and (n1, n2) �w (n∗1, n

∗
2). Then,

(λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

)⇒ Yn∗:n∗(n
∗
1, n

∗
2) ≤rh Xn:n(n1, n2),

provided ψ is log-concave, 1−ψ
ψ′

is decreasing, 1−ψ
ψ′

[1−ψ
ψ′

]′ is increasing, xr(x) is decreasing,

convex and r(x) is decreasing.

Proof. According to Theorem 3.4, we have

(λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

)⇒ Yn∗:n∗(n
∗
1, n

∗
2) ≤rh Xn∗:n∗(n

∗
1, n

∗
2).

(3.23)
Also, from Theorem 3.5, we get

(n1, n2) �w (n∗1, n
∗
2)⇒ Xn∗:n∗(n

∗
1, n

∗
2) ≤rh Xn:n(n1, n2). (3.24)

Thus, the proof of the theorem follows after combining the inequalities given by (3.23) and
(3.24).

Below, we consider an example to illustrate Theorem 3.6.

Example 3.2. Consider λ = (3, 2), µ = (6, 5), (n1, n2) = (2, 10), (n∗1, n
∗
2) = (3, 4), ψ =

e
1
0.2

(1−ex), x > 0. Also, let the baseline distribution be F (x) = 1 −
(
x
b

)−a
, x ≥ b > 0, a > 0.

It is not hard to see that for a = 5 and b = 1, all the conditions of Theorem 3.6 are satisfied.
Further, we plot the graph of FX12:12(2, 10)(x)/FY7:7(3, 4)(x) in Figure 2a. This shows that the
result in Theorem 3.6 holds.

Now, we derive conditions such that the star order holds between Xn∗:n∗(n
∗
1, n

∗
2) and

Yn∗:n∗(n
∗
1, n

∗
2). Denote λ2:2 = max{λ1, λ2}, λ1:2 = min{λ1, λ2}, µ2:2 = max{µ1, µ2} and

µ1:2 = min{µ1, µ2}.

Theorem 3.7. Under the set-up as in Assumption 3.1, with r̃1 = r̃2 = r̃ and ψ1 = ψ2 = ψ,
we have

λ2:2

λ1:2

≥ µ2:2

µ1:2

⇒ Yn∗:n∗(n
∗
1, n

∗
2) ≤∗ Xn∗:n∗(n

∗
1, n

∗
2),

provided ψ
ψ′

is decreasing, convex, xr̃′(x)
r̃(x)

is decreasing and xr̃(x) is increasing.

Proof. Under the assumption, r̃1 = r̃2 = r̃ gives F1 = F2 = F. The distribution functions of
Xn∗:n∗(n

∗
1, n

∗
2) and Yn∗:n∗(n

∗
1, n

∗
2) are respectively given by

FXn∗:n∗ (n
∗
1, n

∗
2)(x) = ψ [n∗1φ (F (xλ1)) + n∗2φ (F (xλ2))]

and
FYn∗:n∗ (n

∗
1, n

∗
2)(x) = ψ [n∗1φ (F (xµ1)) + n∗2φ (F (xµ2))] .
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Figure 2: (a) Plot of the ratio of two distribution functions FX12:12(2, 10)(x)/FY7:7(3, 4)(x) in
Example 3.2. (b) Plot of F̄Y1:10(3, 7)(x)/F̄X1:13(2, 11)(x) as in Example 3.4.

To obtain the required result, we consider two cases.
Case-I: λ1 + λ2 = µ1 + µ2.
For convenience, we assume that λ1 + λ2 = µ1 + µ2 = 1. For this case, it is clear that
(λ1, λ2) �m (µ1, µ2). Now, take λ2 = λ ≥ λ1, µ2 = µ ≥ µ1. Hence, λ1 = 1−λ and µ1 = 1−µ.
Based on this, the distribution functions of Xn∗:n∗(n

∗
1, n

∗
2) and Yn∗:n∗(n

∗
1, n

∗
2) can be written in

the following form

FXn∗:n∗ (n
∗
1, n

∗
2)(x)

def
= Fλ(x) = ψ [n∗1φ (F (x(1− λ))) + n∗2φ (F (xλ))]

and
FYn∗:n∗ (n

∗
1, n

∗
2)(x)

def
= Fµ(x) = ψ [n∗1φ (F (x(1− µ)) + n∗2φ (F (xµ))] .

