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ABSTRACT Pearson’s chi-squared test can detect outliers in the data distribution of a given set of
histograms. However, in fields such as demographics (for e.g. birth years), outliers may be more easily
found in terms of the histogram smoothness where techniques such as Whipple’s or Myers’ indices handle
successfully only specific anomalies. This paper proposes smoothness outliers detection among histograms
by using the relation between their discrete total variations (DTV) and their respective sample sizes. This
relation is mathematically derived to be applicable in all cases and simplified by an accurate linear model.
The deviation of the histogram’s DTV from the value predicted by the model is used as the outlier score
and the proposed method is named Total Variation Outlier Recognizer (TVOR). TVOR requires no prior
assumptions about the histograms’ samples’ distribution, it has no hyperparameters that require tuning, it is
not limited to only specific patterns, and it is applicable to histograms with the same bins. Each bin can have
an arbitrary interval that can also be unbounded. TVOR finds DTV outliers easier than Pearson’s chi-squared
test. In case of distribution outliers, the opposite holds. TVOR is tested on real census data and it successfully
finds suspicious histograms. The source code is given at https://github.com/DiscreteTotalVariation/TVOR.

INDEX TERMS Age heaping, anomaly detection, discrete total variation, expected value, fitting, his-
togram, Myers’ index, outlier detection, Pearson’s chi-squared test, total variation, Whipple’s index.

I. INTRODUCTION

OUTLIERS can be defined as data patterns that do
not conform to an expected normal data behavior [1].

Since identifying outliers or anomalies can often be useful,
performing outlier, i.e. anomaly, detection has an important
role in many data related areas. For example, with the ever
growing application of machine learning in various fields,
having clean training sets, free of any unwanted outliers,
can often significantly benefit the final production accuracy.
On the other hand, in real-time applications such as network
traffic or health monitoring, it is usually highly important to
detect anomalies that could represent any form of unwanted
behavior to prevent their potentially detrimental effects. Al-
ternatively, it may be required to see which samples differ the
most from the rest of the data and study them in more detail.

Since there is a relatively high demand for anomaly and
outlier detection methods in fields dealing with some form
of data, numerous methods have been proposed for various
applications, as can be seen in several review papers [1]–[3].

A particular kind of data are histograms. First introduced
by Pearson [4], histograms are by definition estimates of the

probability distribution of a continuous variable. If there is
a sample of real numbers drawn from the same distribution
and all inside a given interval, then histograms can be used
as their simple representation, and are also suitable for visual
presentation. For histograms to be useful, the bin size should
be adjusted accordingly to the data being described [5]–
[8]. In certain cases for a group of such histograms it may
be interesting to know whether some of them are outliers.
This may include histograms describing samples drawn from
another distribution different from the one of the majority
of the samples, but it may also include histograms just de-
scribing some less likely samples from the same distribution.
To be clear, in such a case, histograms are not used as tools
for outlier detection like in e.g. [9], but they are the data
representations to be analyzed for the presence of outliers.

In the simple case when only a single histogram is given,
instead of multiple histograms, a straightforward approach
to check whether it represents a sample that differs from a
given distribution would be to use the Pearson’s chi-squared
test [10]. It tests how likely it is that any observed difference
between the bins counts of the given histogram and the
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expected bin counts occurred by chance. However, for this
to work, it is required to know the expected bin counts.

On the other hand, if multiple histograms are given for
samples that are assumed to have been drawn from the
same distribution, then it is possible to find outliers among
them by means of the Pearson’s chi-squared test even if the
distribution is unknown. Namely, under Glivenko-Cantelli
theorem [11] all the given histograms, except the currently
tested one, can be used to get a reliable empirical distribution
function, which in turn can be used to get the expected bin
counts. Over time, numerous other techniques that can be
applied in the described cases have been proposed [12]–[15].

While the problem of finding outliers in terms of distribu-
tion is common, in some cases it is required to find histogram
outliers in terms of some specific histogram property. For
example, census data histograms are usually smooth, i.e.
the difference between the counts of neighboring bins is
relatively low, but in the presence of anomalies such as
age heaping [16], this often stops being the case. One way
to measure smoothness is to calculate total variation [17].
This means that by detecting deviations from the expected
total variation it could be possible to detect smoothness
outliers more easily than by means of some of the previously
described techniques. Single-value properties similar to total
variation in terms of simplicity, such as skewness, have
already been used for outlier detection [18]. As a matter of
fact, total variation has also found application in tasks such as
classification [19] and outlier detection for graph signals [20].

Therefore, in this paper a new method for outlier detection
in terms of discrete total variation (DTV) among histograms
that describe samples drawn from the supposedly same, but
unknown distribution is proposed. There are several contri-
butions of this paper. First, it is mathematically proven that
in terms of the underlying distribution there are only two
possible cases of the relation between the sample size and
the expected discrete total variation with the first case only
being a special case of the second one. Second, a method
is proposed that utilizes this relation to detect outliers that
deviate from their expected discrete total variation. Third, it
is shown that while the proposed method is not supposed to
be used as a general outlier detector in terms of distribution,
in some special cases it still performs better in this task than
Pearson’s chi-squared test. Fourth, the proposed method is
shown to be able to detect suspicious histograms on real-life
census data. The practical applicability and usefulness of the
proposed method are shown on synthetic data and real-life
census data. The proposed method is simple to implement
and it does not require prior knowledge of any distribution.

The paper is structured as follows: in Section II the total
variation is formally described, in Section III the theoretical
derivation of the proposed method and its underlying model
are given, in Section IV the experimental results obtained
on synthetic data and historical real-life census data are
presented and discussed, and Section V concludes the paper.

II. THE TOTAL VARIATION
Total variation of a differentiable function f is defined as [17]

‖f‖V =

∫ +∞

−∞
|f ′(t)|dt. (1)

If f is non-differentiable, its total variation is given as [17]

‖f‖V = lim
h→0

∫ +∞

−∞

|f(t)− f(t− h)|
|h|

dt. (2)

If fn[i] = f ∗ Φn(i/n) is a discrete signal obtained with an
averaging filter Φn(t) = 1[0,N−1](t) and a uniform sampling
at intervals n−1, then its discrete total variation (DTV) is
calculated by approximating the signal derivative by a finite
difference over the sampling distance h = n−1 and replacing
the integral in Eq. (2) by a Riemann, which then gives [17]

‖fn‖V =
∑
i

|fn[i]− fn[i− 1]|. (3)

Despite being relatively simple to calculate, total variation
is successfully used in areas such as denoising [21]–[24],
image restoration [25]–[28], image super-resolution [29],
[30], image enhancement [31], [32], compressive sensing
applications [33], [34], computer graphics [35], and others.

III. THE PROPOSED METHOD
In this section, the proposed method for finding discrete
total variation outliers among histograms and the method’s
underlying model are described. In order to try to avoid any
misunderstandings, the structure of this section has purposely
been slightly extended. Section III-A gives the general idea
of how to use the discrete total variation for outlier de-
tection, Section III-B gives an initial statistical foundation,
Sections III-C and III-D use this foundation to derive the
relation between the sample size and its expected discrete
total variation for two general cases, Section III-E uses this
relation to propose the sample models based on the discrete
total variation, Section III-F describes the score calculation,
Section III-G explains how to combine all these results into a
single method, and, finally, Section III-H names this method.

A. THE GENERAL IDEA
Let there be a sample of N values, xn its histogram with n
bins, and xi the number of values that fell in the i-th bin with

n∑
i=1

xi = N. (4)

Each of the n bins has an arbitrary interval that can also be
unbounded. The bins are not required to be of the same size.
Let pi be the probability of a value falling in the i-th bin and

n∑
i=1

pi = 1. (5)

Due to randomness the discrete total variation of xn, i.e.
‖xn‖V can differ for each sampling, but it should mostly not
differ significantly from its expected value E [‖xn‖V ] for a
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given N and probabilities pi. For a given xn the difference
between its ‖xn‖V and E [‖xn‖V ] can serve as a score of
how much the sample differs from the expected behavior.
Such a score has several drawbacks as well as advantages.

The main disadvantage is that it is required to know
E [‖xn‖V ] for any given N or at least to know the relation
between these two values for proper scaling and comparison.

The main advantage of such a scoring is the simplicity of
its calculations due to the very definition of the discrete total
variation. Further, because of that it is not necessary to know
the desired sample distribution, which significantly widens
the application possibilities. Finally, it is not very likely that
two samples of the same size have histograms of the same
or similar smoothness, i.e. discrete total variation and that
their scores differ significantly. That means that if this score
is calculated for every sample in a group of samples that are
expected to have similar smoothness, then the ones with the
highest scores can be considered as outlier candidates.

