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ABSTRACT

In this paper, we consider the problem of estimating the p × p scale matrix Σ of a multivariate
linear regression model Y = X �+ when the distribution of the observedmatrix Y belongs to a
large class of elliptically symmetric distributions. After deriving the canonical form (Z⊤U⊤)⊤
of this model, any estimator Σ̂ of Σ is assessed through the data–based loss tr (S+Σ (Σ−1Σ̂ −
Ip)2) where S = U⊤U is the sample covariance matrix and S+ is its Moore-Penrose inverse.
We provide alternative estimators to the usual estimators aS, where a is a positive constant,
which present smaller associated risk. Compared to the usual quadratic loss tr(Σ−1Σ̂ − Ip)2, we
obtain a larger class of estimators and a wider class of elliptical distributions for which such an
improvement occurs. A numerical study illustrates the theory.

1. Introduction
Let consider the multivariate linear regression model, with p responses and n observations,

Y = X � +  , (1.1)

where Y is an n× p matrix, X is an n× q matrix of known constants of rank q ≤ n and � is a q × p matrix of unknown
parameters. We assume that the n × p noise matrix  has an elliptically symmetric distribution with density, with
respect to the Lebesgue measure in ℝpn, of the form

" ↦ |Σ|−n∕2 f
(

tr( "Σ−1"⊤)
)

, (1.2)

where Σ is a p × p unknown positive definite matrix and f (⋅) is a non–negative unknown function.
The model (1.1) has been considered by various authors such as Kubokawa and Srivastava (1999, 2001), who esti-

mated Σ and � respectively in the context (1.2), and Tsukuma and Kubokawa (2016) who estimated Σ in the Gaussian
setting. A common alternative representation of this model is Y =M + , where  is as above andM is in the column
space of X, has been also considered in the literature. See for instance Canu and Fourdrinier (2017) and Candès,
Sing-Long and Trzasko (2013).

Although the matrix of regression coefficients � is also unknown, we are interested in estimating the scale matrix
Σ. We address this problem under a decision–theoretic framework through a canonical form of the model (1.1), which
allows to use a sufficient statistic S = U⊤ U for Σ, where U is an (n − q) × p matrix (see Section 2 for more details).
In this context, the natural estimators of Σ are of the form

Σ̂a = aS , (1.3)

for some positive constants a.
As pointed out by James and Stein (1961), the estimators of the form (1.3) perform poorly in the Gaussian setting.

In fact, larger (smaller) eigenvalues of Σ are overestimated (underestimated) by those estimators. Thus we may expect
to improve these estimators by shrinking the eigenvalues of S, which gives rise to the class of orthogonaly invariant
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estimators (see Takemura (1984)). Since the seminal work of James and Stein (1961), this problem has been largely
considered in the Gaussian setting. See, for instance, Tsukuma and Kubokawa (2016), Tsukuma (2016) and Chételat
andWells (2016). However, the elliptical setting has been considered by a few authors such asKubokawa and Srivastava
(1999), Haddouche, Fourdrinier and Mezoued (2021).

In this paper, the performance of any estimator Σ̂ of Σ is assessed through the data-based loss

LS (Σ̂,Σ) = tr
(

S+Σ
(

Σ−1Σ̂ − Ip
)2) (1.4)

and its associated risk

R(Σ̂,Σ) = E�,Σ
[

tr
(

S+Σ
(

Σ−1Σ̂ − Ip
)2)] , (1.5)

where E�,Σ denotes the expectation with respect to the density specified below in (2.3) and where S+ is the Moore–
Penrose inverse of S. Note that, when p > n − q, S is non–invertible and, when p ≤ n − q, S is invertible so that S+
coincides with the regular inverse S−1. This type of loss is called data–based loss in so far as it contains a part of the
observation U through S = U⊤ U . The notion of data–based loss was introduced by Efron and Morris (1976) when
estimating a location parameter. Likewise, Fourdrinier and Strawderman (2015) showed the interest of considering
such a data–based loss with respect to the usual quadratic losses. Also, the data–based loss (1.4) was considered, in a
Gaussian setting, by Tsukuma and Kubokawa (2015) who were motivated by the difficulty to handle with the standard
quadratic loss

L(Σ̂,Σ) = tr
(

Σ−1Σ̂ − Ip
)2 . (1.6)

See Haff (1980) and Tsukuma (2016) for more details. Thus the loss in (1.4) is a data–based variant of the (1.6), through
which we aim to improve on the estimators Σ̂a in (1.3) by alternative estimators, focusing on improved orthogonally
invariant estimators. Note that most improvement results in the Gaussian case were derived thanks to Stein–Haff types
identities. Here, we specifically use the Stein–Haff type identity given by Haddouche et al. (2021), in the elliptical
case, to establish our dominance result, which is well adapted to our unified approach of the cases S invertible and S
non–invertible.

