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Abstract
Several statistics-based detectors, based on unimodal matrix models, for

determining the number of sources in a field are designed. A new variance ratio
statistic is proposed, and its asymptotic distribution is analyzed. The variance
ratio detector is shown to outperform the alternatives. It is shown that fur-
ther improvements are achievable via optimally selected rotations. Numerical
experiments demonstrate the performance gains of our detection methods over
the baseline approach.
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1 Introduction

Source localization based on received signal strength (RSS) [1] is challenged in en-
vironments where universal signal models are absent, such as underwater scenarios.
Recently, a semi-parametric method based on sparsely spatially sampled RSS val-
ues and unimodal matrix factorizations has shown strong promise [2] for localizing
multiple sources. However, [2] requires a priori knowledge of the number of sources.
In practice, such information is unknown and must be learned. Herein, we design
methods for estimating the number of sources when the signal propagation model is
unknown save for the general property that the signal strength decreases with range.
While the rank of the observation matrix, in specific cases, can be indicative of the
number of sources, this is not true in general. For example, a single source can yield
an observation matrix with rank two or more. Alternatively, if sources are co-linear,
the rank of the observation matrix can be less than the number of sources.

Prior art on source localization also required the number of sources (e.g., [3]). If
specific parametric models for signal strength exist, they can be leveraged to estimate
the number of sources as in [4, 5]. Our goal, herein, is to provide methods for very
general signal models such as unimodality.

This paper develops a statistical test on the rank of the sparse observation matrix
to estimate the number of sources based on RSS measurements from different loca-
tions. Our proposed method does not require a parametric model for the signal, and
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we also assume the noise variance is unknown. We tackle the challenge of testing the
rank of a low-rank matrix using incomplete observations while assuming the signal
energy field is unimodal. The proposed method is based on extending the results
in [6, 7] to unimodal matrices. Moreover, we develop a new variance ratio statistic
and the corresponding test procedure. We further derive the asymptotic distribution
of our proposed statistic, enabling the design of a threshold to control the false alarm
rate. The proposed detection statistic is asymptotically efficient compared to an al-
ternative estimator with an independent numerator and denominator. Furthermore,
to improve our detector performance, we compute an optimal rotation to avoid the
scenario of worst-case co-linearity of sources [2]. Numerical experiments validate the
theory and demonstrate the proposed procedure’s good performance.

2 Problem Setup

Consider the problem of K-source localization. Each source emits a signal that is
unimodal: maximum signal strength for a measurement made at the source location,
with reduced signal strength for measurements made away from the source location,
decaying with the distance from the source location. For a single source, k, there is
an N ×N signal strength matrix H(k) ∈ RN×N . Let the singular value decomposition
(SVD) of H(k) be

H(k) =
N∑
i=1

λk,iuk,iv
>
k,i, k = 1, . . . , K,

where λk,1 ≥ λk,2, . . . ,≥ λk,N . A key result from [2] is that if the source signal is
unimodal, then the singular vectors (uk,1 and vk,1) associated with the dominant
singular value are also unimodal. Thus, we approximate the signal matrix for source
k as,

H(k) ≈ λk,1uk,1v
>
k,1, k = 1, . . . , K,

Without loss of generality, we assume that uk,1 and vk,1 have positive components.
With our approximation in hand, the composite energy field is the superposition

of the matrices of the K sources, which can be written as, where the second double
sum is due to contributions of the non-dominant singular values:

H :=
K∑
k=1

H(k) =
K∑
k=1

λk,1uk,1v
>
k,1 +

K∑
k=1

N∑
i=2

λk,iuk,iv
>
k,i

:= S + U,

where will approximate H ≈ S. The first term is referred to as the structured com-
ponent, comprised of the sum of K rank-one matrices due to the dominant singular
values, and U is the unstructured component.
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We assume access to a limited number of measurements at a subset of all possible
locations. The partially observed matrix M is then given by,

Mi,j =

{
Si,j + εi,j ∀(i, j) ∈ Ω,

0 ∀(i, j) /∈ Ω,
(1)

where Ω is the set of observation locations, and ε is the measurement error on the
(i, j)th observation which encapsulates both measurement noise as well as the contri-
butions due to the unstructured components. Our goal is to identify the number of
sources, K, given the partially observed matrix M . In Fig. 1a, we see examples of
unimodal energy fields with four sources.
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Figure 1: (a) Partially observed energy field with four sources; (b) QQ-plot:
σ̂2

2(Z)/σ̂2
1(Z) against quantiles ofN (1, (c+2)/(2cL)); the parameter values are c = 20,

L = 150.

