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Non-parametric estimation of Expectation and Variance of event count and 

of incidence rate in clinical trial - where intensity of event-occurrence 

changes with the occurrence of each higher order event 

Sudipta Bhattacharya 

Abstract: Counting processes where intensity of event occurrence changes with the occurrence of each 

higher order event are often experienced in clinical trials (e.g. cardio-vascular events) and also in 

various other scientific fields. There are methods for estimating event rates or mean number of event 

counts and related parameters. The method proposed in this paper not only generalizes all the existing 

methods for estimating the mean count of events but also estimates the mean of counts over time and 

the upper limit of the variance of counts over time of events generated by the above-mentioned event 

generating process in a completely non-parametric set-up. In addition, the proposed method is applied 

on simulated data to estimate the mean for that simulated process and those estimates are compared 

with the Nelson Aalen estimates. Using the estimate for maximum value of variance, asymptotic 

Normality of subject’s event counts and for sampling distribution of mean event counts for a 

population (i.e., the incidence rate for that population) is established, which can be used for 

calculating confidence interval of the estimate of mean counts. 

 

Key-words: counting process, Kaplan-Meier estimate, incidence rate, Nelson-Aalen estimate, non-

parametric 

 

1 Background 

Analysis of recurrent events is an important branch of statistical analysis, especially in the 

context of clinical trials and epidemiological research. Relapses and recurrences of events like 

development of new lesion in metastatic cancer, migraine attack, asthma, stoke and cardio-

vascular events are common incidents in clinical studies, each of which generates recurrent 
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event data. Example of similar events in social science would be recurrent drug abuse or a 

specific type of crime recurrently committed by a subject. 

 

In reality, there are situations (e.g., progression of disease through new lesion in cancer, armed 

robberries) where every time subjects experience a new event, they advance to a new state, 

where a new intensity function for the successive event occurrence is created; this makes the 

occurrence of events dependent on the history of the process through preceding events. 

Progressive diseases like cancer, Parkinson's disease, Cardio-Vascular diseases, etc. or 

recurrent drug abuse or violent crimes by an offender are examples of such situations. 

 

Mathematically speaking, the definition of intensity function for event occurrences in any point 

process is as follows: 

 𝜆(𝑡|ℋ௧) = lim
Δ௧→

୰(∆ୀଵ|ℋబರೞಬ)

∆௧
= lim

Δ௧→

୰(∆ୀଵ|ℋ)

∆௧
, 

(1.1) 

where 𝑋௧ = 𝑋(𝑡) = 𝑋(0, 𝑡) denotes the count of event occurrences within time interval of 

(0, 𝑡], and ℋ௧ = ℋஸ௦ழ௧ is the history of the process generating recurrent events by time 𝑡 

(Cook and Lawless [1], p 28). 

 

For a general point process where occurrence of successive events depends on the history of 

the process especially through preceding events (that is, when intensity of event occurrence 

changes with the occurrence of each higher order event), the most generalized expression for 

mean-function of counts over time 𝑡 in expectation-form can be made using equation (1.1) in 

the following way: 

 𝜇௧ = 𝐸[𝑋௧] = 𝐸ℋ[𝐸{𝑋௧|ℋ௧}] = 𝐸ℋ ቂ𝐸 ቄ∫ (𝑑𝑋௨|ℋ௨)
௧


ቅቃ = 𝐸ℋ ቂ∫ 𝐸௧


{𝑑𝑋௨|ℋ௨}ቃ =
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𝐸ℋ ቂ∫ 𝑃(𝑑𝑋௨ = 1|ℋ௨)
௧


ቃ = ∫ 𝐸ℋ[𝑃(𝑑𝑋௨ = 1|ℋ௨)]

௧


= ∫ 𝐸ℋ[𝜆(𝑡|ℋ௨)𝑑𝑢]

௧


 

(1.2) 

[ For the sake of notational simpliciry, throughout this paper, 𝐸ೞ[𝑓(𝑠, 𝑋௦, ℋ௦ , 𝜃)] will be 

denoted by 𝐸[𝑓(𝑠, 𝑋௦, ℋ௦ , 𝜃)] and 𝐸ℋೞ[𝑓(𝑠, 𝑋௦, ℋ௦ , 𝜃)] will be denoted by 

𝐸ℋ[𝑓(𝑠, 𝑋௦, ℋ௦ , 𝜃)]], where 𝑠 is the time-point, 𝑋௦ and ℋ௦ are as defined above and 𝜃 is some 

unknown parameter.] 

