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Abstract

The issue of combining individual p-values to aggregate multiple small effects is a long-

standing statistical topic. Many classical methods are designed for combining independent

and frequent signals using the sum of transformed p-values with the transformation of light-

tailed distributions, in which Fisher’s method and Stouffer’s method are the most well-known.

In recent years, advances in big data promoted methods to aggregate correlated, sparse and

weak signals; among them, Cauchy and harmonic mean combination tests were proposed to

robustly combine p-values under ”arbitrary” dependency structure. Both of the proposed

tests are the transformation of heavy-tailed distributions for improved power with the sparse

signal. Motivated by this observation, we investigate the transformation of regularly varying

distributions, which is a rich family of heavy-tailed distribution, to explore the conditions

for a method to possess robustness to dependency. We show that only an equivalent class of

Cauchy and harmonic mean tests has sufficient robustness to dependency in a practical sense.

We also show an issue caused by large negative penalty in the Cauchy method and propose

a simple, yet practical modification with fast computation. Finally, we present simulations

and apply to a neuroticism GWAS application to verify the discovered theoretical insights.

Keywords: p-value combination method; combining dependent p-values; regularly varying

distribution; global hypothesis testing.

2



1. INTRODUCTION

Combining p-values to aggregate information from multiple sources is a long-standing issue in

social science and biomedical research. Classical methods mostly focus on combining multiple

independent and frequent signals to increase statistical power, which can be viewed as a type

of meta-analysis. Consider the combination of n independent p-values, ~p = (p1, ..., pn). Many

earlier methods were developed in the form of statistics T (~p) =
∑n

i=1 g(pi) =
∑n

i=1 F
−1
U (1−pi)

to sum up transformed p-values, where the transformation g(p) is the inverse CDF of U .

Conventional methods in this category include Fisher’s method (Fisher, 1932) with T =∑n
i=1−2 log(pi) using U as a chi-squared distribution and Stouffer’s method (Stouffer et al.,

1949) with T =
∑n

i=1−Φ−1(pi) using U as a standard normal distribution, among many

other choices of g(p) and their corresponding U in the literature (Edgington, 1972; Pearson,

1933; Mudholkar and George, 1979). This first category of methods aims for classical meta-

analysis to combine independent and relatively frequent signals and it applies light-tailed

distribution (i.e. tails thinner than an exponential function) for U . Efficiency of a method

is mostly considered under the asymptotic framework that the number of p-values n is fixed

and sample size m to derive each p-value goes to infinity, where p = O(e−m) in most cases.

Under this setting, it has been shown that only the equivalent class of Fisher’s method is

asymptotically Bahadur Optimal (ABO), meaning the efficiency of the combined p-value

statistics is asymptotically optimal under fixed n and m→∞ (Littell and Folks, 1971).

In the rise of big data, many scientific questions have turned to combine p-values with

large n. The seminal paper by Donoho et al. (2004) established a framework of combining

p-values with weak and sparse signals and proposed the higher-criticism test with asymptot-

ically optimal property. This second category of methods considers n→∞ and only a small

number s of the n p-values (s = nβ where 0 < β < 1
2
) have weak signals (p = O(n−r/ log

1
2 n)

with 0 < r < 1) while all remaining p-values have no signal (i.e. p
D∼ unif(0, 1)). Under this

setting, the classical minimum p-value method (minP ) T = min1≤i≤n pi is asymptotically
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optimal only for 0 < β < 1/4 while higher criticism is asymptotically optimal for all possible

0 < β < 1/2. Several methods, including Berk-Jones test (Berk and Jones, 1979; Li et al.,

2015), were subsequently proposed to improve finite-sample power of higher-criticism while

maintaining the asymptotic efficiency.

All aforementioned methods were developed to combine independent p-values. Many

modern large-scale data analyses have generated the need of combining a large number of

dependent p-values with sparse and weak signals, which we categorize as methods for the

third category. A notable application is to combine p-values of multiple correlated SNPs

(can be tens to hundreds or thousands) in a SNP-set (e.g. all SNPs in a gene region or in

gene regions of a pathway) in genome-wide association studies (GWAS). In this case, the

neighboring SNPs often pose varying degrees and unknown dependency structures. Efforts

have been made to extend existing tests to account for dependency using permutation or

other numerical simulation approaches (e.g. Liu and Xie, 2019). Permutation or simulation-

based methods are, however, not practical when n is large and high precision of p-value

is needed to account for multiple comparison. Barnett et al. (2017) developed an analytic

approximation for higher criticism incorporated with dependency structure. The method is,

however, still computationally intensive and not accurate enough for small p-values needed

for multiple comparison. Motivated by these needs, Liu and Xie (2020) and Wilson (2019)

independently proposed Cauchy combination test (T =
∑n

i=1 tan{(0.5−pi)π}) and harmonic

mean combination test (T =
∑n

i=1
1
pi

) to combine p-values under unknown dependency

structure. A remarkable property of both methods is that the null distribution and testing

procedure derived from independence assumption are robust under dependency structure

in an asymptotic but practical sense to be explained later. In this paper, we set out to

explore a rich family of transformation g(p) from their corresponding U (i.e., the regularly

varying distribution family) and investigate the conditions such that practical robustness

to dependency similar to Cauchy and harmonic mean methods can be achieved. We note
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that selections of U for classical meta-analysis setting (fixed n and m → ∞) are all from

thin-tailed distributions (e.g. chi-squared distribution for Fisher’s method and Gaussian

for Stouffer’s method). This is reasonable since a thin-tailed distribution produces evener

contributions from marginally significant p-values in the meta-analysis of frequent signals.

In contrast, Cauchy and harmonic mean methods correspond to heavy-tailed distributions

of U , which highly focus on small p-values and down-weigh marginally significant p-values.

Figure 1 shows the transformation function of g(p) in log-scale. For Fisher’s method, the

contributions of p-values 10−2 and 10−6 to the test statistics are 4.6 and 13.8. For heavy-

tailed transformation methods, the contributions become 100 versus 106 for harmonic mean

and 31.82052 versus 3.18 × 105 for Cauchy. With an increased focus on small p-values, the

methods are more powerful in detecting sparse signals. It is worth noting that the recent

work by Vovk and Wang (2020) also considered the sum of transformed p-values to combine

p-values and showed an upper bound of significance level inflation under general dependence

structure. We will describe the difference between our results and theirs in detail in the

remark following Theorem 2.

Throughout this paper, when we call a thin-tailed, heavy-tailed or regularly varying

method, it means that its corresponding U is a thin-tailed, heavy-tailed or regularly varying

distribution. The paper is structured as the following. We first investigate Box-Cox trans-

formation for g(p) in Section 2, which is equivalent to Pareto distribution for U . In Section

2.1, we will build connection and insight of existing methods including minP , harmonic

mean, Cauchy and Fisher in this framework. Particularly, we show that the Cauchy method

is approximately equivalent to the harmonic mean method, which is a special case of the

Box-Cox transformation. In Section 2.2, we observe that the Cauchy method can poten-

tially suffer from the large negative penalty for p-values close to 1. We introduce a simple,

yet practical solution using truncated Cauchy with fast computing. In Section 3, we will

introduce a family of heavy-tailed distribution, namely regularly varying distribution, and

5



investigate the conditions in the family that can provide robustness for dependency structure

as in Cauchy and harmonic mean (Section 3.1-3.2). Section 3.3 shows the asymptotic power

and detection boundary under the sparse and weak alternatives considered in Donoho et al.

(2004). Section 4 contains extensive simulations to demonstrate type I error control and

power of different methods and numerically verify the theoretical results. Section 5 contains

a GWAS application of neuroticism to compare the performance of different methods and

demonstrate the improvement of the truncated Cauchy method over the Cauchy method.

Section 6 provides the final conclusion and discussion.

2. CONNECTION BETWEEN MINP, HARMONIC MEAN, CAUCHY AND FISHER

2.1 Methods by Pareto distribution to connect four existing methods

As mentioned in Section 1, we observe that many methods for the first category to combine

independent and relatively frequent p-values all correspond to thin-tailed distributions for

U and many methods for the second and third categories for combining sparse and weak

signals utilize heavy-tailed distributions. In this subsection, we consider Pareto distribution

for U , which is equivalent to Box-Cox transformation for g(p). We will build the connection

of four existing methods: minP , harmonic mean, Cauchy and Fisher, based on this trans-

formation family. Insight in Pareto distribution also provides intuition when we introduce

the regularly varying distribution as an extended richer family in the next section. Finally,

we will prove the approximate equivalency of the harmonic mean and Cauchy combination

methods. Consider the family of p-value combination methods: T =
∑n

i=1 g(pi), where

g(p) = 1
pη

for some η > 0. We can show that g(p) = F−1
U (1− p) such that U

D∼ Pareto( 1
η
, 1).

In other words, P (U > t) = t−
1
η for t > 1, which means U is a heavy-tailed distribution.

A larger η corresponds to a heavier tail. Particularly, the harmonic mean method corre-

sponds to η = 1 in Pareto distribution. We note that, by denoting λ = −η, we can rewrite

h(p;λ) = g(p;η)−1
λ

= pλ−1
λ

, which is Box-Cox transformation. The following Proposition 1
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shows that minP and Fisher are limiting cases in the Pareto distribution when η → +∞ and

when η → 0. Proposition 2 shows that the Cauchy combination method is approximately

identical to harmonic mean for relatively small p-values.

Proposition 1. For fixed n, minP is a limiting case of methods by Pareto distribution when

η →∞. Similarly, the Fisher’s method is the limiting case of Pareto when η → 0.

Proof. Denote by Tγm =
∑n

i=1
1

pγmi
=
∑n

i=1
1

pγm
(i)

, where p(i)’s are ordered p-values. Note

that Tγm is equivalent to T ∗γm =
(∑n

i=1
1

pγmi

) 1
γm

= 1
p(1)

(∑n
i=1

(
p(1)
p(i)

)γm) 1
γm

. As γm → ∞,

T ∗γm →
1
p(1)

, which is equivalent to minP .

To prove the result of Fisher’s method, note that Tγm is equivalent to T ∗∗γm =
∑n

i=1
p−γmi −1

−γm .

By L’Hospital’s rule , we have limγm→0
p−γm−1
−γm = log(p). Hence T ∗∗γm →

∑n
i=1 log(pi) almost

surely and is equivalent to the Fisher’s method.

Proposition 2. The Cauchy combination test is approximately identical to harmonic mean

for relatively small p-values in the sense that, π·g(CA)(p)−g(HM)(p)

g(HM)(p)
= O(p2).

Proof. By Taylor’s expansion, g(CA)(p) = tan {(0.5− p)π} ≈ 1
πp
− πp

3
− (πp)3

45
+ · · · . The result

immediately follows.