3 Methods

In this section, we propose two methods to identify the number of sources. As shown
above, the rank of S is closely related to the number of sources. The rank of S
is precisely equal to the number of sources if the unimodal property holds, and no
rank-degeneracy is induced due to the summing of the contributions of the multiple
sources, such as co-linearity. Therefore, determining the number of sources can be
posed as finding a low-rank representation of M .

Our first method exploits the idea of rotation as proposed in [2] to mitigate the
possibility of rank-degeneracy and thus improve performance. In the second strategy,
we develop a heuristic method that considers multiple rotations and computes a
statistic based on summing the dominant singular values obtained from each rotation.
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3.1 Method I: Variance ratio statistics with optimal rotation

Herein, we adapt our prior statistical analysis in [6] to the signal model herein Equa-

tion (1). Let M,S ∈ Rn1×n2 , r∗ = rank(S), and assume εi,j
i.i.d.∼ N(0, σ2), ∀(i, j) ∈ Ω.

In practice, the variance of the noise is often unknown and needs to be estimated.
In [7], a method to estimate the σ2 and determine the rank heuristically is proposed.
In contrast, here, we propose a statistic that does not depend on the scale of σ2 and
derive the asymptotic distribution. Therefore, we can provide a statistical hypothesis
test for the rank.

To construct the statistic, we sub-sample from Ω to create a sequence of observa-
tions sets, such that Ω = Ω0 ⊃ Ω1 ⊃ · · · ⊃ ΩL and |Ωi| − |Ωi−1| = c, ∀1 ≤ i ≤ L,
where L is the number of times we sub-sample and c is the number of observations
we “leave-out” in between two consecutive sets.

Let SSEl denote the residual of the matrix completion solution at rank-r:

SSEl = min
Y :rank(Y )=r

∑
(i,j)∈Ωl

(Mij − Yij)2 . (2)

According to Proposition IV.3 in [6], if r = r∗, as σ2 → 0,

Zl
σ2

=
SSEl−1 − SSEl

σ2
→ χ2(c), ∀1 ≤ l ≤ L.

Let

σ̂2
1(Z) =

∑L
l=1 Zl
cL

, (3)

and

σ̂2
2(Z) =

√∑L
l=1(Zl − Z̄)2

2cL
, (4)

where Z = (Z1, . . . , ZL) and Z̄ = (
∑L

l=1 Zl)/L. We essentially use the method of
moments to estimate the σ2

i : the first moment in Equation (3) for σ̂2
1 and the second

moment in Equation (4) for σ̂2
2.

From the law of large numbers, we have that σ̂2
1 → σ2 and σ̂2

2 → σ2, as L → ∞.
From our numerical results, we observe that when the matrix approximation problem
in Equation (2) is solved with the estimated rank smaller than the true rank, we
tend to have σ̂2

2 > σ̂2
1. Therefore, we propose to use σ̂2

2/σ̂
2
1 as the test statistic. In

the experiments, we used singular-value-thresholding algorithms [8]. However, the
results are independent of the choice of the algorithm as long as it provides a good
approximation for (2). Fig. 1b confirms that our asymptotic analysis in Theorem 1
matches well with the simulated result.

Theorem 1 (Asymptotic distribution of variance ratio test statistic). Suppose Z1, . . . , ZL
are i.i.d. random variables, and Z1/σ

2 ∼ χ2(c). Then, σ̂2
1 and σ̂2

2 defined in (3) and
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(4), respectively, satisfy√
cL

2

(
σ̂2

2(Z)

σ̂2
1(Z)

− 1

)
d→ N

(
0,
c+ 2

4

)
,

as L→∞.
d→ denotes convergence in distribution.

Since the parameters of sub-sampling, c and L, which are defined above (2), are
known in practice, we can control the type-I error by choosing the threshold by The-
orem 1. Notice that σ̂2

1 and σ̂2
2 are dependent. Theorem 1 suggests a rank-estimation

strategy: for each assumed rank r, we form the statistics and select the smallest r
such that the statistic fails to reject the null hypothesis. Details are provided in
Algorithm 1.

