
A fresh take on ‘Barker dynamics’ for MCMC.
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Abstract We study a recently introduced gradient-based Markov chain Monte Carlo
method based on ‘Barker dynamics’. We provide a full derivation of the method
from first principles, placing it within a wider class of continuous-time Markov jump
processes. We then evaluate the Barker approach numerically on a challenging ill-
conditioned logistic regression example with imbalanced data, showing in particular
that the algorithm is remarkably robust to irregularity (in this case a high degree of
skew) in the target distribution.

1 Introduction

For over half a century now Markov chain Monte Carlo has been used to sample
from and compute expectations with respect to unnormalised probability distribu-
tions [16]. The idea is to construct a Markov chain for which a distribution of interest
is invariant. Provided that the chain is 𝜋-irreducible and aperiodic (see e.g. [20]),
then the distribution of 𝑋𝑛, the 𝑛th point in the chain, will approach the invariant dis-
tribution as 𝑛→ ∞, and ergodic averages from the chain can be used to approximate
desired integrals.
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Restricting attention to X ⊂ R𝑑 , one way to confirm that a distribution on X
with density 𝜋(𝑥) is invariant for a Markov chain with transition kernel 𝑄(𝑥, 𝐴) :=∫
𝐴
𝑞(𝑥, 𝑦)𝑑𝑦 is to establish that the equation

𝜋(𝑦)𝑞(𝑦, 𝑥)
𝜋(𝑥)𝑞(𝑥, 𝑦) := 𝑡 (𝑥, 𝑦) = 1 (1)

holds for all 𝑥, 𝑦 ∈ X such that 𝜋(𝑥)𝑞(𝑥, 𝑦) > 0, and that 𝜋(𝑦)𝑞(𝑦, 𝑥) = 0 elsewhere.
These are the well-known detailed balance equations. The celebrated Metropolis–
Hastings algorithm [16, 10] is built on the idea of coercing a Markov chain into
having a specified invariant distribution. This is achieved through what will be
called a balancing function in this article. Consider the scenario in which 𝜋 is not
invariant for 𝑄, meaning (1) does not hold. A new kernel can be created which in
fact does satisfy equation (1) by setting

𝑝(𝑥, 𝑦) := 𝑔(𝑡 (𝑥, 𝑦))𝑞(𝑥, 𝑦), (2)

where 𝑔(𝑡) satisfies
𝑔(𝑡) = 𝑡𝑔(1/𝑡) (3)

whenever 𝑡 > 0, and 𝑔(0) := 0. By noting that 𝜋(𝑥)𝑞(𝑥, 𝑦)𝑡 (𝑥, 𝑦) = 𝜋(𝑦)𝑞(𝑦, 𝑥) and
𝑡 (𝑦, 𝑥) = 1/𝑡 (𝑥, 𝑦), it is easily seen that

𝜋(𝑥)𝑝(𝑥, 𝑦) = 𝜋(𝑥)𝑞(𝑥, 𝑦)𝑔(𝑡 (𝑥, 𝑦)) (4)
= 𝜋(𝑥)𝑞(𝑥, 𝑦)𝑡 (𝑥, 𝑦)𝑔(1/𝑡 (𝑥, 𝑦)))
= 𝜋(𝑦)𝑞(𝑦, 𝑥)𝑔(𝑡 (𝑦, 𝑥))
= 𝜋(𝑦)𝑝(𝑦, 𝑥)

as required.
The problem, however, with taking the above strategy is that there is no guarantee

that
∫
𝑝(𝑥, 𝑦)𝑑𝑦 = 1, in fact this is extremely unlikely to be the case. More steps

must be taken, therefore, to create a Markov process. The Metropolis–Hastings
solution is to restrict to balancing functions that satisfy 𝑔(𝑡) ≤ 1 for all 𝑡 ∈ [0,∞).
This ensures that the kernel 𝐾 (𝑥, 𝐴) :=

∫
𝐴
𝑝(𝑥, 𝑦)𝑑𝑦 satisfies 𝐾 (𝑥,X) ≤ 1. The

remaining probability mass can then be found by simply adding a rejection step,
meaning that with probability 1 − 𝐾 (𝑥,X) the chain remains at its current point 𝑥.

There is, however, another way to create a Markov process from 𝑝(𝑥, 𝑦), without
resorting to the Metropolis–Hastings approach. This consists of defining a continuous
time Markov jump process in which jumps from the point 𝑥 occur with intensity

𝜆(𝑥) =
∫

𝑝(𝑥, 𝑦)𝑑𝑦, (5)

and the jump location 𝑦 is sampled from a distribution with density 𝑝(𝑥, 𝑦)/𝜆(𝑥).
The function 𝑝(𝑥, 𝑦) then describes the rate at which the process jumps from 𝑥

to 𝑦, and (4) indicates that the process is 𝜋-invariant. The challenge associated
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with this second approach is that the integral (5) will often be intractable, meaning
that simulating the process is not straightforward. Here we describe a solution that
is outlined in the recent contribution [14], through a judicious choice of 𝑔 and a
suitable approximation to 𝑡 (𝑥, 𝑦). It should of course be noted that in the case of
finite X then (5) becomes a sum, and so the process can be exactly simulated. We do
not consider this setting here, but direct the interested reader to [18], in which the
approach is elegantly described, following earlier work in [23].

