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Abstract

We consider the problem of detecting change-points in univariate time series by fitting a
continuous piecewise linear signal using the residual sum of squares. Values of the inferred
signal at slope breaks are restricted to a finite set of size m. Using this finite parame-
ter space, we build a dynamic programming algorithm with a controlled time complexity
of O(m2n2) for n data points. Some accelerating strategies can be used to reduce the con-
stant before n2. The adapted classic inequality-based pruning is outperformed by a simpler
“channel” method on simulations. Besides, our finite parameter space setting allows an
easy introduction of constraints on the inferred signal. For example, imposing a minimal
angle between consecutive segment slopes provides robustness to model misspecification
and outliers. We test our algorithm with an isotonic constraint on an antibiogram image
analysis problem for which algorithmic efficiency is a cornerstone in the emerging context of
mobile-health and embedded medical devices. For this application, a finite state approach
can be a valid compromise.

Keywords: Multiple change-point detection, change in slope, pruned dynamic programming,
isotonic constraint, unimodal constraint, robust inference

1 Introduction

Detecting change-points in time series is a long-standing problem in statistics that have been
tackled in many different ways since the 1950s. Originally developed for quality control in
manufacturing [31], it has spread to the most modern sciences such as genomics [19, 6], neu-
roscience [27, 8] or climate change [3, 47, 33, 5] among many others. Due to the wide range of
possible modeling assumptions and problem settings, change-point detection remains today an
active scientific field, especially challenging for large data [30].
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1.1 Search Algorithms

Last decades, researchers have been principally focused on the multiple change-point prob-
lem which consists in finding the location and the number of changes in a time series y1:n =
(y1, . . . , yn) of length n. Among the 2n−1 possible change-point vectors, the problem requires
to select one vector for which a criterion is minimized or close to the minimum. Algorith-
mic efficiency is then a central challenge in order to rapidly infer a good change-point vector
candidate.

Binary segmentation (BS) is one of the best known algorithm [38, 39] for solving this
problem. It returns an approximate solution in time O(n log(n)). Many other approaches have
been proposed: see [45] for a review and [12] for some comparisons. A well-known alternative
method is to use a dynamic programming approach [4] called optimal partitioning (OP) [22]
which returns the best change-point vector minimizing the criterion1. Its principle consists in
finding the best last segment in consecutive truncated time series y1:t for t from 1 to n. Time
complexity of this algorithm is of order O(n2) as for each y1:t we test the t available positions
(candidates) for potential best last change-point.

In recent years, pruning ideas were proposed to reduce the set of candidates to consider for
each truncated time series y1:t, so that the complexity of OP became comparable with BS in
some simulation studies. Two main classes of pruning are available: inequality-based pruning
implemented in the PELT algorithm [25] and functional pruning [34, 28] implemented in the
FPOP algorithm. PELT is based on a recursion on the position of the last change and remains
close to OP (only a conditional expression is added). PELT is efficient only when the number
of change-points is proportional to data length. FPOP is based on a recursion on the value of
the last segment parameter and is more difficult to code: we need to update a functional cost
at any step, that is a continuous piecewise quadratic function (in Gaussian model). However,
this strategy achieves the best possible pruning and the log-linear time complexity on many
data-sets [28].

1.2 Change in Slope With Continuity Constraint

Many of these dynamic programming algorithms were developed to solve the change-in-mean
problem for which we fit a piecewise constant signal. Another problem deals with changes in
trend, also called changes in slope or changes in regression. It consists in fitting a piecewise
linear signal to the time series. Many algorithms were developed for this task [40] using for
example Bayesian inference [37] or Hypothesis testing [29] but most of them do not consider a
continuity constraint between successive segments. This literature on change-point detection
is often related to the estimation of climate variations [3].

The change-in-slope problem with continuity constraint2 is much less studied, even though
many applications need such models [47, 23, 41, 44]. A few approaches directly tackle this
problem, using ideas of the Wild Binary Segmentation method [14, 2], trend filtering [26, 42],
Bayesian approaches [32], or dynamic programming [11]. The latter is based on an FPOP-like
algorithm (CPOP) and fits a continuous piecewise linear signal based on the minimization of
the residual sum of squares of each segment. It introduces a functional cost parametrized by
the signal value associated to the current analysed data point. Using this cost, the authors
derive a one-parametric functional update and eventually get a time complexity between O(n2)
and O(n3) (see simulations in Section 5.2).

1The problem can have many best change-point vectors with the same minimal value given a criterion.
However, this multiple solution is an event of zero probability with real-valued time series.

2In the following, we often write ”change in slope” to mean ”change in slope with continuity constraint”.
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1.3 Contribution

The guideline of our work was the construction of a simplified efficient algorithm for change-
in-slope problem with continuity constraint, capable of returning the optimal change-point
vector in a controlled time complexity of order O(n2). For this purpose, we use a dynamic
programming approach with values of the inferred signal at slope breaks restricted to a finite
set of values (called states). Furthermore, we were also interested in the possibility to easily
constrain the inference as for change-in-mean algorithm GFPOP [10]. Our algorithm can
restrict the inference to an increasing signal but also force a minimal angle value between
consecutive segment slopes. This latter option provides stability for signal inference (filtering
outliers) which is a desired features for many applications. The use of states is not only a
bypass for reducing running time and enforce constraints: this restricted inference can match
the expected level of complexity for some applications as for example in beat detection, for
which the musician only needs integer beat-per-minute information [16, 35].

1.4 Outline

The outline of this paper is as follows. Section 2 introduces the model and describes the op-
timal partitioning algorithm for changes in slope with a simple description of the continuity
constraint. We also give the three proposed constrained inference modes: isotonic, unimodal
and minimal angle. Pruning-like approaches for speeding up the algorithm are exposed in Sec-
tion 3. Section 4 is dedicated to variance estimation of time series with slopes. In the simulation
study in Section 5 we show the benefit of using the continuity hypothesis by measuring the
mean squared error (MSE) and the Adjusted Rand Index (ARI) between the true signal and
the inferred one. We also search for the range of penalties minimizing the MSE for 4 different
simulation scenarios. We then compare the efficiency of the two proposed pruning methods
and the time complexity with the FPOP-like challenging algorithm CPOP [11]. Eventually, we
show how using the minimal-angle constraint enhances the stability of the inference. In last
Section 6 we apply our algorithm to an antibiogram image analysis problem to find a unique
change-point. In this application where non-decreasing signals are expected, the use of a mono-
tonicity constraint improves detection precision. In this example, although the true signal is
not expected to have a finite number of states, the finite-state trade-off allows a sensible gain
in time and still a good analysis precision. In the context of mobile-health applications and
hardware with limited computing capacity, where efficiency is important, such a trade-off could
be fundamental.