 

It is noteworthy that, unless the occurrence of successive events depends on the history of the 

process especially through preceding events (i.e., if intensity of event occurrence does not 

change with the occurrence of each higher order event), the usual way of deriving cumulative 

mean or rate function over time 𝑡 in case of a counting or point process is 𝐸[𝑋௧] =

𝐸 ቂ∫ (𝑑𝑋௨|ℋ௨)
௧


ቃ =  ∫ 𝐸[𝑑𝑋௨|ℋ௨]

௧


= ∫ 𝑃[𝑑𝑋௨ = 1|ℋ௨] = ∫ 𝜆(𝑡|ℋ௨)𝑑𝑢

௧



௧


 

(1.3) 

 

The variance (𝜎௧
ଶ) can be expressed as 𝜎௧

ଶ = Var  (X୲) =  E(X୲
ଶ) − {E(X୲)}ଶ. 

Where 𝐸(X୲
ଶ) = 𝐸ℋ 𝐸 ቄ∫ (dX୳|ℋ୳)

୲


ቅ

ଶ

൨  = 𝐸ℋ ቂ𝐸 ቄ(∫ (dX୳|ℋ୳)ଶ୲


) +

(∫ ∫ (dX୴dX|ℋ୴, ℋ୳;  u ≠ v)
୲



୲


)ቅቃ in case of a general counting process, especially where 

occurrence of successive events depends on history through preceding events. 

(1.4) 

If 𝐸ℋ ቂ𝐸 ቄ∫ ∫ (dX୴dX|ℋ୴, ℋ୳;  u ≠ v)
୲



୲


ቅቃ in equation (1.4) is difficult to derive, then the 

derivation of the variance function may not be possible in case of an event process, where 

intensity of event occurrence changes with the occurrence of each higher order event. 

 

By definition, the mean number of counts at time t, that is, the cross-sectional mean number of 
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counts, 𝑚௧ =  ∑ 𝑗 × 𝑃[𝑋௧ = 𝑗]
ୀଵ = ∑ 𝑗 × 𝑃௧


ୀଵ ; 

(1.5) 

where 𝐽 corresponds to the maximum number of events occurred to a subject and 

𝑃௧
corresponds to the marginal (i.e., not conditional on history of the process) probability of 

𝑗௧ event occurrence at time 𝑡. 

In addition, 𝑉𝑎𝑟(𝑚௧ෞ ) = 𝑉𝑎𝑟 ቂ∑ 𝑗 × 𝑃௧
ఫ

ୀଵ ቃ 

=   𝑗ଶ × 𝑉𝑎𝑟 ቂ𝑃௧
ఫ

ቃ



ୀଵ

+   𝑗 × 𝑙 × 𝐶𝑜𝑣(𝑃௧
ఫ , 𝑃௧

 )



ஷ;ୀଵ



ୀଵ

 

 (1.6) 

If 𝐶𝑜𝑣(𝑃௧
ఫ , 𝑃௧

 ) in equation (1.6) is difficult to derive and estimate, the derivation of variance 

of the estimator for mean count of events in a process may not be possible.  

 

Nelson-Aalen estimator (Aalen [2]) is a non-parametric estimator of mean function for recurrent 

processes, which is also an unbiased estimator for mean function when the recurrent events follow 

Poisson process (Cook and Lawless [1], p 68). The Nelson-Aalen estimate for mean function is also 

considered to be unbiaseed regardless of the process (Cook and Lawless [1], p 83). Cook, Lawless, 

Lakhal-Chaieb et. al. [3] also proposed robust estimation methods for mean functions and 

treatment effects for recurrent event under event dependent censoring and termination. It is 

noteworthy that the Nelson-Aalen estimating method and also all the methods discussed by 

Cook, Lawless, Lakhal-Chaieb et. al. [3] for estimating the mean or rate function over time 𝑡 in 

case of a counting or point process are implicitly based on assumption described in equation 

(1.3).  

 

Maller et al. [4] discussed method of estimating cumulative probabilities of higher order event 

occurrences 𝐹௧


= 𝑃[𝑋௧ ≥ 𝑗] using Kaplan-Meier survival probability estimates (Kaplan and 
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Meier [5]); and thereafter used the definition of mean function presented in equation (1.5) for 

the estimation of mean count of events at time 𝑡. It is noteworthy that Kaplan-Meier estimates 

are based on assumption described in equation (1.3). 

 

Dong et. al. [6] also used Kaplan-Meier survival probability estimates of higher order event 

occurrences for estimating mean cumulative count function. The methodology implicitly 

adapts the definition of cumulative mean function over time 𝑡, and is based on assumption 

described in equation (1.3). 

   

 

On the same note, all the other different methods introduced by Nelson [7], Doganaksoy and 

Nelson [8], and Lawless and Nadeau [9] also estimate the mean over time 𝑡, and are all based 

on assumption described in equation (1.3). 