In the next section we discuss Barker’s accept-reject rule, an early Markov chain
Monte Carlo method from which we draw inspiration, before covering the general
approach to the design of Markov jump processes with a prescribed invariant distri-
bution in Section 3. It is here that we derive a Markov process that approximately
preserves a given distribution, and show that the Barker balancing function is the
only choice giving rise to such a process. In Section 4 we reveal the Barker pro-
posal scheme, in which this new process is used as a proposal mechanism within
a Metropolis–Hastings algorithm. In Section 5 we discuss the merits of using this
new algorithm, by comparing it to suitable alternatives both theoretically and nu-
merically, in the latter case using a challenging logistic regression example with
imbalanced categorical data.

2 Barker’s rule and the Peskun ordering

Readers who are familiar with the Metropolis–Hastings algorithm will naturally
gravitate towards the choice of balancing function 𝑔(𝑡) = min(1, 𝑡) in (2), resulting
in the familiar Hastings acceptance probability

𝑔𝐻 (𝑡 (𝑥, 𝑦)) = min
(
1,
𝜋(𝑦)𝑞(𝑦, 𝑥)
𝜋(𝑥)𝑞(𝑥, 𝑦)

)
. (6)

It should be noted, however, that several other choices of 𝑔 are possible. One al-
ternative proposed by Barker in [3] is 𝑔(𝑡) = 𝑡/(1 + 𝑡), resulting in the acceptance
probability

𝑔𝐵 (𝑡 (𝑥, 𝑦)) =
𝜋(𝑦)𝑞(𝑦, 𝑥)

𝜋(𝑥)𝑞(𝑥, 𝑦) + 𝜋(𝑦)𝑞(𝑦, 𝑥) (7)

after multiplying the numerator and denominator by 𝜋(𝑥)𝑞(𝑥, 𝑦). In the case
𝑞(𝑥, 𝑦) = 𝑞(𝑦, 𝑥) this further reduces to 𝜋(𝑦)/(𝜋(𝑥) + 𝜋(𝑦)). Note that both 𝑔𝐻
and 𝑔𝐵 satisfy 𝑔 ≤ 1.

The reason that 𝑔𝐻 is preferred to 𝑔𝐵 in the context of the Metropolis–Hastings
algorithm is due to the work of Peskun [17] and Tierney [22], which established that
for the same choice of 𝑞(𝑥, 𝑦) the acceptance rate 𝑔𝐻 will result in Markov chains
that produce ergodic averages with smallest asymptotic variance. A key part of the
argument is that 𝑔𝐻 will maximise the probability of moving from 𝑥 to 𝑦, for any
𝑦 ≠ 𝑥. When comparing (6) and (7) this is easy to see, as
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𝑔𝐵 (𝑡 (𝑥, 𝑦)) =
𝜋(𝑦)𝑞(𝑦, 𝑥)

𝜋(𝑥)𝑞(𝑥, 𝑦) + 𝜋(𝑦)𝑞(𝑦, 𝑥) ≤ 𝜋(𝑦)𝑞(𝑦, 𝑥)
𝜋(𝑥)𝑞(𝑥, 𝑦)

whenever 𝜋(𝑥)𝑞(𝑥, 𝑦) > 0. Combining with the fact that 𝑔𝐵 ≤ 1 gives that 𝑔𝐵 ≤ 𝑔𝐻
for every value of 𝑡 (𝑥, 𝑦).

It is important to emphasise, however, that the above discussion and conclusions
about the optimality of 𝑔𝐻 are confined to the scenario in which (2) is used to create
a Metropolis–Hastings algorithm. It no longer applies to the setting in which the
function 𝑝(𝑥, 𝑦) is used to define a Markov jump process with transition rates given
by (5). Furthermore, in this case the stipulation that 𝑔 ≤ 1 is not required. This
presents an opportunity to consider not just 𝑔𝐻 but also alternatives such as 𝑔𝐵 and
others when designing jump processes of the type described in Section 1.