Our change-in-slope algorithms are available into an R package on CRAN called slopeOP3

and on github4.

2 Change-in-slope Optimal Partitioning

2.1 Model and Cost Function

We define the set of states S as a finite set of accessible real values for beginning and ending
values in inferred segments. When we write s = smin, . . . , smax, the variable s goes through
all the values of S from the smallest one to the biggest one. For computational efficiency we
recommend to have #S = m << n but this is not mandatory. The key idea is that limiting the
number of states decreases computational time, while still capturing some useful information

3https://CRAN.R-project.org/package=slopeOP
4https://github.com/vrunge/slopeOP
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(see Section 6). Notice that with too many states, the challenging algorithm CPOP would be
more efficient.

Data are generated by the model [11]:

Yt = si +
si+1 − si
τi+1 − τi

(t− τi) + εt , t = τi + 1, . . . , τi+1 , i = 0, . . . , k ,

with 0 = τ0 < τ1 < · · · < τk < τk+1 = n, s0, . . . , sk+1 ∈ S and εt ∼ N (0, σ2) identically and
independently distributed. Observations are denoted in lowercase y1, . . . , yn. The change-point
positions are given by integer vector (τ0, . . . , τk+1) and define a subdivision in k+1 consecutive
segments (yτi+1, . . . , yτi+1). This modeling imposes to define the cost for fitting data y(τ+1):t,
τ < t, with linear interpolation from value s1 ∈ S to value s2 ∈ S as a residual sum of squares:

C(y(τ+1):t, s1, s2) =

t∑
i=τ+1

(
yi −

(
s1 + (s2 − s1)

i− τ
t− τ

))2

. (1)

Notice that the cost (yτ − s1)2 that would have been obtained at index τ is not present in
the summation, unlike the right bound (yt − s2)2. This choice of cost function will lead to an
update rule with a simple description of the continuity condition for consecutive segments.

2.2 Optimization Problem

The slopeOP problem consists of finding the optimal partitioning of a time series y1:n =
(y1, . . . , yn) ∈ Rn of size n into k + 1 consecutive segments (yτi+1, . . . , yτi+1) optimizing a
penalized risk

Qslopen = min
τ=(τ1,...,τk)∈Nk

τ0=0 , τk+1=n
(s0,...,sk+1)∈S

k∑
i=0

{
C(y(τi+1):τi+1

, si, si+1) + β
}
− β , (2)

where the states defined inside the cost function provide the continuity constraint between
successive segments and β is a positive penalty. This penalty controls the amount of evidence
we need to add a change: the greater this quantity, the less is k. The ”minus beta” term is
added in order to get the null value in case of a perfect fit (null residuals) with no change. We
emphasise that k is an unknown quantity. The penalty value is often set to the BIC penalty,
2σ̂2 log(n) [43, 49], as we have a result of asymptotic consistency for change-in-mean problems
[46]. The quantity σ̂2 is an estimation of the true variance σ2. Some other penalty values can
be also relevant [9, 48]. For the change-in-slope problem, theorems for a similar penalty have
been given in asymptotic regime [49]. As variance estimation is needed, we proposed a robust
estimator of the variance based on an adaptation to the difference estimator of Hall et al. [17]
(see Table 1). In non-asymptotic regime, setting the penalty is a difficult task as it may also
depends on signal shape (see Figure 4), that is the form of the deterministic part in the time
series (t 7→ Yt − εt).

2.3 Dynamic Programming Algorithm

To address the continuity constraint in an efficient algorithm we introduce the function

Qt :

{
S → R
u 7→ Qt(u) ,
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which is the optimal penalized cost up to position t with the inferred value at this position
equal to u. Our goal is then to update the set

Qt = {Qt(u), u = smin, . . . , smax} ,

at any time step t ∈ {1, . . . , n}, where smin and smax are bounds that can be determined
in a pre-processing step. With y− and y+ the minimal and maximal values of the time-
series, setting for example the bounds around y± ± y+−y−

2 include all extreme intersection
points between consecutive segments (segment of two points (y−, y+) followed by (y+, y−)
gives the upper bound). We find the objective value Qslopen with the minimization Qslopen =

min
smin≤u≤smax

{
Qn(u)

}
.

Proposition 2.1. The update rule with continuity constraint takes the form

Qt(v) = min
0≤t′<t

(
min

smin≤u≤smax

{
Qt′(u) + C(y(t′+1):t, u, v) + β

})
, (3)

where the state u in Qt′ and the cost function including states realizes the continuity constraint.
At the initial step we have Q0(v) = −β for all v ∈ S.

The proof is detailed in Appendix A and the corresponding optimal partitioning algorithm
based on (3) is given in Algorithm 1.

Algorithm 1: Change-in-slope Optimal Partitioning (slopeOP)

Input: data y1:n, set of states S = {smin, . . . , smax} and penalty β > 0
1 Q = matrix of size (n+ 1)×m
2 cp = matrix of size n×m
3 U = matrix of size n×m
4 for v = smin to smax do
5 Q(0, v)← −β
6 end
7 for t = 1 to n do
8 for v = smin to smax do

9 Q(t, v)← min
0≤t′<t

(
min

smin≤u≤smax

{
Qt′(u) + C(y(t′+1):t, u, v) + β

})
10 cp(t, v)← argmin

0≤t′<t

(
min

smin≤u≤smax

{
Qt′(u) + C(y(t′+1):t, u, v) + β

})
11 U(t, v)← argmin

smin≤u≤smax

(
min

0≤t′<t

{
Qt′(u) + C(y(t′+1):t, u, v) + β

})
12 end

13 end
14 return cp, U and Q(n, ·)

The slopeOP algorithm is then an OP algorithm searching for the best last change-point
in y1:t for t from 1 to n. But, differently from OP, it looks for it in a finite set of couples
(state,time) of size m× t, where the state is in the finite states set. Summing up for all states
and for t from 1 to n, we get an overall running time of order O(m2n2). In next Section, we
propose two accelerating strategies to reduce this initial m2n2 time complexity.