 

There are methods available for estimating mean or rate function of recurrent events over time, 

when intensities of event occurrences in a Poisson process depend on the history of the process 

through time-varying covariates (but naturally not on preceding events). Andersen-Gill model 

(Andersen and Gill [10]) and also methods introduced by Lin, Wei and Yang [11], by Lin, Wei 

and Ying [12], and by Miloslavsky, Keles, Van der Laan et al. [13] (all of which are based on 

the definition of intensity function defined in Andersen-Gill model) can all be used in this 

context. 

 

When occurrence of successive events depends on the history of the process especially 

through preceding events, Aalen-Johansen estimator (Aalen and Johansen [14]) provides non-

parametric estimates of the transition probability matrix, which could be utilized for 
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estimating the marginal probabilities (𝑃௧


; 𝑗 being the index for the higher order events), and 

the mean count of events at time 𝑡 can be estimated based on equation (1.5). However, it 

should be noted that although there are methods available for deriving variance estimates for 

the Aalen-Johansen estimates of transition probability matrix, since 𝐶𝑜𝑣(𝑃௧
ఫ , 𝑃௧

 ) is difficult 

to estimate when intensity of event occurrence changes with the occurrence of each higher 

order event, the derivation of variance of the estimator for mean of event counts using Aalen-

Johansen transition probability estimates may not be possible, as indicated in the paragraph 

following equation (1.6). 

 

The discussion provided above indicates that there are several methods for estimating the mean 

function over time or at any given time-point for conting processes including general counting 

process, where event occurrences depend on history through time-varying covariates and/or 

because of drop-outs or terminating events. However, when occurrence of successive events 

depends on history through preceding events (i.e., when intensity of successive event 

occurrence changes with the occurrence of preceding events), there exists no straightforward 

method that can provide an estimator for the marginal (i.e., not conditional on history of the 

process) moments and therby the mean of event counts (and also the variance of mean 

estimate). For the same reason, the analysis of incidence rate of event occurrences in a 

population (where incidence rate is defined as the sum of all event occurrences in the 

population divided by the total number of subjects at risk in that population) is not possible 

when intensity of event occurrence changes with the occurrence of each higher order event. 

Therefore, there exists unmet need for developing methods to estimate the mean, incidence 

rate, etc. for recurrent events like consecutive cardio-vascular events to a subject or successive 

events of drug abuse by a subject, etc. That is, a method needs to be developed for estimating 

cumulative mean or rate function over time for count-data (and variance of that estimate) , 
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which can be used in any counting process, including where occurrence of successive events 

depends on history through preceding events, especially in absence of any covariates. 

 

Following is an overview of how the development of and the discussion about the non-

parametric estimator of incidence rate function are laid out in the next few sections for a general 

counting process where intensity of event occurrence changes with the occurrence of each 

higher order event. In Section 2, the mathematical development of the proposed estimator is 

described for generalized cumulative mean function over time in case of a general counting 

process where occurrence of successive events depends on history through preceding events. 

In addition, the properties of that estimator are discussed and the maximum value of the 

variance function for the count of events over time is also derived. Thereafter, the mathematical 

condition for asymptotic normality of count of events occurred to an individual subject is stated 

and the sampling distribution of mean number of event counts across subjects (i.e., for the 

incidence rate function) is discussed. In section 3, simulated data are analyzed to demonstrate 

the validity and relevance of the proposed estimator of mean over time of the count of events 

generated by such a general point process, by comparing the results produced by the proposed 

estimator to the results produced by Nelson-Aalen estimator, which is a non-parametric and 

unbiased estimator of mean function of recurrent events, under the assumption of Poisson 

process (and more generally, under criteria set by equation (1.3)). In section 4, the application 

of the proposed methodology through the use of incidence rate function is discussed, and some 

further possible extensions of the present work are mentioned. 

 
 
2 Mathematical Development 

 
2.1 Mean of event counts 
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Following equation (1.2), the mean of event counts in a general counting process (especially 

where intensities of successive event occurances depend on the history of the process through 

preceding events) can be expressed as:  

𝜇௧ = 𝐸[𝑋௧] = න 𝐸ℋ[𝑃(𝑑𝑋௨ = 1|ℋ௨)]
௧



= න 𝐸ℋ[𝑃(𝑑𝑋௨ = 1|ℋஸ௦ழ௨)]
௧



=  {  𝑃(∆𝑋௨ = 1|ℋஸ௦ஸ௨)𝑃[ℋஸ௦ஸ௨]