3 Designing jump processes through a balancing function

The dynamics of a jump process for which transitions from 𝑥 to 𝑦 occur at the rate
𝑝(𝑥, 𝑦) are as follows: if the current point at time 𝑡 is 𝑋𝑡 = 𝑥 ∈ X, the process will
remain at 𝑥 for an exponentially distributed period of time 𝜏 ∼ Exp(𝜆(𝑥)), with 𝜆(𝑥)
defined in (5), before moving to the next point using the Markov ‘jump’ kernel 𝐽,
defined for any event 𝐴 as

𝐽 (𝑥, 𝐴) :=
∫
𝐴

𝑝(𝑥, 𝑦)
𝜆(𝑥) 𝑑𝑦. (8)

In order to simulate such a process, we must therefore be able to compute 𝜆(𝑥) :=∫
𝑝(𝑥, 𝑦)𝑑𝑦, and also to simulate from 𝐽 (𝑥, ·), for any 𝑥 ∈ X.
Note, however, that if 𝜆(𝑥) were constant, we could simply use the jump kernel 𝐽

directly and simulate a discrete-time Markov chain. To see this, note that in general
the jump kernel will have invariant density proportional to 𝜆(𝑥)𝜋(𝑥), as the equation

𝜆(𝑥)𝜋(𝑥) 𝑝(𝑥, 𝑦)
𝜆(𝑥) = 𝜆(𝑦)𝜋(𝑦) 𝑝(𝑦, 𝑥)

𝜆(𝑦)

simplifies to 𝜋(𝑥)𝑝(𝑥, 𝑦) = 𝜋(𝑦)𝑝(𝑦, 𝑥), which holds by design. If 𝜆(𝑥) = 𝜆 then the
above equation simply shows that 𝐽 is 𝜋-reversible. We can therefore either simulate
the continuous-time process with constant jump rate 𝜆, or just ignore this step and
take 𝐽 as the kernel of a discrete-time Markov chain. In Subsection 3.1, we show
that making a careful approximation to 𝑡 (𝑥, 𝑦) allows just such a constant jump rate
process to be found.
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3.1 Tractability through a 1st order approximation of 𝒕(𝒙, 𝒚)

Recalling that 𝑝(𝑥, 𝑦) = 𝑔(𝑡 (𝑥, 𝑦))𝑞(𝑥, 𝑦), the jump rate 𝜆(𝑥) is the integral∫
𝑔(𝑡 (𝑥, 𝑦))𝑞(𝑥, 𝑦)𝑑𝑦,

which in general will not be tractable. A natural starting point for simplifying the
problem is to restrict to the family of transition densities for which 𝑞(𝑥, 𝑦) = 𝑞(𝑦, 𝑥),
and further to the random walk case 𝑞(𝑥, 𝑦) = 𝑞(𝑦 − 𝑥). When this choice is made
then 𝑡 (𝑥, 𝑦) = 𝜋(𝑦)/𝜋(𝑥). Restricting for now to X ⊂ R, a first order approximation
of this ratio can be constructed using a Taylor series expansion as

𝜋(𝑦)/𝜋(𝑥) = exp{log 𝜋(𝑦) − log 𝜋(𝑥)} ≈ exp{(𝑦 − 𝑥)∇ log 𝜋(𝑥)}

for 𝑦 suitably close to 𝑥. The purpose of using this approximation is that 𝑦 now only
enters the expression through the difference term 𝑧 := 𝑦−𝑥, and furthermore it holds
that

𝑡∗𝑥 (𝑧) := 𝑒𝑧∇ log 𝜋 (𝑥) = 1/𝑒−𝑧∇ log 𝜋 (𝑥) = 1/𝑡∗𝑥 (−𝑧). (9)

Since 𝑞(𝑥, 𝑦) = 𝑞(𝑧) we can therefore express the entire integral as

𝜆∗ (𝑥) :=
∫ ∞

−∞
𝑔(𝑡∗𝑥 (𝑧))𝑞(𝑧)𝑑𝑧.

By first writing 𝜆∗ (𝑥) as the sum of two integrals over the disjoint regions (∞, 0]
and [0,∞), then switching the limits of integration through a change of variables in
the first of these and finally re-combining, we arrive at the expression

𝜆∗ (𝑥) =
∫ 0

−∞
𝑔(𝑡∗𝑥 (𝑧))𝑞(𝑧)𝑑𝑧 +

∫ ∞

0
𝑔(𝑡∗𝑥 (𝑧))𝑞(𝑧)𝑑𝑧

=

∫ ∞

0

[
𝑔(𝑡∗𝑥 (−𝑧))𝑞(−𝑧) + 𝑔(𝑡∗𝑥 (𝑧))𝑞(𝑧)

]
𝑑𝑧

=

∫ ∞

0

[
𝑔(𝑡∗𝑥 (−𝑧)) + 𝑔(𝑡∗𝑥 (𝑧))

]
𝑞(𝑧)𝑑𝑧,

where the last line follows from the fact that 𝑞(𝑧) = 𝑞(−𝑧). Using (9) and then the
balancing property (3) reveals that

𝑔(𝑡∗𝑥 (−𝑧)) = 𝑔(1/𝑡∗𝑥 (𝑧)) = 𝑔(𝑡∗𝑥 (𝑧))/𝑡∗𝑥 (𝑧),

meaning that setting 𝑡∗𝑥 (𝑧) := 𝑡∗ the term in square brackets inside the integral can be
written (1 + 1/𝑡∗)𝑔(𝑡∗). Note that if this expression were in fact equal to a constant,
then 𝜆∗ (𝑥) would become tractable, and furthermore it would not depend on 𝑥. The
Barker rule is the unique (up to constant multiple) choice of balancing function for
which this property holds. To see this, note that for any 𝑐 ≠ 0
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(1 + 1/𝑡∗)𝑔(𝑡∗) = 𝑐 ⇐⇒ 𝑔(𝑡∗) = 𝑐

1 + 1/𝑡∗ .