However, in order for this to be practically usable, first an
analytical relation betweenN and E [‖xn‖V ] has to be found.

B. THE STATISTICAL BACKGROUND
The first step in finding a relation between N and E [‖xn‖V ]

is to examine E
[
(xi − xj)2

]
in more detail by using the vari-

ances of xi and xj , i.e. Var [xi] and Var [xj ], respectively:

E
[
(xi − xj)2

]
= E

[
(xi − E [xi]− xj + E [xj ] + E [xi]− E [xj ])

2
]

= Var [xi]− 2E [(xi − E [xi]) (xj − E [xj ])]

+Var [xj ] + (E [xi]− E [xj ])
2
.

(6)

The value of xi for a given i has binomial distribution so that

E [xi] = Npi, (7)

Var [xi] = Npi (1− pi) . (8)

For the second term of the last form of Eq. (6) it holds that

E [(xi − E [xi]) (xj − E [xj ])] = E [(xi − E [xi])xj ] . (9)

The result of Eq. (9) can now be further developed as follows:

E [(xi − E [xi])xj ] = E [E [(xi − E [xi])xj ] |xj ]
= E [(xi − E [xi])E [xj |xi]]

= E
[
(xi − E [xi])

pj
1− pi

(N − xi)
]

= − pj
1− pi

E [(xi − E [xi])xi]

= − pj
1− pi

(
E
[
x2i
]
− E [xi]

2
)

= − pj
1− pi

Var [xi] = −Npipj .

(10)

Combining Eq. (7), Eq. (8), and Eq. (10) develops Eq. (6) to

E
[
(xi − xj)2

]
= Npi (1− pi) + 2Npipj +Npj (1− pj) +N2 (pi − pj)2

= N2 (pi − pj)2 +N
(
pi + pj − (pi − pj)2

)
.

(11)
Based on the values of pi there are two cases of further
actions for establishing a relation between N and E [‖xn‖V ].
These two cases are covered in the following subsections.

C. UNIFORM DISTRIBUTION
1) Upper bound
The first case is when the distribution of the sample and
consequently the distribution of the histogram are uniform
so that the probability of a value falling in the i-th bin is then

p1 = p2 = . . . = pn =
1

n
. (12)

When this is applied to Eq. (11), it eliminates its first term
and it simplifies its second term, which then gives the form

E
[
(xi − xj)2

]
=

2N

n
. (13)

Taking into account that the square root is a concave function
and applying the Jensen’s inequality [36] to Eq. (13) gives

E
[√

(xi − xj)2
]

= E [|xi − xj |] ≤
√
E
[
(xi − xj)2

]
.

(14)
This inequality can than be applied to all neighboring bins:

n−1∑
i=1

E [|xi+1 − xi|] ≤
n−1∑
i=1

√
E
[
(xi+1 − xi)2

]
. (15)

Due to the basic properties of the expectation, it holds that
n−1∑
i=1

E [|xi+1 − xi|] = E

[
n−1∑
i=1

|xi+1 − xi|

]
. (16)

Applying Eq. (3), Eq. (13), and Eq. (16) to Eq. (15) gives

E [‖xn‖V ] ≤ (n− 1)

√
2N

n
. (17)

This gives the upper bound for the expected value of the dis-
crete total variation and thus the first relation between N and
E [‖xn‖V ] if the sample numbers are uniformly distributed.

2) Exact values
Let F (n,N) denote the expected value of the discrete total
variation as a function of two key parameters n and N :

F (n,N) := E [‖xn‖V ] (18)

Theorem 1: The exact value of F (2, N) in closed form is

F (2, N) = 2−N+1b(N + 1)/2c
(

N

bN/2c

)
. (19)

The proof of Theorem 1 is given later in Appendix.
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It is relatively easy to show that for each r it holds that

F (2, 2r) = F (2, 2r − 1) (20)

and this leads to some unwanted consequences later on in the
paper, but there they are mentioned and handled properly.

The case of uniform distribution means that a histogram
is a realization of the multinomial distribution and its bins
x1, x2, ..., xn are random variables. The distribution of each
xi isB(N, 1

n ), i.e. it is binomially distributed with parameters
N and 1

n . Variables xi are not independent, since their sum
equals N . However, because of the symmetry, variables x2−
x1, . . . , xn − xn−1 have the same distribution, which gives

F (n,N) = E [|x2 − x1|+ · · ·+ |xn − xn−1|]
= (n− 1)E [|x2 − x1|] . (21)

Before continuing, for the sake of convenience, first the
notation for the multinomial coefficient has to be given as(

N

k1, . . . , kn

)
=

N !

k1! · · · kn!
. (22)

Theorem 2: The expected value of the total variation of a
histogram of uniformly distributed values is calculated as

F (n,N) = 2(n− 1)

(
n− 2

n

)N ∑
k1+k2≤N
k1<k2(

N

k1, k2, N − k1 − k2

)
(n− 2)−(k1+k2)(k2 − k1).

(23)

The proof of Theorem 2 is given later in Appendix. By
using Eq. (23) it is possible to calculate the expected total
variation for all reasonable values of n and N with some
examples being shown in Table 1. However, if using Eq. (23)
turns out to be computationally too demanding, the solution
is to develop and use some appropriate asymptotic forms.

3) Asymptotics
By taking into account the well-known asymptotic form of
the central binomial coefficients that is commonly given as(

2r

r

)
≈ 4r√

πr
as r →∞, (24)

it follows that the asymptotic form of F (2, N) is given as

F (2, N) = 2−2r+1r

(
2r

r

)
≈
√

2

π

√
N. (25)

The experimental calculations suggest that the following
hypothesis can be stipulated for the uniform distribution:

Hypothesis 1: For N sufficiently large, we have

F (n,N) ≈ (n− 1)F

(
2,

2N

n

)
. (26)

The right side of this equation represents the sum of the
discrete total variations of two-binned histograms of the

uniform distribution with sample size being equal to the ex-
pected number of values. If this hypothesis is accepted, then
the following asymptotic is true for the uniform distribution:

F (n,N) ≈ 2(n− 1)√
nπ

√
N. (27)

In Table 1 the values obtained by Eq. (27) are compared to
the exact values of F (n,N) for some chosen n and N .

TABLE 1: The comparison of the exact values of F (n,N)
with the values obtained by Eq. (27) for some n and N .

n N = 100 N = 1000
Eq. (27) exact value Eq. (27) exact value

2 7.97885 7.95892 25.2313 25.2250
3 13.0294 13.0213 41.2026 41.2000
4 16.9257 16.9045 53.5237 53.5170
5 20.1851 20.1472 63.8308 63.8188
6 23.0329 22.9752 72.8366 72.8183
7 25.5892 25.5090 80.9203 80.8950
8 27.9260 27.8207 88.3096 88.2765
9 30.0901 29.9577 95.1533 95.1116
10 32.1142 31.9525 101.554 101.503
20 47.9395 47.3907 151.598 151.427
30 59.7437 58.6681 188.926 188.595
40 69.5808 67.8604 220.034 219.509
50 78.1927 75.7182 247.267 246.522

FIGURE 1: The values of F (4, N) for 1 ≤ N ≤ 100.

Hypothesis 1 and the results of the numerical calculation
furthermore suggest that the following hypothesis is true:

Hypothesis 2: For each n ≥ 3, the function N 7→ F (n,N) is
increasing and strictly concave, hence, for each 0 ≤ k ≤ N

F (n, k) + F (n,N − k) < 2F (n,
N

2
). (28)

Function N 7→ F (2, N) is nondecreasing, but it is not
strictly concave, because as demonstrated by Eq. (20) its
neighboring values can be equal. The proof of these two
hypotheses may be very difficult, but they are not essential for
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(a)

(b)

(c)

FIGURE 2: The difference between the results of Eq. (23) and Eq. (27), which represent the exact and approximated values of
F (n,N), respectively: a) the absolute error, b) the relative error, and c) the dependance of certain relative errors on n and N .

the conclusions that are drawn later in the paper. The diagram
in Fig. 1 shows the situation for n = 4 and 1 ≤ N ≤ 100.