Ωℋబರೞರೠ

}

௨ୀ௧ି∆௧

௨ୀ

 

 Where Ωℋబರೞರೠ
= Ωℋೠ

is the sigma field generated by ℋஸ௦ஸ௨ = ℋ௨ 

(2.1.1) 

= ∑ {∑ (𝜒(𝑢|ℋ௨)∆𝑢)𝑃[ℋஸ௦ஸ௨]Ωℋబರೞರೠ
}௨ୀ௧ି∆௧

௨ୀ , using equation (1.1) and assuming 

𝜆(𝑢|ℋ௨
) = 𝜆(𝑢|ℋ௨), where 𝜆(𝑢|ℋ௨

) is the individual intensity function and ℋ௨
 

individual history until time 𝑢 for subject 𝑘 and 𝜆(𝑢|ℋ௨) is the population intensity function 

with population history ℋ௨ until time 𝑢. 

 

There is no straight-forward way to estimate 𝑃[ℋஸ௦ழ௨], especially when occurrence of 

successive events depends on history through preceding events. A non-parametric approach for 

estimating the history of the process generating recurrent events is adapted from Menjoge [15], 

which is described in the following few paragraphs.   

 

For any 𝑢 = 𝑡, (where 0 < 𝑡ଵ ≤ 𝑡ଶ ≤ ⋯ . . ≤ 𝑡 ≤ ⋯ . ≤ 𝑡ே
≤ 𝑡 are the time-points of event 

occurrences) 

- if ℋ௧
 denotes the history of the occurrence of 𝑚 events in the entire population 

(consisting of 𝑛 subjects) by time t, 

- if 𝐽௧
denotes the highest / maximum number of events that occurred to subject(s) in 

that population by time 𝑡, 
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- and if {𝐻௧
: 𝑁 =  𝑖, 𝑖 = 1,2, … , 𝐽௧

} denote the histories of the events occurred to a 

monotone sequence of subsets of the population under study over the time period of  

0 < 𝑢 ≤  𝑡, 

 
then for any 𝑢 = 𝑡 since the event histories {𝐻௧

: 𝑁 = 𝑗}, 𝑗 ≥ 1 form a monotone sequence 

(i.e., since (𝐻௧
: 𝑁 = 𝑗) = (𝐻௧

: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦) ⊆ ൫𝐻௧
: 𝑁 = 𝚥 − 1തതതതതതത൯ = ൫𝐻௧

: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൯ +

൫𝐻௧
: 𝑁 = 𝚥 − 1തതതതതതത 𝑜𝑛𝑙𝑦൯  ⊆ ൫𝐻௧

: 𝑁 = 𝚥 − 2തതതതതതത൯ =  ൫𝐻௧
: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൯ + ൫𝐻௧

: 𝑁 =

𝚥 − 1തതതതതതത 𝑜𝑛𝑙𝑦൯  + ൫𝐻௧
: 𝑁 = 𝚥 − 2തതതതതതത 𝑜𝑛𝑙𝑦൯ ⊆ ⋯ ⊆ (𝐻௧

: 𝑁 = 3) ⊆ ൫𝐻௧
: 𝑁 = 2൯ ⊆ (𝐻௧

: 𝑁 =

1), with (𝐻௧
: 𝑁 = 0) + ൫𝐻௧

: 𝑁 ≥ 1൯ = ൫𝐻௧
: 𝑁 = 0൯ + ൫𝐻௧

: 𝑁 = 1൯ = ℋ௧
),  

hence, 𝑃൫ℋ௧
൯ = Pൣ𝐻௧

: 𝑁 = 0 𝑜𝑛𝑙𝑦൧  +  Pൣ⋃ ൛𝐻௧
: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦ൟ୨ஹଵ ൧ =  Pൣ𝐻௧

: 𝑁 = 0൧  +

Pൣ𝐻𝑡𝑚
: 𝑁 ≥ 1൧ = Pൣ𝐻௧

: 𝑁 = 0൧  + Pൣ𝐻௧
: 𝑁 = 1൧ = 1. 

 

Using equation (2.1.1) and exploiting the nature of the history of the process generating 

recurrent events, which is a monotone sequence for higher order events (𝑗 ≥ 1), the following 

estimator for the mean number of counts can be derived. 