Now, according to Lemma 2.3, we have to show that
F ′λ(x)

xfλ(x)
is decreasing in x ∈ R+, for

λ ∈ (1/2, 1]. The derivative of Fλ, with respect to λ is given by

F ′λ(x) =

[
−xn∗1r̃(x(1− λ))

ψ[φ (F (x(1− λ)))]

ψ′[φ (F (x(1− λ)))]
+ xn∗2r̃(xλ)

ψ[φ (F (xλ))]

ψ′[φ (F (xλ))]

]
×ψ′ [n∗1φ (F (x(1− λ))) + n∗2φ (F (xλ))] . (3.25)

Also, the probability density function corresponding to Fλ is

fλ(x) =

[
(1− λ)n∗1r̃(x(1− λ))

ψ[φ (F (x(1− λ)))]

ψ′[φ (F (x(1− λ)))]
+ λn∗2r̃(xλ)

ψ[φ (F (xλ))]

ψ′[φ (F (xλ))]

]
×ψ′ [n∗1φ (F (x(1− λ))) + n∗2φ (F (xλ))] . (3.26)
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Therefore,

F ′λ(x)

xfλ(x)
=

λ+

 n∗2r̃(xλ)
ψ[φ (F (xλ))]

ψ′[φ (F (xλ))]

n∗1r̃(x(1− λ))
ψ[φ (F (x(1− λ)))]

ψ′[φ (F (x(1− λ)))]

− 1


−1

−1

.

Thus, it suffices to show that L(x) =
(
r̃(xλ) ψ[φ(F (xλ))]

ψ′[φ(F (xλ))]

)
/
(
r̃(x(1− λ)) ψ[φ(F (x(1−λ)))]

ψ′[φ(F (x(1−λ)))]

)
is de-

creasing in x ∈ R+, for λ ∈ (1/2, 1]. The derivative of L(x) with respect to x is obtained
as

L′(x)
sign
=

λr̃′(xλ)

r̃(xλ)
+ λr̃(xλ)

[
ψ[φ(F (xλ))]

ψ′[φ(F (xλ))]

]′
− (1− λ)r̃′(x(1− λ))

r̃((1− λ)x)

−(1− λ)r̃(x(1− λ))

[
ψ[φ(F (x(1− λ)))]

ψ′[φ(F (x(1− λ)))]

]′
.

Under the assumptions made, xr̃′(x)
r̃(x)

is decreasing and xr̃(x) is increasing. Therefore, for

λ ∈ (1/2, 1],

xλr̃′(xλ)

r̃(xλ)
≤ x(1− λ)r̃′(x(1− λ))

r̃(x(1− λ))
≤ 0 and xλr̃(xλ) ≥ x(1− λ)r̃(x(1− λ)) ≥ 0. (3.27)

Also, since ψ
ψ′

is decreasing and convex, we have[
ψ[φ(F (xλ))]

ψ′[φ(F (xλ))]

]′
≤
[
ψ[φ(F (x(1− λ)))]

ψ′[φ(F (x(1− λ)))]

]′
≤ 0. (3.28)

Now, combining Equations (3.27) and (3.28), we get L′(x) ≤ 0, for x ∈ R+.
Case-II. λ1 + λ2 6= µ1 + µ2.
In this case, we can take λ1 + λ2 = k(µ1 + µ2), where k is a scalar. Hence, (kµ1, kµ2) �m
(λ1, λ2). Let us consider n∗ dependent nonnegative random variables sharing Archimedean
copula with generator ψ, such that Zi ∼ F (kµ1x), for i = 1, · · · , n∗1 and Zj ∼ F (kµ2x), for j =
n∗1 + 1, · · · , n∗. Here, n∗1+n∗2 = n∗. Then, from Case-I, we have Zn∗:n∗(n

∗
1, n

∗
2) ≤∗ Xn∗:n∗(n

∗
1, n

∗
2).

Further, star order is scale invariant, and hence we obtain Yn∗:n∗(n
∗
1, n

∗
2) ≤∗ Xn∗:n∗(n

∗
1, n

∗
2). This

completes the proof of the theorem.

Using the fact that the star order implies the Lorenz order, the following result is a direct
consequence of Theorem 3.7. Further, since the Lorenz order is mainly used to compare
the income distributions, the following corollary is more interesting from the point of its
applications in the study of incomes.