Setting 𝑐 = 1 and multiplying by 𝑡∗/𝑡∗ reveals the choice 𝑔𝐵 (𝑡∗) = 𝑡∗/(1 + 𝑡∗), and
furthermore

𝜆∗ (𝑥) =
∫ ∞

0
𝑞(𝑧)𝑑𝑧 = 1

2
,

using the facts that 𝑞(𝑧) = 𝑞(−𝑧) and
∫
𝑞(𝑧)𝑑𝑧 = 1. In fact the choice of 𝑐 is

irrelevant here as it simply acts as a constant multiple to the jump rate and does not
enter into the jump kernel expression. We refer to the resulting Markov process as
Barker dynamics.

3.2 A skew-symmetric Markov transition kernel

The family of skew-symmetric distributions on R has densities of the form

2𝐹 (𝛽𝑧)𝜙(𝑧), (10)

where 𝜙 is a symmetric probability density function, 𝐹 is a cumulative distribution
function such that 𝐹 (0) = 1/2 and 𝐹 ′ is a symmetric density, and 𝛽 ∈ R [2].
Choosing 𝛽 > 0 induces positive skew and vice versa (setting 𝛽 = 0 means no skew
is induced). In fact 𝛽𝑧 can be replaced with more general functions of 𝑧, but the
above suffices for our needs.

The jump kernel (8) with symmetric choice of 𝑞, the approximation 𝑡∗ in (9) and
Barker balancing function 𝑔𝐵 leads to the Markov kernel

𝐽∗ (𝑥, 𝐴) :=
∫
𝐴

2𝑔𝐵 (exp{(𝑦 − 𝑥)∇ log 𝜋(𝑥)})𝑞(𝑦 − 𝑥)𝑑𝑦 (11)

for any event 𝐴. Writing 𝐹𝐿 (𝑧) := 1/(1 + 𝑒−𝑧), the cumulative distribution function
of the logistic distribution, and noting that 𝑔𝐵 (𝑒𝑧) = 𝐹𝐿 (𝑧), the associated transition
density can be written

𝑗∗ (𝑥, 𝑥 + 𝑧) = 2𝐹𝐿 (𝛽𝑥𝑧)𝑞(𝑧)

where
𝛽𝑥 := ∇ log 𝜋(𝑥).

We see, therefore, that the resulting transition is skew-symmetric, with the level of
skew at the current state 𝑥 determined by ∇ log 𝜋(𝑥). Because of this, a convenient
algorithm for drawing samples from this transition kernel exists, and consists of the
following:

1. Draw 𝜉 ∼ 𝑞(·)
2. Set 𝑏 = 1 with probability 𝐹𝐿 (𝛽𝑥𝜉), otherwise set 𝑏 = −1
3. Set 𝑧 = 𝑏𝜉
4. Return 𝑥 + 𝑧.
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The resulting draw is from the kernel 𝐽∗ (𝑥, ·). To see this, note that the probability
density associated with any 𝑧 is

𝑗∗ (𝑥, 𝑥 + 𝑧) = 𝑞(𝑧)𝐹𝐿 (𝛽𝑥𝑧) + 𝑞(−𝑧) (1 − 𝐹𝐿 (−𝛽𝑥𝑧)),

which gives the density associated with either drawing 𝑧 and setting 𝑏 = 1 or drawing
−𝑧 and setting 𝑏 = −1. After noting that 𝑞(𝑧) = 𝑞(−𝑧) and 1−𝐹𝐿 (−𝛽𝑥𝑧) = 𝐹𝐿 (𝛽𝑥𝑧)
by the symmetry of the logistic distribution, this simplifies to

𝑗∗ (𝑥, 𝑥 + 𝑧) = 2𝐹𝐿 (𝛽𝑥𝑧)𝑞(𝑧)

as required. Figure 1 illustrates the inner workings of such a transition. It is natural
to consider whether other choices of skewing function derived from other balancing
functions can be used to produce such a Markov transition. It is shown in Appendix
F of [14], however, this is not possible, more precisely it is shown that 𝑔𝐵 is the
unique choice of balancing function leading to a skew-symmetric transition kernel
when the first order approximation 𝑡∗ (𝑥, 𝑦) is used in place of 𝑡 (𝑥, 𝑦). This is in fact
evident from the calculations of Subsection 3.1.