𝐸[𝑋௧] = 𝐸ℋ[𝐸{𝑋௧|ℋ௧}] =  {  𝑃(∆𝑋௨ = 1|ℋஸ௦ஸ௨)𝑃[ℋஸ௦ஸ௨]

Ωℋబರೞರೠ

}

௨ୀ௧ି∆௧

௨ୀ

 

=   𝑃൫∆𝑋௧
= 1หℋஸ௦ஸ௧

൯𝑃ൣℋஸ௦ஸ௧
൧

Ωℋబರೞರ

௧ୀ௧ಿ
ஸ௧

௧ୀ௧భவ

 

Therefore,  

𝜇௧ෝ = 𝐸[𝑋௧] =  {𝑃൫∆𝑋௧
= 1ห𝐻௧

: 𝑁 = 0൯𝑃ൣ𝐻௧
: 𝑁 = 0൧

௧ୀ௧ಿ
ஸ௧

௧ୀ௧భவ

+  𝑃൫∆𝑋௧
= 1ห𝐻௧

: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൯𝑃[𝐻௧
: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦]



ୀଵ
} 
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= ∑ {∑ 𝑃൫∆𝑋௧
= 1ห𝐻௧

: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൯𝑃ൣ𝐻௧
: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൧

௧ୀ௧ಿ
ஸ௧

௧ୀ௧భவ }
ಿ

ୀ
 , 

(2.1.2) 

 

Where 𝑃ൣ𝐻௧
: 𝑁 = 0 𝑜𝑛𝑙𝑦൧ =  𝑃ൣ𝐻௧

: 𝑁 = 0൧ and 𝑃൫∆𝑋௧
= 1ห𝐻௧

: 𝑁 = 0 𝑜𝑛𝑙𝑦൯ =

 𝑃൫∆𝑋௧
= 1ห𝐻௧

: 𝑁 = 0൯; and the individual probabilities can be estimated using the Kaplan-

Meier survival probability estimates in the following way. 

 

𝑃൫∆𝑋௧
= 1ห𝐻௧

: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൯ , ∀𝑗 ≥ 0 is the probability estimate for the 𝚥 + 1തതതതതതത௧ event to occur 

at time instant 𝑡 + ∆𝑡 in a sub-population where only the 𝑗௧ event has already occurred by 

time 𝑡 (that is, the 𝚥 + 1തതതതതതത௧ event has not occurred to this sub-population till time 𝑡 + ∆𝑡); 

 

and 𝑃[𝐻௧
: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦 ], ∀𝑗 ≥ 1 denotes the probability estimate for the occurrence of only 𝑗 

events by time 𝑡 , which is to be calculated in the following manner. 

𝑃ൣ𝐻௧
: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦 ൧ = 𝑃ൣ{(𝐻௧

: 𝑁 ≠ 𝚥 + 1തതതതതതത) ∩ (𝐻௧
: 𝑁 = 𝑗)}|(𝐻௧

: 𝑁 = 𝑗 )൧ × 𝑃ൣ𝐻௧
: 𝑁 =

𝑗 | 𝐻௧
: 𝑁 = 𝚥 − 1തതതതതതത൧ ×  𝑃ൣ𝐻௧

: 𝑁 = 𝚥 − 1തതതതതതത | 𝐻௧
: 𝑁 = 𝚥 − 2തതതതതതത൧ × … × 𝑃ൣ𝐻௧

: 𝑁 = 3 | 𝐻௧
: 𝑁 =

2൧  × 𝑃ൣ𝐻௧
: 𝑁 = 2 | 𝐻௧

: 𝑁 = 1൧ × 𝑃[𝐻௧
: 𝑁 = 1]; where: 

 

𝑃ൣ{(𝐻௧
: 𝑁 ≠ 𝚥 + 1തതതതതതത) ∩ (𝐻௧

: 𝑁 = 𝑗)}ห𝐻௧
: 𝑁 = 𝑗൧, ∀𝑗 ≥ 1 is the (Kaplan-Meier type) estimates 

for the survival probability of the 𝚥 + 1തതതതതതത௧ event occurrence by time 𝑡 in a sub-population where 

the 𝑗௧ event has already occurred, and 

 

Pൣ𝐻௧
: 𝑁 = 𝑗 | 𝐻௧

: 𝑁 = 𝚥 − 1തതതതതതത൧, ∀𝑗 ≥ 2 are the (Kaplan-Meier type) estimates for the 

probability of the j୲h event occurrence by time 𝑡 in a sub-population where the 𝚥 − 1തതതതതതത௧ event 

has already occurred. 
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𝑃ൣ𝐻௧
:  𝑁 = 0൧ and 𝑃ൣ𝐻௧

:  𝑁 = 1൧ are the usual Kaplan-Meier estimates for survival and 

failure probabilities of the first event occurrence by 𝑡 in the entire population. 

 

2.1.1 Properties 

 

Comparabality with Nelson-Aalen Estimator. Regardless of the process, the numerical 

equality between the estimate based on the proposed estimator and the Nelson-Aalen estimate 

in case of no drop-outs is evident from the algebra of the methodology adapted for estimating 

the proposed estimator of generalized mean function of event recurrences over time. 