The rest of this paper is structured as follows. In Section 2, we give improvement conditions of the proposed
estimators over the usual estimators. In Section 3, we assess the quality of the proposed estimators through a simulation
study in the context of the t–distribution. We also compare numerically our results with those of Konno (2009) in the
Gaussian setting. Finally, we give in an Appendix all the proofs of our findings.

2. Main results
Although we are interested in estimating the scale matrix Σ, recall that � is a q × p matrix of unknown parameters.

Note that, since X has full column rank, the least square estimator of � is �̂ = (X⊤X)−1X⊤Y ; this is the maximum
likelihood estimator in the Gaussian setting. Natural estimators of the scale matrix Σ are based on the residual sum of
squares given by

S = Y ⊤ (In − PX) Y , (2.1)

where PX = X (X⊤X)−1X⊤ is the orthogonal projector onto the subspace spanned by the columns of X.
Following the lines of Kubokawa and Srivastava (1999) and Tsukuma andKubokawa (2020b), we derive the canon-

ical form of the model (1.1) which allows a suitable treatment of the estimation of Σ. Let X = Q1 T ⊤ be the QR
decomposition of X where Q1 is a n × q semi-orthogonal matrix and T a q × q lower triangular matrix with positive
diagonal elements. Setting m = n − q, there exists a n × m semi-orthogonal matrix Q2 which completes Q1 such that
Q = (Q1Q2) is an n × n orthogonal matrix. Then, since
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Q⊤2 X � = Q⊤2 Q1 T
⊤ � = 0

we have

Q⊤ Y =
(

Z
U

)

=

(

Q⊤1
Q⊤2

)

X � +Q⊤ =
(

�
0

)

+Q⊤ , (2.2)

where Q⊤1 X � = � and where Z and U are, respectively, q × p and m × p matrices. As X = Q1 L⊤, the projection
matrix PX satisfies PX = Q1 L⊤(L⊤ L)−1LQ⊤1 = Q1Q

⊤
1 so that In − PX = Q2Q⊤2 . It follows that (2.1) becomes

S = Y ⊤Q2Q⊤2 Y = U
⊤ U,

according to (2.2), which is a sufficient statistic for Σ.
The orthogonal matrix Q provides a linear reduction from n to q observations within each of the p responses. In

addition, according to (1.2), the density of Q⊤ is the same as that of  , and hence, (Z⊤U⊤)⊤ has an elliptically
symmetric distribution about the matrix (�⊤0⊤)⊤ with density

(z, u)↦ |Σ|−n∕2 f
(

tr (z − �) Σ−1 (z − �)⊤ + tr uΣ−1 u⊤
)

, (2.3)

where � and Σ are unknown. In this sense, the model (2.2) is the canonical form of the multivariate linear regression
model (1.1). Note that the marginal distribution of U = Q⊤2 Y is elliptically symmetric about 0 with covariance matrix
proportional to Im ⊗ Σ (see Fang and Zhang (1990)). This implies that S = U⊤ U have a generalized Wishart dis-
tribution (see Díaz-Gacía and Gutiérrez-Jámez (2011)), which coincides with the standard (singular or non–singular)
Wishart distribution in the Gaussian setting (see Srivastava (2003)).

As mentioned in Section 1, the usual estimators of Σ̂a in (1.3) perform poorly. We propose alternative estimators
of the form

Σ̂J = a (S + J ) , (2.4)

where J = J (Z,S) is a correction matrix. The improvement over the class of estimators Σ̂a can be done by improving
the best estimator Σ̂ao = ao S within this class, namely, the estimator which minimizes the risk (1.5). It is proved in
the Appendix that

Σ̂ao = ao S , with ao =
1

K∗ v
and v = max{p, m} , (2.5)

where K∗ is the normalizing constant (assumed to be finite) of the density defined by

(z, u)↦ 1
K∗ |Σ|

−n∕2 F ∗
(

tr (z − �) Σ−1 (z − �)⊤ + tr uΣ−1 u⊤
)

, (2.6)

where, for any t ≥ 0,

F ∗(t) = 1
2 ∫

∞

t
f (�) d� .