𝜋 (𝑥)

𝜉 = 1.2
P[𝑏 = 1] = 0.2

𝑥𝑥 − 𝜉 𝑥 + 𝜉

∇ log 𝜋 (𝑥)

Fig. 1 A diagram of a typical draw from the transition kernel (11) using the algorithm outlined
in Subsection 3.2. The black ball 𝑥 is the current state, and the sizes of the blue balls indicate the
probability of moving to that point, given that the innovation drawn in step 1 is 𝜉 = 1.2. A move
in the direction of the gradient is clearly more probable.
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4 The Barker proposal in X ⊂ R𝒅

The culmination of Section 3 is a Markov transition kernel (11) and an algorithm in
Subsection 3.2 to draw samples from this kernel. Note, however, that this transition
kernel will not in general have equilibrium distribution 𝜋, owing to the 1st order ap-
proximation used in Subsection (3.1). In some cases it might be reasonable to simply
ignore this fact and use the method regardless, in the hope that any approximation
error is small (the authors will discuss this approach in forthcoming work). The
resolution we will adopt here, however, is to use the transition as a proposal within
a Metropolis–Hastings algorithm. Note that the transition density can be written
𝑗∗ (𝑥, 𝑦) ∝ 𝑞(𝑦 − 𝑥)/(1 + 𝑒 (𝑥−𝑦) ∇ log 𝜋 (𝑥) ) with 𝑞(𝑦 − 𝑥) = 𝑞(𝑥 − 𝑦), meaning that
the Metropolis–Hastings acceptance probability becomes

𝛼1 (𝑥, 𝑦) = min
(
1,
𝜋(𝑦) (1 + 𝑒 (𝑥−𝑦) ∇ log 𝜋 (𝑥) )
𝜋(𝑥) (1 + 𝑒 (𝑦−𝑥) ∇ log 𝜋 (𝑦) )

)
.

We have also restricted attention thus far to the one-dimensional setting, as ex-
tending to a 𝑑-dimensional transition kernel for 𝑑 > 1 can be done in many different
ways. It is natural to consider as a starting point a 𝑑-dimensional symmetric and
centred density 𝑞. There are, however, many different ways to introduce the skew-
ing mechanism into a 𝑑-dimensional distribution, which is done in one dimension
through the variable 𝑏 ∈ {−1, 1}. We consider two here, which we believe to be
natural generalisations, and of which one is in fact clearly preferable to the other.
The first is to simply introduce the same variable 𝑏, and after drawing 𝜉 ∼ 𝑞(·),
set P[𝑏 = 1] = 𝐹𝐿 (𝛽𝑇𝑥 𝜉), where 𝛽𝑥 := ∇ log 𝜋(𝑥) as in Subsection 3.2. The only
difference between this and the one-dimensional case is that now 𝛽𝑥 and 𝜉 are 𝑑-
dimensional vectors, meaning the scalar product is replaced by an inner product.
This procedure is a single global skewing of the initial symmetric distribution 𝑞.

It turns out, however, that a much more favourable approach is to skew each
dimension individually. This involves defining 𝑏 ∈ {−1, 1}𝑑 , and setting P[𝑏𝑖 =

1] = 𝐹𝐿 (𝛽𝑥,𝑖𝜉𝑖) for 𝑖 ∈ {1, ..., 𝑑}, where 𝛽𝑥,𝑖 := 𝜕 log 𝜋(𝑥)/𝜕𝑥𝑖 , the 𝑖th partial
derivative of log 𝜋(𝑥). This approach allows a much more flexible level of skewing
to be applied to the base distribution 𝑞. In fact, once the initial 𝜉 ∼ 𝑞(·) is drawn,
the first approach only considers two possible candidate moves: 𝑥 + 𝜉 and 𝑥 − 𝜉.
In a high dimensional setting it may not be that either of these candidate moves is
particularly favourable in terms of helping the chain mix. By contrast, the second
approach allows for 2𝑑 possible moves after 𝜉 has been sampled. Figure 2 illustrates
how this increased flexibility can result in much more favourable transitions.

One can make the comparison between the two approaches more concrete. In
[14], it is shown that the asymptotic variance of the first 𝑑-dimensional version
of the Barker proposal will be at least half as large as that of a random walk
Metropolis algorithm. As such, using scaling arguments based on limiting diffusion
approximations, it can be shown that 𝑂 (𝑑) iterations of the algorithm are needed to
achieve estimates of a fixed level of precision as 𝑑 → ∞. By contrast, in the same
work it is shown that only 𝑂 (𝑑1/3) iterations are needed for the second version to
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𝜋 (𝑥) 𝜋 (𝑥)

Fig. 2 A typical draw from the two different multi-dimensional transition kernels described in
Section 4 when 𝑑 = 2. The black ball 𝑥 is the current state, and the sizes of the blue balls indicate
the probability of moving to each candidate point after the initial innovation 𝜉 has been drawn.
Using the first variant (left-hand side) only two moves are possible, neither of which move the chain
closer to the high probability region of 𝜋. By contrast, using the second variant (right-hand side)
2𝑑 moves are possible, and the most likely of these will move the chain in a favourable direction.

achieve the same goal. This is akin to the Metropolis-adjusted Langevin algorithm,
another popular gradient-based Metropolis–Hastings algorithm (e.g. [19]). When
referring to the Barker method in 𝑑-dimensions, from this point forward we will
exclusively refer to the second approach described in this section. A single transition
of the resulting 𝑑-dimensional Metropolis–Hastings algorithm with current state 𝑥
is given below.