Let Fc(n,N) denote the expected value of the the circular
variation, which unlike the usual variation has an additional
term |x1 − xn| for the absolute value of the difference be-
tween the first and the last bin. Fc(n,N) is then defined as

Fc(n,N) = E [|x2 − x1|+ · · ·+ |xn − xn−1|+ |x1 − xn|] .
(29)

By taking into account Eq. (21), it follows from Eq. (29) that

Fc(n,N) =
n

n− 1
F (n,N). (30)

Applying Eq. (21) and adjusting the result for later use gives

Fc(n,N) =
n

n− 1
(n− 1)E [|x2 − x1|]

= nE [|x2 − x1|]

=
n

2
(E [|x2 − x1|] + E [|xn − xn−1|]) . (31)

All possible histograms xn can be split into disjoint
groups, according to the number of realizations which fall
into the first n/2 bins. Let qk be the probability that these
bins contain exactly k realizations. Because of the symmetry,
qk = qN−k for each k. Since other n/2 bins contain exactly
N−k realizations, the conditional distribution of the realiza-
tions in the first n/2 bins is again uniform. Having all this in
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(a)

(b)

FIGURE 3: The relation between the error when using Eq. (27) and the values of: a) sample size N and b) number of bins n.

mind and applying the partition theorem to Eq. (31) gives

Fc(n,N)

=
n

2

N∑
k=0

qk (E [|x2 − x1| | k] + E [|xn − xn−1| | N − k])

=

N∑
k=0

qk

[
Fc

(n
2
, k
)

+ Fc

(n
2
, N − k

)]
.

(32)
Applying Eq. (28) and the equality

(∑N
k=0 qk

)
= 1 leads to

the following inequality that holds for each even n > 4:

Fc(n,N) < 2Fc

(
n

2
,
N

2

)
. (33)

Here n has to be greater than 4 because having n = 4 effec-
tively leads to use of the function F (2, N) on the right side of
the inequality, and as explained earlier, this is inappropriate

for Eq. (28). If n = k2r where k ≥ 3 and r ≥ 0 are integers,
then taking the inequality above recursively leads further to

Fc(k2r, N) < 2rFc

(
k,
N

2r

)
(34)

wherefrom for all suitable N and n it then follows that

Fc(n,N) <
n

k
Fc

(
k,
kN

n

)
. (35)

If k = 2 is taken, then the inequality is no longer necessarily
valid because of the involvement of F (2, N). However, the
obtained form yields a better approximation of Fc(n,N) as

Fc(n,N) ≈ n

2
Fc

(
2,

2N

n

)
wherefrom after applying Eq. (30) it then further follows that

F (n,N) ≈ (n− 1)F

(
2,

2N

n

)
,
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which in turn is an approximation stipulated in Hypothesis 1.

4) Approximation error

Fig. 2 shows the difference between the results of Eq. (23)
and Eq. (27), which represent the exact and approximated
values of F (n,N), respectively. It can be seen that in cases
where N is several times greater than n, the approximation
error becomes relatively insignificant for practical purposes.
The error only becomes significant when the value of N is
relatively close to the value of n or below it, but it must be
additionally stressed that this rarely occurs in practice since
having such values of n and N is not too useful. The plots
in Fig. 3 further suggests that if required, the approximation
error could be modelled accurately. However, for the later use
here it is enough to conclude that having a sufficiently large
value of N renders the approximation error insignificant.

D. NON-UNIFORM DISTRIBUTION

The second case is when the distribution of the sample
and consequently the distribution of the histogram are not
uniform. In other words this is the case where Eq. (12) does
not hold, i.e. when pi 6= pj for at least one pair of i and j.
Applying to Eq. (11) all steps that have led to Eq. (17) gives

n−1∑
i=1

E [|xi − xj |]

≤
n−1∑
i=1

√
N2 (pi+1−pi)2 +N

(
pi+1+pi− (pi+1−pi)2

)
≤
n−1∑
i=1

(√
N2 (pi+1 − pi)2

+

√
N
(
pi+1 + pi − (pi+1 − pi)2

))

=

n−1∑
i=1

(
N |pi+1−pi|+

√
N
(
pi+1+pi− (pi+1−pi)2

))

= N

n−1∑
i=1

|pi+1−pi|+
√
N

n−1∑
i=1

√(
pi+1+pi− (pi+1−pi)2

)
.

(36)
IfD is the sample’s theoretical distribution, then the first term
of Eq. (36) is the discrete total variation of D that is given as

‖D‖V =

n−1∑
i=1

|pi+1 − pi|. (37)

The second term is a bound for expectation of the deviation
of this given sample from its theoretical distribution. A rough
estimate for this second term is the value 2

√
n− 1

√
N . It is

obtained by first removing the subtracting part and applying

the inequality
√
u+ v ≤

√
u+
√
v for u, v > 0, which gives

n−1∑
i=1

√(
pi+1 + pi − (pi+1 − pi)2

)
≤
n−1∑
i=1

√
(pi+1 + pi) ≤

n−1∑
i=1

√
pi +

n−1∑
i=1

√
pi+1.

(38)

Since
√
pi and

√
pi+1 are non-negative, the sums in Eq. (38)

can effectively be seen as L1-norms of (n − 1)-dimensional
vectors. Applying the inequality ‖v‖1 ≤

√
d ‖v‖2 where d

is the dimension of the vector v [37] to these sums gives
n−1∑
i=1

√
pi +

n−1∑
i=1

√
pi+1

≤
√
n− 1

(n−1∑
i=1

pi

)1/2

+

(
n−1∑
i=i

pi+1

)1/2


≤
√
n− 1 (1 + 1) = 2

√
n− 1.

(39)

It is useful to know the discrete total variation of some
important distributions. Examples of their histograms are
shown in Fig. 4. The uniform distribution has a zero total
variation. For the triangular distribution T with n bins this is

‖T ‖V =
4n− 8

n2
≈ 4

n+ 2
(40)

for an even n, while in the case of an odd n this is given as

‖T ‖V =
4n− 6

n2
≈ 4

n+ 2
. (41)

The square distribution Q for which pi = Ci2 with n bins
has a discrete total variation that can be approximated as

‖Q‖V ≈
3

n
. (42)

Next, in the case of the square root distribution S for which
pi = C

√
i and with n bins the approximation is given as

‖S‖V ≈
3

2n
. (43)

For the geometric distribution G with parameter p this is

‖G‖V = p, (44)

for the Poisson distribution P with parameter λ > 1 it is

‖P‖V ≈
2λbλce−λ

bλc!
. (45)

The discrete total variation for a unimodal discrete distri-
bution with mode M is bounded by 2M . The mode for
symmetric binomial distribution B(n, 12 ) is 1

2n

(
n
bn/2c

)
and

‖B‖V ≈
√

8

πn
. (46)

The normal distribution N (0, σ2) is a continuous one with
unbounded support and its theoretical DTV depends on
rasterization. The total variation of the probability density
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(a) (b) (c)

(d) (e) (f)

FIGURE 4: Histograms for the a) triangular, b) quadratic, c) square root, d) geometric, e) Poisson, and f) binomial distribution.
The shown histograms are merely for the sake of illustration and the x-axes do not strictly follow the equations in Section III-D.

(a) (b) (c)

FIGURE 5: From a) the theoretical distribution by adding b) the deviation due to randomness to c) the final sample distribution.

function is
2

σ
√

2π
. If [−c, c] is essentially the support of the

distribution and if n ≥ 2c

σ
, then ‖N‖V can be approximated:

‖N‖V ≈
2c

nσ

√
2

π
. (47)

Let D be any distribution and xn the histogram with n
bins of a corresponding sample of N values drawn from the
distribution D. Then similarly to Eq. (36) it can be written

E [‖xn‖V ] ≤ ‖D‖V ·N + E [‖R‖V ]
√
N (48)

where R is a deviation from the theoretical distribution. If
there was no randomness and all values were distributed
exactly as predicted by the probabilities, then E [‖xn‖V ]
would be ‖D‖V · N . Therefore, the second term is due to
the randomness. A further thing to notice here is that as N
grows, randomness plays an ever smaller role in Eq. (48) and
as N limits at infinity, the term C1N gets to fully dominate
in Eq. (48), which is also expected in accordance with the

Glivenko-Cantelli theorem. In Fig. 5 the total variation of the
theoretical distribution and the total variation of a sample are
equal. This will be the case for all samples which do not alter
order between adjacent bins. Therefore, the alteration from
the theoretical distribution means that the corresponding
sample is essentially different from theoretical one. Deviation
from the theoretical distribution can be approximated as total
variation of a sample from uniform distribution and therefore
the bounds written before can be applied to any distribution.