It is somewhat surprising that even though the forms of transformation of Cauchy and

harmonic mean are quite different, they are approximately equivalent and the behavior of

both can be characterized by the index η = 1 of the Box-Cox transformation. It is natural

to ask if there exist other p-value combination methods in an extended rich heavy-tailed

distribution family to enjoy similar finite-sample robustness property as in the Cauchy and

harmonic mean methods. To answer this question, we introduce the family of regularly

varying distribution and investigate the properties in Section 3.

Figure 1 shows minus log-scaled p transformation g(p) versus minus log-scaled transfor-

mation g(p) for the BC0.5 (i.e. Box-Cox transformation with η = 0.5), HM (the harmonic

7



● ● ●
●

●

●
●

●
●

●
●

●
●

●
●

●

0

5

10

15

20

25

4 8 12 16
−log(p)

lo
g(

g(
p)

)

Methods
● BC0.5

BC1.0
BC1.5
CA
Fisher
Stouffer

Figure 1: Comparison of transformations. We show 6 different transformations of p-values,
g(p), which correspond to BC0.5, BC1 (HM), BC1.5, CA, Fisher and Stouffer. The x-axis
is − log(p) and the y-axis shows log(g(p)).

mean method, equivalent to BC1), CA (the Cauchy method), BC1.5, Fisher’s and Stouffer’s

methods. We see that as η increases, smaller p-values will be more dominant and impact

of marginally significant p-values rapidly diminishes, which gives stronger power for sparse

signal applications. CA and HM are approximately proportional when p sufficiently small

(roughly when p < 10−2).

2.2 Large negative penalty issue in Cauchy and a truncated Cauchy modification

We have shown that HM and CA are approximately equivalent and simulations in Section

4.2 will confirm their almost identical performance. We note that when a p-value is very

close to 1, the contribution in the Cauchy method is close to negative infinity, which can

potentially cause numerical issues and substantial power loss. The situation of a p-value

closes to 1 can happen frequently for tests of discrete data, in which case the p-values under

null hypothesis may not necessarily be unif(0, 1).Two other possible situations to cause p-

values close to 1 are when n is large or when the model to derive p-values are mis-specified.
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As a simple remedy, we propose a truncated Cauchy test (CAtr) that truncates any of the

n p-values greater than 1 − δ to be 1 − δ. For example, when δ = 0.01, we have ptr = p if

p < 0.99 and ptr = 0.99 if p ≥ 0.99. The proposed method can also be viewed in the form of

summation of transformed p-values. Indeed, the statistic of CAtr can be written as:

TCAtr =
n∑
i=1

tan

(
π

(
1

2
− pi

))
1(pi < 1− δ) + tan

(
π

(
δ − 1

2

))
1(pi ≥ 1− δ).

The theorems to be introduced in Section 3 imply that CAtr enjoys almost the same

advantages of the Cauchy method in terms of type I error control and power for the detection

of weak and sparse signals. The test statistic of CAtr no longer follows the standard Cauchy

distribution under the null assumption. To deal with the computational issue of the truncated

Cauchy method, we propose a hybrid strategy, which uses approximation by generalized

central limit theorem (GCLT) in general but switches to an efficient importance sampling

procedure by cross-entropy parameter selection when n is small (n < 25) and the targeted

size is large (α ≥ 5× 10−3).

Below we first show that when n is sufficiently large, we can apply generalized central

limit theorem (GCLT) from Shintani and Umeno (2018) to approximate the null distribution

of TCAtr below.

Proposition 3. Let νδ = tan
(
π(δ − 1

2
)
)
, f1n =

∫ +∞
νδ

cos(x/n)
(1+x2)

, f2n =
∫ +∞
νδ

sin(x/n)
(1+x2)

and θn =

arctan
(
δ sin(νδ/n)+((1−δ)/π)f2n
δ cos(νδ/n)+((1−δ)/π)f1n

)
. Then we have:

TCAtr − n2θn
n

d−→ S(1, 1,
1

2
, 0),

where S(α, β, γ, µ) is a stable distribution with parameters α = 1, β = 1, γ = 1
2

and µ = 0,
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which is defined with its characteristic function as:

S(x;α, β, γ, µ) =
1

2π

∫ ∞
−∞

φ(t)e−ixt dt,

with φ(t) = exp {iµt− γα|t|α(1− iβ sgn(t)w(α, t))} and

w(α, t) =

 tan(πα/2) if α 6= 1

−2/π log |t| if α = 1.
.

Remark:

Proposition 3 can be obtained by simple calculation using formula (4) in Shintani and

Umeno (2018). Table S1 examines the approximation performance of GCLT for small n

and varying size α. The result shows satisfying accuracy when α < 5 × 10−3. When

α ≥ 5 × 10−3, GCLT needs larger n to perform well (roughly n ≥ 25). As a result, we

develop an efficient importance sampling procedure for this scenario. Briefly, Proposition

4 below gives narrow upper and lower bounds for the tail probability of truncated Cauchy.

By applying the framework proposed by De Boer et al. (2005) for estimating rare event

probability, we develop a cross-entropy procedure to search within the narrow bounds for

a high-precision approximation for the tail probability of the truncated Cauchy. Details of

the efficient importance sampling are shown in Supplement Section S2.2. Table S1 further

shows the accurate calculation of the importance sampling with affordable computing when

n < 25. In summary, when calculating p-values for CAtr, to balance the computing and

performance, we propose to set δ = 0.01 and use GCLT approximation when α < 5 × 10−3

or n ≥ 25. When α ≥ 5 × 10−3 and n < 25, importance sampling will be used. In Section

4.3 and Section 5, we will demonstrate the superior performance of truncated Cauchy over

Cauchy using simulations and a real application. Specifically, it avoids the large negative

penalty issue of the Cauchy method but still enjoys similar robust properties for type I error
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control under dependency and power for detecting weak and sparse signals.

Proposition 4. Let 1 − δ be the truncation point of truncated Cauchy test. The upper tail

probability of the null distribution of the truncated Cauchy method satisfies:

P (X1 ≥ t) ≤ P (TCAtr > t) ≤ P (X1 ≥ t) (1 + δ)n ,

where X1 is a Cauchy distributed random variable.

3. ASYMPTOTIC PROPERTIES OF REGULARLY VARYING METHODS FOR

P -VALUE COMBINATION

3.1 Regularly varying tailed distribution

Before introducing the regularly varying distributions, we first define some notations. Through-

out this paper, denote by F̄ the survival function of the distribution F (i.e., F̄ (t) = 1−F (t)

for any t). Limits and asymptotic properties are assumed to be for t→∞ unless mentioned

otherwise. For two positive functions u(·) and v(·), we write u(t) ∼ v(t) if limt→∞
u(t)
v(t)

= 1.

Also, if limt→∞
u(t)
v(t)

> 1, we write u(t) & v(t); if limt→∞
u(t)
v(t)

< 1, we write u(t) . v(t). The

definition of regularly varying tailed distribution is given below:

Definition 1. A distribution F is said to belong to the regularly varying tailed family with

index γ (denoted by F ∈ R−γ) if

lim
x→∞

F̄ (xy)

F̄ (x)
= y−γ

for some γ > 0 and all y > 0.

We denote the whole family of regularly varying tailed distributions as R. It can be
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shown that every distribution F belonging to R−γ can be characterized by

F̄ (t) ∼ L(t)t−γ,

where L(t) is a slowly varying function. A function L is called slowly varying if limy→∞
L(ty)
L(y)

=

1 for any t > 0. Some examples of slowly varying functions L(t) are 1, ln(t)ν , ln(ln(t)).

Given the property of slowly varying function L(t), the tail of regularly varying distribution

converges to zero at a relatively slow rate, which leads to the heavy-tailed property.

The regularly varying tailed family includes many interesting distributions: Pareto dis-

tribution, Cauchy distribution, log-gamma distribution and inverse gamma distribution. In-

deed, the survival function of Pareto(a,b) is F̄ (t) = b
ta
, t > b and hence U ∈ R−a. In

addition, the survival function of Cauchy distribution is F̄ (t) ∼ 1
tπ

and therefore U ∈ R−1.

An important property for regularly varying tailed distributions is as follows: Assume

U1, . . . , Un are i.i.d. random variables with distribution function F ∈ R−γ. Then

P (U1 + . . .+ Un > t) ∼ nP (U1 > t). (1)

3.2 Asymptotic tail probability approximation and robustness to dependence

The first theorem below investigates the approximation of the null distribution of the test

statistic. Assume that the p-values are obtained from z-scores; that is, all the test statis-

tics follow normal distributions. Specifically, let X = (X1, . . . , Xn) be the random vector

(z-scores) for the n test statistics. The mean of X is µ = (µ1, . . . , µn) and correlation matrix

Σ. Since we can always rescale test statistics, we assume each Xi has variance 1. Un-

der the null hypothesis, H0 : µi = 0,∀i = 1, . . . , n, hence the p-value for the ith study is

pi = 2(1−Φ(|Xi|)) for i = 1, . . . , n. Recall from the introduction section, we consider the test

statistic T (X) =
∑n

i=1 g(pi) =
∑n

i=1 g(2(1−Φ(|Xi|))), which is a sum of transformed p-values.
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When pi
D∼ unif(0, 1) under the null hypothesis, g(pi) is a random variable, where we denote

g(pi)
D∼ U , which is consistent with previously introduced relationship g(pi) = F−1

U (1 − pi)

when U is a continuous random variable. We further assume the following conditions for

T (X):

(A1) ∀1 ≤ i < j ≤ n, Xi and Xj are bivariate normally distributed.

(A2) Let Ui = g(pi), i = 1, . . . , n. with Ui
D∼ U ∈ R−γ under H0. Assume the function g(p)

is continuous and g(p) satisfies one of the two situations: (A2.1) g(p) is strictly decreasing

in (0, 1); (A2.2) g(p) is bounded below (i.e., g(p) > c′ for certain constant c′) and is strictly

decreasing on in (0, c) with some constant 0 < c < 1.

(A3) (balance condition) Under H0, let F be the CDF of U and G(t) = P (|U | > t) = t−γL(t)

where L(t) is a slow-varying function. Assume F̄ (t)
G(t)
→ p and F (−t)

G(t)
→ q as t → ∞, where

0 < p ≤ 1 and p+ q = 1.

Condition (A1) is mild and is also assumed in Liu and Xie (2020) when investigating

the robustness of the Cauchy method under arbitrary correlation structure. In fact, this

condition is to guarantee the tail distributions of each pair of Ui and Uj are asymptotically

independent; see the precise definition of asymptotically tailed independence for a pair of

random variables in the Supplement.

Condition (A2) includes the Box-Cox transformation (satisfying A2.1), Cauchy transfor-

mation (satisfying A2.1) and truncated Cauchy transformation (satisfying A2.2) introduced

in Section 2.2. Condition (A3) is called ”balance condition”, which is a common condition

for regularly varying tailed random variables (Goldie and Klüppelberg, 1998). For example,

for the harmonic mean method, p = 1, q = 0; for the Cauchy method, p = q = 1/2, and for

the truncated Cauchy method, p = 1, q = 0.