The backtracking step is a little different from the standard optimal partitioning algorithm
as we need to take into account the states.

5



Algorithm 2: Backtracking Algorithm

Input: Output of Algorithm 1 : cp, U and {Q(n, v) , v ∈ S}
1 chpts← ()
2 states← ( argmin

smin≤v≤smax

{Q(n, v)})

3 t← n
4 while t > 0 do
5 chpts← (t, chpts)
6 states← (U(t, states(0)), states)
7 t← cp(t, states(1))

8 end
9 return chpts and states

2.4 Inference With Signal Shape Constraints

Besides its unambiguous computational time efficiency in O(m2n2), one of the benefit of this
finite-state approach is the possibility to simply enforce some constraints in the inference. The
quantity to optimize is then

Qcttn = min
vectors τ and s
(τ,s)∈Uk+1

k∑
i=0

{
C(y(τi+1):τi+1

, si, si+1) + β
}
− β , (4)

where Uk+1 is the set of constraints containing the positions (couples) that can be used in the
minimization. We use notation νi for a couple (τi, si) position-state, (τ, s) = ((τ ′, n), (s′, v)) is

a sequence of couples with the last one being (n, v) and U
(n,v)
k+1 is the set Uk+1 of sequences of

couples with a last couple equal to (n, v). A dynamic programming algorithm solving exactly

(4) can be built if in U
(n,v)
k+1 the information over the path (ν1, . . . , νk) can be conveyed alongside

this path to the current νk position. That is:

U
(n,v)
k+1 = {(τ, s) | (τ ′, s′) ∈ Uνkk , f(ν1, . . . , νk, (n, v)) = 1}

= {(τ, s) | (τ ′, s′) ∈ Uνkk , g(M(νk), νk, (n, v)) = 1} ,

with g : R× ({0, . . . , n} × S)2 → {0, 1} a validity test associated to the constraint. Function f
is reduced to g. The “memory” function M : {0, . . . , n} × S → R summarizes the information
of the path (ν1, . . . , νk) and is associated in practice to the cost Qt′(u) of the update rule. If g
equals 0, the couple νk = (t′, u) cannot be considered in the minimization.

With this definition for Uk+1 we get the update rule:

Qcttt (v) = min
ν̃=(t′,u)∈{0,...,t−1}×S
ν=(t,v) , g(M(ν̃),ν̃,ν)=1

(
Qt′(u) + C(y(t′+1):t, u, v) + β

)
. (5)

In this rule, the positions ν̃ of the minimization operator are taken into account according to
the g function value depending only on the current couple ν = (t, v) and past events memorized
by function M(·). We illustrate this constraint approach by the examples of isotonic, unimodal
and stable inferences.

Isotonic case. The update rule for isotonic constraint is:

Qisot (v) = min
0≤t′<t

(
min

smin≤u≤v

{
Qt′(u) + C(y(t′+1):t, u, v) + β

})
, (6)
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which is close to (3) but with a constrained minimization for variable u. Here M(ν̃) = 0 for all
ν̃ and g(0, ν̃, ν) = 1 if and only if u ≤ v for ν̃ = (t′, u) and ν = (t, v). We illustrate the use of
the isotonic constraint in Section 6 with an antibiogram image analysis problem.

Unimodal case. M(ν̃) is equal to 1 if at position ν̃ = (t′, u) no decreasing segment has
been yet inferred. Otherwise M(ν̃) = 0. g(1, ·, ·) = 1 and

g(0, ν̃ = (t′, u), ν = (t, v)) =

{
0 if u < v ,
1 if u ≥ v .

Value M(ν) is determined just after setting Q(ν) = Qt(v) using the slope sign information on
the segment (ν̃, ν).

Minimal angle case. M(ν̃) ∈ R is the slope value of the last inferred segment at position
ν̃. Here the value g(M(ν̃), ν̃, ν) computes the angle deviation in degree between slope M(ν̃) ans
slope formed by (ν̃, ν) If the obtained value is less that a threshold we have g(M(ν̃), ν̃, ν) = 0
and g(M(ν̃), ν̃, ν) = 1 otherwise. With this constraint, we tend to be robust to outliers with
the right level of smoothness (the threshold). We also hope to get some kind of robustness to
model misspecification (see simulations in Section 5.3).

In the R package slopeOP, we also provide a {Segment Neighborhood dynamic programming
method returning the best change-point vector with a given fixed number of segments. With
k changes, its time complexity is about k times greater than the complexity of slopeOP.

3 Accelerating Strategies

As revealed by Algorithm 1 the double loop for variables t and s (lines 7 and 8) is time
consuming. We first give a formula for a constant-time computation of cost (1). Then we
propose two accelerating strategies aiming at reducing the set of values to consider for the
search for minimum in matrix Q. The first one is a PELT-like method based on inequalities of
type “Qt′(u)+C(y(t′+1):t, u, v) > Qt(v)”. The second one considers direct comparisons between
elements of the minimization in (3). We test the efficiency of those two accelerating rules on
simulations in Section 5.2. As the constraints can force the choice of non-minimal elements in
(5) these methods can only be implemented in non-constraint setting (at the exception of the
isotonic constraint).

3.1 Efficient Cost Computation

Proposition 3.1. The cost function (1) can be computed in constant time with the formula

C(y(t′+1):t, u, v) = S2
t − S2

t′ −
2

t− t′
((
ut− vt′

)(
S1
t − S1

t′
)

+ (v − u)
(
S+
t − S

+
t′
))

+
v2 − u2

2
+
u2 + uv + v2

3
(t− t′) +

(v − u)2

6(t− t′)
,

where t′ < t ∈ {0, . . . , n}, (u, v) ∈ S2 and

S1
t =

t∑
i=1

yi , S2
t =

t∑
i=1

y2i and S+
t =

t∑
i=1

iyi for all t ∈ {1, . . . , n} .
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The proof is straightforward by direct (tedious) calculations. The vectors (S1
t )t=1,...,n,

(S2
t )t=1,...,n and (S+

t )t=1,...,n are computed in a pre-processing step in O(n) time and saved.
This is a marginal cost compared to the cost for Algorithm 1. Notice that the O(m2n2) time
complexity is obtained using the result of Proposition 3.1.

3.2 Inequality-based Pruning

With the following Proposition 3.2 we build a standard inequality-based pruning rule that has
the specificity to take into account future data. Our cost function (1) doesn’t use a minimisation
as in PELT: we cannot guarantee that splitting a segment into two segments would result in a
smaller overall cost. This property is at the core of the PELT pruning rule.