Algorithm 1: Rank detection with variance ratio.

Input: M , Ω, rmax, c, L, b.
r̂, r = 0;
while r + 1 < rmax do

r = r + 1;
compute σ̂2

1 and σ̂2
2 as in eq. (2), (3) and (4);

if σ̂2
2/σ̂

2
1 < b then

r̂ = r;
end

end
Result: r̂

3.1.1 Relative efficiency

Notice that σ̂2
1(Z) and σ̂2

2(Z) are dependent. One can construct two independent
estimates by performing more sub-sampling, i.e. Ω = Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ω2L. Let
Z1:L denote the first half of (Z1, . . . , Z2L) and ZL+1:2L denote the second half. Then
σ̂2

1(Z1:L) and σ̂2
2(ZL+1:2L) are independent. The following proposition shows that our

proposed variance ratio statistic σ̂2
2(Z1:L)/σ̂2

1(Z1:L) is asymptotically more efficient
than σ̂2

2(ZL+1:2L)/σ̂2
1(Z1:L), i.e. the asymptotic variance of our proposed statistic is

smaller.

Proposition 2 (Alternative variance ratio statistic). Suppose Z = (Z1, . . . , ZL) and
X = (X1, . . . , XL), where Zi and Xi are i.i.d. random variables, and

Z1

σ2

d
=
X1

σ2
∼ χ2(c),

σ̂2
1 and σ̂2

2 are constructed as in (3) and (4), respectively. Then as L→∞, we have√
cL

2

(
σ̂2

2(Z)

σ̂2
1(X)

− 1

)
d→ N

(
0,
c+ 10

4

)
.
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Comparing Theorem 1 with Proposition 2, we can conclude that σ̂2
2(Z)/σ̂2

1(Z)
is asymptotically more efficient than σ̂2

2(Z)/σ̂2
1(X). In practice, we only have a

limited number of observations and can not sub-sample many times. With Theorem
1 and Proposition 2, we have shown that we can construct a better statistic, with
fewer samples, and attain improved performance by exploiting the dependence of the
statistics in the numerator and estimator of our test.

3.1.2 Rotation

In [2], it is observed that colinearity of sources can lead to rank degeneracy, and
thus the number of sources may be larger than the rank of S. It was further shown
in [2], that rotations can mitigate this issue and improve performance. Thus, herein
we consider multiple rotations of various degrees, and E is a permutation matrix
if and only if each row and column contains a single non-zero component of value
one. Rotating a matrix A ∈ RN×N with degree θ can be achieved in the following
way: A(θ) = vec−1(Eθvec(A)), where vec(A) is the vectorization of A which stack
columns of A in a vector, vec−1 is the inverse function of vec, and Eθ ∈ RN2×N2

is
the permutation matrix corresponding the degree θ.

As stated previously, to avoid rank-degeneracy when applying the statistic in
Theorem 1, we need to look for a rotation such that most of the sources are not co-
linear. We employ the following strategy as suggested in [2] to determine the optimal
rotation,

θopt = arg min
θ

λ2
1(H(θ))∑N

k=1 λ
2
k(H(θ))

, (5)

Numerical results suggest that the optimal rotation achieves the goal of avoiding
rank degeneracy with high probability; furthermore, theu se of θopt further improves
the performance of our detector (see Theorem 1). As a validating example, we ex-
amine the effect of rotatint the partially observed matrix by θopt in (5), the optimal
degree. Define θmax = arg maxθ ρ(θ). Figure 2 shows the matrix after rotation with
degree θopt and θmax, respectively. We can see rotation with θopt avoids the alignment
of the sources; whereas rotating with θmax actually aligns the sources leading to rank
degeneracy.

3.2 Method II: Averaging effects of rotations

Instead of looking for an optimal rotation, we can rotate the matrix with multiple
different degrees. For each rotation, matrix completion via nuclear norm minimization
is conducted and the first few dominant singular values are computed. The resultant
singular values are averaged over the multiple rotations. This averaging reduces the
effect of degeneracy by reducing the effects of “bad degrees.” This is a heuristic
approach that can be applied even when the statistical conditions of the previous
approaches do not hold. Fig. 3 shows the result for 100 rotation degrees. We clearly
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Figure 2: Left: Rotation with degree θopt. Right: Rotation with degree θmax.

see that that there are K dominant singular values for K sources, where K = 3, 4
respectively.