With regard to the distribution, the use of the discrete total
variation that is somewhat similar to the L1-norm may be
reminiscent of the assumption of the Laplace distribution.
However, no minimization, regularization, or any similar
process that requires such an assumption is being performed
here. Therefore, it should be stressed again that the relations
obtained here can be applied to samples of any distribution.
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E. THE PROPOSED MODEL
After taking into account the previous subsections’ results, it
is reasonable to consider the model for E [‖xn‖V ] to be

m = aN + b
√
N. (49)

This model can be fitted directly to the sizes and discrete total
variations obtained on the given histograms that are to be
checked for outliers. If there is not enough given histograms
to cover the desired value ranges of N , then additional ones
can be created by randomly subsampling the given ones. In
the case where a larger amount of histogram outliers is sus-
pected, then their detrimental influence on fitting of Eq. (49)
can be reduced by applying methods such as RANSAC [38].

Alternatively, if the distribution, i.e. the values of pi for
the histograms’ bins are known, then a and b can be obtained
through Monte Carlo simulation by randomly creating arbi-
trarily many histograms of various sizes N and then fitting
the model Eq. (49) to their sizes and discrete total variations.

F. SCORE CALCULATION
Once the model described by Eq. (49) has been fitted to
data, the next step is to assign an outlier score to each of the
given histograms. The first step is to calculate a histogram’s
discrete total variation. Next, the discrete total variation ex-
pected for the histograms’s size is obtained by using Eq. (49).
Finally, the absolute difference between these two values is

d = |‖xn‖V −m| . (50)

However, d cannot yet be used as the score because the stan-
dard deviation of the discrete total variation for histograms
of random samples varies depending on the samples size
N , which means that the significance of d depends on N .
This means that first the influence of the sample size on
the standard deviation has to be removed. Additionally, the
discrete total variation is already a statistic of the sample,
which means that its standard deviation is actually the stan-
dard error [39]. Many standard errors that do not include
division by N are proportional or close to being proportional
to
√
N , at least in limit, and in practice this is also the case

with the discrete total variation. This can intuitively be seen
in the form of the second term of Eq. (48) as discussed earlier.
Therefore, for practical purposes the influence of N on d can
be approximately removed by calculating the distance d′ as

d′ =
d√
N

=
|‖xn‖V −m|√

N
=

∣∣∣‖xn‖V − aN + b
√
N
∣∣∣

√
N

.

(51)
The value of d′ can now be used instead of the value d as
the outlier score for the histogram that it was calculated for
because it is normalized with respect to the standard error.

It must be mentioned that strictly speaking Eq. (51) is
theoretically not correct because the expected value of the
discrete total variation is not always proportional toN . How-
ever, during the research conducted for this paper it has been
empirically shown that for all tested distributions the standard
error was proportional to

√
N and that using Eq. (51) is a

good practice, even though it may introduce inaccuracies.
Since Eq. (51) was specifically designed to comply with the
statistical properties related to the discrete total variation as
discussed here, using some other score calculation would
potentially require a major overhaul of the whole framework.

An alternative to using Eq. (51) that unlike Eq. (51) does
not include a explicitly derived formula is to take all data
from the given histograms, use it in Monte Carlo simulations
to create samples of various desired sized, for each of these
sizes calculate the discrete total variations and their standard
deviation, and fit a model to these sizes and their respective
standard deviations. If enough data is available, this should
result in a relation that is very similar to the one in Eq. (51).

Since d′ is the normalized distance from the expected
discrete total variation and since it resembles the t-statistic,
it could be further used to also provide a probabilistic in-
terpretation for a given histogram. However, the goal of this
paper is not to propose a new statistical test that can be used
in hypothesis testing with predetermined significance levels.
The main goal of this paper is just to find the most likely
outlier candidates based on the discrete total variation and the
distance d′ also suffices for such ranking. Therefore, proba-
bilistic interpretation calculation is omitted in this paper.

G. APPLICATION
With all the required background given in the previous sub-
sections, it is possible to propose a new method for detecting
histogram outliers in terms of the discrete total variation.

First, multiple histograms for the samples of various sizes
are given as input. The histograms are supposed to have
the same bins where each of the bins can have an arbitrary
interval. It is also supposed that all these samples are drawn
from the same distribution and the goal is to check which of
them are most likely to be outliers in terms of the discrete
total variation. Next, the discrete total variation is calculated
for each of these histograms. Then, model Eq. (49) is fitted
to histogram sizes and discrete total variations. Finally, each
of the histograms is scored by applying Eq. (51). The his-
tograms for which the highest score values were obtained are
the most likely outlier candidates in terms of their discrete to-
tal variation. All these steps are summarized in Algorithm 1.

Here it should be additionally stressed that the proposed
method has no hyperparameters whatsoever that would have
to be tuned or that would otherwise influence the result. It
may seem that the number of histogram bins n is a tunable
hyperparameter, but the proposed method is agnostic of the
underlying histogram samples - it merely receives already ex-
isting histograms as inputs. The histograms are only assumed
to have the same bins. It is not even important what the range
of the bins is nor is it important whether they are bounded.

H. THE PROPOSED METHOD’S NAME
Due to the proposed method’s model’s reliance on the dis-
crete total variation, it was named Total Variation Outlier
Recognizer (TVOR) or for the sake of simplicity just Tvor,
which is pronounced /tVô:r/ and it means skunk in Croatian.
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Algorithm 1 The proposed method TVOR

Input: M input histograms x(1)
n ,x

(2)
n , . . . ,x

(M)
n

Output: scores for input histogram d′1, d
′
2, . . . , d

′
M

1: for i ∈ {1, 2, . . . ,M} do
2: si =

∑n
j=1 x

(i)
j . Calculate sample size

3: vi =
∥∥∥x(i)

n

∥∥∥
V

. Calculate discrete total variation
4: end for
5: a, b = FitModel

(⋃M
i=1 (si, vi)

)
. Fit Eq. (49) to data

6: for i ∈ {1, 2, . . . ,M} do
7: d′i =

|vi−asi+b
√
si|√

si
. Calculate the score

8: end for

IV. EXPERIMENTAL RESULTS
In order to validate the proposed method, several experiments
have been conducted on both synthetic and real-life data.
Additionally, it is shown why the proposed method is more
appropriate than some other similar methods. To give a clear
and descriptive overview of the method’s properties, the
structure of this section is purposely slightly more extended.
First, Section IV-A describes a baseline method for histogram
outlier detection based on the Pearson’s chi-squared test [10]
to compare its results to the ones of the proposed method.
In Section IV-B the behavior of the proposed method in
several scenarios of changing conditions is demonstrated and
additionally explained by several experiments for distribution
outlier detection among histograms of random samples of
different sizes drawn from the normal distribution and the
beta distribution with various parameter values. Similar to
that, Section IV-C contains experiments for discrete total
variation outlier detection among histograms of random sam-
ples of various sizes drawn from the beta distribution. The
real-life practical use of the proposed method is demonstrated
in Section IV-D on the histograms of the birth years taken
from census data of several populations from the same time
frame. Section IV-E shows the advantage of the proposed
method over some other methods that can be used for similar
purposes. The obtained results are discussed in Section IV-F.
The online repository with the source code and the data
required to recreate the results is described in Section IV-G.

A. THE BASELINE METHOD

The proposed method’s goal is to detect outliers speficically
in terms of the expected discrete total variation, which can
differ significantly from detecting distribution outliers in
general. Therefore, the goal of this section is to show the
difference in the performance of the proposed method and
the Pearson’s chi-squared test [10]. This test can be used
to check whether a histogram is an outlier by comparing
the values of the histogram’s bins, which serve here as the
categorical variables, to the values that are expected under
a supposed distribution. However, since in the problem that
is being analyzed in this paper the supposed distribution is
unknown, the expected bin values first have to be estimated.

Algorithm 2 The baseline method

Input: M input histograms x(1)
n ,x

(2)
n , . . . ,x

(M)
n

Output: scores for input histogram χ2
1, χ

2
2, . . . , χ

2
M

1: for i ∈ {1, 2, . . . ,M} do
2: si =

∑M
j=1 x

(i)
j . Calculate sample size

3: end for
4: S =

∑M
i=1 si . Calculate the sum of all bins

5: for i ∈ {1, 2, . . . , n} do
6: bi =

∑M
j=1 x

(j)
i . Calculate individual bin sum

7: end for
8: ε = 10−6 . A small positive number
9: for i ∈ {1, 2, . . . ,M} do

10: for j ∈ {1, 2, . . . ,M} do
11: O

(i)
j = x

(i)
j . The observed bin value

12: E
(i)
j =

bj−x(i)
j

S−si si + ε . The expected bin value
13: end for

14: χ2
i =

∑n
j=1

(
O

(i)
j −E

(i)
j

)2

E
(i)
j

. Calculate the score

15: end for

FIGURE 6: The probability density functions of the beta dis-
tribution and triangular distribution used in the experiments.