1. Draw 𝜉 ∼ 𝑞(·)
2. For 𝑖 ∈ {1, ..., 𝑑} set 𝑏𝑖 = 1 with probability (1 + 𝑒−𝛽𝑥,𝑖 𝜉𝑖 )−1, otherwise set
𝑏𝑖 = −1, where 𝛽𝑥,𝑖 := 𝜕 log 𝜋(𝑥)/𝜕𝑥𝑖

3. Set 𝑦 := 𝑥 + 𝑏 · 𝜉, where 𝑎 · 𝑏 = (𝑎1𝑏1, 𝑎2𝑏2, ..., 𝑎𝑑𝑏𝑑) defines the element-wise
product of two vectors 𝑎 = (𝑎1, ..., 𝑎𝑑) and 𝑏 = (𝑏1, ..., 𝑏𝑑) in R𝑑

4. Set the next state to be 𝑦 with probability

𝛼𝑑 (𝑥, 𝑦) = min

(
1,
𝜋(𝑦)
𝜋(𝑥)

𝑑∏
𝑖=1

1 + 𝑒 (𝑥𝑖−𝑦𝑖)𝛽𝑥,𝑖

1 + 𝑒 (𝑦𝑖−𝑥𝑖)𝛽𝑦,𝑖

)
,

otherwise remain at 𝑥.

We note that the algorithm requires the same ingredients as MALA, and has the
same computational cost per iteration, which is dominated by the calculation of the
gradient and target distribution. A simple function to run the Barker proposal in the R
programming language is provided at https://github.com/gzanella/barker.

https://github.com/gzanella/barker


10 Max Hird, Samuel Livingstone & Giacomo Zanella

5 Why use the Barker algorithm?

Gradient-based MCMC methods are typically used because they perform well in
high-dimensional settings. The Barker algorithm is no exception here, achieving the
same 𝑂 (𝑑−1/3) asymptotic efficiency as the popular Metropolis-adjusted Langevin
algorithm (MALA) for suitably regular problems, where 𝑑 represents the dimension
of the state space [14]. The design of the Barker scheme, however, does differ from
other gradient-based schemes such as MALA and Hamiltonian Monte Carlo (HMC).
In both of the latter well-known approaches the gradient is incorporated through a
deterministic drift, which depends linearly on ∇ log 𝜋(𝑥). In MALA, for example, if
the current point is 𝑥 the proposal will be

𝑦 = 𝑥 + ℎ
2

2
∇ log 𝜋(𝑥) + ℎ𝜉,

where 𝜉 ∼ 𝑁 (0, 1) and ℎ > 0. When the gradient is suitably regular and ℎ well-
chosen this transition can be very desirable; for example if 𝜋 is Gaussian then the
proposal becomes 𝑦 = (1 − ℎ2/2)𝑥 + ℎ𝜉, leading to dynamics in which the chain
drifts towards the centre of the space very quickly provided that ℎ2 < 2. In the same
setting, however, it is immediately clear that choosing ℎ2 > 2 will lead to undesirable
behaviour. The Barker proposal, by contrast, does not exhibit such a sharp cut-off
between a good and bad choice of ℎ in this example.

The above case is indicative of a much more general phenomenon that is well-
known to practitioners, namely that popular gradient-based methods often produce
fast-mixing Markov chains on a particular class of problems and provided that the
tuning parameters of the algorithm are well-chosen, but that this class of problems
is smaller than ideal, and that performance degrades rapidly when a poor choice of
tuning parameters is made. This phenomenon is not only restricted to settings in
which the MALA proposal becomes unstable (as in the Gaussian case), and means
that it is also often difficult to tune the methods adaptively during the course of
the simulation, an issue that is discussed in [14]. In that work the authors focus on
characterising robustness to tuning, providing a mathematical argument to show that
for MALA and HMC performance is much more sensitive to the choice of proposal
tuning parameters than for the Barker proposal.

5.1 Skewed target distributions

One scenario in which gradient-based algorithms can perform poorly is when the
distribution of interest 𝜋 exhibits considerable skew. To explore this phenomenon we
first consider a simple one-dimensional model problem, before performing a more
comprehensive numerical study on a challenging ill-conditioned logistic regression
example. We will show that in both of these cases the Barker algorithm is considerably
more robust to the level of skewness exhibited than other gradient-based schemes.
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In essence the challenge is that the gradient near the mode will diverge with the
skewness of the distribution, causing pathologies in gradient-based proposals unless
accounted for.

