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Abstract

In this paper we study optimality aspects of a certain type of designs in a multi-way het-
erogeneity setting. These are “duals” of plans orthogonal through the block factor (POTB).
Here by the dual of a main effect plan (say ρ) we mean a design in a multi-way heterogeneity
setting obtained from ρ by interchanging the roles of the block factors and the treatment factors.
Specifically, we take up two series of universally optimal POTBs for symmetrical experiments
constructed in Morgan and Uddin (1996). We show that the duals of these plans, as multi-way
designs, satisfy M-optimality.

Next, we construct another series of multiway designs and proved their M-optimality, thereby
generalising the result of Bagchi and Shah (1989). It may be noted that M-optimality includes
all commonly used optimality criteria like A-, D- and E-optimality.

AMS Subject Classification : 62k05.

1 Introduction

An experimental unit subjected to more than one heterogeneity directions occurs in many situa-
tions. The search for optimal designs in a setting with two crossed nuisance (or blocking) factors
began in Kiefer (1975). Later others joined the search and obtained optimal row-column designs
[see Shah and Sinha (1989) for more details].

Optimality study in a general m-way heterogeneity setting was initiated by Cheng (1978). He
assumed a model with no interaction among the blocking factors and considered a set up with con-
stant number of level combinations of the blocking factors. Mukhopadhyay and Mukhopadhyay
(1984) assumed the same model as Cheng (1978), but relaxed the complete crossing requirement
on the block factors. Assuming that the level combinations of the block factors form an orthogo-
nal array with variable number of symbols, they obtained optimality results very similar to those
of Cheng (1978). Bagchi and Mukhopadhyay (1989) considered the situations where two factor
interactions are present among the block factors and obtained optimality results. Morgan (1997)
considered an m-way setting with t-factor interactions and generalised all the optimality results
obtained so far.

The dual of an optimal block design often satisfies optimality property. In this paper we try
to see whether that happens for a main effect plan (MEP) also. In this context we interpret
duality as an interchange between the roles of the block factors and the treatment factors. Thus,
dual of a blocked MEP is a design in a multi-way setting [see Definition 5.1]. We have taken up
two series of universally optimal blocked MEPs constructed in Morgan and Uddin (1996) and
proved that the duals of these plans are also optimal as multi-way designs, although the type of
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optimality is different and the competing class of designs is smaller. We have also constructed a
new series of multi-way designs and proved its optimality.

In section 2 we describe the set up we consider. In this section we also discuss the concept
of adjusted orthogonality and its consequence [see Definition 2.3 and Lemma 2.1], which we used
later. Discussion on optimality criteria is placed in Section 3. In Section 4 we describe three
multiway settings and derive the information matrix (or C-matrix) of the treatment effects for a
design in each of these settings [see Lemma 4.1]. We take up the designs of our interest in Section
5. We describe the duals of two series of plans of Morgan and Uddin (1996), study the properties
of these multiway designs and then prove their optimality [see Theorems 5.1 and 5.2]. In Section
5.3 we construct a series of multiway designs satisfying adjusted orthogonality [see Theorem 5.3]
and proved their optimality property [see Theorem 5.4].

2 Preliminaries

We shall consider designs in a multi-way heterogeneity setting, in which an experimental unit is
subjected to more than one heterogeneity directions or blocking factors. An experimental design
in a multi-way heterogeneity setting is completely specified by a quadruple (U,F , S, η), where U
is the set of all units, F = B ∪ {V,G} is the set of factors. The distinguished factor V is called
the treatment factor, the factors in B are called the block factors and G is the general effect. S
represents the set of levels : SA being the set of levels of the factor A, A ∈ F . sA := |SA|. In
particular, SV is the set of treatments. We shall write v for sV . We have sG = 1.

The allotment function η : U ×F → S specifies, for any unit u and factor A, the level η(u,A)
of A to be applied to the unit u. Thus, {η(u,A) : u ∈ U} = SA, A ∈ F .

m will denote |B| and n will denote |U |. We assume that m ≥ 3.

Notation 2.1. η1 (respectively η2) will denote the restriction of the allotment function η to
U × {V } (respectively to U × B). η2 is called the experimental set up (and is viewed as given by
nature) and η1 is called the design (and is viewed as designed by the experimenter). Note that η1
may be thought of as the function x 7→ η1(x, V ) from U to SV . For ease of description, we shall
describe a design by the allotment function η, which includes both the experimental set up and
the allocation of treatments in a combined form.

Notation 2.2. (a) 1n will denote the n× 1 vector of all-ones, while Jm×n will denote the m×n
matrix of all-ones. We shall write Jm for Jm×m. The n × 1 vector of responses will be denoted
by Y .

(b) Fix A ∈ F . The design matrix XA is the n × sA matrix having the (u, p)th entry 1 if
η(u,A) = p, and 0 otherwise (u ∈ U, p ∈ SA). Clearly, XG = 1n. We shall use the following
notations for the incidence matrices. For A 6= B in B, the A versus B incidence matrix is the
matrix MAB = X ′

AXB. Thus the (p, q)th entry of MAB is MAB(p, q), which is the number of
units u in which A is at level p and B is at level q, p ∈ SA, q ∈ SB. A is said to be equireplicate
if the levels of A appear with equal frequency in the setting.

For A ∈ B, the V versus A incidence matrix is the matrix NA = X ′
V XA.

(c) The sA × 1 vector αA will denote the vector of unknown effects of A, A ∈ F .
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The model is expressed in matrix form as

Y = Xα+ ǫ : X = [XA : A ∈ F ] α =
[
αA : A ∈ F

]′
, ǫ ∼ Nn(0, σ

2In). (2.1)

Here Z ∼ Np(µ,Σ) means that Z is a random variable following p-variate normal distribution
with mean µ and covariance matrix Σ.

The normal equation for the least square estimates of the vector α of all effects is

X′X α̂ = X′Y. (2.2)

We shall use the following notations for the sake of compactness.

Notation 2.3. (a) For any matrix M , PM will denote the projection operator onto the column
space of M . Thus, PM = M(M ′M)−M ′, where H− denotes a g-inverse of the matrix H.

(b) Let T = {A,B, · · · } be a subset of F .
(i) XT will denote

[
XA XB · · ·

]
.

(ii) αT will denote
[
αA)′ : A ∈ T

]′
. α̂T will denote the least square estimate of αT .

(iii) PA will denote the projection operator onto the column space of XA, A ∈ F . Further, PT

will denote the projection operator onto the column space of XT .

Consider T ⊂ F and let T̄ = F \ T . The reduced normal equation for the vector αT of all
effects of all members in T after eliminating the effects of T̄ from (2.2 ) is given by

CT ;T̄ α̂
T = QT ;T̄ , where (2.3)

CT ;T̄ = ((CAB;T̄ ))A,B∈T , CAB;T̄ = X′
A(I − PT̄ )XB , (2.4)

QT ;T̄ = ((QA;T̄ ))A∈T , QA;T̄ = X′
A(I − PT̄ )Y. (2.5)

Definition 2.1. (a) For factors A 6= B, QA;B will denote the vector X ′
A(I−PB)Y . It is commonly

known as “the total for A, adjusted for B”.
(b) By the C-matrix of a multi-way design d we mean the v×v matrix CV ;V̄ = X′

V (I−PV̄ )XV ,
which we shall refer to as Cd. In order that every treatment contrast is estimable, rank of Cd

must be v − 1. We, therefore, consider only the designs satisfying that condition. We shall refer
to such designs as ‘connected’.