Note that under de quadratic loss function (1.6) the optimal constant is 1∕K∗(p+m+1). Of course, this risk optimality
has sense only if the risk of Σ̂ao is finite. As shown in Haddouche (2019), this is the case as soon as E�,Σ

[

tr
(

Σ−1S
)]

<
∞ and E�,Σ

[

tr
(

ΣS+
)]

<∞.
In order to give a unified dominance result of Σ̂J over Σ̂ao for the two cases where S is non–invertible and where

S is invertible, we consider, as a correction matrix in (2.4), the projection of a matrix function G(Z,S) = G on the
subspace spanned by the columns of SS+, namely,

J = SS+G . (2.7)
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In addition to the risk finiteness conditions of Σ̂ao , it can be shown that the risk of Σ̂J is finite as soon as the expectations
E�,Σ

[

‖Σ−1SS+G‖2F
]

andE�,Σ
[

‖S+G‖2F
]

are finite, where ‖ ⋅‖F denotes the Frobenius norm. Under these conditions,
the risk difference between Σ̂J and Σ̂ao is

Δ(G) = a2oE�,Σ
[

tr
(

Σ−1 SS+G{Ip + S+G + SS+}
)]

− 2 ao E�,Σ
[

tr
(

S+G
)]

. (2.8)

Noticing that the first integrand term in (2.8) depends on the unknown parameterΣ−1, our approach consists in replacing
this integrand term by a randommatrix �(G), which does not depend on Σ−1, such thatΔ(G) ≤ E∗�,Σ

[

�(G)
]

whereE∗�,Σ
denotes the expectation with respect to the density (2.6). Clearly, a sufficient condition for Δ(G) to be non–positive
(and hence, for Σ̂J to improve over Σ̂ao ) is that �(G) is non–positive. To this end, we rely on the following Stein–Haff
type identity.

Lemma 2.1 (Haddouche et al. (2021)). Let G(z, s) be a p × p matrix function such that, for any fixed z, G(z, s) is
weakly differentiable with respect to s. Assume that E�,Σ

[

|tr(Σ−1S S+G)|
]

< ∞. Then we have

E�,Σ
[

tr
(

Σ−1 SS+G
)]

= K∗ E∗�,Σ
[

tr
(

2SS+s{SS+G}⊤ + (m − r − 1)S+G
) ]

, (2.9)

where r = min{p, m} and s{⋅} is the Haff operator whose generic element is 1
2 (1 + �ij)

)
)Sij

, with �ij = 1 if i = j
and �ij = 0 if i ≠ j.

Note that the existence of the expectations in (2.9) is implied by the above risk finiteness conditions. An original
Stein–Haff identity was derived independently by Stein (1986) and Haff (1979) in the Gaussian setting where S is
invertible. This identity was extended to the class of elliptically symmetric distributions in (2.3) Kubokawa and Sri-
vastava (1999) and also by Bodnar and Gupta (2009). Here, we use the new Stein–Haff type identity recently derived
by Haddouche et al. (2021) in the elliptical framework (2.3) dealing with both cases S non–invertible and S invertible.

Applying Lemma 2.1 to the term depending on Σ−1 in the right–hand side of (2.8) gives

Δ(G) = a2o K
∗ E∗�,Σ

[

(m − r − 1) tr
(

S+G + (S+G)2 + S+GSS+
)

+ 2 tr
(

SS+s{SS+G + SS+GS+G + SS+GSS+}⊤
)]

− 2 ao E�,Σ
[

tr
(

S+G
)]

. (2.10)

It is worth noticing that the risk difference in (2.10) depends on the E�,Σ and E∗�,Σ expectations (which coincide
in the Gaussian setting since F ∗ = f ). Thus, in order to derive a dominance result, we need to compare these two
expectations. A possible approach consists to restrict us to the subclass of densities verifying c ≤ F ∗(t)∕f (t) ≤ b,
for some positive constants c and b (see Berger (1975) for the class where c ≤ F ∗(t)∕f (t)). Due to the complexity of
the use of the quadratic loss in (1.6) (which necessitates a twice application of the Stein–Haff type identity (2.9)), this
subclass was considered by Haddouche et al. (2021). Here, thanks to the data–based loss (1.4), we are able to avoid
such a restriction, and hence, to deal with a larger class of elliptically symmetric distributions in (2.3) (subject to the
moment conditions induced by the above finiteness conditions).