Corollary 3.4. Under the set-up as in Theorem 3.7,

λ2:2

λ1:2

≥ µ2:2

µ1:2

⇒ Yn∗:n∗(n
∗
1, n

∗
2) ≤Lorenz Xn∗:n∗(n

∗
1, n

∗
2),

provided ψ
ψ′

is decreasing, convex, xr̃′(x)
r̃(x)

is decreasing and xr̃(x) is increasing.
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3.2 Orderings between the smallest order statistics

In the previous subsection, we focus on the conditions, under which the largest order statistics
are comparable according to various stochastic orders. Here, we develop conditions such
that the usual stochastic, hazard rate, star and Lorenz orders hold between the smallest order
statistics. In the following theorems, we consider that the samples are heterogeneous and taken
from the multiple-outlier dependent scale models. We now consider the following assumption.

Assumption 3.4. Let X1, · · · , Xn∗ be n∗ dependent nonnegative random variables sharing
Archimedean survival copula with generator ψ1, with Xi ∼ F1(xλ1), for i = 1, · · · , n∗1 and
Xj ∼ F2(xλ2), for j = n∗1 + 1, · · · , n∗. Also, let Y1, · · · , Yn∗ be n∗ dependent non-negative
random variables sharing Archimedean copula with generator ψ2, with Yi ∼ F1(xµ1), for i =
1, · · · , n∗1 and Yj ∼ F2(xµ2), for j = n∗1 + 1, · · · , n∗. Here, n∗1 + n∗2 = n∗, ψ1 = φ−1

1 and
ψ2 = φ−1

2 .

Theorem 3.8. Under the set-up as in Assumption 3.4, with r1(x) ≤ (≥)r2(x) and n∗1 ≤ (≥)n∗2,

(λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

)⇒ X1:n∗(n
∗
1, n

∗
2) ≤st Y1:n∗(n

∗
1, n

∗
2),

provided λ, µ ∈ E+ (D+), φ2 ◦ ψ1 is super-additive, ψ1 or ψ2 is log-convex and r1(x) or r2(x)
is increasing.

Proof. The reliability functions of X1:n∗(n
∗
1, n

∗
2) and Y1:n∗(n

∗
1, n

∗
2) are respectively given by

F̄X1:n∗ (n
∗
1, n

∗
2)(x) = ψ1

[
n∗1φ1

(
F̄1 (xλ1)

)
+ n∗2φ1

(
F̄2 (xλ2)

)]
and

F̄Y1:n∗ (n
∗
1, n

∗
2)(x) = ψ2

[
n∗1φ2

(
F̄1 (xµ1)

)
+ n∗2φ2

(
F̄2 (xµ2)

)]
.

Let us denote C(λ, ψ1, x) = F̄X1:n∗ (n
∗
1, n

∗
2)(x) and D(µ, ψ2, x) = F̄Y1:n∗ (n

∗
1, n

∗
2)(x). According

to Lemma 2.4, super-additivity property of φ2◦ψ1 provides C(µ, ψ1, x) ≤ D(µ, ψ2, x). In order
to prove the desired result, we need to show that C(λ, ψ1, x) ≤ C(µ, ψ1, x). This is equivalent
to show that C(λ, ψ1, x) is decreasing and Schur-concave with respect to λ. Taking derivative
of C(λ, ψ1, x) with respect to λ1, we get

∂C(λ, ψ1, x)

∂λ1

= −n∗1xr1(xλ1)
ψ1

[
φ1

(
F̄1 (xλ1)

)]
ψ′1
[
φ1

(
F̄1 (xλ1)

)]ψ′1 [n∗1φ1

(
F̄1 (xλ1)

)
+ n∗2φ1

(
F̄2 (xλ2)

)]
.

(3.29)

Equation (3.29) shows that C(λ, ψ1, x) is decreasing in λ1, since ∂C(λ,ψ1,x)
∂λ1

≤ 0.Also, ∂C(λ,ψ1,x)
∂λ2

≤
0. Therefore, C(λ, ψ1, x) is decreasing in λi, for i = 1, 2. Further, to establish Schur-concavity
of C(λ, ψ1, x), we need to show that for 1 ≤ i ≤ j ≤ n∗, the following inequality holds (see
Lemma 2.2 ( Lemma 2.1)):[

∂C(λ, ψ1, x)

∂λi
− ∂C(λ, ψ1, x)

∂λj

]
≥ (≤)0, for λ ∈ E+ (D+). (3.30)
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Now, we study the following cases.

Case I: For 1 ≤ i ≤ j ≤ n∗1, λi = λj = λ1. Thus,
[
∂C(λ,ψ1,x)

∂λi
− ∂C(λ,ψ1,x)

∂λj

]
= 0.