Definition 2.2. A multi-way design d is said to be equireplicate if every treatment (i.e. every
member of SV ) occurs with equal frequency.

Adjusted orthogonality : Following Eccleston and Russel (1977) we define the following.

Definition 2.3. For three distinct factors A,B, T we say that A and B are adjusted orthogonal
with respect to T if Cov(QA;T , QB;T ) = 0.

If T is equireplicate, then Cov(QA;T , QB;T ) = MAB−r−1MATMTB, where r is the replication
number of T . Therefore,in this case, A and B are adjusted orthogonal with respect to T , if and
only if MATMTB = rMAB.
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Shah and Eccleston (1986) proved a few interesting properties of a row-column design, in
which the factors row and column are adjusted orthogonal with respect to the treatment factor.
Those results can be easily generalized to a multi-way heterogeneity setting. Among those, we
present one result, restricting to the designs in the equireplicate class.

Lemma 2.1. Consider an equireplicate multi-way design d. Suppose A,B ∈ B are such that
MAB = JsA×sB . Consider the v × v matrices TA = NAN

′
A and TB = NBN

′
B. If A and B are

adjusted orthogonal with respect to V , then the following holds.
Suppose x′1v = 0 and x is an eigenvector of TA with non-zero eigenvalue. Then TBx = 0.

Proof : Since d is equireplicate, 1v is an eigenvector of TA as well as of TB corresponding
to their maximum eigenvalue. Again, by the hypothesis, TATB = r3Jv = TBTA, where r is
the replication number (for the treatments). Thus, TA and TB are commuting matrices and
hence there is an orthonormal basis (including 1v) consisting of common eigenvectors of these
two matrices. Therefore, C(TA) ∩ C(TB) = C(TATB) = C(Jv) = 〈1v〉. Hence the result. �

3 Optimality Tools

We define a class of optimality criteria which are functions of the eigenvalues of the C-matrix of
a design d [see Definition 2.1].

Notation 3.1. For a real symmetric n× n matrix A,
(a) µ0(A) ≤ · · · ≤ µn−1(A) will denote the eigenvalues of A.
(b) µ(A) = (µ0(A), · · · µn−1(A))

′ will denote the vector of eigenvalues of A.
(c) Consider a connected design d. Cd will denote its C-matrix. By the vector of eigenvalues

of d we shall mean the vector of positive eigenvalues of Cd in the nondecreasing order and it will
be denoted by µ(d).

Notation 3.2. Φ will denote the class of all non-increasing convex real valued functions on
IR+ = (0,∞).

For f ∈ Φ, Ψf : (IR+)n → IR is defined by Ψf (x) =
∑n

i=1 f(xi).

Definition 3.1. (a) For x, y ∈ (IR)n, x is said to be Ψf -better than y if

Ψf (x) ≤ Ψf (y). (3.1)

(b) Consider a class D of connected designs with a common set up and a member d∗ of D. If
µ(d∗) is Ψf -better than µ(d) for every d ∈ D, then d∗ is said to be Ψf -optimal in D.

The following members of Φ are of special interest as the corresponding Ψf criteria have
important statistical interpretation [see Shah and Sinha (1989) for more details]. These are the
functions f(u) ≡ u−1 corresponding to A-optimality and f(u) ≡ −log(u) corresponding to D-
optimality. Another popular optimality criterion is E-optimality, which may be obtained as the
limit of a class of Ψf criteria.

A powerful approach to design optimality problems is through the concept of majorization.

Notation 3.3. (IRn)↑ will denote the set of vectors x = (x1, · · · xn) ∈ IRn, such that x1 ≤ · · · ≤
xn.
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Definition 3.2. (Marshall, Olkin and Arnold(2011)) For x, y ∈ (IRn)↑, x is said to be weakly
majorized from above by y (in symbols, x ≺w y) if

k∑

i=1

xi ≥
k∑

i=1

yi, k = 1, 2, · · · , n, (3.2)

See Marshall, Olkin and Arnold (2011) for a comprehensive treatment of majorization concepts
and results.

Following Bagchi and Bagchi (2001) we define the following.

Definition 3.3. For d, d′ ∈ D, d is said to be better than d′ in the sense of majorization (in short
M-better), if µ(Cd) ≺w µ(Cd′), equivalently if µ(d) ≺w µ(d′). A design d∗ is said to be optimal in
D in the sense of majorization (or, in short, d∗ is M-optimal in D) if it is M-better than every
member of D.

In view of a theorem in Tomic (1949), we have the following useful result. [See Proposition
B.2 of chapter 4 of Marshall, Olkin and Arnold (2011) for the theorem of Tomic ].

Theorem 3.1. A design d∗ ∈ D is M-optimal in D if and only if d∗ is Ψf -optimal in D for every
f ∈ Φ.

By the discussion after Definition 3.1, M-optimality implies A-, D- and E-optimality, among
many other optimality criteria.

Sufficient conditions for majorization :. It is easy to verify the following.

Lemma 3.1. Suppose A and B are real symmetric matrices. If A ≥ B, then µ(A) ≺w µ(B).

The following is another useful result.

Lemma 3.2. Let m < n. Consider x ∈ (IRn)↑, such that m of the xi’s are = a and the remaining
n − m of them are = b, where a < b. Suppose y ∈ (IRn)↑ satisfies (1) :

∑n
i=1 yi ≤

∑n
i=1 xi and

(2) : ym+1 ≥ b. Then, x ≺w y.

Proof : We shall use the fact that for an n×1 vector y ∈ (IRn)↑, (3) : (1/i)
∑i

j=1 yj is increasing in i.

(1) and (2) together implies that
∑m

j=1 yj ≤ ma. This, in view of (3) implies that
∑i

j=1 yj ≤
ia, for 1 ≤ i ≤ m.

Next, let m+ 1 ≤ i ≤ n. Since y ∈ (IRn)↑, (2) implies
∑n

j=i+1 yj ≥ (n− i)b. Subtracting this

inequality from (1), we get
∑i

j=1 yj ≤ ma+ (i−m)b. �

4 C-matrices of multi-way designs in a nearly orthogonal set up

Our aim is to study the performances of a few multi-way designs. For that we need the C-
matrix of the reduced normal equations for the BLUEs of the treatment effects for designs in the
appropriate settings, (which is CV ;V̄ in Definition 2.1 (b)). The C-matrix of a design in a multi-
way set up has been derived in Mukhopadhyay and Mukhopadhyay (1981), under the assumption
that blocking factors are orthogonal to each other. This condition is not satisfied in any of the
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experimental set ups we consider here and so those results are not applicable. However, they
satisfy certain other conditions, which may be described as ‘near orthogonality’, as the incidence
matrix of every pair of blocking factors is of the form aI + bJ . Here a and b are integers varying
from one type of setting to another.