 

Estimator of cumulative mean function over time for Poisson process. Based on expression 

presented in equation (2.1.1), it is clear that in case of Poisson process (when 𝝀(𝐮|𝓗𝐮) =

𝝆(𝐮)), the proposed estimator for the expected number of event occurrences over time boils 

down to cumulative (over time) intensity function. This also establishes the validity of the 

proposed estimator as a robust estimator of the cumulative mean function over time, 

regardless of the process. 

 

2.2 Variance of event counts 

 

The variance (𝜎௧
ଶ) can be expressed as 𝜎௧

ଶ = Var  (X୲) =  E(X୲
ଶ) − {E(X୲)}ଶ. 

Now, 𝐸(X୲
ଶ) = 𝐸ℋ 𝐸 ቄ∫ (dX୳|ℋ୳)

୲


ቅ

ଶ

൨  

= 𝐸ℋ ቂ𝐸 ቄ(∫ (dX୳|ℋ୳)ଶ୲


) + (∫ ∫ (dX୴dX୳|ℋ୴, ℋ୳;  u ≠ v)

୲



୲


)ቅቃ 

≤𝐸ℋ ቂ𝐸 ቄቀ∫ (d𝑋୳|ℋ୳)ଶ୲


ቁ + ((X୲|ℋ୲) − 1)(∫ (d𝑋୳|ℋ୳)ଶ୲


)ቅቃ 

=  𝐸ℋ ቂ𝐸 ቄ(X୲|ℋ୲)(∫ (d𝑋୳|ℋ୳)ଶ୲


)ቅቃ 
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= 𝐸ℋ ቂ𝐸 ቄ∫ 𝑥୲
୭ୠୱ୲


((d𝑋୳|ℋ୳)ଶ)ቅቃ 

= 𝑥୲
୭ୠୱ𝐸ℋ ቂ∫ 𝐸{(d𝑋୳|ℋ୳)ଶ}

୲


ቃ 

= 𝑥୲
୭ୠୱ𝐸ℋ ቂ∫ P[d𝑋୳ = 1|ℋ୳]

୲


ቃ 

Hence, based on the algebraic expression for 𝐸(X୲)  derived in  equation (2.1.2), 

 𝐸(𝑋୲
ଶ) ≤ J୲ొ౪

∑ {∑ 𝑃൫∆𝑋௧
= 1ห𝐻௧

: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൯𝑃ൣ𝐻௧
: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൧

௧ୀ௧ಿஸ௧

௧ୀ௧భவ }
ಿ

ୀ
  

And, 𝜎௧
ଶ = 𝑉𝑎𝑟(X୲) = 𝐸(X୲

ଶ) − ൛𝐸(X୲) ൟ
ଶ
 

≤ J୲ొ౪
∑ {∑ 𝑃൫∆𝑋௧

= 1ห𝐻௧
: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൯𝑃ൣ𝐻௧

: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൧
௧ୀ௧ಿஸ௧

௧ୀ௧భவ }
ಿ

ୀ   

− ൦{  𝑃൫∆𝑋௧
= 1ห𝐻௧

: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൯𝑃ൣ𝐻௧
: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൧

௧ୀ௧ಿ
ஸ௧

௧ୀ௧భவ

}

ಿ

ୀ

൪

ଶ

 

Equivalently, 𝑉𝑎𝑟(𝑋୲) ≤ 

∑ {∑ 𝑃൫∆𝑋௧
= 1ห𝐻௧

: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൯𝑃ൣ𝐻௧
: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൧

௧ୀ௧ಿஸ௧

௧ୀ௧భவ }
ಿ

ୀ ൨ J୲ొ౪
−

∑ {∑ 𝑃൫∆𝑋௧
= 1ห𝐻௧

: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൯𝑃ൣ𝐻௧
: 𝑁 = 𝑗 𝑜𝑛𝑙𝑦൧

௧ୀ௧ಿஸ௧

௧ୀ௧భவ }
ಿ

ୀ ൨  

Hence, 𝜎௧
ଶ  ≤ 𝜇௧ෝ [J୲ొ౪

− 𝜇௧ෝ ] = 𝜇௧ෝ [(𝑥௧
୭ୠୱ) −  𝜇௧ෝ ] 

(2.2.1) 

2.3 Asymptotic Theory 

The Central Limit Theorem (CLT) for correlated variables (Chung [16], p 214) may be adapted 

to establish the asymptotic Normality of the sum of all events occurred to a subject  in the 

following way. 