Case II: For n∗1 + 1 ≤ i ≤ j ≤ n∗, λi = λj = λ2. So,
[
∂C(λ,ψ1,x)

∂λi
− ∂C(λ,ψ1,x)

∂λj

]
= 0.

Case III: For 1 ≤ i ≤ n∗1 and n∗1 +1 ≤ j ≤ n∗, λi = λ1 and λj = λ2. Suppose λ1 ≤ (≥)λ2 which
implies φ1(F̄1(xλ1)) ≤ (≥)φ1(F̄2(xλ2)) in view of F1 ≤ (≥)F2. Now, applying the convexity
property of lnψ1, we can write

ψ1(w)

ψ′1(w)

∣∣∣
w=φ1[F̄1(xλ1)]

≥ (≤)
ψ1(w)

ψ′1(w)

∣∣∣
w=φ1[F̄2(xλ2)]

. (3.31)

Under the assumptions made, further, we obtain

n∗1r1(xλ1) ≤ (≥)n∗2r2(xλ2). (3.32)

Finally, combining Equations (3.31) and (3.32), we observe that the inequality in (3.30) holds.
This completes the proof.

The following corollary is immediate from Theorem 3.8.

Corollary 3.5. Let the set-up as in Assumption 3.4 hold with ψ1 = ψ2 = ψ and n∗1 ≤ (≥)n∗2.
Also, let ψ be log-convex and λ, µ ∈ E+ (D+). Then,

(i) (λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

) ⇒ X1:n∗(n
∗
1, n

∗
2) ≤st Y1:n∗(n

∗
1, n

∗
2),

provided r1(x) or r2(x) is increasing with r1(x) ≤ (≥)r2(x).

(ii) (λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

) ⇒ X1:n∗(n
∗
1, n

∗
2) ≤st Y1:n∗(n

∗
1, n

∗
2),

provided r(x) is increasing, where r1(x) = r2(x) = r(x).

The next result reveals that the smallest order statisticsX1:n∗(n
∗
1, n

∗
2) dominatesX1:n(n1, n2)

in the sense of the usual stochastic order under the condition that (n∗1, n
∗
2) is weakly subma-

jorized by (n1, n2). The following assumption will be helpful to prove the next two results.

Assumption 3.5. Let X1, · · · , Xn∗ be n∗ dependent nonnegative random variables sharing
Archimedean survival copula with generator ψ1, such that Xi ∼ F1(xλ1), for i = 1, · · · , n∗1 and
Xj ∼ F2(xλ2), for j = n∗1 + 1, · · · , n∗. We assume that there exist two natural numbers n1 and
n2 such that 1 ≤ n1 ≤ n∗1 ≤ n∗2 ≤ n2. Also, n = n1 + n2, n

∗ = n∗1 + n∗2 and ψ1 = φ−1
1 .

Theorem 3.9. Let Assumption 3.5 hold. Then, for λ = (λ1, λ2) ∈ E+ and F1 ≤ F2, we have

(n1, n2) �w (n∗1, n
∗
2)⇒ X1:n(n1, n2) ≤st X1:n∗(n

∗
1, n

∗
2).

Proof. To obtain the desired result, it is sufficient to show that ψ1[
∑n

i=1 φ1

(
F̄i (xλi)

)
] ≤

ψ1[
∑n∗

i=1 φ1

(
F̄i (xλi)

)
]. Equivalently,

(n∗1 − n1)φ1

(
F̄1 (xλ1)

)
≤ (n2 − n∗2)φ1

(
F̄2 (xλ2)

)
. (3.33)

Further, (n1, n2) �w (n∗1, n
∗
2) ⇒ (n1 + n2) ≥ (n∗1 + n∗2) ⇒ (n2 − n∗2) ≥ (n∗1 − n1) ≥ 0 and

λ1 ≤ λ2 ⇒ φ1

(
F̄2 (xλ2)

)
≥ φ1

(
F̄1 (xλ1)

)
≥ 0. Using these arguments, we get the inequality

given by (3.33). Hence, the proof is completed.
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In Theorem 3.9, if we take the same baseline distribution functions, then we have the
following corollary.

Corollary 3.6. Let Assumption 3.5 hold. Then, for λ ∈ E+, F1 = F2, we have

(n1, n2) �w (n∗1, n
∗
2)⇒ X1:n(n1, n2) ≤st X1:n∗(n

∗
1, n

∗
2).

In the following, we develop conditions such that the usual stochastic order holds between
the smallest order statistics X1:n(n1, n2) and Y1:n∗(n

∗
1, n

∗
2). The assumption in below is required

for the next theorem.