We now describe three different types of settings. In this description, the number of blocking
factors is assumed to be an arbitrary integer m ≥ 3.

Notation 4.1. (a) By setting of type 1 we mean a setting with n = s(s− 1) units, in which each
blocking factor has s levels. Moreover, MBB′ = Js − Is for any two distinct block factors B,B′.

(b) A setting of type 2 has n = s(p+ s) for an integer p, s levels for each blocking factor and
MBB′ = pIs + Js, B

′ 6= B,∈ B.
(c) A setting of type 3 has n = s(s + 1), one (blocking) factor (say E) having s + 1 levels,

while the other ones have s levels each. Let B̃ = B \ {E}. The incidence matrices are as follows.

MBB′ = Is + Js, B′ 6= B ∈ B̃, (4.1)

MBE = Js×s+1, B ∈ B̃, . (4.2)

We proceed to obtain the reduced normal equation for the treatment effects. For the sake of
compactness, we shall use the following notations in the statement of Lemma 4.1 (the original
notations of Section 2 will be used whenever necessary).

Notation 4.2. (a) C0 = CV V ;G [see (2.4 )]. Thus, C0 is the v × v matrix R − (1/n)rr′. Here
r = (r1, · · · rv)′ is the vector of replication numbers of the treatments and R is the diagonal matrix
with diagonal entries same as the entries of r in the same order.

(b) CB = CBV ;G, B ∈ B.

We note that in each of the above settings, X′
B1n = (n/sB)1sB ,∀B ∈ B. Hence

CB = NB − (1/sB)r1
′
sB

and so 1′vCB = 0. (4.3)

Lemma 4.1. In the multi-way settings of the three types described in Notation 4.1 the C-matrix
of a design d is as given below.

(a) If the setting is of type 1 or type 2, then the C-matrix is

Cd = C0 −
1

s

∑

B∈B

CBC
′
B +

p

su
SBS

′
B, where p = −1 for Type 1 , u = s+mp, and SB =

∑

B∈B

CB .

(b) The C-matrix for a design in a setting is of type 3 is as given below.

Cd = C0 −
1

s

∑

B∈B

CBC
′
B +

1

su
S̃BS̃B

′
,

where u = s+ (m− 1) and S̃B =
∑
B∈B̃

CB, B̃ as in Notation 4.1 (c).
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Proof : Taking T = F \G in (2.3 ) we get the following system of reduced normal equations
(written in compact form).

CB;Gα̂B + CBV ;Gα̂V = QB;G (4.4)

and CV B;Gα̂B + C0α̂V = QV ;G. (4.5)

Here CB;G = ((CAB;G))A,B∈B, CBV ;G is the ms × v matrix = [CBV ;G : B ∈ B]′ and CV B;G is the
transpose of CBV ;G.

Note that (4.4 ) consists of m equations, a typical one of which is

CBB;Gα̂B +
∑

B′ 6=B

CBB′;Gα̂B′

+ CBV ;Gα̂V = QB;G. (4.6)

For an integer t let Kt denote the symmetric idempotent matrix It − (1/t)Jt. (4.7)

Proof of (a): By the hypothesis, we find that the individual C-matrices involving only the
blocking factors are as follows.

CBB′;G =

{
(p+ s)Ks if B′ = B,
pKs otherwise

, B,B′ ∈ B, (4.8)

Here p = −1 for the type 1 setting.

For a fixed B, we eliminate all α̂B′ , B′ 6= B from (4.6 ) by using (4.7 ) and (4.8 ). Then

we get an equation involving only α̂B and α̂V . We use this equation to eliminate all α̂B ’s from

(4.12). Then we get the reduced normal equation for α̂V , which is Cdα̂V = Q, where Cd is as in
the statement.

Proof of (b): Let B̃ = B \ {E}.
By the hypothesis, the individual C-matrices are as follows.

CBB′;G =

{
(s+ 1)Ks if B′ = B,
Ks otherwise

, B,B′ ∈ B̃, (4.9)

CBE;G =

{
sKs+1 if B = E,
0 otherwise

, B ∈ B. (4.10)

Following the same procedure as in Case (a) we get the C-matrix as in the statement. �

5 Optimality of three multi-way designs

In this section we shall study a few multi-way designs, which are duals of main effect plans. So,
we define what we mean by the dual of a main effect plan.

Definition 5.1. Consider a main effect plan P for a s1 × · · · sm experiment on n runs laid out
on b blocks. By the dual d(P) of P we mean the following design in a multi-way heterogeneity
set up. d(P) has b treatments, to be tested on n experimental units. The units are subjected to
m heterogeneity directions (blocking factors), the ith one having si levels. A run x = (x1, · · · xn)′
of P corresponds to the unit, say x, having xi as the level of the ith blocking factor, 1 ≤ i ≤ m.
If x is in the jth block of P, then d(P) allocates treatment j is to x, 1 ≤ j ≤ b.

7



We proceed to the description of the multi-way designs of interest.

Notation 5.1. s = ht + 1 is a prime power. F will denote the field of order s. F ∗ will denote
the set of non-zero elements of F .

(a) For an integer h, Ih = {0, 1, · · · h− 1}.
Throughout this section addition in the suffix will be modulo h, whenever the suffix is in Ih.
(b) Ci, i ∈ Ih will denote the cosets of the subgroup C0 of order t of F ∗. The cosets are so

ordered that CiCj = Ci+j , i, j ∈ Ih. C̄i = Ci ∪ {0}.
(c) SV = {(x, i), x ∈ F, i ∈ Ih} will be the set of treatments for all the designs we discuss

below. Thus, v = hs.
(d) All factors except E in Setting of type 3 have F as the set of levels, while for E it is

F+ = F ∪ {∞}.

5.1 Optimality of d∗1 :

Corollary 2.3 of Morgan and Uddin (1996) has constructed an universally optimal main effect
plan, say ρ1, for a sh experiment on hs blocks of size t each (here s, h and t are as in Notation
5.1). The dual of ρ1 is an h-way design. In this section we shall study this multi-way design,
named d∗1, regarding its performance in terms of optimality. We present a description of d∗1 in
terms of our notation. Before that we describe a class of matrices.

Notation 5.2. For i ∈ Ih, Li will denote the following s × s matrix with rows and columns
indexed by F .

Li(x, y) =

{
1 if y − x ∈ Ci,
0 otherwise

L will denote the following partitioned matrix of order v × v.

L = ((Li−j))i,j∈Ih .