Theorem 1. Under conditions (A1), (A2) and (A3) and assume ρij, 1 ≤ i < j ≤ n, the

(i, j)th element of Σ, satisfies −1 < ρij < 1. Then under H0 : µ = 0 and for any correlation

13



matrix Σ, We have

P (T (X) > t) ∼ nP (U > t).

Here T (X) =
∑n

i=1 Ui is the sum of correlated regularly varying tailed random variables.

The theorem is somewhat surprising and a general result since it is applicable to any regularly

varying method and any correlation structure Σ with −1 < ρij < 1 as long as no perfect

correlation exists. This theorem is essentially based on Theorem 3.1 in Chen and Yuen

(2009), i.e. Lemma S2 in the Supplement. Roughly speaking, because of the heaviness of

the tail for each Ui and the asymptotic tailed independence between each pair of Ui and

Uj, asymptotically the correlation structure has very limited influence on the tail of T(X).

Since the approximated tail probability is independent of Σ, an immediate application is

to derive the p-value of a regularly varying method under independence assumption (i.e.

P (U1 + · · · + Un > t) with i.i.d. U1, · · · , Un; see Equation (1)). The theorem warrants its

asymptotic robustness to arbitrary dependence structure as similarly shown in the harmonic

mean and Cauchy methods (Wilson, 2019; Liu and Xie, 2020). Or alternatively, one may

approximate the tail probability by nP (U > t). We, however, note that the robustness

to arbitrary dependence structure is in an asymptotic sense, meaning extremely large t

(corresponding to extremely small test size α) may be required for different tail heaviness in

U and correlation structure to guarantee a good approximation.

Below we perform a simple simulation to demonstrate and investigate Theorem 1. Assume

n = 3 and X = (X1, X2, X3) is multivariate normal with unit variance and common pairwise

correlation ρij = ρ (1 ≤ i < j ≤ 3). In this simulation we set ρ = 0, 0.3, 0.6, 0.9 and 0.99.

Here we consider 7 Box-Cox tests, BC0.75, BC0.8, BC0.9, BC1, BC1.1, BC1.25, and BC1.5.

From Theorem 1, we calculate y(α) = nP (U>tα)
P (T (X)>tα)

from simulations, where tα is chosen so

that P (T (X) > tα) = α and α = 10−2, 10−3, 10−4, 10−5. We expect limtα→∞ log (y(α)) = 0

when −1 < ρ < 1. Figure 2A-2E show log10-scale α on the x-axis and the mean log (y(α))

14
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Figure 2: The mean log-scaled y(α) for Box-Cox transformations, inverse gamma and log-
gamma across different significance levels α. (A)-(F) represent the results of Box-Cox trans-
formations with different values of η = 0.75, 0.8, 0.9, 1, 1.1, 1.25, 1.5 for correlation level
ρ =0, 0.3, 0.6, 0.9, 0.99 and 1 respectively. (G) represents the results of inverse gamma
with shape parameter equals 1 and the values of scale parameter across 0.75, 0.8, 0.9, 1,
1.1, 1.25, 1.5 for correlation level ρ = 1. (H) represents the results of log-gamma with rate
parameter equals 1 and the values of scale parameter across 0.75, 0.8, 0.9, 1, 1.1, 1.25, 1.5
for correlation level ρ = 1. The x-axis is the negative logarithm of significance level α to
base 10 where α is set to be 10−2, 10−3, 10−4, 10−5 and the red dash line is the reference line
log(y(α)) = 0 for all the sub-figures.
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on the y-axis for different ρ =(0, 0.3, 0.6, 0.9, 0.99). We note that, as ρ increases, smaller

α will be required to observe a good approximation. Theorem 2 below further characterizes

what would happen if partial of the p-values have perfect correlations ρij = 1 or −1.

Theorem 2. Suppose the conditions (A1), (A2) and (A3) in Theorem 1 hold. Define an

arbitrary weight vector w = (w1, · · · , wn) ∈ Rn
+, Tn,w =

∑n
i=1 wig(pi). Also assume ρij =

1 or − 1 for 1 ≤ i < j ≤ m, and |ρij| < 1 for i > m or j > m. We have:

P (Tn,w (X) > t) ∼

{(
m∑
i=1

wi

)γ

+
n∑

i=m+1

wγi

}
P (U > t).

Consider a special case w = (1, · · · , 1). An immediate consequence of Theorem 2 is that

only when γ = 1 (e.g., HM or CA or CAtr method) can satisfy {(
∑m

i=1wi)
γ+
∑n

i=m+1w
γ
i } =

mγ + (n − m) = n, which produces the asymptotic robustness of Theorem 1. In other

words, Figure 2A-2E already shows a hint that the convergence of Theorem 1 becomes

more and more difficult when ρ increases to almost 1. When some of the p-values have

perfect correlation, only index γ = 1 of the regularly varying distribution can still enjoy the

asymptotic robustness to arbitrary dependence structure. Figure 2F shows an simulation

with ρ = 1, which satisfies the condition of Theorem 2. By assuming w1 = w2 = w3 = 1 and

ρ = 1, we have P (Tn,w (X) > t) ∼ 3γP (U > t). Figure 2F verifies Theorem 2 that only BC1

can reach the convergence limtα→∞ log (y(α)) = 0, showing robustness to perfect correlation.

Although Figure 2E (ρ = 0.99) and Figure 2F (ρ = 1) visually look almost identical, all BC

methods in Figure 2E will eventually converge to 0 as α → 0 by Theorem 1, although very

slowly. On the other hand, in Figure 2F, only BC1 can converge to 0 by Theorem 2.

Corollary 1. Suppose the conditions in Theorem 2 hold and assume
∑n

i=1wi = n, then we
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have: 
P (Tn,w(X) > t) ∼ nP (U > t) if γ = 1,

P (Tn,w(X) > t) & nP (U > t) if γ > 1,

P (Tn,w(X) > t) . nP (U > t) if γ < 1.

From Corollary 1, note that, when w1 = · · · = wn = 1 and the transformation g(p) =

1/p1/γ, the test statistic Tn,w corresponds to the statistic BCη, η = 1/γ. Hence, the BC

tests with η < 1 (i.e., γ > 1) are anti-conservative in this situation; the higher the value of

γ is, the more anti-conservative the test is. This is verified by Figure 2F for BC0.9, BC0.8

and BC0.75 when ρ = 1. As η → 0 (i.e., γ → ∞), BCη is asymptotically equivalent to the

Fisher’s method and is the most anti-conservative under dependence. On the other hand,

for η > 1 (i.e., γ < 1), all the corresponding tests BCη (η > 1) are conservative under

this dependence structure, which is confirmed by Figure 2F for BC1.1, BC1.25 and BC1.5.

In particular, when η → ∞ (γ → 0), BCη becomes minP , which hence is expected to be

very conservative. Figure 2G and 2H verifies that since inverse gamma and log-gamma are

also regularly varying distributions with index γ = 1, they enjoy asymptotic robustness to

correlation structure similar to HM (BC1) and Cauchy even when perfect correlation exists.

Corollary 2. If we further assume −1 < ρi,j < 1,∀1 ≤ i < j ≤ n (i.e., m = 0), then we

have

P (Tn,w > t) ∼
n∑
i=1

wγi P (U > t).

Corollary 2 shows that, among regularly varying methods, only methods with index γ = 1

are robust to weights. Also note that this formula can be considered to be an extension of

Corollary 1.3.8 in (Mikosch, 1999), in which U1, . . . , Un are assumed to be independent

regularly varying distributed random variables.

Remark:

17



Note that the robustness property of Theorem 1 and 2 is similar to (Liu and Xie, 2020;

Wilson, 2019) and only describes the asymptotic behavior of the tail probability of our

proposed family. Indeed, the results of Theorem 1 and 2 only guarantee that the type I

errors of the corresponding tests (γ = 1, equivalent to harmonic mean and Cauchy) can

be well controlled for a small size α given fixed n and Σ. Intuitively, as n increases, a

more stringent cutoff corresponding to a small α is needed to ensure the robustness of type

I error control. An ideal robustness property should be to achieve a uniform upper tail

bound in the sense of P (T (X) > tα) ≤ c · α under any dependence structure Σ, where tα

is the tail threshold when a nominal α is controlled under independence assumption, and

c is independent of n and Σ and is in a reasonable magnitude (e.g., c = 1.5, meaning the

inflation of the type I error is at most 50% in the worst scenario). This uniform bound is,

however, not achievable in general. Vovk and Wang (2020) recently provided a remarkable

uniform bound for arbitrary dependency structure but dependent on n for the HM method:

P (HM > t) ≤ naHMn P (U > t) =
naHMn
t

,where U
D∼ Pareto(1, 1),

where the adjusted factor αHMn is between log(n) and e · log(n) (see Proposition 6 in the

paper). This bound is, however, not practical in general applications since, considering

n = 100 or 1000, the inflation bound αHMn ≥ log(n) is at least 4.6 or 6.9 folds. Furthermore,

the factor αHMn is in comparison to type I error in perfect correlation situation (i.e., ρ = 1),

instead of nominal size α under independence. On this issue, Goeman et al. (2019) pointed

out an extreme case that when n = 105 and Σ has exchangeable correlation ρ = 0.2, HM

has more than three folds of type I error inflation (true type I error=0.164 under nominal

α = 0.05). In Section 4.1, we will perform extensive simulations for a wide range of n and

size α to investigate the limitation and develop a practical guidance for applying the HM

method in daily applications.
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3.3 Asymptotic power

In this subsection, we investigate the asymptotic power and detection boundary of the test

T (X) under sparse alternatives as n → ∞. Consider testing the null hypothesis H0 : µ =

(µ1, · · · , µn) = ~0 for the bivariate normal X. For the alternative, we consider the conventional

”weak” and ”sparse” signals setting in Donoho et al. (2004) by assuming a small number

of the n signals are non-zero with |µi| =
√

2τ log(n) for i ∈ S = {1 ≤ i ≤ n : µi 6= 0} with

|S| = s and 0 < τ < 1, and the rest µi = 0 for i ∈ Sc. In addition, the sparsity of the signals

is at the order of s = nβ with 0 < β < 1
2
.

For Theorem 3 below, in addition to the conditions (A2) and (A3), we need two additional

conditions:

Condition (C1): We assume X
D∼ N(µ,Σ) and assume Σ is a banded correlation matrix;

i.e., its (i, j)th element ρij = 0 for any |i− j| > d0 for some positive constant d0 > 0.

Condition (C2): There exist h ≥ 0 and t1 > 0 such that

1

tγ(ln(t))h
≤ F̄ (t) ≤ (ln(t))h

tγ

for all t > t1.