The first step in calculating the i-th expected bin value is to
sum the values of the i-th bin in all given histograms except
the tested one. When this is done for all n bins, all of the
obtained bin sums are divided by the sum of values of all bins
in all histograms except the tested one. These normalized
sums now represent the estimations of the probabilities that
a value will fall in each of the histogram bins. The more
histogram are given, the better these estimations are under
the Glivenko-Cantelli theorem. Next, all these estimated
probabilities are then multiplied by the sum of all bin values
in the tested histogram. In that way the sum of the bins in
the tested histogram and the sum of the estimated expected
bin values are the same. Then, a small positive number is
added to all scaled bin values in order to avoid division
by zero during the calculation of the Pearson’s chi-squared
test statistics. Finally, the obtained Pearson’s chi-squared test
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(a) (b)

(c) (d)

(e) (f)

FIGURE 7: Comparing the performance of the proposed and baseline methods. First row: performance with 1 added outlier
and c = 5 for a) σ = 0.9 and b) σ = 1.5. Second row: Performance with 1 added outlier and σ = 0.5 for c) c = 5 and d) c = 10.
Third row: Performance with 90 added outliers and c = 5 for e) σ = 0.9 and f) σ = 1.5. The results for TVOR + RANSAC
was added only in the third row because for the results in the first and the second row the difference was not that significant.
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(a) (b)

FIGURE 8: Comparing the proposed and the baseline method in terms of distribution outlier detection performance where
100 inlier random samples are drawn from the beta distribution with α = 7 and β = 1, while the triangular distribution with
a = 0, b = 1, and c = 0.5 is used to draw the added a) 1 outlier sample histogram and b) 90 added outlier histograms.

statistic is used as the outlier score for the tested histogram.
The described procedure is summarized in Algorithm 2.

B. SYNTHETIC DATA FOR DISTRIBUTION OUTLIERS
1) The goal
Since there is much freedom in the overall data generation
procedure when using synthetic data and less or no limi-
tations when compared to using real-life data, the goal of
this subsection is to demonstrate and explain in more detail
the behavior of the proposed method depending on gradual
changes of various conditions. The performance is here first
measured in terms of distribution outlier detection, even
though the proposed method was not designed specifically
for that task, while the performance in terms of DTV outlier
detection is described in the following subsection. The exper-
iments were performed for cases when the inlier and outlier
samples for histograms were from the same distribution with
changed parameter values and from different distributions.

2) Experimental setup
The experiments for distribution outlier detection on syn-
thetic data, i.e. histograms of random samples, were con-
ducted by repeatedly first simulating the mixtures of inlier
and outlier samples, then trying to recognize the outlier
samples by means of applying the baseline method and the
proposed method, and finally examining the results of these
simulations. The experiments were conducted for two gen-
eral cases of inlier and outlier random sample distributions
by mixing them in 104 simulations. In the first case both the
inlier and outlier samples were from the normal distribution.

In each simulation of this first case, the inlier data was
prepared by generating 100 random inlier samples drawn
from the normal distribution with mean 0 and variance 1, i.e.
N (0, 1). The size of each individual sample was randomly

chosen to be between 500 and 1000. The histogram bins were
set to be evenly spaced on the interval [−c, c] where c is an
arbitrarily chosen value used to check the behavior of various
bin arrangements. Each sample value falling outside of the
interval [−c, c] was replaced with the closer one of c and −c.
Several values of c, as well as several values of number of
bins c, were used to check the effect of changing conditions.

Furthermore, in each simulation, the outlier data was gen-
erated by drawing a certain number of random samples from
N
(
0, σ2

)
for various σ 6= 1. The sample size was randomly

determined in the same way as for the inlier samples. For
both the inlier and outlier data the values of c and n were set
to the same values to assure having histograms with the same
bins. Next, the baseline method and the proposed method
were applied to the combined inlier and outlier data to score
individual histograms. Finally, the mean value of the rank of
all outlier examples obtained by each method was calculated
as the performance score of each method. A lower mean rank
here means a better performance in terms of outlier detection.
For the sake of simplicity, zero-based numbering was used
for ranks. This means that in the case of a single added outlier
sample, the optimal mean rank of a tested method is 0, while
in the case of e.g. 10 added outlier samples, the optimal mean
rank is 4.5 since this is the average value of the first 10 zero-
based ranks, which should all be assigned to outlier samples’
histograms in the case of a method that performs ideally.

In short, every instance of the simulation setup is uniquely
determined by the number of histogram bins n, the number
of added outlier samples, the value c used to determine the
interval of the binned values, and the value of σ for outlier
distribution. Simulations for each instance were repeated 104

times to check the performance of the baseline method and
the proposed method in various sampling conditions.

n the second general case, the inlier samples were drawn
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(a) (b)

FIGURE 9: The comparison of the used beta and triangular distributions in terms of a) the theoretical discrete total variation
‖D‖V described in Eq. (37) and b) the mean DTV calculated for 106 random samples of size 1000 for various values of n.

from the beta distribution with parameter values α = 7
and β = 1, while the outlier samples were drawn from the
triangular distribution with parameter values a = 0, b = 1,
and c = 0.5. The probability density functions of these
distributions are shown in Fig. 6. Similarly to the previous
case, several combinations of the number of bins n and the
number of outlier sample histograms added to the 100 inlier
sample were checked. For each combination, the results of
methods’ performance were averaged over 104 simulations.

3) Results
After examining the results of performing simulations for a
large number of setups when both the inliers and the outliers
are from the normal distribution, due to the similarity of
many of the results, it was decided to show only those that
can be used to summarize them all. These results are shown
in Fig. 7. The first thing to observe is that in the majority
of the cases the baseline method based on the Pearson’s chi-
squared test performs better in terms of outlier ranking. This
is mainly because the proposed method was not designed to
find outliers in general, but to find outliers in terms of the
discrete total variation. Interestingly, however, the exception
to this are the cases when there is a relatively small number
of bins, which can be seen in Figs. 7a and 7f, and cases with
a high amount of added outlier sample histograms, which can
be seen in Fig. 7e where the proposed methods outperforms
the baseline method for all given numbers of bins. This
means that even if the proposed method was not designed for
the same task as the baseline method, in some cases it is still
able to outperform it, which may be useful should such cases
emerge. A more detailed analysis of the performance results
shown in Fig. 7 is given in Appendix, which also explains the
sudden drops in the performance such as the one in Fig. 7d.

In short, the proposed method generally performs worse
than the baseline method. However, in the cases of smaller

values of n, i.e. in the cases of a smaller number of bins,
as well as in the cases with a high amount of outliers, it
may perform better. Similar results can be obtained with
some other distributions as well and therefore they have
been omitted here. If required, any other experiments with
a similar setup can be conducted by using the source code
publicly available in the repository that is described later.

Next, Fig. 8 shows the results of the experiment where the
inlier and the outlier samples were drawn from the beta and
the triangular distribution, respectively. As can be expected
by viewing Fig. 6, the baseline method outperforms the pro-
posed method in most cases since the difference between the
used distributions is significant. Nevertheless, Fig. 8b again
shows that the proposed method may be able to outperform
the baseline method in the case of a high amount of outliers.

The performance drop of the proposed method for several
values of n shown in Fig. 8a deserves some additional com-
ments. As shown in Fig. 9a, the theoretical DTVs of both
distributions are clearly separated for all shown values of n.
This means that if the random samples were sufficiently big,
then the performance should significantly improve in accor-
dance with Eq. (48). Namely, in that case the influence of
the sample size significantly overpowers the influence of the
randomness. As a matter of fact, if the whole experiment is
repeated with random samples having their sizes increased by
several orders of magnitude, then both the proposed method
and the baseline method have the same ideal performance.
However, as mentioned earlier, the size of each sample used
in the experiment whose results are shown in Fig. 8a was
randomly chosen to be between 500 and 1000. For such
sizes, the randomness still has a substantial influence on the
histograms’ DTVs. This is illustrated in Fig. 9b, which shows
the mean DTV calculated for 106 random samples of size
1000 for various values of n created for both the beta and the
triangular distribution. It can be clearly seen how this differs
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(a) (b)

FIGURE 10: The histogram of a random sample drawn from the beta distribution with α = 2 and β = 3 in the case of a) no
heaping and b) heaping by moving 10% of randomly chosen items to bins with ordinal numbers divisible by 5 closest to them.

from the case of the theoretical DTVs and this can be used
to explains the particularly low performance of the proposed
method when n is 30 and 35 shown in Fig. 8a. Namely,
for these values of n, the mean values of DTVs become
so close that, with the influence of randomness included,
it becomes difficult to successfully distinguish between the
inlier and the outlier histograms based only on their DTVs.
The dependence of the proposed method’s performance on
the size of the samples is further analyzed in more detail
in Appendix. Based on all the results shown here and in
Appendix, it can be concluded that the proposed method’s
performance improves as the size of the samples increases.