Assumption 3.6. Let X1, · · · , Xn be n nonnegative dependent random variables sharing
Archimedean survival copula with generator ψ1, such that Xi ∼ F1(xλ1), for i = 1, · · · , n1

and Xj ∼ F2(xλ2), for j = n1 + 1, · · · , n. Also, let Y1, · · · , Yn∗ be n∗ dependent nonnegative
random variables sharing Archimedean copula with generator ψ2, such that Yi ∼ F1(xµ1), for
i = 1, · · · , n∗1 and Yj ∼ F2(xµ2), for j = n∗1 + 1, · · · , n∗. Here, 1 ≤ n1 ≤ n∗1 ≤ n∗2 ≤ n2,
n = n1 + n2 and n∗ = n∗1 + n∗2.

Theorem 3.10. Let Assumption 3.6 hold, with r1(x) ≤ r2(x). Also, let λ, µ ∈ E+. Then, for
(n1, n2) �w (n∗1, n

∗
2),

(λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

)⇒ X1:n(n1, n2) ≤st Y1:n∗(n
∗
1, n

∗
2),

provided φ2 ◦ ψ1 is super-additive, ψ1 or ψ2 is log-convex and r1(x) or r2(x) is increasing.

Proof. The theorem can be proved using Theorems 3.8 and 3.9. Thus, it is omitted.

As an illustration of Theorem 3.10, we present the following example.

Example 3.3. Take λ = (2, 6), µ = (1, 3), (n1, n2) = (4, 8), (n∗1, n
∗
2) = (6, 7), ψ1(x) = e−x

1
9

and ψ2(x) = e−x
1
10 , x > 0. Also, let F1(x) =

(
x
a

)l
, 0 < x ≤ a and F2(x) = 1− e−x, x > 0. It

can be seen that for a = 400 and l = 2 all the conditions of Theorem 3.10 are satisfied. Now,
we plot the graph of F̄X1:12(4, 8)(x) − F̄Y1:13(6.7)(x), given in Figure 3a. The figure suggests
that X1:12(4, 8) ≤st Y1:13(6, 7) holds.

Next, we present a counterexample, which shows that the stated usual stochastic order in
Theorem 3.10 does not hold if the conditions r1(x) ≤ r2(x) and r2 is increasing are dropped
out.

Counterexample 3.2. Take λ = (1.2, 3.6), µ = (1.4, 3), (n1, n2) = (2, 11), (n∗1, n
∗
2) =

(3, 9), ψ1(x) = e−x
1
4.5 and ψ2(x) = e−x

1
5 , x > 0. Also, suppose F1(x) = 1 − e−x and F2(x) =

1− (1 + 2x)−0.5, x > 0. Clearly, all the conditions of Theorem 3.10 are satisfied except r1 ≤ r2

and r2 is increasing. Now, the graphs of F̄X1:13(2, 11)(x) and F̄Y1:12(3, 9)(x) are depicted in
Figure 3b. It reveals that the usual stochastic order in Theorem 3.10 does not hold.

Upon using Theorem 3.10, one can easily conclude the following corollary.
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Figure 3: (a) Plot of F̄X1:12(4, 8)(x) − F̄Y1:13(6, 7)(x) as in Example 3.3. (b) Plots of
F̄X1:13(2, 11)(x) and F̄Y1:12(3, 9)(x) as in Counterexample 3.2.

Corollary 3.7. Let Assumption 3.6 hold with ψ1 = ψ2 = ψ. Also, let λ, µ ∈ E+, ψ is
log-convex and (n1, n2) �w (n∗1, n

∗
2). Then,

(i) (λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

) ⇒ X1:n(n1, n2) ≤st Y1:n∗(n
∗
1, n

∗
2),

provided r1(x) or r2(x) is increasing and r1(x) ≤ r2(x).

(ii) (λ1, · · · , λ1︸ ︷︷ ︸
n∗1

, λ2, · · · , λ2︸ ︷︷ ︸
n∗2

) �w (µ1, · · · , µ1︸ ︷︷ ︸
n∗1

, µ2, · · · , µ2︸ ︷︷ ︸
n∗2

) ⇒ X1:n(n1, n2) ≤st Y1:n∗(n
∗
1, n

∗
2),

provided r(x) is increasing, where r1 = r2 = r.

Next, we provide three consecutive theorems, which deal with the hazard rate ordering
between the smallest order statistics.