Following the suggestion to shrink the eigenvalues of S mentioned in Section 1, we consider as a correction matrix
a matrix SS+G withG orthogonally invariant in the following sense. Let S = H LH⊤ the eigenvalue decomposition
of S where H is a p × r semi–orthogonal matrix of eigenvectors and L = diag(l1,… , lr), with l1 >,… , > lr, is
the diagonal matrix of the r positive corresponding eigenvalues of S (see Kubokawa and Srivastava (2008) for more
details). Then set G = H LΨ(L)H⊤, with Ψ(L) = diag( 1(L),… ,  r(L)) where  i =  i(L) (i = 1,… , r) is a
differentiable function of L. Consequently, by semi–orthogonality of H , we have SS+H = HH⊤H = H , so that
the correction matrix in (2.7) is

J = SS+G = G = H LΨ(L)H⊤.

Thus the alternative estimators that we consider are of the form

Σ̂Ψ = ao
(

S +H LΨ(L)H⊤) = aoH L
(

Ir + Ψ(L)
)

H⊤ , (2.11)

which are usually called orthogonally invariant estimators (i.e. equivariant under orthogonal transformations). See for
instance Takemura (1984).

Now, adapting the risk finiteness conditions mentioned above, we are in a position to give our dominance result of
the alternative estimators in (2.11) over the optimal estimator in (2.5), under the data–based loss (1.4).
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Theorem 2.1. Assume that the following expectations E�,Σ
[

tr(Σ−1S)
]

, E�,Σ
[

tr(ΣS+)
]

, E�,Σ
[

‖Σ−1HLΨ(L)H⊤
‖

2
F
]

and E�,Σ
[

‖HΨ(L)H⊤
‖

2
F
]

are finite. Let Ψ(L) = diag( 1,… ,  r) where  i =  i(L) (i = 1,… , r) is differentiable
function of L with tr

(

Ψ(L)
)

≥ �, for a fixed positive constant �.
Then an upper bound of the risk difference between Σ̂Ψ and Σ̂ao under the loss function (1.4) is given by

Δ(Ψ(L)) ≤ a2o K
∗ E∗�,Σ

[

g(Ψ)
]

,

where

g(Ψ) =
r
∑

i=1

{

2(v − r + 1) i + (v − r + 1) 2i + 4li(1 +  i)
) i
)li

+
r
∑

j≠i

li (2 i +  2i ) − lj(2 j +  
2
i )

li − lj
− 2v�

}

.

(2.12)

Also Σ̂Ψ in (2.11) improves over Σ̂ao in (2.5) as soon as g(Ψ) ≤ 0.

The proof of Theorem 2.1 is given in the Appendix. Note that, although the expectation E∗�,Σ is associated to the
generating function f (⋅) in (1.2), the function g(Ψ) does not depend on f (⋅), and hence, the improvement result in
Theorem 2.1 is robust in that sense. Note also that Theorem 2.1 is well adapted to deal with the James and Stein
(1961) estimator where  i(L) = 1∕(v + r − 2i + 1), for i = 1,… , r, since tr

(

Ψ(L)
)

> � = 1∕(v + r − 1) and the
Efron-Morris-Dey estimator, considered by Tsukuma and Kubokawa (2020a), where  i(L) = 1∕

(

1 + b l�i ∕tr(L
�)
)

v,
for i = 1,… , r and for positive constants b and �, since tr

(

Ψ(L)
)

> � = r ∕(b + 1) v.
In the following, we consider a new class of estimators which is an extension of the Haff (1980) class, that is,

estimators of the form

Σ̂�,b = ao
(

S +H LΨ(L)H⊤) with, for � ≥ 1 and b > 0, Ψ(L) = b L−�

tr(L−�)
, (2.13)

where ao is given in (2.5). For � = 1, this is the estimator considered by Konno (2009), who deals with the Gaussian
case and the quadratic loss (1.6), while Tsukuma and Kubokawa (2020a) used an extended Stein loss. An elliptical
setting was also considered by Haddouche et al. (2021) under the quadratic loss (1.6).