At each position v ∈ S, we need to update a set of positions:

U(t, v) ⊂ {(t′, u) , t′ ∈ {0, . . . , t− 1} , u ∈ {smin, . . . , smax}} ,

to get U(t+ 1, v). There are m such sets. Therefore, we actually chose to transfer information
at constant state value.

Proposition 3.2. At time t and position v, suppose that there exists t′ < t and u 6= v such
that

Qt′(u) + C(y(t′+1):t, u, v) > Qt(v) . (7)

We define St
′
t =

∑t
i=t′+1(i− t′)yi and coefficients (α−t , α

+
t , γ

−
t , γ

+
t ) such that

α+
t T + γ+t ≤

T−1∑
i=t+1

yi
T − i
T − t

≤ α−t T + γ−t , T = t+ 1, . . . , n .

We also define for all integers T > t the affine in T functions:
f+(T ) =

(
α+
t −

u+ 2v

6

)
T + t′

u+ 2v

6
− v − u

12(t− t′)
+

St
′
t

t− t′
+ γ+t ,

f−(T ) =

(
α−t −

u+ 2v

6

)
T + t′

u+ 2v

6
− v − u

12(t− t′)
+

St
′
t

t− t′
+ γ−t .

If f+(t+ 1) ≥ 0 and f+(n) ≥ 0 (case v − u > 0) or if f−(t+ 1) ≤ 0 and f−(n) ≤ 0 (case
v−u < 0) then the position (t′, u) doesn’t have to be considered for further iterations T > t for
computing QT (v) in Algorithm 1. We remove (t′, u) from U(T, v) for all T > t.

The proof is given in Appendix B.
The use of additional parameters (the states) in cost function leads to a more complex

pruning rule than the one for standard PELT [25] as the overall cost is not guarantee to
decrease as the number of change-point increases. However, in case u = v we have a simpler
result:

Proposition 3.3. At time t, if there exists t′ ∈ {0, . . . , t− 1} such that

Qt′(v) + C(y(t′+1):t, v, v) > Qt(v) , (8)

then the position t′ doesn’t have to be considered for further iterations T > t for computing
QT (v) in Algorithm 1.

8



Proof. We use the fact that we have

C(y(t′+1):t, v, v) + C(y(t+1):T , v, v) = C(y(t′+1):T , v, v) ,

for any t′ < t < T . Adding the quantity C(y(t+1):T , v, v) to (8) and using this equality we get

Qt′(v) + C(y(t′+1):T , v, v) + β > Qt(v) + C(y(t+1):T , v, v) + β ,

which means that (t′, v) is a choice less optimal than (t, v) for the minimization in QT (v).

We have a second pruning rule for v-constant positions which is original in the sense that
a recent position can be pruned by an older one.

Proposition 3.4. At time t, if there exists t′ ∈ {0, . . . , t− 1} such that

Qt′(v) + C(y(t′+1):t, v, v) ≤ Qt(v) , (9)

then the position t doesn’t have to be considered for further iterations T > t for computing
QT (v) in Algorithm 1.

The proof is the same as for Proposition 3.3.

Remark 3.1. One of the two inequalities (8) and (9) is always satisfied so that the subset
U(t, v) ∩ {(t′, v) , t′ = 1, . . . , t− 1} contains at most one element.

3.3 Channel Pruning

We propose a new rule for speeding-up the algorithm, called the “channel method”. It does
not prune the position (t′, u) in the classical sense, as a non-considered value can be further
reintegrated in the minimization (in a set U(t, v)). However its simplicity could help to reduce
time complexity.

We expect the cost Q to verify some structural properties. In particular,

qt =

{
S → R
v 7→ Qt(v)

should have a minimum for v “near” the data, which means that qt is, for most t, decreasing
until a state vl and increasing from a state vu ≥ vl. The function

C ṽ(t′+1):t =

{
S → R
v 7→ C(y(t′+1):t, v, ṽ)

has a global minimum that can be easily found (it’s a quadratic function). The idea is to study
the variations of qt′ + C ṽ(t′+1):t in order to leave out the state values for which we know they
are away from the argminimum.

Proposition 3.5. We consider the function qt′ + C ṽ(t′+1):t with t′ + 1 < t. The minimum of
this function is inside the interval

I ṽt′ = S \ (Smin ∪ Smax) ,

with {
Smin = {smin, . . . ,min(v−1l , [v∗]−1)} ,
Smax = {max(v+1

u , [v∗]+1), . . . , smax} ,

9



where [·] is the nearest “value in set S” operator and (·)+1 (resp. (·)−1) denotes the following
(resp. preceding) value in the ordered set S. Function qt′ is decreasing on {smin, . . . , vl} and
increasing on {vu, . . . , smax}. We also know that the argminimum of C ṽ(t′+1):t is given by formula

v∗ =
6

(t− t′ − 1)(2(t− t′)− 1)

t∑
i=t′+1

[
(t− i)yi

]
− ṽ t− t′ + 1

2(t− t′)− 1
.

Proof. v∗ is easy to compute as the argminimum of the quadratic function C ṽ(t′+1):t. The

set Smin (resp. Smax) corresponds to the set on which we know that function qt′ + C ṽ(t′+1):t

is decreasing (resp. increasing) with the next (resp. previous) value in S giving a smaller
output.

Notice that the closest state search [v∗] is a O(1) operation if S is made of consecutive
integers or a O(log(n)) operation in a general ordered list. We define the matrix Q ∈ Rm×n
with Qij = Qj(si). The name “channel” comes from the fact that the matrix Q is restricted
by a channel with fixed vu and vl states for each column of this matrix. For all U(t, v), this
channel is updated to I ṽt′ after computing the value v∗ and using Proposition 3.5.