A model problem. Consider the family of skew-normal probability distributions
𝜋𝜂 on R indexed by a skewness parameter 𝜂 > 0. A given member of the family
will have density 𝜋𝜂 (𝑧) := 2𝜙(𝑧)Φ(𝜂𝑧) where where 𝜙 and Φ are the density and
cumulative distribution function of a standard normal distribution. Note that as 𝜂
increases so does the skewness and that 𝜋𝜂 becomes a truncated Gaussian truncated
to be positive as 𝜂 → ∞. Take 𝑥 > 0 larger than the mode of 𝜋𝜂 , and set 𝑦 = 0,
noting that this implies sign(∇ log 𝜋𝜂 (𝑥)) = −sign(∇ log 𝜋𝜂 (𝑦)). The choice 𝑦 = 0
is important only for the limiting result, in reality algorithmic difficulties will occur
for any point in the neighbourhood of zero for which the gradient is large and
positive when 𝜂 � 0. For these choices, as 𝜂 → ∞ it holds that 𝜋𝜂 (𝑥) → 2𝜙(𝑥),
𝜋𝜂 (𝑦) → 1/

√
2𝜋, and ∇ log 𝜋𝜂 (𝑥) → −𝑥, whereas ∇ log 𝜋𝜂 (𝑦)) → ∞ as the density

becomes increasingly skewed. Recall that the MALA proposal density is

log 𝑞𝑀𝜂 (𝑧1, 𝑧2) := − 1
2ℎ2

(
𝑧2 − 𝑧1 −

ℎ2

2
∇ log 𝜋𝜂 (𝑧1)

)2

− 1
2

log
(
2𝜋ℎ2

)
.

This implies that log 𝑞𝑀𝜂 (𝑦, 𝑥) → −∞ as 𝜂 → ∞, whereas log 𝑞𝑀𝜂 (𝑥, 𝑦) remains
finite. As a consequence the reverse move from 𝑦 to 𝑥 becomes increasingly unlikely
as 𝜂 grows, causing the acceptance rate

𝛼𝑀
𝜂 (𝑥, 𝑦) := min

(
1,
𝜋𝜂 (𝑦)𝑞𝑀𝜂 (𝑦, 𝑥)
𝜋𝜂 (𝑥)𝑞𝑀𝜂 (𝑥, 𝑦)

)
to become arbitrarily small, such that 𝛼𝑀

𝜂 (𝑥, 𝑦) → 0 as 𝜂 → ∞. The Barker proposal
density is

log 𝑞𝐵𝜂 (𝑧1, 𝑧2) := − log
(
1 + exp((𝑧1 − 𝑧2)∇ log 𝜋𝜂 (𝑧1)

)
+ 𝐶

for some finite constant 𝐶. Since (𝑦 − 𝑥) and ∇ log 𝜋𝜂 (𝑦) have opposite signs, their
product tends to −∞ in the same limit, meaning log 𝑞𝐵𝜂 (𝑦, 𝑥) → 𝐶. The acceptance
rate 𝛼𝐵

𝜂 (𝑥, 𝑦) for the Barker algorithm therefore remains stable and converges to a
positive value in the same limit.

Figure 3 provides some more intuition for the contrasting behaviour between the
two methods in this example.

5.2 A logistic regression example with imbalanced data

Skewed posterior distributions appear in many common modelling settings, but it is
perhaps surprising that even seemingly simple logistic regression models can exhibit
such a degree of skew that they pose a significant challenge to MCMC methods.
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Fig. 3 The forward (blue) and reverse (green) proposal densities associated with two points sepa-
rated by a mode for an example target distribution that contains skew. In the MALA case the current
point 𝑥 is quite unlikely under the reverse proposal density (green curve), whereas for the Barker
algorithm this is not the case.

This is despite the fact that the posterior distribution is strongly log-concave and the
gradient is Lipschitz, meaning that several favourable results on the mixing properties
of classical gradient-based algorithms can been established (e.g. [7, 6, 8]).

We consider an example using the arrythmia dataset from the UCI machine learn-
ing repository, available athttps://archive.ics.uci.edu/ml/datasets/arrhythmia.
The dataset consists of 452 observations of 279 different covariates. The modelling
task is to detect the presence or absence of cardiac arrythmia. The data presents
a challenge as there are many imbalanced categorical covariates with only a few
observations in certain categories.