The set up of d∗1: The set of units is U = F ∗ × F . The set B of block factors is of size h;
the members of B are as follows. Fix P = {pi : i ∈ Ih} ⊂ F ∗, such that pi ∈ Ci, i ∈ Ih. B = P .
The levels of pi’s in different units are as follows.

the level of pi on the unit (a, b) ∈ F ∗ × F is given by η2((a, b), pi) = api + b. (5.1)

Let us compute the pi × pj incidence matrix Mij, i 6= j in the above set up. Fix x, y ∈ F . From
(5.1 ) we see that the only possible unit u = (a, b) such that η2(u, pi) = x and η2(u, pj) = y is
given by

a =
x− y

pi − pj
, b =

piy − pjx

pi − pj
.

This is a unit only if x 6= y. Thus, Mij = Js − Is, for i 6= j ∈ Ih and therefore this is a setting of
type 1 with m = h.

The design d∗1 : We describe the allocation of treatments to the units of the above set up
[recall Notation 5.1 (c)].

For u = (a, b) ∈ U = F ∗ × F, η1(u) = (b, i), if a ∈ Ci. (5.2)
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[Recall that any a ∈ F ∗ is in a unique Cj, j ∈ Ih].

Computation of the treatment-versus-pi incidence matrix Ni of d
∗
1 : Fix i ∈ h, (x, j) ∈

F × Ih, y ∈ F . Ni((x, j), y) is the number of u ∈ F ∗ × F satisfying

η1(u) = (x, j), η2(u, pi) = y. (5.3)

By (5.1 ) and (5.2 ), the only possible unit u = (a, b) satisfying (5.3 ) is given by

a = (y − x)p−1
i , b = x, provided (y − x)p−1

i ∈ Cj.

So, Ni((x, j), y) = 1 if y − x ∈ Ci+j and 0 otherwise.

Thus, Ni =




Li

Li+1
...

Li+h−1


 ,where Li’s are as in Notation 5.2. (5.4)

We see that d∗1 is equireplicate with replication number r = t.

Lemma 5.1. d∗1 satisfies the following properties.
(a) Cd∗

1
= rKv − (1/s)LL′ − 1/(s(s − h))Jh ⊗Ks + (hr2/s2)Jv .

(b) The spectrum of Cd∗
1
is rh−1(r − 1

s−h
)s−1(r − 1)(h−1)(s−1)01.

Proof : The proof of (a) follows from Lemma 4.1 (a) in view of (5.4 ). Proof of (b) is in the
Appendix.

Let d be an equireplicate competing design in the setting of d∗1. We define H = Hd by

H =
∑

B∈B

NB. (5.5)

Definition 5.2. An m-way design is said to be totally binary if the entries of H are 0 or 1.
The class of all equireplicate and totally binary m-way designs in the setting of d∗1 will be denoted
by DB

r .

We note that any design in DB
r shares the following property with d∗1.

Lemma 5.2. For a design d ∈ DB
r , the following hold.

(a) tr(Cd) = tr(Cd∗
1
).

(b) By permuting the rows and columns if necessary, Hd can be reduced to Hd = 1h⊗(Js−Is).
(c) The spectrum of SBS

′
B is 0v−s+1 hs−1. [Here SB is as in Lemma 4.1 (a)].

Proof : (a) follows from the definition of DB
r . To prove (b) we see that for a totally binary

design, the entries of each NB are 0 or 1, B ∈ B, as the entries of each NB are non-negative.
Let H̄ = Jhs×s−Hd. Since d ∈ DB

r , H̄ is a 0, 1 matrix with exactly one entry 1 in every row and
exactly h entries 1 in every column. So, H̄ = 1h ⊗ Is upto permutation of the rows and columns.
Hence (b) follows.
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By the definition of SB, the above relation imply that

SBS
′
B = HH ′ − ((s − 1)2/s)Jv = Jh ⊗Ks. (5.6)

Now, (c) is immediate. �

Remark 5.1: Now onwards we shall assume that for every deign d in DB
r , the rows and

columns of each NB is permuted (if necessary) in accordance with the permutation (if any) used
in Lemma 5.2.

We proceed towards studying the performance of d∗1.

Theorem 5.1. d∗1 is M-optimal in DB
r , the class of all equireplicate and totally binary designs

in the Setting of d∗1.

Towards the proof of this theorem, we fix a design d ∈ DB
r and study certain properties of

the matrices in the expression for Cd.
We shall use the following compact notations. Let N and CB be the following v× sh matrices

N = [NB : B ∈ B], and CB = [CB : B ∈ B].

The following relation hold.
CBC

′
B = NN ′ − (hr2/s)Jv . (5.7)

Lemma 5.3. The sum of s− 1 smallest positive eigen values of CBC
′
B is ≤ s− 1.

Proof : Let X = {x1, · · · xs−1} be a set of orthonormal vectors in 〈1s〉⊥. Let Z = {zi =
1h ⊗ xi, xi ∈ X}. For a z ∈ Z, Nz = Hxi for some i, so that Nz = −z and so z′N ′Nz = z′z.
Let µ̃1 ≤ · · · ≤ µ̃s−1 be the smallest s − 1 positive eigen values of NN ′. Then, µ̃1, · · · , µ̃s−1 are
also the smallest s− 1 positive eigen values of N ′N . So,

s−1∑

i=1

µ̃i ≤
s−1∑

i=1

(z′iN
′Nzi)/(z

′
izi) = (s− 1).

Since N is an incidence matrix, the largest eigenvalue of NN ′ corresponds to the eigenvector
1v . Thus, the eigenvector ei corresponding to µ̃i can not be 1v and therefore e′i1v = 0, for each
i. Hence the result follows from (5.7 ). �

Let N (A) denote the null space of the matrix A and ν(A) the nullity of A.

Lemma 5.4. µ(Cd) satisfies the following.
(0) µ0(Cd) = 0.
(i) µv−i(Cd) = r, 1 ≤ i ≤ h− 1.
(ii)

∑s−2
i=0 µv−h−i(C) ≥ (s− 1)(r − 1

s−h
).

Proof : By Lemma 4.1 (a)

Cd = C0 −
1

s
CBC

′
B − 1

s(s− h)
SBS

′
B.

10



Using (4.3 ) we see that 1′vCB = 0 = 1′vSB. Thus, Cd1v = 0 and (0) is proved.
We now prove (i). Substituting for CBC

′
B from (5.7 ) and SBS

′
B from (5.6 ) we get the following

expression for Cd.

Cd = rKv − (NN ′ − r(s− 1)

s
Jv)−

1

s(s− h)
(HH ′ − (s− 1)2

s
Jv).

By definition of H = Hd, N (NN ′) ⊂ N (HH ′). Now, let W = 〈1h〉⊥⊗1s. Since d is equireplicate,
Nw = 0,∀w ∈ W . Therefore, ν(NN ′) = ν(N ′N) ≥ |W | = h − 1, implying ν(HH ′) ≥ h − 1.
Let x ∈ N (NN ′). Since 1v is the eigenvector of NN ′ corresponding to the largest eigenvalue,
x 6= 1v,. Therefore, x′1v = 0. So, using the expression of Cd above, (5.6 )and (5.7 ) we see that
Cdx = r. Hence (i) follows.

Next we proceed to prove (ii), which is about the next largest eigen values of Cd, Let P =
aCBC

′
B + bSBS

′
B, a, b > 0. While proving (i), we have also proved that µi(P ) = 0, 0 ≤ i ≤ h− 1.