Overall, in terms of distribution outlier detection, the per-
formance of the proposed method is only indirectly depen-
dent on the inlier and the outlier distributions. As shown, it is
directly dependent on the difference between the theoretical
DTVs of these distributions, which is in turn dependent on
the chosen histogram bins. This means that, depending on
the histogram bins, the proposed method may perform well
even when the inlier and the outlier distribution are same,
but with slightly different parameters. On the other hand, for
significantly different inlier and outlier distributions that have
similar theoretical DTVs for the chosen bins, the proposed
method may perform poorly. The opposite cases are also
possible. Nevertheless, this is not too problematic because
the proposed method was not designed for distribution outlier
detection, but specifically for the DTV outlier detection.

C. SYNTHETIC DATA FOR TOTAL VARIATION OUTLIERS
1) The goal
The goal of this subsection is to demonstrate the behavior
of the proposed method for the case that it was originally
designed for, i.e. for discrete total variation outlier detection.
Additional emphasis is specifically put on cases where the
number of outliers gets very close to the number as the inliers.

2) Experimental setup
Since earlier in the paper it was mentioned that demographics
is one of the fields that can benefit from discrete total varia-
tion outlier detection, the beta distribution with α = 2 and
β = 3 was chosen for the inlier samples’ distribution. The
reason is the resemblance of its histograms to the histograms
of some population age distributions. For all experiments the
number of bins n was fixed to 100. The outlier samples were
initially also drawn from the same beta distribution and their
histograms also had 100 bins. However, the outlier samples’
histograms underwent an additional change to simulate the
so called age heaping [16]. Namely, for a certain amount of
randomly chosen bins with a count greater than 0, their count
was decreased by 1 and the count of the closest bin to each of
them whose ordinal number was divisible by 5 was increased
by 1 as can be seen on the example that is shown in Fig. 10.
This was done for various combinations of the amount of
outlier samples and the amount of randomly chosen bins that
were changed for these outlier samples’ histograms. Finally,
the performances of the proposed method and of the baseline
method were then compared for all these combinations.

3) Results
The obtained results and comparisons are shown in Fig. 11.
It can be seen that if there are only a few outliers, then the
proposed and the baseline methods are on par with each other
and there are only some smaller differences in performance
for various amount of heaped values. However, as the number
of outliers increases, the proposed method starts to signifi-
cantly outperform the baseline method, especially in cases
where RANSAC is used as suggested in Section III-E. This is
especially noticeable in Fig. 11f where the number of outliers
is very close to the number of inliers. There the baseline
effectively degrades to a random chooser, while the proposed
method used in combination with RANSAC excels at outlier
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(a) (b)

(c) (d)

(e) (f)

FIGURE 11: Comparing the performance of the proposed and baseline methods averaged over 104 random trials in cases where
the number of outlier random samples bin values added to the original 100 inlier random samples was a) 1, b) 10, c) 30, d) 50,
e) 70, and f) 90. The inlier and outlier random samples were drawn from the beta distribution with α = 2 and β = 3, but the
outlier samples were additionally changed in order to make their histograms have a prespecified amount of heaped bin values.
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(a) (b)

(c) (d)

FIGURE 12: The experiments on the German census of 1939: a) histogram of birth years of the German census of 1939 based
on the data from [40], [41], starting from year 1850, b) fitting the proposed method’s model in Eq. (49) to data for subsamples
of the German census of 1939, c) the relation between the sample size and the standard deviation of the discrete total variation
obtained through Monte Carlo simulations for the subsamples of the German census of 1939 and a fitted function y = a

√
N ,

and d) the distribution of discrete total variations obtained for 100k subsamples of the German census of 1939 of size 10k.

FIGURE 13: The distribution of the sizes of the majority of
the 7106 USHMM lists that are used for the experiments.

detection. This shows the usefulness of the proposed methods
for the task of finding the discrete total variation outliers.

D. CENSUS DATA

1) The goal

The goal of this subsection is to test the proposed method
on an example of real-life census data with sample sizes
spanning several orders of magnitude and being drawn from
slightly different, but similar distributions. Here a closer look
is taken at the samples of the top-scoring histograms. This
can show the robustness of the proposed method in noisy
conditions and its usefulness for real-life data applications.

2) Experimental setup

Several census data sources have been used for the experi-
mental setup. The largest of them is the German census of
1939 [40] with the corresponding birth year histogram being
shown in Fig. 12a. Since the significant gap for the years of
World War I can be traced in age composition of other similar
lists and censuses of other countries as well [46], [47], this
census data is used here as a gold standard for the discrete
total variation of the population histograms for that time.
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FIGURE 14: Applying the proposed method to 7106 lists of the USHMM data. The model based on applying the Monte Carlo
simulation to the German census of 1939 is shown for comparison. Note that the plot axes use the logarithmic scale.

FIGURE 15: The distribution of values d′ calculated by the
proposed method for birth years from the USHMM lists.

In addition to that, 7106 variously sized censuses, i.e. lists
of people with birth years available at the website of the
United States Holocaust Memorial Museum (USHMM) [48]
are used since they were composed for the populations from
roughly the same time frame. The distribution of the majority
of the sizes with the largest ones being excluded for practical
purposes is shown in Fig. 13. The geographical locations of
these populations differ, but they still mostly cover the popu-
lations whose birth year histograms should have similar dis-

crete total variation properties. To make it clear immediately,
this does not necessarily mean that the age distributions are
similar as well. Namely, one census can have a significantly
higher amount of e.g. young people in comparison to other
censuses, but as it will be shown later on concrete examples,
this should not necessarily affect the discrete total variation
of the birth year histograms too significantly. Therefore, these
lists available at USHMM constitute an interesting dataset in
which to look for outliers in terms of discrete total variation.

3) Results
The first experiments that were carried out consisted of sim-
ply taking many variously sized subsamples of the birth years
from the German census of 1939, calculating the discrete
total variations of their birth year histograms, and fitting the
proposed method’s model in Eq. (49) to the data obtained
in this way. Fig. 12b shows the result of this experiment.
The proposed model fits well to all data. This also holds for
smaller subsamples where the influences of the two terms
in Eq. (49) are still on par. It can also be seen how the discrete
total variations get more dispersed as the sample size grows.
While this may hint at heteroscedasticity, applying weighted
regression or variance-stabilizing data transformations did
not significantly change the results that are described here.

The relation between the sample size and the standard
deviation of the discrete total variation is shown in Fig. 12c.

VOLUME 4, 2016 17
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(a) (b)

(c) (d)

FIGURE 16: Top-scoring birth year lists out of 7106 checked lists: a) the Jasenovac camp inmates available at USHMM’s
webpage [42], b) the victims from the Soviet Extraordinary Commission [43], c) the victims from the Franz Street Number
38 [44], and d) persons from the Registration cards of Jewish refugees in Tashkent, Uzbekistan during WWII [45].

FIGURE 17: The distribution of values d′′ calculated by the
proposed method for birth years from the USHMM lists.

Very similar results are obtained for other distributions as
well. It can be seen that the relation is very similar to
the square root function, which effectively justifies the use
of Eq. (51) for practical purposes. The distribution of the
discrete total variations for the subsamples of the same size

closely resembles the normal one as shown in Fig. 12d with
the remark that the discrete total variations there are integers.

After conducting the relatively simple mentioned experi-
ments in order to get a better insight into the inner workings
of the proposed method, the next step was to apply the
method to all USHMM lists whose data includes birth years.
The distribution of the values of d′ described in Eq. (51)
and obtained by the proposed method in this way is shown
in Fig. 15, while the relation between the calculated discrete
total variations and the predicted ones are shown in Fig. 14.

It can be seen that the majority of the values d′ in Fig. 15
are not spread too widely with the exception of several
outliers. Before analyzing these outliers in more detail and
commenting on Fig. 14, it must be stressed that in Fig. 14 the
plot axes use the logarithmic scale to better accommodate
the presentation to the list’ size distribution. Therefore, the
apparent misfit for the smallest lists can deceive into be-
lieving that the proposed model failed to fit properly, while
it is actually only a misfit on a small scale. For similar
reasons many of the differences between the calculated and
the predicted discrete total variations for the larger lists are
higher than they may appear to be on the plot. In addition
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(a) (b)

FIGURE 18: Top-scoring birth year lists out of 7106 checked lists for a) the Whipple’s index and for b) the Myers’ index.

to showing the proposed method’s model, the Monte Carlo
model based on the average discrete total variations of the
variously sized subsamples of the German census of 1939
is shown in Fig. 14 for comparison. It can be seen that
on several places its predictions are not quite aligned with
the ones of the proposed model, which can be attributed
to the distribution shown in Fig. 13, i.e. to the significant
influence of samples of certain sizes during the model fitting.
This can be alleviated by using techniques such as taking
only samples of evenly spaced sizes, but as shown later in
this subsection, the top results for the two models do not
differ significantly even without applying such techniques.
Therefore, the application of such techniques was omitted.