Theorem 3.11. Let Assumption 3.4 hold with n∗1 ≤ (≥)n∗2, ψ1 = ψ2 = ψ, F1 = F2 = F,
r̃1 = r̃2 = r̃ and r1 = r2 = r. Also, suppose ψ is log-concave, 1−ψ

ψ′
is decreasing, [1−ψ

ψ′
]′/ ψ

ψ′
is

increasing and λ, µ ∈ E+ (D+). Then,

(m1, · · · ,m1︸ ︷︷ ︸
n∗1

,m2, · · · ,m2︸ ︷︷ ︸
n∗2

) �w (v1, · · · , v1︸ ︷︷ ︸
n∗1

, v2, · · · , v2︸ ︷︷ ︸
n∗2

)⇒ X1:n∗(n
∗
1, n

∗
2) ≤hr Y1:n∗(n

∗
1, n

∗
2),

where mi = log λi and vi = log µi, i = 1, 2, provided r(x) is increasing, xr̃(x) is increasing
and convex.

Proof. Denote by f the probability density function corresponding to the distribution function
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F . The hazard rate function of X1:n∗(n
∗
1, n

∗
2) is given by

rX1:n∗ (n
∗
1, n

∗
2)(x)

def
= E(m) =

ψ′ [z]

ψ [z]

[
n∗1e

m1f(xem1)

ψ′[φ
(
F̄ (xem1)

)
]

+
n∗2e

m2f(xem2)

ψ′[φ
(
F̄ (xem2)

)
]

]

=
ψ′ [z]

ψ [z]

[
n∗1e

m1 r̃(xem1)[1− ψ[φ
(
F̄ (xem1)

)
]]

ψ′[φ
(
F̄ (xem1)

)
]

+
n∗2e

m2 r̃(xem2)[1− ψ[φ
(
F̄ (xem2)

)
]]

ψ′[φ
(
F̄ (xem2)

)
]

]
, (3.34)

where z = n∗1φ
(
F̄ (xem1)

)
+n∗2φ

(
F̄ (xem2)

)
, mi = log λi, for i = 1, 2 and m = (m1,m2). Also,

f is the probability density function of F. The partial derivative of E(m) with respect to m1

is given by

∂E(m)

∂m1

= −n∗1xem1 r̃(xem1)
d

dz

[
ψ′(z)

ψ(z)

][
1− ψ

[
φ
[
F̄ (xem1)

]]
ψ′[φ

(
F̄ (xem1)

)
]

][
n∗∑
i=1

emif (xemi)

ψ′[φ
(
F̄ (xemi)

)
]

]

−n∗1r(xem1)
[
x[em1 ]2r̃(xem1)

] ψ′(z)

ψ(z)

[
[
ψ(v)

ψ′(v)
]2

[
d
dv

[1−ψ(v)
ψ′(v)

]

ψ(v)
ψ′(v)

]]
v=φ(F̄ (xem1 ))

+n∗1
d

dw
[wr̃(w)]w=xem1

1− ψ
[
φ
[
F̄ (xem1)

]]
ψ′
[
φ
[
F̄ (xem1)

]] ψ′(z)

ψ(z)
. (3.35)

From (3.35), it is easy to see that E(m) is increasing in m1. Similarly, E(m) is also increasing
in m2. Hence, E(m) is increasing with respect to m. Now, we only need to show the Schur-
convexity of E(m) with respect to m. This is equivalent to show that for 1 ≤ i ≤ j ≤ n∗,[

∂E(m)

∂mi

− ∂E(m)

∂mj

]
≤ (≥)0, for m ∈ E+ (D+). (3.36)

Utilizing the assumptions made, the rest of the proof follows from the similar arguments of
Theorem 3.8. Thus, it is omitted for the sake of conciseness.

The following theorem demonstrates that under some conditions, the hazard rate ordering
between X1:n(n1, n2) and X1:n∗(n

∗
1, n

∗
2) exists.

Theorem 3.12. Let Assumption 3.5 hold with ψ1 = ψ and r̃1 = r̃2 = r̃. Then, for λ ∈ E+,
we have

(n1, n2) �w (n∗1, n
∗
2)⇒ X1:n(n1, n2) ≤hr X1:n∗(n

∗
1, n

∗
2),

provided xr̃(x) is increasing, ψ′/ψ and 1−ψ
ψ′

are decreasing.