Let µ̃1(T ) ≤ · · · ≤ µ̃s−1(T ) be the smallest s− 1 positive eigen values of T, T = P or CBC
′
B. Fix

i : 1 ≤ i ≤ s − 1. By an well-known result [see Corollary III.2.2 of Bhatia (2013), for instance]
we get

µ̃i(P ) ≤ aµ̃i(CBC
′
B) + bµv−1(SBS

′
B),

which is aµ̃i(CBC
′
B) + bh, by Lemma 5.2 (c). So, by Lemma 5.3,

s−1∑

i=1

µ̃i(P ) ≤ (s − 1)(a + bh). (5.8)

But P becomes rKv − Cd, if we put a = 1
s
, b = 1

s(s−h) . So, the result follows from (5.8 ).�

Proof of Theorem 5.1 : From Lemma 5.1 (b) the spectrum of Cd∗
1
is

rh−1(r − 1

s− h
)s−1(r − 1)(h−1)(s−1)01.

Now let us take a pair of v − h × 1 vectors x and y, where yi = µi(Cd) and xi = µi(Cd∗
1
), 1 ≤

i ≤ v − h. Lemma 5.4 says that the other eigenvalues of Cd are equal to the corresponding ones
of Cd∗

1
. This, in view of Lemma 5.2 (a) , shows that Lemma 3.2 is applicable here. Applying

that lemma and the results obtained in Lemma 5.4 to x and y we find that y is M-worse than x.
Hence the proof is complete. �

5.2 Optimality of d∗2

Among the universally optimal main effect plans constructed in Lemma 2.5 of Morgan and Uddin
(1996) one is a plan, say ρ2, for a st experiment on hs blocks of size t + 1 each (here s, h and t
are as in Notation 5.1). We shall study the mutiway design, named d∗2, which is the dual of ρ2
We describe it using our notation.

The setting : The set of units U = {(a, b, j) : j ∈ Ih, b ∈ F, a ∈ C̄j}. The set of block factors
is B = C0. The set of level of each block factor is F . Finally,

the level of α ∈ C0 on the unit u = (a, b, j) ∈ U is given by η2(u, α) = aα+ b. (5.9)
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Computation of the α -versus- β incidence matrix Mαβ: Fix α 6= β, α, β ∈ C0. For
x, y ∈ F , the only possible unit u = (a, b, i) satisfying η2(u, α) = x, η2(u, β) = y is given by

a =
x− y

α− β
, b =

ay − bx

α− β
and i ∈ Ih is such that a ∈ C̄i.

Therefore, mα,β(x, y) = 1 if x 6= y and h if x = y. Thus ,

Mα,β = (h− 1)Is + Js, ∀α 6= β.

Hence, this setting is of type 1 with m = t.
The design d∗2 : SV = F×Ih. For u = (a, b, j) ∈ U, η1(u) = (b, j). Thus, for α ∈ C0, (x, i) ∈

SV , the unit u = (a, b, j) satisfies η1(u) = (x, i), η2(u, α) = y only if b = x, j = i, a = (y − x)α−1

and a is in C̄i. It follows that for every α ∈ C0, the ((x, i), y)th entry of the treatment-versus-α
incidence matrix Nα is Nα((x, i), y) = 1 if y − x ∈ C̄i and 0 otherwise. Thus,

For each α ∈ Co, Nα =




L0 + I
L1 + I

...
Lh−1 + I


 , where Li is as in Notation 5.2. (5.10)

We present the following well-known result for ready reference.

Lemma 5.5. If N is the incidence matrix of a BIBD with parameters (v, b, r, k, λ), then the
spectrum of N ′N is is 0b−v(r − λ)v−1(rk)1.

Lemma 5.6. (a) The C-matrix of d∗2 is Cd∗
2
= rKv−(t/u)(N ′

2N2−((t+1)2/s)Jv×s), where N2 is
the incidence matrix of a BIBD with parameters (v = s, b = hs, r = h(t+1), k = t+1, λ = t+1).

(b) The spectrum of Cd∗2 is r(h−1)(s−1)(r − (t/u)(t+ 1))s−101.

Proof : From the description of d∗2, one can see that d∗2 is a design in Setting 2 with m =
t, p = h− 1. So, (a) follows from Lemma 4.1 (a) in view of (5.10 )

(b) follows from (a) in view of Lemma 5.5. �

We now proceed towards studying optimality aspects of d∗2. We shall use a few well-known
results, presented below.

Lemma 5.7. Suppose x1, · · · xn are real numbers with
∑n

i=1 xi = T . Then, the following hold.
(a)

∑n
i=1 x

2
i ≥ T 2/n, “ = ” when xi = T/n, ∀i.

(b) In particular, if xi’s are integers, then
∑n

i=1 x
2
i is minimum, when xi = [T/n] or [T/n]+1.

Lemma 5.8. Consider an m× n matrix A having the m× 1 vector b as the vector of row sums.
Then, AA′ ≥ bb′/n.

Proof : Fix an arbitrary x ∈ Rm, let y = A′x. Now, using Lemma 5.7 on the components of
y, we get the result. �

Lemma 5.9. Consider m× n matrices A1, · · ·Aq. Let T =
∑q

i=1Ai. Then, the following hold.
(a)

∑q
i=1AiA

′
i ≥ (1/q)TT ′.

(b) q
∑q

i=1 AiA
′
i − TT ′ =

∑q
i=1

∑
j<i

(Ai −Aj)(Ai −Aj)
′.

12



Proof of (a) : Fix an arbitrary x ∈ Rm. For 1 ≤ i ≤ q, let us write A′
ix as yi =[

yi1 · · · yin
]′
. Then, x′

∑q
i=1AiA

′
ix =

∑q
i=1 y

′
iyi =

∑n
j=1

∑q
i=1 y

2
ij . Now,

∑q
i=1 yij =

∑m
l=1 T (l, j)xl =

zj , say. Therefore, by Lemma 5.7,
∑q

i=1 y
2
ij ≥ z2j /q. Since zj is the jth entry of T ′x, the result

follows.
(b) Follows by straightforward computation. �
The next two results are not so well-known.

Lemma 5.10. Suppose H =
∑m

l=1Nl, where each Nl is an integer matrix of order v×b. Suppose

each Nl satisfies
∑b

j=1Nl(i, j) = r, i = 1, · · · v, where r < b. Then, Tr(HH ′) ≥ m2vr.