Condition (C2) is for tail probability of Ui and is a mild condition because F̄ (t) = P (Ui >

t) = L(t)
tγ

(L(t) is a slowly varying function). This condition holds for all the commonly

used distributions we have mentioned so far with regularly varying tails with index γ. In

the Supplement, we show that the BC, Cauchy and truncated Cauchy methods all satisfy

Condition (C2).

Theorem 3. Under conditions (A2), (A3), (C1) and (C2), for any 0 < γ ≤ 1, any signifi-

cance level 0 < α < 1, and τ satisfying
√
τ +
√
β > 1, then under the alternative hypothesis

we have:

lim
n→∞

P (T (X) > tα) = 1,
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where tα is the p-value cutoff.

Theorem 3 states that the power of this test T (X) converges to 1 for any significance

level α > 0 and 0 < γ ≤ 1, or equivalently, that the sum of Type I and II errors goes to zero

given the set-up. Indeed, Theorem 3 implies that the methods with 0 < γ ≤ 1 attain the

optimal detection boundary defined in Donoho et al. (2004) in the strong sparsity situation

0 < β < 1/4. Liu and Xie (2020) showed a similar result for their proposed Cauchy’s

test. As described in Section 2, the Cauchy distribution has regular-varying tail with index

γ = 1. This theorem is valid for methods of regularly varying tailed distributions with index

0 < γ ≤ 1. Therefore, this theorem can be considered to be a generalization of Theorem 3

in Liu and Xie (2020).

4. SIMULATIONS

In this section, we perform simulations to compare the robustness performance of different

p-value combination methods under varying correlation levels among p-values to verify the-

oretical results in Section 2 and 3. We include 7 methods discussed in Section 2, minP ,

BC1.25, CA, CAtr, HM(BC1), BC0.75 and the Fisher’s method, as well as HC (Higher crit-

icism) and BJ (Berk-Jones test). Section 4.1 firstly evaluates the type I error control of

different methods under independence and varying level of correlation to verify the robust-

ness of HM and Cauchy methods. Further, since the robustness in Theorem 2 for HM and

Cauchy is an asymptotic result, we further investigate the type I error control for HM under

a wide range of n, ρ and γ to ensure that the robustness of HM and Cauchy is preserved

and useful in a practical sense. Section 4.2 assesses the statistical power under different

dependency structures and sparsity of signals in the alternative hypothesis. In Section 4.3,

we will evaluate the improvement of the truncated Cauchy method over the Cauchy method

in a discrete data simulation.

20



4.1 Type I error control

In this subsection, we first simulate n = 100, X = (X1, · · · , Xn)
D∼ N(0,Σ), pi = 2(1 −

Φ(|Xi|)) and T =
∑n

i=1 g(pi) for different aforementioned methods. We also assume that

Σ has unit variance on the diagonal line and is exchangeable with common correlation

ρ = cor(Xi, Xj) for 1 ≤ i 6= j ≤ n, where ρ is evaluated at 0 (independence), 0.3, 0.6

, 0.9 and 0.99. Table S2 shows the type I error of the 9 methods with different levels of

correlations at α = 0.001 using 106 simulations under the null hypothesis. As expected all

methods control type I error perfectly under independence assumption (i.e., ρ = 0). When

correlation among p-values exists, we find that minP is the most conservative in type I

error control followed by BC1.25, as expected from the theoretical result in Corollary 1. CA,

CAtr and HM remain with perfect type I error control in all correlation settings, showing

robustness to dependency structure. Fisher and BJ are the most anti-conservative methods

in the presence of correlation, followed by slight anti-conservativeness for HC and BC0.75.

It is worth noting that according to Theorem 1 and 2 for regularly varying distribution

transformation, the tail probability P (T (X) > t) under dependence can be asymptotically

approximated by that under independence. However, the asymptotic result only guarantees

the dependence robustness for very large t (or equivalently very small α). We also expect

that larger n will require larger t (smaller α) to ensure a good approximation. Specifi-

cally, Goeman et al. (2019) has pointed out that, with ρ = 0.2 and n = 105, the much

inflated type I error of 0.164 is obtained for size α = 0.05. Therefore, it is of interest to

explore the robustness property of T (X) for dependence in HM for varying n, α and ρ to

provide a practical guidance in real applications. In Table S3, we extended the simulation

for HM with n = (25, 50, 100, 500, 1000, 2000, 10000), α = (0.05, 0.01, 0.001, 0.0001), and

ρ = (0, 0.3, 0.6, 0.9, 0.99). Given the combination of α and n, we calculated the maximum per-

cent of inflation (PI) across different ρ, which is defined as PI = (maxρ type I error−α)/(α).

The result confirms the theoretical result that larger n will generate greater type I error
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inflation under dependence for a fixed α and will require much smaller α to improve the type

I error inflation. For example, when α = 0.01, we have PI = 30% for n = 25 compared to

PI = 80% for n = 10, 000. On the other hand, when n = 10, 000, PI decreases from 80% to

49% when α decreases from 0.01 to 0.0001. In general, the result shows robust type I error

control under varying correlation levels in a practical sense when n ≤ 1, 000 and α ≤ 0.05

with the maximum PI = 50%, which inflates type I error from α = 0.01 to 0.015 at n = 1000

and ρ = 0.3. Even when n increases to 10,000, PI only minimally increases to 80%. When

multiple comparison is needed such as in the GWAS applications, small α is targeted and

the robust type I error control for HM is generally achieved in a practical sense. However,

if a single test is performed with a very large n, caution should be taken for the type I error

inflation (e.g., type I error is 0.072 for α = 0.05 when n = 10, 000 and ρ = 0.3).

4.2 Statistical power

In this subsection, we follow the simulation setting in Section 4.1 to evaluate statistical

power using different methods under different correlation ρ and strengths of the signal.

Following the sparse and weak signal setting in Donoho et al. (2004), we design the n signals

µ = (µ1, · · · , µn) to contain n− s with no signal (µs+1 = · · · = µn = 0) and the first s have

non-zero signals µ1 = · · · = µs = µ0 =

√
4 log(n)

s0.1
, where s/n = (5%, 10%, 20%). Section 4.2.1

will compare the power of different methods under varying correlation ρ, where the rejection

threshold is obtained from the independence assumption and uncorrected for dependence.

In Section 4.2.2, we further demonstrate the power comparison of different methods, where

the rejection threshold is corrected with precise type I error control under dependency. We

note that the correction is only applicable in simulations and are generally not accessible

unless extensive permutation test or simulation-based methods are applied.

4.2.1 Power comparison with uncorrected rejection threshold from independence assumption
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In Section 4.1, BJ , HC, BC0.75 and Fisher’s method are anti-conservative when rejection

threshold from independence assumption is used. In other words, the methods lose control

of type I error when the dependence structure exists. As a result, we will only compare HM ,

CA, CAtr, BC1.25 and minP in this subsection to evaluate the power of different methods in

varying level of correlation ρ. Table S4 shows the power of the five methods. As expected,

the statistical power decreases as ρ increases. HM , CA and CAtr methods have almost

identical power and are superior to BC1.25. minP is the least powerful method among the

five. Different proportions of signals give similar patterns and conclusions.

4.2.2 Power comparison with corrected rejection threshold considering dependence structure

Since methods except for CA, CAtr and HM are either conservative or anti-conservative

in type I error control under the presence of correlation, the power comparison in the previous

subsection is not completely fair. Here, we evaluate power using the rejection threshold

corresponding to the accurate type I error control in each method under each correlation

setting. We note that this comparison is theoretically a fairer comparison with accurate type

I error control but, on the other hand, is less practical in applications unless the dependency

structure is known or computationally intensive approaches are applied to precisely control

the type I error.

Table 1 shows results of all 9 methods. We order the methods by the index η of Box-Cox

transformation as introduced in Section 2: minP , BC1.25, HM , CA, CAtr, BC0.75, Fisher,

and then add HC and BJ for comparison. We first observe almost identical results of CA,

CAtr and HM , and decreasing power when ρ increases, as expected. We next compare the

five methods minP , CA/CAtr/HM and Fisher with varying proportion of signals and ρ.

When ρ = 0, Fisher is the least powerful when s/n = 5% (power= 0.640) but becomes

more powerful than CA/CAtr/HM and minP when s/n = 10% and 20%, showing its

23



superior performance in frequent signals. CA/CAtr/HM consistently have good power in

between minP and Fisher. When ρ increases, Fisher quickly drops to almost zero power even

with accurate type I error control. For each given s/n, minP is slightly less powerful than

CA/CAtr/HM at small ρ but becomes much more powerful than CA/CAtr/HM when ρ is

large. This is reasonable since at a very high correlation (e.g., ρ = 0.99), all signals can almost

be viewed as coming from one source so taking the smallest p-value gives sufficiently complete

information. For BC0.75 and BC1.25, we observe that the performance of BC1.25 is generally

intermediate in between minP and CA/CAtr/HM , and BC0.75 is between CA/CAtr/HM

and Fisher. We next compare HC and BJ to the other methods. Although these two

methods lose control of type I error under dependency structure and are not the focus of

this paper, we are curious about their power performance if correlation structure is correctly

considered with Type I error control. As shown in Table 1, BJ is surprisingly powerful for all

three proportion of signals when ρ = 0 (e.g., power= 0.91 compared to power= 0.640−0.778

for the other 7 methods when s/n = 5%). But similar to the Fisher’s method, BJ ’s power

quickly drops to almost 0 with the existence of dependency. The power of HC is generally

similar to CA/CAtr/HM but becomes weaker than CA/CAtr/HM for larger ρ. Both HC

and BJ lose much power when ρ increases. One possible explanation is that both tests

compare the ordered p-values p(i) with the reference value i/n, which is not the correct

reference under null with dependence structure.

4.3 Simulation for the large negative penalty issue in the Cauchy method

As discussed in Section 2.2, p-values close to 1 lead to large negative penalties in the Cauchy

method, which can cause significant power loss. Below, we design a Fisher’s exact (hypergeo-

metric) test for a 2×2 contingency table to illustrate the issue and evaluate the improvement

of the truncated Cauchy method.

We firstly evaluate type I error similar to Section 4.1. We randomly generate n = 20, 2×2
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contingency tables with fixed row and column margins being 200. The table has only one de-

gree of freedom, assuming it is the upper-left cell of each table undetermined. Under the null

hypothesis, rows and columns are independent and we generate the value of the upper-left

cell from Hypergeometric(400, 200, 200). We then apply Fisher’s exact test to the simulated

data of each table and combine the n = 20 p-values using HM and CA methods. We repeat

the simulation for 105 times, set significance level at α = 0.05, 0.01, 0.005, 0.001, 0.0005 and

0.0001, and calculate the proportions of rejections at each α. As shown in Table 2 (effect

size p11 = 0), the type I errors for HM is slightly smaller than the desired significance level

under the null hypothesis (e.g. 0.00077 versus 0.001) while those for CA are much lower

(e.g. 0.00016 versus 0.001). The main reason of the conservativeness in both tests is that

the null distribution under the simulation setting is skewed towards 1, instead of unif(0, 1),

in which case CA is more sensitive since it penalizes more for p-values close to 1. As shown

in table 2, the type I error control of CAtr under δ = 0.01 is largely improved for all different

α; e.g., type I error is now 0.00077, identical to HM , when α = 0.001.