By definition X୲ = ∑ ∆𝑋௧

୲ୀ୲ొ౪
ஸ୲

୲ୀ୲భவ . The mean and variance of X୲ are defined as 𝜇௧ = 𝐸[𝑋௧] and 

𝜎௧
ଶ = 𝑉𝑎𝑟[𝑋௧]. 

Since ൛∆X୲
, i ≥ 1ൟ are dependent on ൛ℋ୲

, i ≥ 1ൟ, if ൛∆𝑋୲
, i ≥ 1ൟ are looked upon as a 
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sequence of  uniformly bounded random variables and let Ƒ୲
be the Borel field generated by 

൛∆X୲ೡ
, 1 ≤ v ≤ iൟ, then the sequence can be called 𝑟 − 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 if and only if there exists 

an integer r such that for every i and h ≥ r + 1, ∆X୲శ
 is independent of Ƒ୲

. 

Given the above consideration, if X୲ = 𝑥୲
୭ୠୱ at T = t, (equivalent to saying (𝑋୲|ℋ୲) = 𝑥୲

୭ୠୱ)  

and 𝜎௧is approximated by ඥmax (𝜎௧
ଶ), where the maximum value of 𝜎௧

ଶ can be estimated as 

𝜇௧ෝ ቂൣ(𝑥௧
୭ୠୱ൯ − 𝜇௧ෝ ቃ , as shown in equation (2.2.1) (and 𝜇௧ can be estimated as presented in 

equation (2.1.2)), then
ఙ

ට௫౪
ౘ౩య

→ ∞ [which boils down to 
ට௫౪

ౘ౩మ

ට௫౪
ౘ౩య

→ ∞ (assuming 𝜇௧ෝ  being finite)] 

implies 
౪ିఓ

ఙ

ୟ
→ N(0,1) . 

In a population consisting of n subjects, if X௧
 denotes the number of events occurred to the k୲୦ 

individual by time t, then under the I.I.D. (independent and identically distributed) assumption 

for X௧
ଵ, X௧

ଶ, … , X୲
୬, E ቀ

ଵ


∑ X୲

୩୬
୩ୀଵ ቁ = 𝜇௧, where 𝜇௧ is defined as 𝐸൫X୲

൯ = 𝜇௧, ∀𝑘 = 1(1)𝑛. 

Likewise, Var ቀ
ଵ


∑ X୲

୬
୩ୀଵ ቁ =

ఙ
మ


, where 𝜎௧

ଶ is defined as 𝑉𝑎𝑟൫X୲
୩൯ = 𝜎௧

ଶ, ∀𝑘 = 1(1)𝑛; and 

based on equation (2.2.1), 
ఙ

√
 ≤

ටఓ[{ூೖసభ(భ)(௫
ೖ,ౘ౩)}ି ఓ]

√
. 

 
Therefore, if the incidence rate of event occurrences in a population of n subjects by time t is 

denoted by 
∑ ଡ଼

ೖ
ౡసభ

୬
, then under asymptotic normality of X୲

, ∀𝑘 = 1(1)𝑛 as shown above, the 

asymptotic sampling distribution of 
ଵ


∑ X୲

୬
୩ୀଵ  is N ቀ𝜇௧,

ఙ
మ


ቁ when X୲

 → ∞, ∀𝑘 = 1(1)𝑛; or, to 

be precise, when 
ఙ

ට௫౪
ౡ,ౘ౩య

→ ∞ , ∀𝑘 = 1(1)𝑛. That is, 
ଵ


∑ X୲

୬
୩ୀଵ

ୟ
→ N(𝜇௧,

ఙ
మ


). 

Alternatively, if 𝑛 → ∞, then also by Central Limit Theorem, 
ଵ


∑ X୲

୬
୩ୀଵ

ୟ
→ N(𝜇௧,

ఙ
మ


). 
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3 Data analysis 

 

3.1 Homogeneous Poisson process (where event occurrences are independent 

of history of the process) without drop-out  

 

100 Simulated datasets under different scenarios are created, each time with 100 simulated 

subjects having up to two events based on an exponential distribution with λ=0.003 and without 

any drop-out. If events did not occur in the first 370 days, or occurred after 370 days, then those 

respective data-points were truncated at day-370 to simulate a study-completion.  

 

As presented in figure 3.1 below, in case of homogeneous Poisson process with no drop-outs, 

estimates based on the proposed estimator of the mean function are consistently close to the 

estimates based on the unbiased Nelson-Aalen estimate for the mean function. 