The number of predictors compared to the size of the dataset makes the problem
highly ill-conditioned. To combat this we selected 25 imbalanced covariates and 25
others, meaning 50 covariates in total for our problem. The 25 imbalanced predictors
were chosen from among the categorical covariates for which one category appeared
two or fewer times in the dataset, whereas the remaining 25 were chosen from the
remaining set. Despite this pre-processing the problem is still highly ill-conditioned
and the maximum likelihood estimator is undefined, making a Bayesian approach
very natural for the problem. We also note that despite the reduced number of
covariates the final problem is still of large enough dimension that simpler fitting
methods will be ineffective, in line with the recommendations of [5]. The choice
of dataset was inspired by [11], in which the authors highlight that imbalanced
categorical data can cause problems for Markov chain Monte Carlo methods. In this
case the result is a logistic regression posterior distribution with a pronounced level
of skewness in certain dimensions, as shown in Figure 4.

For the Barker scheme we choose a Gaussian 𝑞(·) (although we note anecdotally
that ongoing work suggests that other choices may be preferable). With the goal
of minimising the degree of hand-tuning needed for each algorithm, we used an
adaptive approach to choosing algorithmic tuning parameters, precisely Algorithm 4
of [1], which consists of a Robbins–Monro scheme for learning a single global scale

https://archive.ics.uci.edu/ml/datasets/arrhythmia
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Fig. 4 Example marginal distributions for selected covariates using the output of the Barker
algorithm, illustrating varying degrees of skew in different dimensions. The plots are shown for the
raw data.

𝜆 and a covariance matrix Σ, which combine to form the pre-conditioning matrix
𝜆2Σ. We set the Robbins–Monro learning rate at time 𝑡 to be 𝑡−0.6. The matrix Σ

can be dense or restricted to diagonal; the former allows correlations to be better
navigated by the sampler, but the diagonal approach means less parameters must
be learned during the simulation. A weakly-informative independent Gaussian prior
with zero mean and variance 25 was chosen for each model parameter. It is also
sometimes recommended in logistic regression problems to first standardise the
covariates, transforming each to have zero mean and unit variance. This can have the
effect of making the posterior more regular and as a consequence the inference less
challenging, but is not always done by practitioners. In our case the scales by which
the covariates were standardised range from ~0.05 to ~32.

The above considerations led us to four different testing scenarios for each algo-
rithm: dense Σ with raw data, dense Σ with standardised data, diagonal Σ with raw
data and diagonal Σ with standardised data. For each of these scenarios we compared
the Barker proposal scheme with MALA, a classical gradient-based alternative, as a
simple illustration of the different patterns of behaviour that the two algorithms can
exhibit.

Trace plots showing the performance of the MALA and Barker algorithms in
each scenario are shown in Figure 5. It is immediately clear that MALA struggles
to reach equilibrium in 3 out of 4 scenarios, only really performing reasonably
when Σ is diagonal and the data is standardised. As expected, standardising the data
aids performance, but it is perhaps surprising that the sampler also struggles in the
dense Σ setting. By comparison, visually the Barker algorithm behaves reasonably
in all scenarios. To evaluate the samplers at equilibrium and once the adaptation has
stabilised, we examine effective sample sizes for each scenario in which equilibrium
is visually reached after 30,000 iterations in Table 1. The effective sample sizes
allow us to see that performance once equilibrium is reached is largely comparable
between the two schemes once the scenario is favourable. The key strengths of the
Barker approach in this example are its robustness to lack of standardisation and
robustness to different adaptation strategies.
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Fig. 5 A selection of trace plots from the MALA and Barker algorithms for the logistic regression
example. 1st row: raw data with dense Σ; 2nd row: standardised data with dense Σ; 3rd row: raw
data with diagonal Σ; 4th row: standardised data with diagonal Σ.

Table 1 Minimum and median effective sample sizes (ESS) for the logistic regression example.

Dataset Algorithm ESS (min., med.)

Raw Barker (dense) 38.82, 156.67
Raw Barker (diag.) 65.55, 164.67
Raw MALA (dense) n/a
Raw MALA (diag.) n/a
Standardised Barker (dense) 53.36, 98.44
Standardised Barker (diag.) 44.19, 101.51
Standardised MALA (dense) n/a
Standardised MALA (diag.) 37.21, 87.14

6 Discussion

We have given a pedagogical treatment of the Barker proposal scheme, a new
gradient-based MCMC algorithm that we argue has some desirable features when
compared to classical gradient-based alternatives, namely its robustness (in a very
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general sense). There are numerous ways in which classical schemes such as MALA
and HMC can be made more robust in different settings (e.g. [21, 4, 12, 15]),
but these often introduce additional tuning parameters and can suffer from other
issues, meaning that the quality of performance becomes very problem-specific.
Another alternative approach are second-order methods that incorporate the Hessian
of log 𝜋(𝑥) in some way (e.g. [9, 13]), but generally the cost of their implementation
is large, and can grow cubically with dimension. Based on the simplicity, scaling
properties and robustness of the Barker proposal we argue that there are likely to be
many realistic scenarios in which it proves useful, and in addition there is much room
for the development of further algorithms within the general framework discussed
in Section 3.
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