We next evaluate power for HM and CA. Similar to Section 4.2, we simulate 105 Monte

Carlo samples. All settings are identical to the last paragraph for type I error control

except that we now generate 2 × 2 tables with row-column correlation. We first simulate

Y from Hypergeometric(400, 200, 200) under independence assumption. We then simulate

Z
D∼ Bin(200 − Y, p11) and take Y + Z as the value for the upper-left cell. We note that

p11 = 0 corresponds to the original null hypothesis and the larger effect size p11, the stronger

signal. We set p11 = 0.2 and 0.3 and the powers under different α are shown in Table 2.

As expected, larger p11 generates higher power for both HM and CA. CA produces much

smaller power than HM mainly due to impact from skewed p-values toward 1. CAtr largely

alleviates the issue and can perform almost identical to HM .
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Table 1: Mean corrected power for tests Fisher, BC0.75, CA, CAtr(truncated Cauchy), HM ,
BC1.25, minP , HC and BJ across correlation ρ = 0, 0.3, 0.6, 0.9, 0.99 and proportion of
signals s/n = 5%, 10%, 20%. The standard errors are far less than the mean power and
hence omitted.

s/n Methods ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9 ρ = 0.99

Fisher 0.640 0.0039 0.0021 0.0017 0.0016
BC0.75 0.778 0.615 0.437 0.308 0.269
CA 0.749 0.620 0.490 0.387 0.348

5% CAtr 0.749 0.621 0.490 0.388 0.348
BC1(HM) 0.749 0.621 0.491 0.389 0.348
BC1.25 0.735 0.618 0.509 0.438 0.402
minP 0.712 0.603 0.522 0.532 0.600
HC 0.760 0.623 0.415 0.216 0.195
BJ 0.912 0.0015 0.0001 0.001 0.001

Fisher 0.992 0.013 0.0044 0.003 0.003
BC0.75 0.908 0.689 0.461 0.301 0.258
CA 0.870 0.680 0.503 0.365 0.320

10% CAtr 0.870 0.681 0.503 0.366 0.319
BC1(HM) 0.869 0.681 0.504 0.366 0.319
BC1.25 0.850 0.672 0.517 0.407 0.361
minP 0.814 0.646 0.520 0.480 0.514
HC 0.887 0.691 0.432 0.213 0.206
BJ 0.998 0.017 0.001 0.001 0.001

Fisher 1.000 0.0745 0.017 0.009 0.008
BC0.75 0.982 0.752 0.484 0.300 0.255
CA 0.955 0.728 0.511 0.347 0.299

20% CAtr 0.955 0.729 0.512 0.348 0.299
BC1(HM) 0.955 0.729 0.512 0.349 0.299
BC1.25 0.936 0.713 0.518 0.378 0.329
minP 0.895 0.678 0.511 0.429 0.436
HC 0.973 0.749 0.451 0.227 0.231
BJ 1.000 0.202 0.016 0.008 0.013
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Table 2: Mean proportion of rejection of CA, HM and CAtr(truncated CA) across
ρ11 = 0(type I error), 0.2(power), 0.3(power). The standard errors are far less than the
mean proportion and hence omitted.

ρ11 Methods/Cutoff 0.05 0.01 0.005 0.001 5× 10−4 10−4

CA 0.00825 0.00182 0.000862 0.00016 0.0000687 1e-05
ρ11 = 0 BC1(HM) 0.0386 0.00894 0.00417 0.00077 0.000334 0.0000487

CAtr 0.0285 0.00729 0.00417 0.00077 0.0000334 0.0000487
CA 0.333 0.202 0.146 0.0582 0.0408 0.0135

ρ11 = 0.2 BC1(HM) 0.863 0.525 0.379 0.154 0.108 0.0357
CAtr 0.848 0.522 0.377 0.154 0.108 0.0361
CA 0.431 0.428 0.420 0.355 0.310 0.190

ρ11 = 0.3 BC1(HM) 1.000 0.992 0.972 0.822 0.717 0.440
CAtr 1.000 0.991 0.971 0.822 0.716 0.440

5. APPLICATION

We apply the HM , CA, CAtr, and minP tests to analyze a GWAS of neuroticism (Okbay

et al., 2016), a personality trait characterized by easily experiencing negative emotions. The

dataset contains 6, 524, 432 genetic variants (SNPs) across 179, 811 individuals and p-values

are calculated for all SNPs to represent the association between the variant and neuroticism.

We use genome annotations to locate the genic or intergenic region for each variant. The

total number of intergenic and genic regions is 78, 895. Within each genic or intergenic

region, we combine p-values of variants in each region using the HM , CA, CAtr and minP

methods and obtain the combined p-values. Figure 3 shows three Manhattan plots for the

combined p-values using the HM , CA and minP methods, respectively. As shown in Figure

3, the combined p-values using CA and HM are almost identical and they are slightly more

significant than those obtained from minP . The bottom right plot in Figure 3 shows the

numbers of significant genic or intergenic regions with significance thresholds determined

by the Bonferroni procedure (controlling the family-wise error rate at 0.05) and the FDR

procedure (controlling the false discovery rate at 0.05), or p-value threshold at 10−4, 10−5

or 10−6. In all different significance thresholds, the numbers of statistically significant genes
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for HM and CA are almost identical and they are generally larger than those from minP .

Particularly, HM and CA both identify 750 regions under FDR= 5% while minP only finds

476 regions.

We input the 750 regions identified by HM/CA under FDR= 5% to the Ingenuity Path-

way Analysis package for pathway enrichment analysis. The top enriched pathways include

NEUROD1 and NEUROG2, which are transcription factors with important functions in

neurogenesis. The top diseases and causal networks identify ”neurological disease”, which is

related to neuroticism. In contrast, by applying the pathway analysis to the top 456 regions

by minP , we do not find enriched pathways potentially related to neuroticism and the top

causal network is MKNK1, which has not been found to play a role in neurological functions.

We next investigate two regions, SLC2A9 and PCSK6, with small combined p-values by

HM p = 9.534× 10−4 for SLC2A9 and p = 1.527× 10−3 for PCSK6; q-values q=0.0759 for

SLC2A9 and q=0.0939 for PCSK6) but not by CA (p = 0.9999 and 0.9999 and q-values both

equal 1). The SLC29A9 gene has been found related to Alzheimer’s disease and PCSK6 is

related to structural asymmetry of the brain and handedness. We suspect the difference of

HM and CA comes from p-values close to 1 as described in Section 4.3. Figure S2 shows

two jitter plots of p-values for SNPs in genes SLC2A9 (right) and PCSK6 (left). Both of

these two genes contain multiple SNPs with very small p-values (e.g. 17 SNPs with p < 10−4

in SLC2A9 and 8 SNPs for PCSK6) so the gene regions could potentially be significant. But

since both genes also contain many SNPs with p-values close to 1 (5 SNPs with p > 0.99 for

SLC2A9 and 9 SNPs for PCSK6), CA is impacted and produces larger combined p-values

than HM , a situation similar to that described in Section 4.3. Since there are above 500

p-values to combine for both genes, by applying CAtr at δ = 0.99 with approximation by

GCLT (Proposition 3), the p-values improve to 9.531 × 10−4 for SLC2A9 and 1.532 × 10−3

for PCSK6, which are almost identical to the p-values calculated by HM .
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Figure 3: Mahattan plots and number of significant p-values for CA, BC1(HM) and minP .
The red dash lines are the cutoffs of Bonferroni correction for α = 5% and the blue dash
lines are the cutoffs of Benjamini-Hochberg correction for FDR=5%. The significant regions
(FDR=5%) detected by HM and CA are the same except two regions, DDX58 (q=0.0499
by CA and q=0.0501 by HM) and POU2F3 (q=0.0509 by CA and q=0.0492 by HM).
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6. DISCUSSION

In this paper, we investigate methods for combining dependent p-values using transforma-

tion corresponding to regularly varying distribution, which is a rich family of heavy-tailed

distribution and includes Pareto distribution (Box-Cox transformation) as a special case.

We first present the issue of aggregating multiple p-values in three major historical scenar-

ios: (1) classical meta-analysis of combining independent and frequent signals (e.g. Fisher),

(2) methods for aggregating independent weak and sparse signals (e.g. minP , higher crit-

icism and Berk-Jones), and (3) recent methods for combining p-values with sparse signals

and unknown dependency structure (i.e. Cauchy and harmonic mean). We then examine

popular methods designed for these three settings under the Pareto and regularly varying

distribution to provide theoretical insight and finally present the condition of heavy-tailed

transformation methods to have the robustness with dependency structure.

Our contributions are fourfold in both providing theoretical insight and practical appli-

cation guidelines. Firstly, in Section 2, we use the family of Box-Cox transformation, or

equivalently transformation by CDF of Pareto distributions, to provide connections among

Fisher, CA, HM and minP methods that are designed to specialize in the three scenarios.

We also show that the two recent methods – CA and HM – are approximately identical.

Secondly, in Section 3, we focus on the dependent p-value scenario and investigate the con-

dition for p-value combination methods under regularly varying distribution to have the

robustness to dependency structure, where CA and HM are special cases. We show that

only methods of the equivalent class of CA and HM (i.e., index γ = 1) in the regularly

varying distribution have the robustness property. Thirdly, we demonstrate an occasional

drawback of the Cauchy method when some p-values are close to 1, which contributes large

negative penalty and causes power loss. We propose a simple, yet practical solution by a

truncated Cauchy method with fast and accurate computation. Finally, the simulations and

a real GWAS application confirm the theoretical insights and provide a practical guideline
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for using the harmonic mean and Cauchy methods. Specifically, Table S3 in Section 4.1 gives

guidance of the degree of possible type I error inflation of the harmonic mean method under

varying n (number of combined p-values), ρ (correlation level between p-value) and α (test

size).