Algorithm 2: Rank detection with averaging rotations.

Input: M , Ω, n, D, b, rotation degrees (θ1, . . . , θD).
while i ≤ D do

rotation M with θi degree;
complete M with nuclear-norm minimization;
compute first n singular values: λi,1, λi,2, . . . , λi,n;
i = i+ 1

end

Result: r̂ = min
{
r,

∑D
j=1

∑r
i=1 λj,i∑D

j=1

∑n
i=1 λj,i

> b
}

Figure 3: Sum of first 20 singular values of 100 rotation degrees. Left: K = 3. Right:
K = 4.
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4 Experiments

4.1 Theory validation for exact low rank matrix

In this experiment, we show the distribution of our proposed statistics, when the
data comes from the low rank matrix model in [7], i.e. Mi,j = Yi,j + εi,j, ∀(i, j) ∈ Ω
and Y is a low rank matrix. We performed 200 experiments. In each experiment,
a rank-3 matrix Y ∈ R100×100 is generated and Ω is uniformly randomly chosen, s.t.
|Ω| = 7500. εi,j ∼ N (0, 1). Then, we compute the proposed statistics, under the
assumption that the rank varies from to 1, . . . , 4, with c = 30 and L = 100. In Fig.
4, we show the empirical density estimates of our proposed statistics for each rank.
When r = 3, which is the actual rank, by Theorem 1, our proposed statistics can be
approximated by a normal random variable with mean 1, and variance equal to 0.005.
Fig. 4 shows a good fit for the empirical density corresponding to the true rank. For
the rank less than the true rank, the density is well separated from the density with
true rank. However, when the rank is larger than the true rank, it is not. Therefore,
by choosing the smallest rank such that the p-value of proposed statistic is larger
than some threshold, we can find the true rank with high probability.

Figure 4: A low-rank matrix with r∗ = 3: Solid lines: empirical density estima-
tion at each rank with 200 experiments. Dash line: probability density function of
N (1, 0.005), which is the asymptotic approximation by Theorem 1. Clearly, it is a
good fit when we compute our proposed statistics with the true rank.

4.2 Determining number of sources in energy field

We next examine the efficacy of our method for detecting the number of sources via
the confusion matrix and the F1 score. Given multiple classes, we use the average F1
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score in [9], which is defined as follows:

Pi =
sii∑4
x=1 six

, Ri =
sii∑4
x=1 sxi

, F1 =
1

2

3∑
i=2

2PiRi

Pi +Ri

,

where i is the estimated number of sources, j is the true value and sij denotes the
number of occurences wherein the method estimates j sources given i. We consider
both isotropic and skew energy sources.

• Isotropic sources: For isotropic sources, the sampled energy is purely range-
dependent and thus independent of the rotation of the coordinator. In this
experiment, we generate the energy field as the following. afdB = 0.11×f 2/(1+
f 2) + 44 × f 2/(4100 + f 2) + 2.75 × 10−4 × f 2 + 0.003 with f = 5. a(x) =
d(x)α × 10−afdB/10×d(x), P (x) = p/(a(x) + 1), where α = 3 and p = 6. The field
is square with diameter 15 km.

• Skew sources: To generate the energy field with skew sources, we use the bivari-
ate skew-normal distribution. According to Section 3 of [10], δ1, δ2 and ω are the
parameters to control the skewness. Figure 5 displays examples of skew sources.
In all experiments, δ1, δ2and ω are generated uniformly from [−0.25, 0.25] for
each energy source.
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Figure 5: Skewed energy source modeled by bivariate skew-normal distribution. Left:
δ1 = δ2 = 0.8, ω = −0.5. Right: δ1 = δ2 = 0.35, ω = −0.25.

All the experiments are repeated 200 times each for the number of sources K∗ =
2, 3. The standard variance of ambient noise is 0.01. The number of sensors is 4500,
and we map them onto a matrix M ∈ R100×100. Notice that with the mapping,
|Ω| ≤ 4500. Our proposed methods are compared with a baseline method.