 



15 
 

Figure 3.1 Scatter-plot of Nelson-Aalen estimate vs. proposed mean for homogeneous 

Poisson process without drop-out 

 

 

It is observed that here in this simulation study example, both the estimators of mean function 

(N.A. as well as the proposed estimator) over-estimate the theoretical mean function, the value 

of which was set at 1.11 (= 0.003*370 = 𝜌𝑡) under assumption of a homogeneous Poisson 

process; which could be due to choosing a shorter time duration (370 days) for already 

converging to a Poisson distribution. In other words, had the time been truncated at a much 

larger or later time-point compared to day-370, the estimates could have converged to the 

theoretical mean. 

 

3.2 Processes with event-dependednt intensity and drop-out  

 
In this section, 100 simulations were run, where each simulation represented a population of 
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100 subject, each having up to two events. Here, along with the Exponential drop-out parameter 

(𝜆ௗ = 0.001), two different exponential parameters were considered for the event occurrence 

rates (λ=0.002 for the first event occurrence and λ=0.001 for the second event occurrence) to 

simulate dependence of the intensity of the occurrence of the second event on the first event.  

 

In case of drop outs and intensities of occurrence of subsequent events being dependent on 

preceding events, estimates based on the proposed estimator of the mean function are most of 

the times consistently less than the corresponding estimates based on the Nelson-Aalen 

estimate for the mean function, as presented in figure 3.2. At this point, it should be noted that 

Nelson-Aalen estimate may not be an unbiased estimator of mean function when the intencity 

of event occurrence changes every time an event occurs, which is the scenario created here. 
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Figure 3.2 Scatter-plot of Nelson-Aalen estimate vs. proposed mean estimate for 

process with drop-outs and with intensity function of successive event occurrence 

changing with the occurrence of preceding event 

 

 

 

4 Discussion 

 

The expected value of recurrent events specifies the central tendency and the first-order 

moment associated with the probability distribution of recurrent events at any given time-

point. In Section 2 on mathematical development, the estimator for generalized mean 

function over time of event counts, the maximum value of variance over time for event 

counts, and also the asymptotic properties of event counts over time and mean event counts 
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over time are derived for an event generating process, where occurrence of successive events 

depends on history of the process through preceding events. Therefore, the confidence 

interval of the estimate of mean counts can now be calculated for the above mentioned 

process, based on the asymptotic distribution at any given time-point of the estimator of mean 

function of event counts over time. In following sub-section, calculation of confidence 

interval and other application of the estimates are proposed through the use of “Incidence 

Rate”, which is a widely used estimator of event occurrences in clinical and epidemiological 

studies. 

 

4.1 Application of estimator of mean and maximum value of variance for a 

general counting process 

In Section 2 on mathematical development, a non-parametric estimator for the mean function 

over time is derived for recurrent events following a counting process, where occurrence of 

successive events depends on history through preceding events. Although the variance of 

recurrent events could not be estimated, at least the maximum value of the variance over time 

could be estimated. In addition, when the total number of events occurred to each subject in a 

population or the number of subjects in that population is sufficiently large, then the incidence 

rate of event occurrences (
∑ ଡ଼

ೖ
ౡసభ

୬
) in that population by time t is shown (in section 2.3) to 

follow asymptotic Normality.  The mean of that asymptotic sampling distribution, 𝐸(𝑋௧) may 

be estimated by the algebraic expression presented in equation (2.1.2) (which might be a better 

estimate for mean counts than the crude estimate of the mean function by the incidence rate: 

∑ ଡ଼
ೖ

ౡసభ

୬
) and the standard deviation can be approximated by 

ଵ

√
ඥ𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑒𝑛𝑐𝑒(𝑋௧), where the maximum value of the 𝑉𝑎𝑟𝑖𝑒𝑛𝑐𝑒(𝑋௧) 

is as presented by equation (2.2.1). 
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The property of asymptotic normality of incidence rate of recurrent events from a process 

where intensity of event occurrence changes with the occurrence of each higher order event 

may be used for calculating the asymptotic confidence interval of the estimated mean counts 

and may also be utilized especially in statistical Hypotheses testing, for testing the difference 

between treatment effects in clinical trials. Clearly, the length of confidence interval for the 

estimate of incidence rate of event occurrences in any population will be affected by the value 

of 
ට௦௦௧(௫౪

ౘ౩)

√
 . In other words, if ට𝐼𝑛𝑓ୀଵ(ଵ){𝑥୲

,୭ୠୱ} ≪ √𝑛, then the confidence interval 

will present an estimate of the mean of event occurrences with less margin of error. 

The present work can be further extended to derive the estimator of mean count of events under 

informative censoring, or to derive the exact estimator of variance of event counts, for recurrent 

processes, where intensity of event occurrence changes with the occurrence of each higher 

order event. 
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