Modern data science faces challenges from larger data dimension, increased structural

complexity, and the need for models and inference to tailor for the subject domain. The three

categories of p-value combination methods have motivated the development of numerous

methods in the literature and is a good example of how statistical theories can provide

insight into method development and guide towards real applications. In our paper, we

conclude that the condition in regularly varying distribution to have dependency structure

robustness in p-value combination is those distributions with index γ = 1, which includes

Cauchy and harmonic mean methods recently proposed. For future direction, it is of interest

whether other methods (e.g. inverse gamma or log-gamma family) satisfying this condition

may enjoy robustness and simultaneously obtain better statistical power in some applications

of interest.
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Supplementary material includes additional simulation results, as well as details of the effi-

cient importance sampling procedure for the truncated Cauchy method.
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A. TECHNICAL ARGUMENTS: PROOF OF THEOREMS

Before we show the technical arguments, we first define some notations.

Two nonnegative non-identically distributed random variables Y1 and Y2 with distribu-

tions F1 and F2, respectively, are said to be asymptotically tailed independent if

lim
t→∞

P (Y1 > t, Y2 > t)

F̄1(t) + F̄2(t)
= 0. (A.1)
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It suffices to show the asymptotically tailed independent by showing P (Y1 > t|Y2 > t) = o(1)

or P (Y2 > t|Y2 > t) = o(1), or equivalently, P (Y1 > t, Y2 > t) = o(P (Y1 > t)) or o(P (Y2 >

t)).

More generally, two real-valued random variables, Y1 and Y2, are said to be asymptotically

independent if the relation (A.1) holds with (Y1, Y2) in the numerator being replaced by

(Y +
1 , Y

+
2 ), (Y +

1 , Y
−

2 ), (Y −1 , Y
+

2 ), where Y +
i = max (Yi, 0) and Y −i = max (−Yi, 0) for i =1, 2.

In this case, one can show that to prove Y1 and Y2 are asymptotically tailed independent,

it suffices to prove that P (Y +
i > t, Y +

j > t), P (Y +
i > t, Y −j > t),P (Y −i > t, Y +

j > t) are all

o(P (Y1 > t)) or o(P (Y2 > t)).

A.1 Proof of Theorem 1

Before proving Theorem 1, first we introduce two lemmas, Lemma 1 and 2.

Lemma 1. If X1 and X2 are bivariate standard normally distributed with correlation −1 <

ρ < 1, then |X1| and |X2| are asymptotically tailed independent.

Proof. Use the upper bound for upper tailed probability of bivariate standard normal random

variables. P (X1 > t,X2 > t) ≤ Φ(−t)Φ(−θt)(1 + ρ) for t > 0 and ρ > 0, where θ =
√

1−ρ
1+ρ

(Willink, 2005). We first assume ρ > 0. When ρ < 0, let Z2 = −X2. Then X1 and Z2 are

bivariate standard normally distributed with correlation ρ > 0 and P (|X1| > t, |X2| > t) =

P (|X1| > t, |Z2| > t). So it suffices to prove the case of ρ > 0. Now we consider the case

where ρ > 0,

P (|X1| > t, |X2| > t)

≤ P (X1 > t,X2 > t) + P (−X1 > t,−X2 > t) + P (X1 > t,−X2 > t) + P (−X1 > t,X2 < t)

= I + II + III + IV.

For I, we have I = P (X1 > t,X2 > t) ≤ Φ(−t)Φ(−θt)(1 + ρ) = o(P (X1 > t)). For II, we
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note II = I (X1 and X2 are bivariate standard normal random variables, so their joint pdf

are symmetric around 0). For III, first let X2 = c1X1 + c2Z, where c1 > 0 (because ρ > 0)

and c2 > 0 and Z is a standard normal random variable independent of X1. Then we have

P (X1 > t,−X2 > t) = P (X1 > t,−c1X1 − c2Z > t)

= P (X1 > t,−c2Z > t+ c1X1)

≤ P (X1 > t,−c2Z > t+ c1t)

= P (X1 > t)P (−c2Z > t+ c1t) = o(P (|X1| > t)).

We then further note IV = III since X1 and X2 are exchangeable. Combine all the

results, we have P (|X1| > t, |X2| > t) = o(P (|X1| > t)).

Remark A1.1: From the Willink’s upper bound for bivariate normal r.v.s., it is clear that

when ρ is close to 1, we can see the ”asymptotically tailed independence phenomenal” only

when t is extremely large.

Lemma 2 (Chen and Yuen (2009)). If U1, . . . , Un ∈ R−γ are asymptotically tailed inde-

pendent random variables with CDFs F1, . . . , Fn, respectively; then P (U1 + . . . + Un > t) ∼∑n
i=1 F̄i(t).

Proof of Theorem 1. First we assume the transformation g(p) is nonnegative. Since Ui ∈

R−γ,∀i = 1, . . . , n, by Lemma 2, it suffices to prove U1, . . . , Un are pairwise asymptotically

tailed independent. Here we have

P (Ui > t|Uj > t) = P (g(pi) > t|g(pj) > t)

= P (|Xi| > t∗||Xj| > t∗) ∼ o((P (|Xi| > t∗)) = o(P (Ui > t)). (A.2)
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Note that t∗ → ∞ as t → ∞. The second equality is because g(p) and 2(1 − Φ(|X|))

are both monotone decreasing and continuous. P (|Xi| > t∗||Xj| > t∗) ∼ o((P (|Xi| > t∗)) =

o(P (Ui > t)) is because of Lemma 1. Therefore, U1, . . . , Un are pairwise asymptotically tailed

independent and we complete the proof. When the transformation g(p) is not nonnegative,

see Remark A1.2 for detailed proof.

Remark A1.2: As described in the proof, we prove Theorem 1 by assuming the transforma-

tion g(p) is nonnegative. In fact, it can be easily extended to real-valued transformation g(p).

In order to prove the asymptotically tailed independence for the general case, it suffices to

prove that P (U+
i > t, U+

j > t), P (U+
i > t, U−j > t), P (U−i > t, U+

j > t) are all o(P (Ui > t))

or o(P (Uj > t)) as t→∞.

First for any t > 0, P (U+
i > t, U+

j > t) = P (Ui > t, Uj > t). We can show that

P (Ui > t, Uj > t) = o(P (Ui > t)) with the same argument as in (A.2). Therefore P (U+
i >

t, U+
j > t) = o(P (Ui > t)). It remains to prove P (U+

i > t, U−j > t) = o(P (Ui > t)) since

P (U−i > t, U+
j > t) = o(P (Uj > t)) can be proved similarly.

First we have P (U+
i > t, U−j > t) = P (Ui > t,−Uj > t) = P (Ui > t, Uj < −t) for ∀t > 0.

It suffices to show the result hold for the condition (A2.1) in Theorem 1, otherwise for the

alternative condition (A2.2), since Uj is bounded below, we have P (U−j > t) = P (Uj <

−t) = 0 for large enough t, which immediately implies P (U+
i > t, U−j > t) = 0. Now we

consider the condition (A2.1), where g(p) is continuous and strictly decreasing for 0 < p < 1.

Note that for any large fixed t, there exist a corresponding large fixed value s1 and a small

fixed value s2, such that

{Ui > t} = {|Xi| > s1}

{Uj < −t} = {|Xj| < s2} .

Because Xi and Xj are bivariate normal distributed with correlation |ρij| 6= 1, we let Xi =
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C1Z +C2Xj, where C1 and C2 are some constants, Z
D∼ N(0, 1) and independent of Xj, and

then applying similar trick in the proof of Lemma 1:

P (U+
i > T,U−j > t) = P (|Xi| > s1, |Xj| < s2)

≤ P (|C1Z|+ |C2Xj| > s1, |Xj| < s2)

≤ P (|C1Z| > s1 − |C2|s2, |Xj| < s2)

= P (|C1Z| > s1 − |C2|s2)P (|Xj| < s2) = o(P (|Xj| < s2)) = o(P (U−j > t))

note P (U−j > t) = O(P (Uj > t)) by balance condition (A3). Hence we complete the proof.

A.2 Proof of Theorem 2:

Proof of Theorem 2. First we prove wiUi and wjUj for ∀m + 1 ≤ i < j ≤ n are asymp-

totically tailed independent, where the corresponding |ρij| < 1 for ∀m + 1 ≤ i < j ≤ n. As

discussed in the Remark A1.2 for Theorem 1, without loss of generality, we can assume both

Ui and Uj are nonnegative random variables. Suppose wi ≤ wj:

P (wiUi > t|wjUj > t) =
P (wiUi > t,wjUj > t)

P (wjUj > t)

≤ P (wjUi > t,wjUj > t)

P (wjUj > t)
→ 0.

The last line is because Ui and Uj ∀m + 1 ≤ i < j ≤ n are asymptotically tailed

independent which were already proved in Theorem 1.
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Suppose wi > wj:

P (wiUi > t|wjUj > t) =
P (wiUi > t,wjUj > t)

P (wjUj > t)

≤ P (wiUi > t,wiUj > t)

P (wjUj > t)

=
P (wiUi > t,wiUj > t)

P (
wj
wi
wiUj > t)

∼ P (wiUi > t,wiUj > t)

(
wj
wi

)γP (wiUj > t)
→ 0

The last line is because Ui and Uj ∀m+ 1 ≤ i < j ≤ n are asymptotically tailed independent

and also because wiUj has regular-varying tail with index γ.

Hence we have

P (wiUi > t,wjUj > t)

P (wiUi > t) + P (wjUj > t)
≤ P (wiUi > t|wjUj > t)→ 0.

Therefore, wiUi and wjUj ∀m+ 1 ≤ i < j ≤ n are asymptotically tailed independent.

Second, we consider the case with extreme correlation |ρij| = 1. In this case, X1 = ... =

Xm with probability 1 and hence U1 = ... = Um with probability 1. Therefore, it suffice to

show that (
∑m

i=1 wi)U1 and wjUj, for ∀m+1 ≤ j ≤ n, are asymptotically tailed independent,

since ρij = 1 or − 1 for 1 ≤ i < j ≤ m.

This can be easily proved by the following inequality:

P

((
m∑
i=1

wi

)
U1 > t|wjUj > t

)
≤

m∑
i=1

P (wiU1 > t/m|wjUj > t)→ 0.
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Therefore,

P (Tn,w(X) > t) = P (
n∑
i=1

wiUi > t)

= P

((
m∑
i=1

wi

)
U1 +

n∑
i=m+1

wiUi > t

)

∼

(
m∑
i=1

wi

)γ

P (U1 > t) +
n∑

i=m+1

wγi P (Ui > t)

=

[(
m∑
i=1

wi

)γ

+
n∑

i=m+1

wγi

]
P (U1 > t).

The third line is because (
∑m

i=1wi)U1 and wjUj, ∀m+ 1 ≤ j ≤ n, are asymptotically tailed

independent and Lemma 2 and because of the property of regularly-varying tailed random

variables.

A.3 Proof of Theorem 3

Before proving Theorem 3, we first introduce two lemmas for the proof. Lemma 3 is the

combination of Theorem 2 and Theorem 3 in Davis (1983). Below are the conditions for

Lemma 3:

(B1): Let U∗1 , . . . , U
∗
n∗ , . . . stationary sequence of regularly-varying random variables with

index 0 < γ ≤ 1 and with common distribution function F ∗.