• Baseline method: Zero filling. We apply singular value decomposition to the
observation matrix M in eq.(1) and determine the number of source by thresh-
olding the percentage of leading singular values, i.e., given threshold b, the esti-
mated number of source of baseline method, r̂BL = min

{
r,
∑r

i=1 λi/
∑100

i=1 λi >
b
}

.
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Table 1: Confusion matrices of detection statistics.

isotropic sources skew sources
b 1 2 3 4 F1 b 1 2 3 4 F1

I
2

2.25
0 192 0 0 0.98

1.57
0 192 6 1

0.97
3 1 0 193 0 (0.87) 3 0 196 1

II
2

0.8
0 200 0 0

1.00 0.82
0 200 0 0

1.00
3 0 0 200 0 0 0 200 0

BL
2

0.42
0 106 94 0

0.68 0.575
0 121 79 0

0.62
3 0 30 170 0 0 71 129 0

• Method I: Variance ratio statistic with optimal rotation. In each experiment,
we find the optimal rotation first, and then apply Algorithm 1 with rmax = 4,
c = 2 and L = 750.

• Method II: Averaging effect of rotation. In each experiment, we apply Algorithm
2 with n = 20, D = 20 and θi = (i− 1)π/(2D), ∀i = 1, . . . , 20.

Results for isotropic and skew sources are provided in Table 1. The roman numerals
indicate: I - variance ratio statistic with optimal rotation; II - averaging over multiple
rotations; and III - zero padding, matrix completion and thresholding, the baseline
approach.

For the isotropic sources, the methods I, II, and baseline thresholds are 2.25, 0.8,
and 0.42, respectively. For the skew sources, the thresholds of the Methods I, II, and
baseline are 1.57, 0.82, and 0.575, respectively. For both types of energy sources,
the proposed methods outperform the baseline. Furthermore, the use of the optimal
rotation for isotropic sources also offers an improvement over no rotation. The F1

score of it is shown in parenthesis, and the detailed results are shown in table 2 in
the appendix.

5 Conclusions

This paper has presented several statistical detectors to determine the number of
sources under the assumption of unimodal matrix models for each source. We have
computed the asymptotic distributions of a new variance ratio statistic and assessed
its performance gain relative to a baseline scheme that does not exploit unimodality.
Our methods have the F1 score around 1, while the baseline method has the F1 score
around 0.65. We also exploit a rotation method to improve performance. Optimal
rotation has further significantly improved the performance (the F1 score from 0.87
to 0.98).
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7 Appendix

7.1 Proof of Theorem 1

Proof. Let V = σ̂2
1(Z)/σ2 andW = σ̂4

2(Z)/σ4. By central limit theorem and Slutsky’s
theorem [11], we have

√
L

((
V
W

)
−
(

1
1

))
d→ N (0,Σ),

where

Σ =

2
c

4
c

4
c

2 + 12
c

 .
Define f(V,W ) =

√
W/V , and let ∇f denotes the gradient of f ,

∇f(V,W ) = (−
√
W/V 2,W− 1

2/(2V ))>.

Therefore, by delta method [11], we have
√
L(f(V,W )− 1)

d→ N (0,Σf ),

where

Σf = ∇f(1, 1)>Σ∇f(1, 1) =
c+ 2

2c
.

7.2 Proof of Theorem 2

Proof. Let V = σ̂2
1(Z)/σ2 and W̃ = σ̂4

2(X)/σ4. With similar approach in the proof
of theorem 1, we have

√
L

((
V

W̃

)
−
(

1
1

))
d→ N (0, Σ̃),

where

Σ̃ =

2
c

0

0 2 + 12
c

 .

Define f(V, W̃ ) =

√
W̃
V

, then we have
√
L(f(V, W̃ )− 1)

d→ N (0, Σ̃f ),

where

Σ̃f = ∇f(1, 1)>Σ̃∇f(1, 1) =
c+ 10

2c
.
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Table 2: Confusion matrix of variance ratio statistics without rotation.

b = 2.25 (no rotation) 1 2 3 4 F1

K∗ = 2 5 156 0 0
0.87

K∗ = 3 0 18 171 0
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