Out of the 7106 lists that were analyzed, the top three
outlier lists in terms of d′ were the Jasenovac camp inmates
list [42] with d′ ≈ 43.13, the list of the Soviet Extraordinary
Commission [43] with d′ ≈ 36.5, and the list for the Franz
Street Number 38 [44] with d′ ≈ 31.29. The histograms for
these lists are shown in Figs. 16a, 16b, and 16c, respectively.
A more detailed analysis of the top-scoring histogram that
provides additional insights and explanations of the behavior
of the proposed method’s scoring is available in Appendix.

In the case of Monte Carlo the score d′′ was calculated as

d′′ =
|‖xn‖V − µ̂N |

σ̂N
(52)

where µ̂N and σ̂N are the mean and the standard deviation,
respectively, of the discrete total variation obtained for a large
number of subsamples of size N of the German census of
1939. The distribution of the values of d′′ obtained for all
lists from the USHMM is shown in Fig. 17. The lists with
the first and second highest value of d′′ were the same as for
d′ with d′′ ≈ 58.14 and d′′ ≈ 49.04, while the list with the
third highest value of d′′ was the list of Jewish refugees in
Tashkent [45] with d′′ ≈ 44.51 and with the corresponding
histogram shown in Fig. 16d. Already by looking at the
mentioned figures for the top-scoring lists it can be seen that
their corresponding histograms indeed have high values of
discrete total variation with spikes, i.e. individual bins that

significantly differ from their neighbors, which contrasts the
smoothness of the histogram for the German census of 1939.

E. ADVANTAGES OVER EXISTING METRICS
Like for many other groups of population histograms, there
is no ground-truth ordering for USHMM lists in terms of
their histograms’ smoothness or accordance with historical
populations. Because of that, the quality of ordering obtained
by the proposed method and by existing metrics such as
Whipple’s and Myers’ indices can not be compared directly.
However, it is possible to show cases that are problematic for
both of these indices, but not for the proposed method.

The first example is the histograms shown by Figs. 18a
and 18b, which represent the top-scoring histograms among
the USHMM lists’ histograms for the Whipple’s and Myers’
indices, respectively. It can be seen that these histograms are
actually relatively smooth, but they also contain only a few
non-zero values: the first one 8 and the second one only a
single. These histograms can hardly be considered outliers
in terms of smoothness when compared to the histograms in
Fig. 16, but rather outliers in terms of covered years span,
which is different and also detectable by much simpler tech-
niques. Additionally, the lists that produced these histograms
have only a relatively small number of birth years and since
the mentioned indices, unlike the proposed method, do not
take into account the sample size, they are also more prone to
anomalies that arise in smaller samples due to randomness.

Another problem with metrics such as Whipple’s and
Myers’ indices is that they are mainly concerned with fre-
quencies and do not take into account other properties such as
shape or smoothness. Because of that, for different samples
that have the same frequencies of last digits of their numbers,
it is still possible to obtain the same values of the mentioned
indices even if the samples’ histograms differ significantly.
An example of this is given in Fig. 19 with a fully smooth
histogram that has the same indices values as a histogram
that can hardly be considered smooth. While numerous sim-
ilar examples exist, the ones presented are enough to show
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(a) (b)

FIGURE 19: Examples of histograms for all of which the Whipple’s and the Myers’ indices have exactly the same values.

the frequency-based weakness of the Whipple’s and Myers’
indices. On the other hand, the proposed method has no such
problems and its values for the histograms in Fig. 19 differ
significantly with one being zero and the other one non-zero.

In short, while being widely used and useful in certain
cases, metrics such as the Whipple’s and the Myers’ indices
are too simple to properly handle properties such as smooth-
ness. Therefore, the proposed method’s ability to specifically
target smoothness is its main advantage over other metrics.

F. DISCUSSION
Looking at the distributions shown in Figs. 15 and 17 and
observing the significant difference between the majority of
the scores and the highest scores, it can be concluded that
the histograms of the used USHMM lists that obtained the
highest scores are indeed outliers in terms of the discrete total
variation. Since the analyzed data consisted of birth years,
it may seem that an appropriate tool for identifying outliers
such as the ones in Fig. 16 could be the Whipple’s index [46],
but due to its fixed nature of checking only specific kinds of
data, it is often inappropriate [49], [50]. This also holds in
the case of the histogram of the Jasenovac inmates shown
in 16a whose artifacts are marked more closely in Fig. 20.
It can be seen that age heaping occurs in several forms that
the Whipple’s index not only cannot pick up, but it also gets
hampered by them. Namely, in its slightly changed form the
Whipple index checks for a surplus of years ending in 0 or 5
when compared to other years, but in the case of Jasenovac
there is also a surplus of years ending in 2, which is not
checked by the Whipple’s index and it actually reduces the
overall surplus of years ending in 0 or 5, thus hampering the
Whipple’s index in detecting the unusual data patterns. Since
the proposed method has no such problems, it may be more
appropriate in situations similar to the one in this experiment.

Besides all these histogram artifacts, there are other pe-
culiarities with the Jasenovac list. Namely, if it is compared
to other USHMM lists used here, it directly contradicts
some of them. For example, the list available at [51] states

that a certain Stanko Nick survived the war [52], while the
Jasenovac list claims that he was killed [53], which is known
to be wrong [54]. In another example, the list available
at [55] states that a certain Josip Stern arrived at Auschwitz in
1942 [56], while the Jasenovac list claims that he was killed
in 1941 [57]. This means that the proposed method can also
be used to detect samples that contain potentially problematic
data with properties not always shared with the usual outliers.

G. SOURCE CODE AND DATA REPOSITORY
The source code written in the Python programming lan-
guage and the data required to recreate the results described
in this section are publicly available in a dedicated GitHub
repository.1 At the time of writing this paper, the census data
used in this section was publicly available at the USHMM
website, but for the sake of simplicity of recreating the
results, it is also available in the repository. While the census
data also contains other information alongside the birth years,
only the birth years were copied to the repository in order
to avoid data privacy violation for potentially still living
persons. For example, according to the Jasenovac camp in-
mates list [42], which was already shown to be problematic, a
certain Stojan Ražokrak [58] was allegedly killed in 1942, but
a publicly available video of him2,3 from 2012 and its tran-
script4 clearly show the opposite. Because of that, it seemed
reasonable to copy only the birth years, while any interested
reader can check the rest of the data at the USHMM website
by using the appropriate list identifier given in the repository.

V. CONCLUSIONS AND FUTURE WORK
In this paper, a method for finding discrete total variation
outliers among histograms has been proposed. It scores
histograms based on the deviation of their discrete total
variation from its expected value. To carry out this scoring, a

1https://github.com/DiscreteTotalVariation/TVOR
2https://www.youtube.com/watch?v=S5lRwT63as0
3https://archive.is/48sKw
4https://archive.is/RtnsJ
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FIGURE 20: Same data for Jasenovac inmates as in Fig. 16a, but with additional markings for the age heaping [16] artifacts.

statistical framework has been proposed. One of the method’s
main advantages is that in order to work it requires no
information about the distribution of the samples that are
being described by histograms. In some special cases the
proposed method even outperforms the Pearson’s chi-squared
test when looking for the outlier histograms in terms of the
sample distribution despite the fact that is was not designed
for this task. On the other hand, the proposed method clearly
outperforms the Pearson’s chi-squared test when looking for
discrete total variation outliers, especially in cases of a huge
amount of outliers. Overall, the proposed method represents
a successful proof-of-concept of how discrete total variation
that is used in the method’s modelling can be applied to his-
togram outlier detection in terms of discrete total variation,
which has been experimentally confirmed on synthetic and
real-life data. Future work may include looking for some
other histogram properties that can also be used for histogram
outlier detection in terms of their smoothness in the cases
where the distribution of the histogram samples is unknown.
As for improving the proposed method, future work will
include at least two things. The first of them is the analysis
of variance for the discrete total variation to potentially
improve the scoring criteria. The second of them comprises
other aspects of the histogram’s discrete total variation that
could decrease the scores obtained for the inlier samples, but
simultaneously keep the scores obtained for the outliers high.