(B2): Let G∗(t) = P (|U∗1 | > t). The distribution of U∗1 satisfies the balance condition; that

is, 1−F ∗(t)
G∗(t)

→ p and F ∗(−t)
G∗(t)

→ q as t→∞, where 0 ≤ p ≤ 1. and p+ q = 1.

In addition to conditions (B1) and (B2), there are three additional conditions (D), (D′)

and (D′′) given in Davis (1983), all of which are assumptions for dependent structure of

U∗1 , . . . , U
∗
n∗ , and are required for Lemma 3. For the details for conditions (D), (D′) and

(D′′), see Davis (1983). We do not provide details of these conditions because they are very

technical but obviously satisfied in Theorem 3, as shown in the proof of Theorem 3.
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Lemma 3 (Davis (1983)). Suppose conditions (B1), (B2), (D), (D’) and (D”) hold. For

0 < γ ≤ 1 we have ∑n∗

i=1 U
∗
i − bn∗

an∗
→d S

∗
γ ,

where S∗γ is a random variable; an∗ is a term such that n∗G∗ (an∗x)→ x−γ for 0 < γ ≤ 1 as

n∗ →∞ and x > 0; bn∗ is defined as follows

bn∗ =


0, 0 < γ < 1,

n∗
∫ an∗
−an∗

xdF ∗(x), γ = 1,

The following lemma describes the order of an∗ and bn∗ given that some of the conditions

of Theorem 3 are satisfied.

Lemma 4. If G∗, F ∗ and U∗i for i = 1, . . . , n satisfy conditions for Lemma 3 and conditions

(A3) and (C2), we have

an∗ = O((n∗)1/γLn∗) for 0 < γ ≤ 1

bn∗ = O(n∗Ln∗) for γ = 1,

where Ln∗ is the power function of log n∗.

Proof. First, we prove an∗ = O((n∗)1/γLn∗) for 0 < γ ≤ 1. Suppose an∗ 6= O((n∗)1/γLn∗).

Then for any k > 0, there exits an arbitrary large n∗, such that an∗ > (n∗)
1
γ logk(n∗). Hence
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we have

n∗G∗(an∗x) ≤ n∗G∗
(

(n∗)
1
γ logk(n∗)x

)
≤
Cn∗

(
log
(

(n∗)
1
γ logk(n∗)x

))h
(

(n∗)
1
γ logk(n∗)x

)γ
=
C

xγ
·

(
1
γ

log(n∗) + k log log n∗ + log x
)h

(log n∗)kγ
, (A.3)

where C and h are some fixed constants. The second inequality is due to conditions (A3)

and (C2). Indeed, given the two conditions, we have G∗(t)
(i)

≤ CF̄ ∗(t)
(ii)

≤ C(log(t))h

tγ
, where (i)

is due to balance condition (A3) and (ii) is due to condition (C2). By choosing k such that

kγ > h, we have (A.3) → 0 for ∀x > 0, which immediately leads to contradiction since by

definition of an∗ we have n∗G∗(an∗x)→ 1
xγ

.

Then we prove bn∗ = O(n∗Ln∗) for γ = 1. Since conditions (A3) and (C2) hold, we can

choose a large enough constant M , such that,

F̄ ∗(t) ≤ (log(t))h

t
for ∀t > M .

F ∗(−t) ≤ cF̄ ∗(t),

where c and h are fixed some constants. By the definition of bn∗ , we have

bn∗ = n∗
∫ an∗

−an∗
xdF ∗(x) = n∗

∫ −M
−an∗

xdF ∗(x)︸ ︷︷ ︸
I

+n∗
∫ 0

−M
xdF ∗(x)︸ ︷︷ ︸
II

+n∗
∫ M

0

xdF ∗(x)︸ ︷︷ ︸
III

+n∗
∫ an∗

M

xdF ∗(x)︸ ︷︷ ︸
IV

For II and III, we have II ≤ n∗
∫ 0

−M MdF ∗(x) ≤ n∗M = O(n∗) and III ≤ n∗
∫M

0
MdF ∗(x) ≤
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n∗M = O(n∗). For I, we have

I = n∗
∫ −M
−an∗

xdF ∗(x) = n∗(−M)F (−M) + n∗an∗F (−an∗)︸ ︷︷ ︸
(i)

−n∗
∫ −M
−an∗

F ∗(x)dx︸ ︷︷ ︸
(ii)

,

where (i) isO (n∗Ln∗) since by (A3) we have n∗an∗F (−an∗) ≤ an∗cn
∗F̄ ∗(an∗) ≤ c1an∗n

∗G∗(an∗) =

O (n∗Ln∗), where the last equality is due to the fact that n∗G∗(an∗x)→ 1
x

for any x > 0 and

an∗ = O(n∗Ln∗) when γ = 1. For (ii), we have

(ii) = n∗
∫ −M
−an∗

F ∗(x)dx = n∗
∫ an∗

M

F ∗(−y)dy ≤ n∗
∫ an∗

M

cF̄ ∗(y)dy

≤ n∗
∫ an∗

M

c
(log y)h

y
dy

= O
(
n∗(log(an∗))

h+1
)

= O(n∗Ln∗).

Hence we have I = O(n∗Ln∗). For IV , we have

|IV | =
∣∣∣∣n∗ ∫ an∗

M

xdF ∗(x)

∣∣∣∣ =

∣∣∣∣n∗ ∫ an∗

M

xd(1− F̄ ∗(x))

∣∣∣∣ =

∣∣∣∣n∗ ∫ an∗

M

xdF̄ ∗(x)

∣∣∣∣
=

∣∣∣∣n∗an∗F̄an∗ − n∗MF̄ ∗(M)− n∗
∫ an∗

M

F̄ ∗(x)dx

∣∣∣∣
≤
∣∣n∗an∗F̄an∗ ∣∣+

∣∣n∗MF̄ ∗(M)
∣∣+

∣∣∣∣n∗ ∫ an∗

M

F̄ ∗(x)dx

∣∣∣∣
≤
∣∣∣∣n∗ ∫ an∗

M

(log(x))h

x
dx

∣∣∣∣+O(n∗Ln∗),

where the last inequality is due to the fact n∗an∗F̄
∗(an∗) ≤ c1an∗n

∗G∗(an∗) = O(n∗Ln∗) given

(A3) and definition of an∗ . Also note that
∣∣∣n∗ ∫ an∗M

(log(x))h

x
dx
∣∣∣ =

∣∣∣n∗ log(an∗ )h+1

h+1
− n∗ log(M)h+1

h+1

∣∣∣ =

O(n∗Ln∗). Hence we have IV = O(n∗Ln∗) and further bn∗ = O(n∗Ln∗)

Remark A1.3: Lemma 3 and Lemma 4 suggest that for the regularly varying variables
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U∗1 , . . . U
∗
n∗ with index 0 < γ ≤ 1,

∑n∗

i=1 U
∗
i = O(n∗1/γLn∗). For example, for CA test, its

corresponding an∗ = 2n∗

π
and bn∗ = 0; for HM test, an∗ = n∗ and bn∗ = n∗ ln(n∗); for BCη

test (η = 1/γ, 0 < γ < 1), an∗ = (n∗)1/γ. The distribution of S∗γ is dependent on γ and

described in details in Theorem 2 and Theorem 3 in Davis (1983). For the purpose of this

paper, we will only need to use the order of
∑n

i=1 U
∗
i ,which is Op((n

∗)1/γLn∗) (0 < γ ≤ 1).

Lemma 5 and 6 are useful when characterizing the lower bound of g(p).

Lemma 5 (ratio inequality of Mill). For any x > 0,

x

φ(x)
≤ 1/(1− Φ(x)) ≤ x

φ(x)

1 + x2

x2
,

where Φ(x) and φ(x) are CDF and pdf of standard normal distribution, respectively.

Lemma 6. If conditions (A2), (A3) and (C2) hold, then we have the following two inequal-

ities for the transformation g(p).

There exist p1 > 0, C1 > 0, k ≥ 0 such that for 0 < p < p1

g(p) ≥ C1

p1/γ| ln(p)|k
.

and there exist p2 > 0, C2 > 0, k ≥ 0 such that for p2 < p < 1

g(p) ≥ −C2| ln(1− p)|k

(1− p)1/γ
.

Proof. To prove the first statement. Let t = g(p), by condition (A2), g(p) is strictly decreas-

ing for small enough p, hence g−1(t) exists for large enough t and is also strictly decreasing.

Note for any large fixed t, we have F (t) = P (g(p) ≤ t) = P (p ≥ g−1(t)) = 1− g−1(t), hence

F̄ (t) = g−1(t) for large enough t and further g(p) = F̄−1(p) for small enough p, where we

have F̄−1(F̄ (t)) = t for large enough t. We now prove the first statement by contradiction,

assume for any k > 0, there exists an arbitrary small p such that g(p) = F̄−1(p) < 1
p1/γ | log p|k ,
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which leads to the following contradiction:

t = F̄−1
(
F̄ (t)

)
≤ F̄−1

(
1

tγ| log t|h

)
<

(
tγ| log t|h

) 1
γ

|log (t−γ| log t|−h)|k

=
t

| log t|−
h
γ (γ log t+ h log log t)k

< t by choosing large enough k,

where h ≥ 0 are some fixed constants. The first inequality is due to condition (C2) and

that F̄−1(p) is strictly decreasing for small enough p. The second inequality is due to our

assumption g(p) = F̄−1(p) < 1
p1/γ | log p|k for an arbitrary small p. Given this contradiction,

the proof of the first statement is completed.

We then prove the second statement. First note that when g(p) is bounded below, then

the statement is trivial. Since condition (A2) hold for g(p), we only need to prove the

statement when g(p) is strictly decreasing for 0 < p < 1, because it is trivial for the case

g(p) is bounded below and one can note −C2| ln(1−p)|k
(1−p)1/γ → −∞ as p goes to one.

Now we consider the case where g(p) is strictly decreasing for 0 < p < 1. In this case, by

similar arguments when we prove the first statement, we denote t = g(p) again and easily

note that g−1(t) exists and further g(p) = F̄−1(p) for 0 < p < 1, where F̄−1(F̄ (−t)) = −t.

We now prove the second statement by contradiction. Given this observation and pre-

viously defined notations, by assuming for any k > 0 there exists an arbitrary small p such
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that F̄−1(p) < −C2
| log(1−p)|k
(1−p)1/γ , we derive the following contradiction:

−t = F̄−1(F̄ (−t)) = F̄−1(1− F (−t))

≤ F̄−1

(
1− c3

| log t|h

tγ

)

< −C2

∣∣∣log c3
| log t|h
tγ

∣∣∣k(
c3
| log t|h
tγ

)1/γ

= −t× C2
| log c3 − γ log t+ h log log t|k

c3(log t)
h
γ

< −t by choosing large enough k.