Proof : Tr(HH ′) =
∑v

i=1

∑b
j=1(H(i, j))2. Again,

∑v
i=1

∑b
j=1H(i, j) = mvr. Therefore, by

Lemma 5.7,
∑v

i=1

∑b
j=1(H(i, j))2 is minimum, when the following hold. H(i, j) = [rm/b] or [rm/b]+

1, 1 ≤ i ≤ v, 1 ≤ j ≤ b. Since a sufficient condition for the above isN1 = N2 = · · ·Nm, and N1(i, j) =
0 or 1, 1 ≤ i ≤ v, 1 ≤ j ≤ b, the result follows. �

Lemma 5.11. Let A be an n× n n.n.d matrices each with row sum 0, rank ≤ ρ and trace ≥ T .
Let C = dKn −A, where d ≥ T/ρ = a (say) and Kn is as in (4.7 ). Let γ ∈ (IR+)n be the vector
given by γ0 = 0, γi = d− a for 1 ≤ i ≤ ρ, γi = d for ρ+1 ≤ i ≤ n− 1. Then, γ is M-better than
µ(C).

Proof : By definition of C, µ0(C) = 0 = γ0, µi(C) = d − µn+1−i(A) for i > 0. Therefore,∑ρ
i=1 µi(C) = dρ − tr(A) ≤ ρ(d − a). Since (1/l)

∑l
i=1 µi(C) is increasing in l, it follows that∑l

i=1 µi(C) ≤ l(d− a), 1 ≤ l ≤ ρ. Since µi(C) ≤ d ∀i, the result follows. �

Theorem 5.2. d∗2 is M-optimal in D2, the class of all equireplicate designs in the setting con-
taining d∗2.

Proof : Let d ∈ D2. Then, Cd is as given in (a) of Lemma 4.1 with m = t, p = h − 1. So,
using Lemma 5.9 (b) on the set of matrices {CB , B ∈ B ∈ B}, we get

Cd = C0 − (1/u)
∑

B∈B

CBC
′
B − (h− 1)/(su)

∑

B′ 6=B

DBB′ , u = s+ (h− 1)t,

where DBB′ = (CB − CB′)(CB − CB′)′, B′ 6= B ∈ B. Since d is equireplicate, C0 = rKv.
Now, applying Lemma 5.9 (a) on the set of matrices {DBB′ , B,B′ ∈ B} we get Cd ≤ C1 =
rKv−(1/u)

∑
B∈B

CB . Again, by Lemma 5.9 (a) on the set of matrices {CB , B ∈ B} we get C1 ≤ C2,

where C2 = rKv − (1/(tu)SBS
′
B. Here SB is as in Lemma 4.1 (a). Now, C2 is of the form of C in

Lemma 5.11 with n = hs, d = r,A = (1/tu)SBS
′
B, ρ = s − 1. Also, T = (h − 1)(s − 1)(t + 1)t/u

by Lemma 5.10. In view of (4.3 ) the row sum of A is 0. So, a = (h − 1)(t + 1)t/u. By Lemma
5.11, µ(C2) is M-worse than γ. But from Lemma 5.6 we see that γ = µ(Cd∗

2
). Since Cd ≤ C2,

the result follows from Lemma 3.1. �

5.3 Construction and Optimality of d∗3

In this section we construct a multi-way design d∗3 and prove its optimality property. In this
section we assume that s ≡ 3 (mod 4). We follow Notation 5.1 with the extra assumption
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that h = 2. So, here C0 (respectively C1) is the set of non-zero squares (respectively non-zero
non-squares). Moreover, t = (s− 1)/2.

The following result lies at the foundation of the construction of d∗3.

Lemma 5.12. Let s ≡ 3 (mod 4) be a prime power. Then there is a subset W of C0 and a
function f : W → C1 satisfying the following.

(a) |W | = (s− 3)/4.
(b) For every ξ ∈ W , (ξ − 1)(f(ξ)− 1) ∈ C0.
(c) For ξ 6= ξ′ ∈ W , (ξ − ξ′)(f(ξ)− f(ξ′)) ∈ C0.

Proof : Let W = {x ∈ C0 : 1− x2 ∈ C0}, W̃ = {x ∈ C1 : 1− x2 ∈ C1}. Note that x → −x
is a bijection from W onto (C1 \ W̃ ) \ {−1}. Therefore, |W | = |C1 \ W̃ | − 1 = (s − 3)/2 − |W̃ |.
Thus, |W |+ |W̃ | = (s− 3)/2. Also, x → −1/x is a bijection from W onto W̃ . Thus, |W | = |W̃ |,
which proves (a).

Let f : W → W̃ be defined by f(x) = −1/x, x ∈ W . Then, for ξ ∈ W , 1− ξ2 ∈ C0, so that
(1− ξ)(1 − f(ξ)) = ξ−1(1− ξ2) which is in C0. This proves (b).

Again, for ξ 6= ξ′ ∈ W , (f(ξ)− f(ξ′))(ξ − ξ′) = (ξξ′)−1(ξ − ξ′)2 ∈ C0, which implies (c). �

We shall now construct the design d∗3. Let w = |W |. So, w = (t− 1)/2.
The set up : U = {(a, b, i) : a ∈ C̄0, b ∈ F, i = 0, 1}. B = W ∪ {∞}, where W is as in

Lemma 5.12. The set of levels of factor ∞ is F+ = F ∪ {∞}, while the set of levels of the factor
ξ is F , for each ξ ∈ W . The levels of different factors in the units are as follows. [Here f is as in
the proof of Lemma 5.12].

For u = (a, b, i) ∈ U, ξ ∈ W ,

η2(u, ξ) =

{
b+ aξ if i = 0,
b− af(ξ) if i = 1

and (5.11)

η2(u,∞) =





a+ b if a ∈ C̄0, i = 0,
b− a if a ∈ C0, i = 1,
∞ if a = 0, i = 1

(5.12)

Fix ξ ∈ W . For x ∈ F, y ∈ F+. We count the number of u = (a, b, i) ∈ U such that

η2(u, ξ) = x and η2(u,∞) = y. (5.13)

If y = ∞, then by the equation next to (5.11 ), u = (0, x, 1) is the only unit satisfying (5.13 ).
Now, let y ∈ F . If y = x, then u = (0, x, 0) is the only unit satisfying (5.13 ).
So, let y 6= x, x, y ∈ F . Using (5.11 ) and the equation next to it we find that the only unit u

satisfying (5.13 ) is

u =

{
(y−x
1−ξ

, x−yξ
1−ξ

, 0) if (1− ξ)(y − x) ∈ C0

( y−x
f(ξ)−1 ,

yf(ξ)−x
f(ξ)−1 , 1) if (f(ξ)− 1)(y − x) ∈ C0.

Moreover, by Lemma 5.12 (b), exactly one of 1− ξ and f(ξ)− 1 is in C0. Thus for a given pair
x 6= y, exactly one of the two cases occur. Hence Mξ∞ = Js×s+1.
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Now, fix ξ′ 6= ξ ∈ W . We fix a pair x, y ∈ F and count the number of u = (a, b, i) ∈ U such
that

η2(u, ξ) = x and η2(u, ξ
′) = y. (5.14)

If y = x, then u1 = (0, x, 0) and u2 = (0, x, 1) are the only units satisfying (5.14 ). Let y 6= x.
From (5.11 ) we find that the only unit u satisfying (5.14 ) is

u =

{
( x−y
ξ−ξ′

, yξ−xξ′

ξ−ξ′
, 0) if (ξ − ξ′)(x− y) ∈ C0

( x−y
f(ξ′)−f(ξ) ,

yf(ξ)−xf(ξ′)
f(ξ′)−f(ξ) , 1) if(f(ξ′)− f(ξ))(x− y) ∈ C0.