It is proved in the Appendix that, for the entire class of elliptically symmetric distributions in (2.3), any estimator
Σ̂�,b in (2.13) improves on the optimal estimator Σ̂ao in (2.5), under the data–based loss (1.4), as soon as

0 < b ≤ 2 (r − 1)
v − r + 1

. (2.14)

It worth noting that Tsukuma and Kubokawa (2020a) gave Condition (2.14) as an improvement condition although
their loss was different.

3. Numerical study
Let the elliptical density in (1.2) be a variance mixture of normal distributions where the mixing variable, with

density ℎ, has the inverse–gamma distribution (k∕2, k∕2) with shape and scale parameters both equal to k∕2 for
k > 2. Thus, for any t ≥ 0, the generating function f in (1.2) has the form

f (t) = ∫

∞

0

1
(2v�)np∕2

exp
(−t
2v

)

ℎ(v) dv ,

which corresponds to the t–distribution with k degrees of freedom. Then the primitive F ∗ of f in (2.6) is, for any
t ≥ 0,

F ∗(t) = 1
2 ∫

∞

t ∫

∞

0

1
(2v�)np∕2

exp
(−w
2v

)

ℎ(v) dv dw = ∫

∞

0

v

(2v�)np∕2
exp

(−t
2v

)

ℎ(v) dv .

by Fubini’s theorem. Therefore the normalizing constant K∗ in (2.6) is

K∗ = ∫ℝpn ∫

∞

0

|Σ|−n∕2

(2v�)np∕2
v exp

(−1
2v

(

tr (z − �) Σ−1 (z − �)⊤ + tr Σ−1 u⊤u
)

)

ℎ(v) dv dz du ,
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= ∫

∞

0
v∫ℝpn

|Σ|−n∕2

(2 v�)np∕2
exp

(−1
2v

(

tr (z − �) Σ−1 (z − �)⊤ + tr Σ−1 u⊤u
)

)

dz du ℎ(v) dv (3.1)

by Fubini’s theorem. Clearly the most inner integral in (3.1) equals 1 so that

K∗ = ∫

∞

0
vℎ(v) dv = k

k − 2
,

by propriety of (k∕2, k∕2). Note that, when k goes to∞, (k∕2, k∕2) goes to themultivariate Gaussian distribution
(for which K∗ = 1 since f = F ∗) with covariance matrix In ⊗ Σ.

In the following, we study numerically the performance of the alternative estimators in (2.13) expressed as

Σ̂�,b = ao

(

S + b
tr(L−�)

H L1−�H⊤
)

where 0 ≤ b ≤ b0 =
2 (r − 1)
v − r + 1

and � ≥ 1. (3.2)

As mentioned above, Konno (2009) consider the case � = 1, in the Gaussian setting and under the quadratic loss (1.6),
for which its improvement condition is

0 ≤ b ≤ b1 =
2 (r − 1) (v + r + 1)
(v − r + 1) (v − r + 3)

.

Note that, although b0 < b1, the improvement condition in (3.2) is valid fo any � ≥ 1 and all the class of elliptically
symmetric distributions (2.3). However it was shown numerically by Haddouche et al. (2021) that b1 is optimal in the
Gaussian context.

We consider the following structures of Σ: (i) the identity matrix Ip and (ii) an autoregressive structure with
coefficient 0.9 (i.e. a p × p matrix where the (i, j)th element is 0.9|i−j|). To assess how an alternative estimator Σ̂�,b
improves over Σ̂ao , we compute the Percentage Reduction In Average Loss (PRIAL) defined as

PRIAL(Σ̂�,b) =
average loss of Σ̂ao − average loss of Σ̂�,b

average loss of Σ̂ao
and based on 1000 independent Monte–Carlo replications for some couples (p, m).

In Figure 1, we study the effect of the constant b in (3.2) on the prial’s in the non–invertible ((p, m) = (25, 10)) and
the invertible ((p, m) = (10, 25)) cases. The Gaussian setting is investigated for the structure (i) of Σ. Note that, when
0 ≤ b ≤ b0, the best prial (around 7% in both invertible and non–invertible cases) is reported for b = b0 = 1.125 (for
(v, r) = (25, 20)). For this reason, in the following, we consider the estimators Σ̂�,b0 with

b0 =
2 (r − 1)
v − r + 1

.