4 Variance Estimation

With real data-sets the noise level σ2 in time series is an unknown quantity that has to be
estimated. In change-in-mean problems there exist many estimators for the variance of a time-
series as for example the mean absolute deviation (MAD) or HALL estimators [17]. They have
the property to be slightly sensitive to change-points when the number of changes is small
compared to data length. In slope problems we face the additional difficulty to remove the
slope effect. We suggest to adapt the HALL estimator to our change-in-slope problem. In
classic mean problem, we have for HALL of order 3:

σ̂2mean =
1

n− 3

n−3∑
j=1

( 3∑
k=0

dkYj+k

)2
,

with d0 = 0.1942, d1 = 0.2809, d2 = 0.3832 and d3 = −0.8582. We apply Hall on the successive
differences (“HALL Diff”):

σ̂2slope =
1

(n− 4)∆

n−4∑
j=1

( 3∑
k=0

dk(Yj+k+1 − Yj+k)
)2
,

with ∆ = d20 + (d1 − d0)2 + (d2 − d1)2 + (d3 − d2)2 + d23 = 1.527507 a normalization coefficient.
To evaluate the quality of the HALL Diff estimator, we simulate time series of length 100

with 2 different signals: the first one is piecewise linear and the second one is sinusoidal, as
shown in Figure 1.

In Table 1, we present results for estimating the standard deviation σ for 104 simulated
time series for each level of noise (σ = 1, . . . , 5). We easily conclude that the HALL Diff
method gives very accurate results, even with a non-linear (sinusoidal) model. We also have a
better precision of the estimated sigma for HALL Diff than for MAD. Simulations with more
change-points (10) yield similar results (see Appendix C).

10



Figure 1: Examples for the linear and sinusoidal time series with noise σ = 1 (left) and σ = 5
(right).

method signal σ 1 2 3 4 5

MAD slope mean(σ̂) 1.23 2.11 3.08 4.05 5.05
sd(σ̂) 0.13 0.25 0.39 0.52 0.64

sinus mean(σ̂) 1.93 2.54 3.36 4.26 5.22
sd(σ̂) 0.16 0.26 0.38 0.51 0.64

HALL slope mean(σ̂) 1.84 2.52 3.37 4.28 5.23
sd(σ̂) 0.048 0.13 0.21 0.29 0.37

sinus mean(σ̂) 3.58 3.97 4.56 5.27 6.06
sd(σ̂) 0.026 0.082 0.16 0.24 0.32

HALL Diff slope mean(σ̂) 1.01 2.00 3.00 3.99 4.99
sd(σ̂) 0.087 0.18 0.27 0.36 0.44

sinus mean(σ̂) 1.02 2.00 3.00 3.99 4.99
sd(σ̂) 0.087 0.18 0.26 0.36 0.44

Table 1: Variance estimation with MAD, HALL and HALL Diff estimators. The closest values
to the true sigma are in bold; the smallest standard deviations in italic.

5 Simulation Study

Our simulation study is split into three parts. We first compare the mean squared error (MSE)
and the Adjusted Rand Index (ARI) between the true signal and the inferred one with many
different algorithms and study the impact of choosing different β penalty values. In the next
part, we compare the two proposed pruning rules and also select our main competitor, CPOP,
to challenge slopeOP in terms of computational efficiency. Finally, we consider misspecified
time series with an heavy-tailed noise and explore the capacity of slopeOP with a minimal
angle between segments to infer a good model on a range of penalties.

5.1 MSE Competition with Other Algorithms

We consider the following five methods:

• OP-2D : we fit the data with the PELT algorithm but the cost function on a segment is
the residual sum of squares between data and a linear regression (2-dimensional fit). In
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that case, we don’t have any continuity constraint;

• FPOP : The standard efficient gaussian FPOP algorithm [28] used on differenced data
zt = yt+1 − yt, t = 1, . . . , n− 1. The continuity is obtained by construction;

• RFPOP : Same algorithm as the previous FPOP but with robust biweight loss (with
robust parameter K = 3σ) [13];

• CPOP : A FPOP-like algorithm for changes in slope with continuity constraint [11]. The
set of states is here infinite-dimensional (R) and not finite as for slopeOP;

• slopeOP : Our finite-state change-in-slope OP algorithm.

The first idea to detect change in slope consists of looking at changes in data zt = yt+1− yt
with any well-known change-in-mean algorithm. We use here the efficient FPOP and robust
FPOP algorithms for the inference. We highlight in Figure 2 the fact that with a simple hat-
shaped model and a low level of noise, the FPOP algorithms give bad performances as the
number of datapoint increases. Therefore, we left out theses two methods and study only the
behavior of three algorithms: OP-2D, CPOP and slopeOP.

We now consider 4 scenarios of increasing complexity with 3 levels of noise as shown in
Figure 3. The beginning and ending values of all segments are integers in {0, . . . , 60} and we
choose a set of states S = {−10, . . . , 70} to reduce side effects in limit points (0 and 60).
We simulate 150 time series of length 500 for each of the couple (scenario, noise) and draw in
Figure 4 the graph of the MSE, the ARI and computation time with respect to b = β

σ2 log(n)
,

where σ is the chosen known level of noise. For each of the 150 time series, the 3 algorithms
are run for b = 0.1, 0.2, . . . , 4.9, 5 and each point of the curves (log(MSE), ARI or time) is the
mean over the 150 independent simulations.

We discuss the results for the intermediate level of noise (σ = 12) exposed in Figure 4,
other results are exposed in Appendix D. For all scenarios CPOP and slopeOP give very close
and similar good results compared to OP-2D. The lack of continuity constraint explains the
higher MSE value and lower ARI for OP-2D in scenarios 1, 3 and 4. For all scenarios and all
noise levels, the optimal penalty in our simulations with n = 500 is close to b = 2 for slopeOP
and CPOP as expected in asymptotic regime [49]. Execution time is smaller for CPOP in
most scenarios as data length is here limited to 500 (see next Subsection for more details). In
Figure 5, we plotted the segmentation obtained by OP-2D and slopeOP at the smallest MSE
value. The result highlight the need for a continuity constraint to get a better inference.

5.2 Computational Efficiency

We first compare time efficiency for the two accelerating methods: channel-based rule and
inequality-based pruning. We consider hat-shaped time series with a signal from 10 to 50 and
61 integers states (S = {0, . . . , 60}) for inference. In Figure 6, we ran 100 repetitions for each
sigma value with data of length 500 and two hat-shaped signals (with 1 hat or 25 regularly
spaced hats). We easily understand that the channel rule is more efficient for all noise levels.
It may be possible to get similar pruning efficiency in some very particular situations but we
conclude with these simulations that the default rule should always be the channel method.
Morever, this latter is simpler as it processes each element in the cost matrix quicker (compare
Propositions 3.2 and 3.5).