By by Lemma 5.12 (c) exactly one of ξ − ξ′ and f(ξ′)− f(ξ) is in C0, so that for any given pair
x 6= y, exactly one of these two cases occur.

Hence Mξξ′ = Is + Js and the setting is a setting of type 3 with m = (s+ 1)/4 = (t+ 1)/2.
The design d∗3 : d∗3 has v = 2s treatments ; SV = {(x, i) : x ∈ F, i = 0, 1}. The treatments

are assigned to the units by the rule that for u = (a, b, i)

η1(u) = (b, i). (5.15)

Theorem 5.3. d∗3 is a design in a setting of Type 3 with (s + 1)/4 blocking factors, satisfying
the following properties.

(a) d∗3 is equireplicate with replication number r = t+ 1 = (s + 1)/2.
(b) The treatment-versus-blocking factor incidence matrices are as follows. [The set of blocking

factors is indexed by W ∪ {∞} , where W is as in Lemma 5.12]
(i) For all ξ ∈ W,N ′

ξ is the incidence matrix of a BIBD, (independent of ξ) with parameters
(v = s, b = 2s, r = s+ 1, k = t+ 1, λ = t+ 1).

(ii) N ′
∞ is the incidence matrix of a BIBD with parameters (v = s + 1, b = 2s, r = s, k =

t+ 1, λ = t).
(c) For every ξ ∈ W, ξ and ∞ are adjusted orthogonal with respect to the treatment factor.

(d) The spectrum of Cd∗
3
is ( rs

s+w
)s−1( r(s−1)

s
)s01.

Proof : By the description of d∗3, we see that there are w = (s−3)/4 s-level and one s+1-level
blocking factors. (a) follows from the allocation of treatments [see (5.15 )]. We proceed to prove
(b). Fix ξ ∈ W . For a fixed (x, i) ∈ SV and y ∈ F , Nξ((x, i), y)) is the number of units u such
that

η1(u) = (x, i) and η2(u, ξ) = y. (5.16)

Using (5.11 ) and (5.15 ) we see that (5.16 ) has a solution only when y − x ∈ C̄0. In that case
the only unit u satisfying (5.16 ) is

u =

{
((y − x)/ξ, x, 0) if i = 0
((x− y)/f(ξ), x, 1) if i = 1.

Since ξ and −f(ξ) are in C0, the first entry of u is in C̄0, as required. Therefore,

Nξ =

[
L0 + I
L0 + I

]
, ξ ∈ W. (5.17)
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where L0 is as in Notation 5.2 with h = 2. Thus, (b) (i) is proved.
Towards proving (b) (ii), we fix (x, i) ∈ SV and y ∈ F+. N∞((x, i), y) is the number of units

u such that
η1(u) = (x, i) and η2(u,∞) = y. (5.18)

Clearly if y = ∞, then u = (0, x, 1) is the only unit satisfying (5.18 ) when i = 1 and there is no
such unit when i = 0.

Next, let y ∈ F . y = x =⇒ that the only unit satisfying (5.18 ) is u = (0, x, 0). Let y 6= x.
From the equation next to (5.11 ) and (5.15 ) we see that if y = x, then the only unit satisfying
(5.18 ) is

u =

{
(y − x, x, 0) if y − x ∈ C0

(x− y, x, 1) if y − x ∈ C1.

It follows that

N∞ =

[
L0 + I 0s×1

L1 1s

]
, (5.19)

where L0 and L1 are as in Notation 5.2 with h = 2. Hence (b) (ii) is proved.
Now we prove (c). By definition of L0 and L1 given in Notation 5.2, (L0 + I)1s = (t + 1)1s

and L0 + I + L1 = Js. So, from (5.17 ) and (5.19 ) we see thatN ′
ξN∞ = (L0 + I)′Js×s+1 =

(t+ 1)Js×s+1 = rMξ∞ for every ξ ∈ W . Now (c) follows from Definition 2.3.
Finally, we prove (d). By Lemma 4.1 (b), Lemma 5.9 (b) and the information on d∗3 we have

got so far, we see that

Cd∗3 = rKv −
w

s+ w
CξC

′
ξ −

1

s
C∞C ′

∞, (5.20)

where CB is as in (4.3 ), B ∈ W∪{∞}. So, CξC
′
ξ = NξN

′
ξ− r2

s
Jv and C∞C ′

∞ = N∞(N∞)′− r2

s+1Jv.
Here Nξ is as in (5.17 ) and N∞ is as in (5.19 ). By part (b) and Lemma 5.5 we find that the
spectrum of CξC

′
ξ is rs−10v−s+1 and the spectrum of C∞C ′

∞ is rs0v−s. Now (d) follows from
(5.20 ), in view of Lemma 2.1. �

Theorem 5.4. d∗3 is M-optimal in D3, the class of all equireplicate designs in the setting of d∗3.

Proof : Let d ∈ D3. From Lemma 4.1 (b) we get Cd is as given below.

Cd = C0 −
1

s

∑

ξ∈W ∗

CξC
′
ξ +

1

su
S̃W S̃′

W ,

where u = s+ w, W ∗ = W ∪ {∞} and S̃W is defined in the same way as in Lemma 4.1 (b).
By arguments similar to those used in Theorem 5.2 we see that Cd ≤ C1, where

C1 = rKv − (1/u)
∑

ξ∈W

CξC
′
ξ − (1/s)C∞C ′

∞.

Again by similar arguments we find that C1 ≤ C2, where

C2 = rKv − (1/wu)S̃W S̃′
W .
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We see that C2 is of the form of C in Lemma 5.11 with n = 2s,A = (wu)−1S̃W S̃′
W , d = r, ρ =

s− 1, T = wr(s− 1)/u. So, a = wr/u. Therefore, by the same lemma, µ(C2) is M-worse than γ.
As C1 ≤ C2, µ(C1) is M-worse than γ. In particular,

l∑

j=1

µj(C1) ≤ l(r − a), 1 ≤ l ≤ s− 1.

Again, one can check that Tr(C1) ≤ (s − 1)(r − a) + r(s − 1). Let δ be a v − 1 × 1 vector such
that δi = r − a if 1 ≤ i ≤ s− 1 and r(s− 1)/s if s ≤ i ≤ v − 1. It follows that µ(C1) is M-worse
than δ. But, by Theorem 5.3 (d) δ = µ(Cd∗

3
). Since Cd ≤ C1 the result follows. �

Remark 5.2: Theorem 5.4 is an extension of the result of Bagchi and Shah (1989). The
design analogous to d∗3 in a row-column set up exists for every prime power s. [See Preece, Wallis
and Yucas (2005) and Nilson and Cameron (2017) for more details].