Proof. The required result can be proved if we show that rX1:n(n1, n2)(x) ≥ rX1:n∗ (n
∗
1, n

∗
2)(x)

and equivalently,

ψ′[
∑n
i=1 φ(F̄ (xλi))]

ψ[
∑n
i=1 φ(F̄ (xλi))]

[∑n
i=1

λir̃(xλi)[1−ψ[φ(F̄ (xλi))]]

ψ′[φ(F̄ (xλi))]

]
≥

ψ′
[∑n∗

i=1 φ(F̄ (xλi))
]

ψ[
∑n∗
i=1 φ(F̄ (xλi))]

[∑n∗

i=1

λir̃(xλi)[1−ψ[φ(F̄ (xλi))]]

ψ′[φ(F̄ (xλi))]

]
.

(3.37)
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To prove inequality (3.37), it is sufficient to show that the following two inequalities hold:

(n∗1 − n1)φ(F̄ (xλ1)) ≤ (n2 − n∗2)φ(F̄ (xλ2)) (3.38)

and

(n∗1 − n1)
λ1r̃(xλ1)[1− ψ[φ

(
F̄ (xλ1)

)
]]

ψ′[φ
(
F̄ (xλ1)

)
]

≥ (n2 − n∗2)
xλ2r̃(xλ2)[1− ψ[φ

(
F̄ (xλ2)

)
]]

ψ′[φ
(
F̄ (xλ2)

)
]

. (3.39)

Further, (n1, n2) �w (n∗1, n
∗
2) ⇒ (n1 + n2) ≥ (n∗1 + n∗2) ⇒ (n2 − n∗2) ≥ (n∗1 − n1) ≥ 0. Also

λ1 ≤ λ2 ⇒ φ
(
F̄ (xλ2)

)
≥ φ

(
F̄ (xλ1)

)
≥ 0. By the help of decreasing property of 1−ψ

ψ′
, we

obtain
1− ψ(w)

ψ′(w)
|w=φ[F̄ (xλ2)] ≤

1− ψ(w)

ψ′(w)
|w=φ[F̄ (xλ1)] ≤ 0. (3.40)

Since xr̃(x) is increasing,
xλ1r̃(xλ1) ≤ xλ2r̃(xλ2). (3.41)

Thus, the proof is completed from Equations (3.40), (3.41) and the given assumptions.

The next theorem states that if the scale parameters are connected with the weakly subma-
jorized order and the sample size pairs (n1, n2) and (n∗1, n

∗
2) have weakly submajorized order,

then the smallest order statistics of X1:n(n1, n2) is dominated by Y1:n∗(n
∗
1, n

∗
2) according to the

hazard rate order.

Theorem 3.13. Let Assumption 3.6 hold with ψ1 = ψ2 = ψ, r1 = r2 = r and r̃1 = r̃2 = r̃.
Then, for λ, µ ∈ E+ and (n1, n2) �w (n∗1, n

∗
2),

(m1, · · · ,m1︸ ︷︷ ︸
n∗1

,m2, · · · ,m2︸ ︷︷ ︸
n∗2

) �w (v1, · · · , v1︸ ︷︷ ︸
n∗1

, v2, · · · , v2︸ ︷︷ ︸
n∗2

)⇒ X1:n(n1, n2) ≤hr Y1:n∗(n
∗
1, n

∗
2),

provided ψ is log-concave, 1−ψ
ψ′

is decreasing, [1−ψ
ψ′

]′/ ψ
ψ′

and r(x) are increasing, xr̃(x) is in-
creasing and convex, where mi = log λi and vi = log µi, i = 1, 2.

Proof. The proof of the theorem follows from Theorem 3.11 and Theorem 3.12. Thus, it is
omitted.

To illustrate Theorem 3.13, we now consider the following example.

Example 3.4. Set λ = (e0.5, e0.6), µ = (e0.2, e0.3), (n1, n2) = (2, 11), (n∗1, n
∗
2) = (3, 7) and

ψ(x) = e
1

0.99
(1−ex), x > 0. Further, let F (x) =

(
x
a

)l
, 0 < x ≤ a. It can be easily shown that for

a = 1000 and l = 2, all the conditions of Theorem 3.13 are satisfied. Now, we plot the ratio
F̄Y1:10 (3,7)(x)

F̄X1:13
(2,11)(x)

in Figure 2b, which is consistent with the result in Theorem 3.13.

In the next theorem, we develop some conditions under which two smallest order statistics
are comparable according to the star order.
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Theorem 3.14. Under the set-up as in Assumption 3.4, with r̃1 = r̃2 = r̃ and ψ1 = ψ2 = ψ,

λ2:2

λ1:1

≥ µ2:2

µ1:2

⇒ Y1:n∗(n
∗
1, n

∗
2) ≤∗ X1:n∗(n

∗
1, n

∗
2),

provided ψ
ψ′

is decreasing, convex, xr′(x)
r(x)

and xr(x) are decreasing.