We now compare time efficiency between slopeOP and CPOP algorithms with two noise
levels and two different hat-shaped signals over 100 simulations for each data length regularly
sampled between n = 100 and n = 1500 on the log scale. In Figure 7, we plot the mean time
for each algorithm with a 1-hat signal and two levels of noise in log-log scale. The results
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Figure 2: The first row presents 3 time-series of size 50, 300 and 500 that are obtained by
the black hat-shaped signal with an additive Gaussian noise with σ = 12. For a range of
values for b = β

σ2 log(n)
we plot the average log(MSE) curve for algorithms FPOP, RFPOP and

slopeOP for 10 simulated time series. The first two algorithms give performances far away
from slopeOP. In the third row we show an example of an inferred signal by FPOP with a b
value corresponding to the minimum in log(MSE) curves. In last row we plot the segments
obtained by the biggest possible b value before having a unique segment with the same data.
We observe that we fail to obtain only 2 segments and that we obviously obtain an unrealistic
result.

confirm the quadratic complexity for slopeOP and a complexity for CPOP between n2 and
n3 (closer to n3 with a higher level of noise). In this simulation, slopeOP outperforms CPOP
for time series of length greater than 550 with σ = 3 and 1000 with σ = 24 (for example,
with n = 1500 and σ = 3 we have a mean time of 32s for CPOP and 10s for slopeOP). The
coefficient q in complexity O(nq) is equal to 2.88 and 2.94 for CPOP for σ = 3 and σ = 24,
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Figure 3: The plain black line is the true signal. For each scenario we simulate time series with
an additive Gaussian noise of increasing standard deviation (σ = 3, σ = 12, σ = 24). Each
plot shows a realisation of this procedure with 500 data points. The number of segments for
scenarios 1 to 4 is respectively 2, 7, 6 and 8.

respectively. For slopeOP we get 1.95 and 2.04 with the channel pruning option. With a signal
of 10 regular hats, CPOP is faster up to n = 1500 with power coefficient for CPOP qσ=3 = 2.16
& qσ=24 = 2.47 and for slopeOP qσ=3 = 1.96 & qσ=24 = 2.03. The corresponding plot is
presented in Appendix E.

5.3 A Minimum Angle Between Consecutive Segments

We generate time series in scenario 1 of the hat-shaped signal with an heavy-tailed noise: a
Student distribution with a degree of freedom equal to 3 with σ = 24. Simple computations
give an angle of about 153o between the two segments. We choose to fix a minimal angle
between segments to 130o. We explore the value of the MSE returned by the standard slopeOP
algorithm compared with the same algorithm with smoothing option for a range of penalty
values. We also return the number of inferred segments. Each data-point is the mean over 100
simulations.

Results presented in Figure 8 show that the MSE as well as the number of segments is
lower with the min-angle option, whatever the penalty value. With a misspecified model or
in presence of outliers, the minimum angle option (when we expect no small angle) improves
the result of slopeOP. The penalty value has a reduced impact on the algorithm, which can
be important for applications when the time series to analyse does not have a Gaussian noise
structure.
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Figure 4: Results for scenarios 1 to 4 with noise σ = 12. Each point of the MSE curve is the
mean over 150 independent simulations. Columns 2 shows the Adjusted Rand Index (ARI)
of the clustering obtained with SlopeOP and CPOP compared with the true signal. The last
column shows the execution time vs b. The results of SlopeOP and CPOP are very similar.
SlopeOP is slower than CPOP in most cases, but it’s complexity does not depend on b.

6 Application to Antibiogram Image Analysis

Antibiotic Susceptibility Testing (AST) is a microbiology test used to guide antibiotic prescrip-
tion in bacterial diseases by determining the susceptibility of bacteria to different antibiotics.

In disk diffusion AST, or antibiogram, cellulose disks impregnated with specific antibiotics
are placed on the surface of Petri-dishes previously inoculated with a microorganism. Agar
plates are incubated so that bacteria can grow everywhere, except around the cellulose disks
that contain antibiotics to which the bacteria are susceptible. Then the diameter of the zone of
non-growth (inhibition) surrounding each antibiotic disk is measured and compared to known
minimum diameters to determine the susceptibility (the comparison is done with a sensibility of
one millimeter)[24]. Diameters can be read by eye with a ruler, but several automatic reading
systems exist which process pictures of incubated plates [36, 21].

The inhibition zone boundary is usually clear and easy to measure, but it can sometimes be
hazy and fuzzy. In most cases, zone edges should be read at the point of complete inhibition[1],
but determining this point can be challenging.

Several image processing procedures have been proposed for measuring inhibition diameters[18,
15, 7], but none of them focuses specifically on the issue of fuzzy borders. We propose the use of
slopeOP to measure inhibition diameters in these cases. To our knowledge, a MSE-minimizing
optimal segmentation algorithm has never been used to measure AST’s inhibition dimeters.

We designed a processing pipeline that uses slopeOP to read inhibition diameters from the
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spond to the black crosses in figure 4. The curve are deliberately y-shifted for better appreci-
ation of the shape differences.

Figure 6: Without pruning the dynamic programming algorithm needs to scan m2n(n − 1)
elements for finding mimima at each step. We compare the proportion of elements that the
algorithm scans for channel-based and inequality-based prunings with different noise levels. In
panel A we use a hat-shaped signal of length 500 with 1 hat and a signal with 25 regular hats
in panel B. For each noise level, we simulate 100 time series and plot the error bar using the
95% empirical confidence interval. For all noise levels, the channel method is more efficient.

picture of an AST and tested it on one hundred inhibition zones presenting fuzzy borders.
Fifty inhibition zones were taken from standard Mueller-Hinton growth medium antibiograms,
the other fifty form blood agar antibiograms, which are darker and less contrasted. After
normalizing the intensity of the AST picture, a sub-region of each inhibition zone was selected
and centered on the the antibiotic disk. Then the radial intensity profile I(r) was extracted:
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Figure 7: Computational time of CPOP versus slopeOP for one-hat-shaped data with noise
level σ = 3 and σ = 24 in log-log scale. The coefficient q in complexity O(nq) is equal to 2.88
and 2.94 for CPOP for σ = 3 and σ = 24, respectively. For slopeOP we get 1.95 and 2.04 with
the channel pruning option. We plot the error bar using the 95% empirical confidence interval.