Note also that, for b > b0, the estimators Σ̂�,b still improve over Σao and that the maximum value of the prial is around
50%. This shows that there exists a larger range of values of b than the one our theory provides for which Σ̂�,b improves
over Σ̂ao .

In Figure 2, we study the effect of � on the prial’s of the estimator Σ̂�,b0 over Σ̂ao = S∕v when the sampling
distribution is Gaussian (K∗ = 1 in (2.5)), and over Σ̂ao = S(k − 2)∕vk when it is the t-distribution (K∗ = (k − 2)∕k
in (2.5)) with k degrees of freedom. For the structure (i) of Σ, note that, for � ≥ 6, the prial’s stabilize at 12.5%, in the
Gaussian case, and at 8.5%, in the Student case. Similarly, the prial’s are better in the Gaussian setting for the structure
(ii). In addition, it is interesting to observe that, when � is close to zero, the prial’s are small for the structure (i) and
may be negative for the structure (ii).

In Figure 3, under the Gaussian assumption, we provide the prial’s of Σ̂�,b0 with respect to Σ̂ao = S∕v under the
data–based loss (1.4) and the prial’s of Σ̂�,b1 with respect to Σ̂ao = S∕(v+ r+1) under the quadratic loss (1.6). For the
two structures (i) and (ii) of Σ, the prial’s are better under the data–based loss. For the structure (i) with � = 1 (which
coincide with the Konno’s estimator), we observe a prial equal to 1.73%which is similar to that of Konno (2009). Note
that, under the data–based loss the prial is much better since it equals 13.42%. We observe similar behaviors for the
structure (ii) than for the structure (i), but with lower prial’s.
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Fig. 1: Effect of b on the PRIAL of Σ̂�,b, with � = 1, under data–based loss in the Gaussian setting. The structure (i) of Σ
is considered for the invertible case with (p, m) = (10, 25) and the non–invertible case with (p, m) = (25, 10).
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Fig. 2: PRIAL’s of Σ̂�,b0 under the data–based loss. The non-invertible case is considered, with (p, m) = (50, 20), for the
structures (i) and (ii) of Σ for the t-distribution, with k = 5 degrees of freedom, and the Gaussian distribution.
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Fig. 3: PRIAL’s of Σ̂�,b0 under data–based loss and PRIAL’s of Σ̂�,b1 under quadratic loss. The non–invertible case is
considered, with (p, m) = (20, 10), for the structures (i) and (ii) of Σ under the Gaussian distribution.
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4. Conclusion and perspective
For a wide class of elliptically symmetric distributions, we provide a large class of estimators of the scale matrix

Σ of the elliptical multivariate linear model (1.1) which improve over the usual estimators aS. We highlight that the
use of the data–based loss (1.4) is more attractive than the use of the classical quadratic loss (1.6). Indeed, (1.4) brings
more improved estimators and their improvement is valid within a larger class of distributions. This means that (1.4)
is more discriminant than (1.6) to exhibit improved estimators.

While in (2.10) the risk difference between Σ̂J = ao(S + J ) with J = SS+G(Z,S) and Σ̂ao = ao S, the dom-
inance result in Theorem 2.1 is given for a correction matrix G(Z,S) = HLΨ(L)H⊤ which depends only on S.
Recently, Tsukuma (2016) consider, in the Gaussian case, alternative estimators where G(Z,S) depends on S and on
the information contained in the sample mean Z. This class of estimators merits future investigations in an elliptical
setting.

5. Appendix
We give in the following corollary an adaptation of Lemma (2.9) to an orthogonally invariant matrix function G,

that is, of the form G = H LΦ(L)H⊤ where Φ(L) = diag(�1,… , �r) with �i = �i(L) (i = 1,… , r) is differentiable
function of L

Corollary 5.1. Let Φ(L) = diag(�1,… , �r) where �i = �i(L) (i = 1,… , r) is differentiable function of L. Assume
that E�,Σ

[

|tr(Σ−1H LΦ(L)H⊤)|
]

<∞. Then we have

E�,Σ
[

tr(Σ−1HLΦ(L)H⊤ )
]

= K∗ E∗�,Σ

[ r
∑

i=1

(

(v − r + 1)�i + 2 li
)�i
)li

+
r
∑

j≠i

li �i − lj �j
li − lj

)

]

.