APPENDIX
A. PROOFS OF THE THEOREMS
1) Proof of Theorem 1
By the definition of F (2, N), it can be developed as follows:

F (2, N) = E [‖x2‖V ]

= 2−N+1

bN−1
2 c∑

k=0

(
N

k

)
(N − 2k) . (53)

For an even N = 2r, the equality
∑N
k=0

(
N
k

)
= 2N leads to

r−1∑
k=0

(
2r

k

)
(2r − 2k)

= 2r

r−1∑
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(
2r

k

)
− 4r

r−1∑
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(
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k − 1

)
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r

))
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(
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))
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(
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)
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(
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r

)
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(
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r
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.

(54)

Since here b(N + 1)/2c = b(2r + 1)/2c = r and bN/2c =
b(2r + 1)/2c = r, it follows that Eq. (54) matches Eq. (19).
For an odd N = 2r + 1, a similar calculation as before gives

r∑
k=0

(
2r + 1

k

)
(2r + 1− 2k) = (r + 1)

(
2r + 1

r

)
. (55)
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(a) (b)

(c) (d)

FIGURE 21: The comparison of the values of the theoretical discrete total variation ‖D‖V of the histograms of normal
distributionN (0, σ2) for the values in the interval [−b, b] for various number of histogram bins used to obtain the experimental
results that were shown earlier in Fig. 7: a) c = 5, σ = 0.9, b) c = 5, σ = 1.5, c) c = 5, σ = 0.5, and d) c = 10, σ = 0.5.

To avoid any possible confusion, it has to be mentioned
that the lower index of the binomial coefficient in Eq. (55)
can also be set to r + 1 because N is supposed to be odd
there. Furthermore, like in the previous case, it can be seen
that Eq. (55) also matches Eq. (19), which proves Theorem 1.

2) Proof of Theorem 2

The expectation E [|x2 − x1|] can be written as follows:

E [|x2 − x1|] = n−N
∑

k1+···+kn=N

(
N

k1, . . . , kn

)
|k2 − k1|.

(56)

The right-hand side of Eq. (56) can further be written as

n−N
∑

k1+k2≤N

(
N

k1, k2, N − k1 − k2

)
×

×|k2 − k1|
∑

k3+···+kn=N−k1−k2

(
N − k1 − k2
k3, . . . , kn

)
= n−N

∑
k1+k2≤N

(
N

k1, k2, N − k1 − k2

)
×

×|k2 − k1|(n− 2)N−k1−k2

=

(
n−2

n

)N ∑
k1+k2≤N

(
N

k1, k2, N−k1−k2

)
(n−2)−(k1+k2)|k2 − k1|.

(57)
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(a) (b)

(c) (d)

(e) (f)

FIGURE 22: The DTVs of histograms of random samples drawn from N
(
0, σ2

)
and of sizes randomly chosen to be between

1 and U . The number of bins n and the upper size bound U are set to a) n = 5 and U = 1000, b) n = 10 and U = 1000,
c) n = 25 and U = 1000, d) n = 50 and U = 1000, e) n = 50 and U = 104, and f) n = 50 and U = 105. The lines represent
the value of ‖D‖V described in Eq. (37) and multiplied by the sample size, while the dots represent the random samples.
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FIGURE 23: The dependence of the performance of the base-
line and the proposed method on the random samples’ size
range when 100 inlier samples are drawn from N (0, 1), a
single outlier sample is drawn from N

(
0, 0.92

)
, the number

of bins n is 15, c = 5, and the size of the inlier and the outlier
samples is randomly chosen to be between L and 10·Lwhere
L is the lower size bound that is shown on the x-axis.

To obtain Eq. (23) from here, it is sufficient to note that

E [|x2 − x1|] = E [x2 − x1 | x2 > x1]

+ E [x1 − x2 | x2 < x1]

= E [x2 − x1 | x2 > x1]

+ E [x2 − x1 | x1 < x2]

= 2E [x2 − x1 | x2 > x1] .

(58)

Eq. (58) can be applied to Eq. (57), which can then be applied
to Eq. (21). This results in Eq. (23), which proves Theorem 2.

B. THEORETICAL DISCRETE TOTAL VARIATIONS
To facilitate a better understanding of the experimental re-
sults that were discussed in Section IV-B and shown in Fig. 7,
the comparison of the values of the theoretical discrete total
variation ‖D‖V of the histograms of normal distribution
with parameters used to obtain these results are given in
Fig. 21. By comparing Figs. 7 and 21, it is relatively easy to
explain phenomena such as the sudden drops in the proposed
method’s performance that can be seen in Fig. 7d when
10 bins are used. Namely, Fig. 21d clearly shows that for
10 bins the difference between the theoretical DTVs of the
distributions used there is very small, which renders the
proposed method inadequate for recognizing outlier samples
for that specific case. Similar reasoning can also be applied
to successful cases where this difference is sufficiently large.

C. DEPENDENCE OF VARIATION ON THE SAMPLE SIZE
Fig. 9 clearly shows how randomness can have a significant
impact on the performance of the proposed method. Never-
theless, as described by Eq. (48), when the samples’ sizes
grow, this impact becomes ever smaller. However, in order to

decrease this impact in cases of e.g. larger values of n, the
samples’ sizes have to grow significantly more than in the
cases of smaller values of n. This is illustrated on several
examples shown in Fig. 22. There it can be seen that for
n = 5 the samples with random sizes up to 1000 are clearly
separated, while for the same sizes and n = 50 the samples
can hardly be separated. However, as shown in Fig. 22e and
Fig. 22f, if the upper bound for the sizes of random samples
gets increased even further, the separation again becomes
clear. As shown in Fig. 23, this has a direct influence on the
performance of both the baseline and the proposed methods.

In short, a successful application of the proposed method
assumes a reasonably high ratio between the number of bins
n and the sizes of samples. How high this ratio should be,
however, depends on the specific distributions of the samples.

D. PARTITIONING THE TOP-SCORING HISTOGRAM
In order to describe the behavior of the proposed method in
more detail, it may be useful to additionally analyze the top-
scoring histogram shown in Figs. 16a and 20. By partitioning
the initial birth year sample into more smaller samples, it
is possible to examine the behavior of the proposed method
when the sample size is changing. One way of partitioning
the sample is by nationality of the inmates. The nationalities
for which there are more than 1000 listed inmates are, as
specified in the Jasenovac inmates list, the following ones:
Serbian, Roma, Jewish, Croatian, and Muslim. While the
histograms of the Roma, Jewish, Croatian, and Muslim na-
tionalities shown in Fig. 24 all exhibit signs of age heaping
similar to the ones in Fig. 20, by far more prominent signs
are exhibited by the Serbian nationality as shown in Fig. 25.

If the histograms for separate nationalities are also added
to the set of USHMM lists and the proposed method is
applied to this extended set, then the histogram for the
Serbian nationality ends up being the second most likely
outlier just after the whole Jasenovac list with d′ = 40.82.
The Romani nationality histogram ends up on the 21st place
with d′ = 15.12, the Jewish nationality histogram ends up
on the 66th place with d′ = 9.08, while other histograms are
not inside the 100 most likely outliers. This shows how the
proposed method can also be used to detect the potentially
problematic parts of a sample, which in the case of the
Jasenovac list lies in the birth years of Serbian inmates.

Additionally, there is another thing to be observed here.
Namely, while Figs. 20 and 25 seem to be very similar, the
score d′ for the histogram of the birth years of the Serbian
inmates was nevertheless smaller than the one for the whole
Jasenovac list. This has to do with the fact that the sample
with birth years of Serbian inmates has fewer values than the
whole Jasenovac list, i.e. it makes up roughly 57% of the
Jasenovac list. Because of that, such similar deviations are
considered to be less likely on a larger sample and thus the
whole Jasenovac list has a slightly larger value of score d′.
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(a) (b)

(c) (d)

FIGURE 24: Birth year histograms of Jasenovac camp inmates [42] by nationality with markings for age heaping: a) Roma
inmates, b) Jewish inmates, c) Croatian inmates, and d) Muslim inmates. Only the histograms for nationalities for which there
are more than 1000 listed inmates are shown here, while the histogram for the Serbian inmates is given separately in Fig. 25.
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Vuko Brigljević for his advice on language improvement, Dr.
Stjepan Šterc for his advice on some demographic topics, Dr.
Viktoria Oliver for her proof-reading of the paper and sugges-
tions on English style improvement as a native speaker, Dr.
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