Figure 8: For a range of penalties from β = 0.5σ2 log(n) to β = 2.5σ2 log(n), 100 one-hat-shaped
time series have been simulated with n = 500 for each penalty value and we ran slopeOP with
a smoothing option (minAngle = 130) and without constraint (std). On the left panel A, we
compare the MSE between the inferred signal and the true one for the two methods; on the
right panel B, we compare the number of inferred segments for the two methods. Results
highlight the stability with respect to the penalty of the algorithm with minimal angle option.

we recorded I, the average intensity value of the 10 most intense pixels (the scale of the images
is ' 10pixelmm ) lying at fixed distance r from the sub-region center (see figure 9). This method is
a simple way to detect bacteria even if the inhibition zone in not a perfect disk. The average
profile size in the data-set is 230 point.
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Figure 9: Picture of a part of an antibiogram showing an antibiotic disk and its inhibition zone
(left). On the right a plot of the intensity radial profile and the segmentation with slopeOP
with isotonic constraint.

slopeOP was used to segment the radial profile and determine the inhibition zone radius.
For the segmentation with slopeOP we take the signal starting at 3.5mm, i.e. just after the
plateau corresponding to the pellet disk (from this point, the ideal signal is supposed to be
isotonic).

slopeOP is used with S = {I(r)min, . . . , I(r)max} and a penalty β = 255. We chose a high
penalty in order to decrease the chance of detecting any changepoint before the bacterial halo
(because of small imperfections in the sample or picture). As a comparison, we report in the
appendix the results obtained with β = 2σ2log(n) (cfr F).

We tested both with and without the isotonic constraint (as the observed signal is supposed
to be isotonic).

After the segmentation, we measure the inhibition radius rinib as the distance corresponding
to the first change-point. The inhibition diameter is obtained as dinhib = 2× rinhib.

As a comparison, we measured the diameters with the method suggested by Gavoille et
al.[15] which uses a student t-test and considers both the intensity and the texture of the pixels
around the antibiotic disk.

The so measured diameters were compared with manual (by eye) measurements, by calcu-
lating the absolute difference.

The results (Table 2 and Figure 10) show a good consistency with the manual measure-
ments. In the case of Mueller-Hinton antibiorgams, half of the diameter differences between our
procedure and control are below the test sensibility (1mm) and 75% are smaller than 1.5mm,
which is comparable with the acknowledged inter-operator variability due to the subjectivity
of the measurement (± 1mm) [20]. The results on the blood agar ASTs are slightly worse
because of the lower contrast in the images and a consequent decreased signal-noise ratio. In
both cases the isotonic constraint yields improved results.

Successively we tested the performance of slopeOP with isotonic constraint when reducing
the density of states by 2,4 and 8. We defined the states space as S = {Imin, Imin + s, Imin +
2s, . . . , Imax} and repeated the measurements on the data-set at each value of s = 2, 4, 8. The
results are reported in Table 3 and show a neat improvement in the execution speed by reducing
the states density. Although the precision of the measurement decreases with decreasing states
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diameter diff quantiles
AST type algorithm 25% 50% 75%

M-H CPOP 1.60 3.60 6.00
SlopeOP 0.29 0.91 2.92
SlopeOPi 0.24 0.69 1.71
Ttest 0.50 1.50 3.25

blood deltaCPOP 1.80 3.20 5.55
deltaSlopeOP 0.72 1.72 3.00
deltaSlopeOPi 0.47 1.28 2.38
deltaTtest 2.00 9.50 16.75

Table 2: Agreement between auto and manual reading. We observe the distribution quantiles
of ∆d = |da− dc| the absolute difference between the automatically measured diameter da and
the control value dc. The smallest values are embolded.

diameter diff quantiles speed Changepoints
25% 50% 75%

agar state density

M-H 1 0.24 0.69 1.71 1.00 4.25
1/2 0.19 0.64 1.84 2.97 4.33
1/4 0.21 0.77 1.55 7.74 4.24
1/8 0.38 0.83 2.57 17.92 4.25

blood 1 0.47 1.28 2.38 1.00 3.92
1/2 0.43 1.04 1.84 2.76 3.90
1/4 0.70 1.52 2.34 6.69 3.94
1/8 1.07 2.05 3.83 14.53 3.96

Table 3: Performance of slopeOP-isotonic at various states density. The calculation speed
is reported as the inverse of the average execution time (normalized to density=1). Change-
points=average number of changepoints found. Mean execution time for slopeOP-iso1 is 5ms
@ 2,3 GHz Intel Core i5.
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Figure 10: Distribution of absolute diameter differences across the tested algorithms. The
isotonic constraint visibly improves the accuracy of the measurement.

density, the measured diameter are still in reasonable accord with the control values.

7 Conclusion

Multiple change-point detection for change in slope with continuity constraint is a challenging
problem in time-series analysis. The dynamic programming approach developed in CPOP [11]
exactly optimize the penalized likelihood but suffers from a quadratic-to-cubic time complexity
in data length. We proposed a novel approach with quadratic complexity restricting the set
of possible slope and intercept values to a finite set. In addition, this new problem allows us
to introduce constraints on successive segments. State values for the spatial discretization has
to be chosen for each time-series and leads to two difficulties: how close are we to the contin-
uous solution of CPOP? How to make a appropriate choice of state values? These questions
remains widely open and could be a subject for further developments. A natural extension
of this work would consider a dynamic programming algorithm following at each iteration a
two-continuous parameter function (instead of one as in CPOP). In this parametrization the
challenging question of pruning rules is yet open.
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A Proof of Proposition 2.1

The update rule is obtained by direct computations (we write “vectors τ and s” to mean the
constraints in (2)):

Qt(v) = min
vectors τ and s
τk+1=t , sk+1=v

k∑
i=0

{
C(y(τi+1):τi+1

, si, si+1) + β
}
− β

= min
vectors τ and s

k−1∑
i=0

{
C(y(τi+1):τi+1

, si, si+1) + β
}
− β + C(y(τk+1):t, sk, v) + β
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= min
0≤t′<t

smin≤u≤smax

min
vectors τ and s
τk=t

′ , sk=u

k−1∑
i=0

{
C(y(τi+1):τi+1

, si, si+1) + β
}
− β + C(y(t′+1):t, u, v) + β

= min
0≤t′<t

smin≤u≤smax

(
Qt′(u) + C(y(t′+1):t, u, v) + β

)
.