Proof. Let G = H LΦ(L)H⊤, S+ = H L−1H⊤ and SS+ = HH⊤. Then,

SS+G = HH⊤H LΦ(L)H⊤ = H LΦ(L)H⊤ = G,

sinceH is semi–orthogonal. Assuming that E�,Σ
[

|tr(Σ−1H LΦ(L)H⊤)|
]

<∞, we have from Lemma 2.1

E�,Σ
[

tr
(

Σ−1HLΦ(L)H⊤ )] = K∗E∗�,Σ
[

2 tr
(

HH⊤s{H LΦ(L)H⊤}
)

+ (m − r − 1) tr
(

H Φ(L)H⊤)] .
(5.1)

Firstly, using Lemma A.4.2 in Haddouche et al. (2021), we have

s
{

H LΦ(L)H⊤} = HΦ(1)(L)H⊤ + 1
2
tr
(

Φ(L)
)(

Ip −HH⊤) , (5.2)

where Φ(1)(L) = diag(�(1)1 ,… , �(1)r ), with

�(1)i = 1
2
(p − r + 2)�i + li

)�i
)li

+ 1
2

r
∑

j≠i

li �i − lj �j
li − lj

. (5.3)

for i = 1… r.
Secondly, using the fact thatH⊤H = Ir, we have from (5.2)

HH⊤s
{

H LΦ(L)H⊤} = H Φ(1)(L)H⊤ . (5.4)

Then, putting (5.4) in (5.1), we obtain

E�,Σ
[

tr
(

Σ−1HLΦ(L)H⊤ )] = K∗E∗�,Σ
[

2 tr
(

Φ(1)(L)
)

+ (m − r − 1) tr
(

Φ(L)
)]

.

Finally, using (5.3), we have

E�,Σ
[

tr
(

Σ−1HLΦ(L)H⊤ )] = K∗ E∗�,Σ

[ r
∑

i=1

(

(p + m − 2r + 1)�i + 2 li
)�i
)li

+
r
∑

j≠i

li �i − lj �j
li − lj

)

]

,

where (p + m − 2r + 1) = (v − r) .
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The optimal constat ao in (2.5). Let Σ̂a = aS where a > 0. Assume that the expectations E�,Σ
[

tr
(

Σ−1S
)]

and
E�,Σ

[

tr
(

ΣS+
)]

are finite. Then, the risk of Σ̂ao relating to the data-based loss (1.4) is given by

R
(

Σ̂a,Σ) = E�,Σ
[

tr
(

S+Σ (Σ−1Σ̂a − Ip)2
)]

= a2E�,Σ
[

tr
(

Σ−1SS+S
)]

− 2 aE�,Σ
[

tr
(

SS+
)]

+ E�,Σ
[

tr
(

S+ Σ
)]

.
(5.5)

Applying the Stein-Haff type identity in Corollary (5.1), with Ψ(L) = Ir, to the first term in the right-hand side of
(5.5), we obtain

E�,Σ
[

tr
(

Σ−1SS+S
)]

= E�,Σ
[

tr
(

Σ−1H LH⊤)] = K∗ E∗�,Σ

[ r
∑

i=1

(

(v − r + 1) +
r
∑

j≠i

li − lj
li − lj

)

]

= K∗ [r(v − r + 1) + r(r − 1)] = K∗r v . (5.6)

Now, using the fact that tr(S+ S) = tr(HH⊤) = r and thanks to (5.6), we have

R
(

Σ̂a,Σ
)

= a2K∗ r v − 2 a r + E�,Σ
[

tr
(

S+Σ
)]

.

Therefore, choosing a = 1∕K∗ v is optimal under the risk (1.5).

Proof of Theorem 2.1. Let Σ̂Ψ = ao
(

S + H LΨ(L)H⊤) where Ψ(L) = diag( 1,… ,  r) such that  i =  i(L)
(i = 1,… , r) is differentiable function of L and tr

(

Ψ(L)
)

≥ � > 0. Hence, using the fact that H⊤H = Ir, the
involving terms in the risk difference (2.8) becomes

J = SS+G = G = HLΨ(L)H⊤ and S+G = HΨ(L)H⊤ .