Remark 5.3: In Bagchi and Bagchi (2020) an MEP P∗ is constructed for an st(s + 1)
experiment on 2s blocks of size t + 1 each. Let d4 denote the dual of ρ∗, which is a multi-way
design with t+ 1 blocking factors, one having s + 1 levels and others having s levels. Although
d4 satisfies properties similar to those of d∗3 given in Theorem 5.3, it does not satisfy condition
(c). As a result, we are unable to prove M-optimality of d4. Whether d4 satisfies any specific
optimality property remains to be seen.

6 Appendix

Consider Cd∗
1
of Section 5.1. We prove the following result.

Theorem 6.1. The spectrum of Cd∗
1
is rh−1(r − (1/(s − h))s−1(r − 1)(h−1)(s−1).

To prove this, we need a number of tools.

Notation 6.1. (0) s = pm = ht + 1, where p is a prime, m, t, h are integers, m ≥ 1, h, t ≥ 2.
Fp and Fs are finite fields of orders p and s respectively. [In this section we use the notation Fs

(rather than F like in the other sections) so as to distinguish it from the field of order p].
(i) Addition and subtraction in Ih = {0.1, · · · h− 1} will always be modulo h.
The rows and columns of every s× s (respectively h×h) matrix will be indexed by Fs (respec-

tively Ih). Moreover, the rows and columns of every hs× hs matrix will be indexed by Ih ⊗X.
(ii) η and ω are primitive hth and pth roots of unity.
(iii) Consider the function trace : Fs → Fp defined as follows. trace(x) =

∑m
i=1 x

pi , x ∈ Fs.
[This is Fp-linear and into Fp since x → xp is an automorphism of Fs and its fixed field is Fp].

(iv) U and V are unitary matrices of orders h and s respectively, given as follows.

U(i, j) = (1/
√
h)ηij , i, j ∈ Ih and V (x, y) = (1/

√
s)ωtrace(xy), x, y ∈ Fs.

(iv) Consider the sums gi given by gi =
∑

x∈Ci

ωtrace(x), i ∈ Ih.

(v) As in Notation 5.2, L will denote the hs × hs matrix ((Li−j))i,j∈Ih, where for i ∈ Ih, Li

will denote the s× s matrix Li(x, y) =

{
1 if y − x ∈ Ci,
0 otherwise
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(vi) For k ∈ Ih, Gk is the h× h matrix given by Gk(i, j) = gi−j+k, i, j ∈ Ih.
(vii) For k ∈ Ih, Ek is the s× s diagonal matrix given by

Ek(x, x) =





−t if x = 0
1 if x ∈ Ck

0 otherwise

Here Ck is as in Notation 5.1.

We study the behaviour of L under the actions of U and V .

Lemma 6.1. (Ih ⊗ V )∗L(Ih ⊗ V ) =
∑
k∈Ih

Gk ⊗ Ek.

Proof : By definition of L, the left hand side of the statement is ((V ∗Mi−jV ))i,j∈Ih.

Claim ! V ∗MiV = Diag(λi(x), x ∈ Fs) =
∑
k∈Ih

gi+kEk. Here λi(x) =

{
if x = 0

gik if x ∈ Ck.

The equality can be verified by computation. Now,

∑

k∈Ih

gi+k =
∑

k∈Ih

gk =
∑

x∈F ∗

s

ωtrace(x) = −1 as
∑

x∈Fs

ωtrace(x) = 0.

So, by definition of Ek, V2(1, 1) = t and for x ∈ Cj,V2(x, x) =
∑
k∈Ih

gi+kδjk = gi+j . Thus, the

claim is proved and the second equality follows.
Now, the result follows from the definition of Gk.

Notation 6.2. (a) W will denote the hs× hs unitary matrix U ⊗ V .
(b) T is the h× h diagonal matrix with the entries : T (l, l) = ηl, l ∈ Ih.

Lemma 6.2. W ∗LW is a diagonal matrix with the following entries. For i ∈ Ih, x ∈ Fs, the
(i, x)th diagonal entry of W ∗LW is

δ(i, x) =





s− 1 if i = 0, x = 0
0 if i 6= 0, x = 0
ηik

∑
j∈Ih

gjη
−ij if x ∈ Ck.

Proof : Since W = (I⊗v)(U⊗I), by Lemma 6.1, W ∗LW = (U⊗I)∗(
∑
k∈Ih

Gk⊗Ek)(U ⊗I) =

∑
k∈Ih

(U∗GkU)⊗ Ek. One can verify that

U∗GkU =
∑

j∈Ih

gk−jT
j, k ∈ Ih.

So, W ∗LW =
∑
k∈Ih

∑
j∈Ih

gk−jT
j ⊗ Ek. Now, the formulae for T and Ek imply the result. �

We are to obtain W ∗L(L)′W = (W ∗LW )2. So, we need to find a simpler expression for
| ∑
j∈Ih

η−ij |2. For that we need the following.
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Notation 6.3. (a) Ωh is the multiplicative group of all hth roots of unity.
(b) For i ∈ Ih, χi : F

∗
s → Ωh is defined by χi(x) = η−ij , if x ∈ Cj , j ∈ Ih.

Lemma 6.3. | ∑
j∈Ih

giη
−ij|2 =

{
1 if i = 0,
s if 0 < i < h

Proof : Since CjCk = Cj+k (where the addition in the suffix is modulo h), χi is a group
homomorphism (character) on F ∗

s . From the definition of gj ’s we have

∑

j∈Ih

gjη
−ij =

∑

j∈Ih

∑

x∈Cj

ωtrace(x)χi(x) =
∑

x∈Fs

ωtrace(x) = g(χi),

which is the Gauss sum attached to the character χi. But |g(χi)|2 =

{
1 if i = 0,
s if i 6= 0

, by a

classical result on such Gauss sums [see, for instance Chapter 10 of Ireland and Rosen (1982)].
Hence the result. �

Putting the information from Lemmas 6.2 and 6.3 together, we get the spectrum of L(L)′.

Lemma 6.4. W ∗L(L)′W = D, where the diagonal entries of the diagonal matrix D are as
follows.

|δ(i, x)|2 =





(s− 1)2 if i = 0, x = 0
0 if i 6= 0, x = 0
1 if i = 0, x 6= 0,
s if i 6= 0, x 6= 0.

In order to get the spectrum of Cd∗
1
we need the spectrum of HH ′.

Lemma 6.5. W ∗HH ′W is a diagonal matrix with the (i, x)th entry =





h(s − 1)2 if i = 0, x = 0
h if i 6= 0, x 6= 0
0 if i 6= 0.

Proof : Let △h denote the h × h matrix having the (0, 0)th entry 1 and all other entries 0.
△s is defined in a similar manner. It is easy to verify that

U∗JhU = h△h and V ∗JsV = s△s.

Since H = 1h ⊗ (Js − Is), [recall Lemma 5.2], we see that

W ∗HH ′W = h△h ⊗ (s△s − Is)
2,

which is a diagonal matrix with the entries as in the statement. �
Proof of Theorem 6.1 : Lemmas 6.4 and 6.5 imply the result in view of the expression for

Cd∗
1
in Lemma 5.1. �
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