Proof. The distribution functions of X1:n∗(n
∗
1, n

∗
2) and Y1:n∗(n

∗
1, n

∗
2) are respectively given by

FX1:n∗ (n
∗
1, n

∗
2)(x) = 1− ψ

[
n∗1φ

(
F̄ (xλ1)

)
+ n∗2φ

(
F̄ (xλ2)

)]
and

FY1:n∗ (n
∗
1, n

∗
2)(x) = 1− ψ

[
n∗1φ

(
F̄ (xµ1)

)
+ n∗2φ

(
F̄ (xµ2)

)]
.

Now, the rest of the proof follows using similar arguments as in Theorem 3.7. Thus, it is
omitted.

The following result is a direct consequence of Theorem 3.14.

Corollary 3.8. Under the assumptions as in Theorem 3.14,

λ2:2

λ1:1

≥ µ2:2

µ1:2

⇒ Y1:n∗(n
∗
1, n

∗
2) ≤Lorenz X1:n∗(n

∗
1, n

∗
2),

provided ψ
ψ′

is decreasing, convex, xr′(x)
r(x)

and xr(x) are decreasing.

4. Concluding remarks

Due to simplicity in tackling the expressions/terms, most of the researchers have concentrated
on the multiple-outlier models and studied ordering results between the order statistics under
the set-up of independent random variables. However, the assumption of independent random
variables is not feasible in many situations. So, it is required to assume dependent structure
among the random observations. In this paper, we discussed some comparison results be-
tween the lifetimes of both parallel and series systems consisting of multiple-outlier dependent
scale components in the sense of the usual stochastic, reversed hazard rate, hazard rate, star
and Lorenz orders. The dependence structure has been modeled by Archimedean copulas.
Sufficient conditions have been established for the purpose of the comparisons of the order
statistics. Several examples and counterexamples are presented to illustrate the established
results.

Acknowledgements: Sangita Das thanks the financial support provided by the MHRD,
Government of India. Suchandan Kayal gratefully acknowledges the partial financial support
for this research work under a grant MTR/2018/000350, SERB, India.

23



References

Amini-Seresht, E., Qiao, J., Zhang, Y. and Zhao, P. (2016). On the skewness of order statistics
in multiple-outlier PHR models, Metrika. International Journal for Theoretical and Applied
Statistics. 79(7), 817–836.

Balakrishnan, N. and Torrado, N. (2016). Comparisons between largest order statistics from
multiple-outlier models, Statistics. 50(1), 176–189.

Balakrishnan, N. and Zhao, P. (2013). Ordering properties of order statistics from heteroge-
neous populations: a review with an emphasis on some recent developments, Probability in
the Engineering and Informational Sciences. 27(4), 403–443.

Fang, L., Barmalzan, G. and Ling, J. (2016). Dispersive order of lifetimes of series systems
in multiple-outlier Weibull models, Journal of Systems Science & Complexity. 29(6), 1693–
1702.

Kochar, S. C. and Torrado, N. (2015). On stochastic comparisons of largest order statistics in
the scale model, Communications in Statistics-Theory and Methods. 44(19), 4132–4143.

Kochar, S. and Xu, M. (2011). On the skewness of order statistics in multiple-outlier models,
Journal of Applied Probability. 48(1), 271–284.

Kundu, A., Chowdhury, S., Nanda, A. K. and Hazra, N. K. (2016). Some results on majoriza-
tion and their applications, Journal of Computational and Applied Mathematics. 301, 161–
177.

Li, X. and Fang, R. (2015). Ordering properties of order statistics from random variables of
Archimedean copulas with applications, Journal of Multivariate Analysis. 133, 304–320.

Marshall, A. W. and Olkin, I. (2007). Life distributions, Springer Series in Statistics, Springer,
New York. Structure of nonparametric, semiparametric, and parametric families.

Marshall, A. W., Olkin, I. and Arnold, B. C. (2011). Inequalities: Theory of Majorization and
its Applications, Springer Series in Statistics, second edn, Springer, New York.

McNeil, A. J. and Nešlehová, J. (2009). Multivariate archimedean copulas, d-monotone func-
tions and l1-norm symmetric distributions, The Annals of Statistics. 37(5B), 3059–3097.
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