The first inequality is due to the fact that F̄−1(p) is strictly decreasing and the inequality

F (−t) < c3F̄ (t) ≤ c3
| log t|h
tγ

for large enough t and some constants c3 > 0 and h ≥ 0,

which can be proved given conditions (A3) and (C2) hold. The second inequality is due to

our assumption F̄−1(p) < −C2
| log(1−p)|k
(1−p)1/γ . Given this contradiction, the proof of the second

statement is completed.

Remark A1.4: One can show that some common transformations g(p) previously dis-

cussed satisfy the inequalities above. Indeed, the Box-Cox transformation g(p) = 1
p1/γ

satisfies condition (C2). For Cauchy’s method, since the corresponding transformation

g(p) = tan{(0.5 − p)π} satisfies limp→0
g(p)
1/p

= 1
π

and limp→1
g(p)
−1

π(1−p)
= 1, it also satisfies

condition (C2). For truncated Cauchy method, since g(p) = tan{(0.5−p)π} when p ≤ 1−δ,

again we have limp→0
g(p)
1/p

= 1
π
, also note when p > 1 − δ, g(p) = tan{(δ − 0.5)π}, hence

limp→1
g(p)
−1

(1−p)
= 0, we also have truncated Cauchy satisfied.

Proof of Theorem 3. For this theorem, we only consider 0 < γ ≤ 1. Since X has banded

correlation matrix (condition (C1)), we can split U1, . . . , Un into d0+1 groups. Because we are

only looking for the order of asymptotic distribution of
∑n

i=1 Ui, we can assume n is a multiple

of d0+1 and let n
d0+1
−1 = n0. Let the divided d0+1 groups as {U1, U(d0+1)+1, . . . , U(d0+1)n0+1};

{U2, U(d0+1)+2, . . . , U(d0+1)n0+2}; . . . ; {Ud0+1, U(d0+1)+d0+1, U(d0+1)n0+d0+1}. For the ith group,
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the random variables {Ui, U(d0+1)+i, . . . , U(d0+1)n0+i} are identically distributed and indepen-

dent and hence are stationary. Also, they are random variables with regularly-varying tails

with index γ that satisfy conditions (A2) and (A3). Thus conditions (B1) and (B2) hold.

In addition, since they are independent, it is obvious conditions (D), (D′) and (D′′) in

Davis (1983) for dependent structure hold. Let Si =
∑n0

j=0 Uj(d0+1)+i, i = 1, . . . , d0 + 1.

Since d0 is fixed, by applying Lemma 3 and 4, we obtain that Si is Op(n
1/γLn). Therefore,

T (X) =
∑n

i=1 Ui = S1 + . . . + Sd0+1 is also Op(n
1/γLn). Therefore, now it suffices to prove

that under alternative hypothesis Ha,
T (X)

n1/γLn
converges to ∞ with probability 1. Note that,

T (X) =
n∑
i=1

g(pi) =
n∑
i=1

g(2(1− Φ(|Xi|)))

=
∑
i∈S

g(2(1− Φ(|Xi|))) +
∑
i∈Sc

g(2(1− Φ(|Xi|)))

=
∑
i∈S

g(2(1− Φ(|Xi|))) +Op(n
1/γLn)

≥ g(2(1− Φ(max
i∈S
|Xi|))) + (nβ − 1)g(2(1− Φ(min

i∈S
|Xi|))) +Op(n

1/γLn),

where S = {i : µi 6= 0} and Sc is the complementary index set of S. The equality in the

third line is due to Lemma 3 and 4. We claim that the if the second term (nβ − 1)g(2(1 −

Φ(min{i∈S} |Xi|))) in the last line is negative, its magnitude is op(n
1/γ).

Let εn be constant such that εn > 0 and εn → 0 as n→∞. We have

P (min
i∈S
|Xi| < εn) ≤

∑
i∈S

P (|Xi| < εn) = nβP (|Xi| < εn)

= nβ{Φ(µ0 + εn)− Φ(µ0 − εn)} ≤ 2φ(µ0 − εn)nβεn ≤ nβεn.
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Apply Lemma 6 we have for small value of εn > 0,

g(2(1− Φ(εn))) ≥ −C
1| log(2Φ(εn)− 1)|k

(2Φ(εn)− 1)1/γ
(A.4)

Note that 2Φ(εn)− 1 = 2(Φ(εn)− Φ(0)) = 2(φ(0)εn + o(εn)) = εn(1 + o(1)), then we have

| log(2Φ(εn)− 1)|k = | log(εn(1 + o(1)))|k ≤ 2k| log εn|k

(2Φ(εn)− 1)
1
γ = (εn(1 + o(1)))

1
γ ≥ 2−

1
γ ε

1
γ
n .

Then for the right hand side of (A.4), we have

(A.4) ≥ −2kC1| log εn|k

2−
1
γ ε

1
γ
n

= −C0 | ln(εn)|k

ε
1/γ
n

,

where C1 > 0, C0 > 0 are constants. Now we let εn = nβ0−1, where β < β0 < 1/2. Then we

have

P (min
i∈S
|Xi| < εn) ≤ nβεn = nβ+β0−1 = o(1).

We also have

nβg(2(1− Φ(εn))) ≥ −C0nβ−(β0−1)(1/γ)| ln(nβ0−1)|k.

So we prove that (nβ − 1)g(2(1− Φ(min{i∈S} |Xi|))) is op(n
1/γ).

Then it suffices to prove that g(2(1−Φ(maxi∈S |Xi|)))
n1/γLn

converges to ∞ with probability 1. Let

S+ = {i ∈ S, µi > 0}. Denote Xi = µ0 + Zi for i ∈ S+, where µ0 =
√

2τ log n and

Zi
D∼ N(0, 1). Without loss of generality we assume |S+| ≥ s/2. Under the assumption

of banded correlation for X1, . . . , Xn, it follows from Lemma 6 in Cai et al. (2014) that

maxi∈S+ Zi ≥
√

2 log |S+|+ op(1). Then we have

max
i∈S
|Xi| ≥ max

i∈S+

|Xi| ≥ µ0 + max
i∈S+

Zi ≥ µ0 +
√

2 log |S+|+ op(1).
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Hence we have

g(2(1− Φ(max |Xi|))) ≥
C1

(2(1− Φ(max |Xi|)))
1
γ | log(2(1− Φ(max |Xi|)))|k

≥ C1

(1− Φ(max |Xi|))
1
γ
−δ

+ op(1)

≥ C2 max
i∈S
|Xi|

1
γ
−δ exp{( 1

γ
− δ) max

i∈S
|Xi|2/2}+ op(1)

≥ C2(
√

2 log |S+|+ µ0)
1
γ
−δ exp{( 1

γ
− δ)(log |S+|+ µ2

0/2 + µ0

√
2 log |S+|)}+ op(1)

≥ exp{( 1

γ
− δ)(log |S+|+ µ2

0/2 + µ0

√
2 log |S+|)}+ op(1)

≥ C3 exp{( 1

γ
− δ)(β log(n) + τ log(n) +

√
2τ log(n)

√
2β log(n)− 2 log(2))}+ op(1)

≥ C3 exp{( 1

γ
− δ)(β log(n) + τ log(n) +

√
2τ log(n)

√
2β log(n)−

√
2 log(2))}+ op(1)

≥ C3 exp{( 1

γ
− δ)(β log(n) + τ log(n) +

√
2τ log(n)

√
2β log(n))}+ op(exp (

1

γ
− δ)

√
2τ log(n))

≥ C3 exp{( 1

γ
− δ)(log(n)(

√
β +
√
τ)2)}+ op(exp

√
2τ log(n))

= C3n
( 1
γ
−δ)(

√
τ+
√
β)2 + op(exp

√
2τ log(n)).

Note that δ in the second line is a small positive number. Note that the inequality in the

first line is due to Lemma 6. The inequality in the second line is because | log(p)|k is smaller

than p−δ for any positive number δ when p is small and because max |Xi| goes to infinity

with probability 1. The inequality in the third line is due to Lemma 5 Since
√
τ +
√
β > 1,

we can choose δ so small that ( 1
γ
− δ)(

√
τ +
√
β)2 > 1

γ
. Therefore, the proof is complete.

Conclusion: When γ ≤ 1 and 0 < β < 1/4 (very sparse signal), the decision boundary for

test statistic T (X) is optimal.
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B. RESULTS RELATED TO TRUNCATED CAUCHY METHOD

B.1 Proof of Proposition 4

Proof. Define the following random variables,

Yi = Xi1(Xi ≥ νδ) + νδ1(Xi < νδ) i = 1, . . . , n.

Here X ′is identically and independently follow standard Cauchy distribution, and recall

that νδ = tan
(
π(δ − 1

2
)
)

for 0 < δ < 1. Define index set I = {k : Xk < νδ} and let

m = |I|, the cardinality of I, then under the null, we can rewrite the upper tail probability

of truncated Cauchy method’s test statistic in the following form:

P

(
1

n

n∑
i=1

Yi ≥ t

)
=

n∑
j=0

P

(
1

n

n∑
i=1

Yi ≥ t, m = j

)
.

Given the above equivalent form, the tail probability can be divided into the two parts below,

which will be bounded in the following proof:

I = P

(
1

n

n∑
i=1

Yi ≥ t, m = 0

)
,

II =
n∑
j=1

P

(
1

n

n∑
i=1

Yi ≥ t, m = j

)
.

For I, we have

I = P

(
1

n

n∑
i=1

Yi ≥ t, X1, . . . , Xn ≥ νδ

)
≤ P

(
1

n

n∑
i=1

Xi ≥ t

)
= P (X1 ≥ t) .

For II, note that for the terms P
(

1
n

∑n
i=1 Yi ≥ t, m = j

)
for j = 1, . . . , n− 1, we have
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P

(
1

n

n∑
i=1

Yi ≥ t, m = j

)
=

(
n

j

)
P

(
1

n− j

n−j∑
i=1

Xi ≥
nt− jνδ
n− j

,m = j

)

≤
(
n

j

)
(P (Xn < νδ))

j P (X1 ≥ t) .

Since t > 0 and νδ < 0, P
(

1
n

∑n
i=1 Yi ≥ t, m = n

)
= 0. Hence we have, by the binomial

theorem,

P

(
1

n

n∑
i=1

Yi ≥ t

)
= I + II ≤ P (X1 ≥ t) +

n∑
j=1

(
n

j

)
(P (Xn < νδ))

j P (X1 ≥ t)

≤ P (X1 ≥ t) (1 + P (Xn < νδ))
n .

Notice tan
(
π(1

2
− p)

)
follows standard Cauchy distribution, hence P (Xn < νδ) = δ, then

the result follows.
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