Then, the risk difference between Σ̂Ψ and Σ̂ao is given by

Δ(Ψ) = a2o E�,Σ
[

tr
(

Σ−1H L (2Ψ + Ψ2)H⊤)] − 2 aoE�,Σ
[

tr
(

Ψ
)]

. (5.7)

Now, applying the Stein-Haff type identity in Corollary (5.1) to the first term in the right hand side of (5.7), for
Φ = 2Ψ + Ψ2, we have

Δ(Ψ) = a2o K
∗ E∗�,Σ

[ r
∑

i=1

{

(v − r + 1) (2 i +  2i ) + 2 li
)(2 i +  2i )

)li
+

r
∑

j≠i

li (2 i +  2i ) − lj (2 j +  
2
i )

li − lj

}

]

− 2 a0E�,Σ
[

tr
(

Ψ
)]

.

Therefore, using the fact that tr(Ψ) ≥ � > 0, an upper bound of the risk difference Δ(Ψ) is given by

Δ(Ψ) ≤ a2o K
∗ E∗�,Σ

[ r
∑

i=1

{

2 (v − r + 1) i + (v − r + 1) 2i + 4 li (1 +  i)
) i
)li

+
r
∑

j≠i

li (2 i +  2i ) − lj (2 j +  
2
i )

li − lj
−2(aoK∗)−1�

}]

,

where (aoK∗)−1 = v.

Improvement condition (2.14) of alternative estimators in (2.13). Let consider the class of alternative estimators
Σ̂�,b in (2.13). Then, applying Theorem 2.1, an upper bound of the risk difference between Σ̂�,b and Σ̂ao is given by

Δ(Ψ) ≤ a2o K
∗ E∗�,Σ

(

g(Ψ)
)

, (5.8)

where the integrand term in (2.12) becomes

g(Ψ) = g1(Ψ) + g2(Ψ)
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with

g1(Ψ) = −2 (r − 1) b
r
∑

i=1

l−�i
tr(L−�)

+ (v − r + 1) b2
r
∑

i=1

l−2�i

tr2(L−�)
,

since tr
(

Ψ(L)
)

= b, and

g2(Ψ) = 4lib
(

1 + b
l−�i

tr(L−�)

)

)
)li

( l−�i
tr(L−�)

)

+ 2b
tr(L−�)

r
∑

i=1

r
∑

j≠i

l1−�i − l1−�j

li − lj

+ b2

tr2(L−�)

r
∑

i=1

r
∑

j≠i

l1−2�i − l1−2�j

li − lj
.

The proof consist to prove that the integrand term g2(Ψ) is non-positive. To this end, it can be shown that, for � ≥ 1,

r
∑

i=1

r
∑

j≠i

l1−�i − l1−�j

li − lj
= 2

r
∑

i

r
∑

j>i

l1−�i − l1−�j

li − lj
≤ 0 and

r
∑

i=1

r
∑

j≠i

l1−2�i − l1−2�j

li − lj
= 2

r
∑

i=1

r
∑

j>i

l1−2�i − l1−2�j

li − lj
< 0 .

since L = diag(l1 >,… , > lr). Then

g2(Ψ) ≤ 4 li b
(

1 + b
l−�i

tr(L−�)

)

)
)li

( l−�i
tr(L−�)

)

= 4 b �
l−�i

tr(L−�)

(

1 + b
l−�i

tr(L−�)

) ( l−�i
tr(L−�)

− 1
)

,

since

)
)li

( l−�i
tr(L−�)

)

= �
l−�−1i
tr(L−�)

( l−�i
tr(L−�)

− 1
)

.

Therefore, since l−�i ≤ tr(L−�), the integrand term g2(Ψ) ≤ 0. Then

g(Ψ) ≤ g1(Ψ) = −2 (r − 1) b + (v − r + 1) b2
tr(L−2�)
tr2(L−�)

.

Now, using the fact that tr(L−2�) ≤ tr2(L−�), we have

g(Ψ) ≤ −2 (r − 1) b + (v − r + 1) b2 .

since b > 0. Hence, an upper bound for the risk difference in (5.8) is given by

Δ(Ψ) ≤ a2o bK
∗ E∗�,Σ

[

− 2 (r − 1) + (v − r + 1) b
]

.

Therefore, Σ̂�,b improves over Σ̂ao under the data-based loss (1.4) as soon as 0 < b ≤ b0 = 2 (r − 1)∕(v − r + 1) .
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