B Proof of Proposition 3.2

In order to prune we need to force the inequality

C(y(t′+1):T , u, v) ≥ C(y(t′+1):t, u, v) + C(y(t+1):T , v, v) ,

to be true for all T ≥ t + 1 and fixed t′, t, u, v. Using the cost definition (1), the inequality is
equivalent to

(v − u)

(
t∑

i=t′+1

yi
(i− t′)(T − t)
(t− t′)(T − t′)

+
T−1∑
i=t+1

yi
T − i
T − t′

)

≥ (v − u)(T − t)

(
u+ 2v

6
+

v − u
12(t− t′)(T − t′)

)
and then

(v − u)gt(T ) ≥ (v − u)

(
(T − t′)

(u+ 2v

6

)
+

v − u
12(t− t′)

− St
′
t

t− t′

)
(10)

with

gt(T ) =


T−1∑
i=t+1

yi
T − i
T − t

for T = t+ 2, . . . , n ,

0 for T = t+ 1 .

As the right hand side of inequality (10) is linear in T we choose the following strategy: find
coefficients (α−t , α

+
t , γ

−
t , γ

+
t ) of an upper and lower linear approximation such that

α+
t T + γ+t ≤ gt(T ) ≤ α−t T + γ−t , T = t+ 1, . . . , n .

We then introduce the linear-in-T functions f− and f+ defined in the Proposition. To prove
that the inequality f+(T ) ≥ 0 holds for all T = t+ 1 to n we only need to have f+(t+ 1) ≥ 0
and f+(n) ≥ 0 due to the linearity of f+. With the same argument for f− the result is proven.

C Variance estimation: complement with 10 segments

With smaller segments as presented in Figure 11, the estimator ”HALL diff” remains the more
efficient but overestimates the variance in case of a sinusoidal signal, in particular for lower
noise levels. Nevertheless, this estimation remains less biased than the two others.
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Figure 11: Linear and sinusoidal signals of length 100 with 10 segments.

method signal σ 1 2 3 4 5

MAD slope mean(σ̂) 1.71 2.37 3.26 4.19 5.163
(signal 1) sd(σ̂) 0.15 0.26 0.39 0.52 0.65

sinus mean(σ̂) 7.60 7.30 7.21 7.37 7.75
(signal 2) sd(σ̂) 0.26 0.35 0.45 0.56 0.67

HALL slope mean(σ̂) 2.71 3.21 3.92 4.72 5.59
(signal 1) sd(σ̂) 0.056 0.13 0.2 0.28 0.37

sinus mean(σ̂) 11.2 11.3 11.5 11.8 12.2
(signal 2) sd(σ̂) 0.048 0.097 0.15 0.21 0.27

HALL Diff slope mean(σ̂) 1.18 2.09 3.06 4.04 5.02
(signal 1) sd(σ̂) 0.085 0.17 0.26 0.35 0.44

sinus mean(σ̂) 2.43 2.98 3.72 4.56 5.46
(signal 2) sd(σ̂) 0.039 0.12 0.22 0.31 0.40

Table 4: Variance estimation with MAD, HALL and HALL Diff estimators based on the two
signals presented in Figure 11. The closest values to the true sigma are in bold; the smallest
standard deviations in italic. We simulated 104 time-series for each experiment. We notice that
all estimators struggle to return an unbiased estimation with the sinusoidal signal, in particular
with the MAD and HALL estimators for which the estimation seems no more sigma dependent.

D Simulation Results for the 4 Scenarios
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Figure 12: Results for scenarios 1 to 4 with noise σ = 3
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Figure 13: Results for scenarios 1 to 4 with noise σ = 24
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E Time complexity with 10-hat-shaped signals

Figure 14: Computational time of CPOP versus slopeOP for 10-hat-shaped data with noise
level σ = 3 and σ = 24 in log-log scale. The coefficient q in complexity O(nq) is equal to 2.16
and 2.47 for CPOP for σ = 3 and σ = 24, respectively. For slopeOP we get 1.96 and 2.03 with
the channel pruning option.
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diameter diff. quantiles
25% 50% 75%

AST type algorithm

blood deltaCPOP 8.00 12.50 18.00
deltaSlopeOP 8.35 12.10 15.28
deltaSlopeOPi 1.63 3.44 7.23
deltaTtest 2.00 9.50 16.75

M-H deltaCPOP 9.00 16.00 18.00
deltaSlopeOP 6.46 12.05 17.01
deltaSlopeOPi 1.89 8.49 15.56
deltaTtest 0.50 1.50 3.25

Table 5: Agreement of auto and manual reading.
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Figure 15: Distribution of absolute diameter differences across the tested algorithms. For
M-H antibiograms, Gavoille’s t-test method shows the best results, whereas in the case of
blood enriched culture medium, SlopeOP with isotonic contraint outperforms the others. Both
SlopeOP unconstrained and CPOP give poor measurements, underlining the fact that the
isotonic constraint improves the results

We repeated the automatic experiment of Section 6 with a variable penalty calculated as
β = 2σ2log(n) where the variance σ2 is estimated with the HallDiff estimator presented in this
paper (cfr. 4). The average penalty value obtained is 4 which results in the detection of more
changepoints in the signal (compared to Section 6. In this case, the assumption that the first
detected changepoint is close the bacterial boundary is not appropriate and results in much
worse measurement for all tested segmentation algorithms. Nevertheless, the results (Table 5
and Figure 15) show an neat improvement in the measurement accuracy when using the isotonic
constraint. In the case of Mueller-Hinton antibiotics, even if the isotonic constraint ameliorates
the result of the segmentation, none of the proposed segmentation algorithms achieves good
measurements compared to Gavoille’s t-test method. In the case of blood enriched culture
medium instead, where the t-test method gives less accurate results, the isotonic constraint of
SlopeOP shows the best measurement accuracy.
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abs. diameter difference speed av. changepoints number
25% 50% 75%

agar states density

blood 1 1.63 3.44 7.23 1.00 7.24
1/2 0.93 4.43 7.87 2.87 5.60
14 2.03 4.20 6.46 7.41 8.76
1/8 1.76 3.04 6.97 17.02 8.14

mh 1 1.89 8.49 15.56 0.43 9.76
1/2 2.54 8.65 15.19 1.00 8.29
14 1.12 5.00 11.15 2.80 10.98
1/8 1.94 3.69 10.62 6.96 10.82

Table 6: Performance of slopeOP-isotonic at various states density. The calculation speed
is reported as the inverse of the average execution time (normalized to density=1). Change-
points=average number of changepoints found. NOTE: Mean execution time for slopeOP-iso1
is 5ms @ 2,3 GHz Intel Core i5.
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