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Abstract

The use of Bayesian information criterion (BIC) in the model selection procedure is under the assumption
that the observations are independent and identically distributed (i.i.d.). However, in practice, we do not
always have i.i.d. samples. For example, clustered observations tend to be more similar within the same
group, and longitudinal data is collected by measuring the same subject repeatedly. In these scenarios, the
assumption in BIC is not satisfied. The concept of effective sample size is brought up and improved BIC
is defined by replacing the sample size in the original BIC expression with the effective sample size, which
will give us a better theoretical foundation in the circumstance that mixed-effects models involve. Numerical
experiment results are also given by comparing the performance of our new BIC with other widely used BICs.
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1. Introduction

1.1. Understanding BIC and Bayesian model selection

BIC is one of the approximation methods of Bayes factor as brought out by Schwarz in 1978 <1>. Due to
the computational difficulties, usually, exact Bayes factor is not used directly in model selection. Alternatively,
Bayes factor is always approximated by BIC or a variant BIC <2> using Laplace method for approximation
integrals. The deduction of the expression of BIC is under the assumption that the observations y1, y2, · · · , yn
are i.i.d. in which the Hessian matrix becomes the observed Fisher information matrix. However, when there
is non-independence in the data, we cannot use BIC directly. Our research generalized the use of BIC in the
circumstances that the linear mixed-effects models involve.

1.1.1. Bayes Factor

Bayes factor plays a core role in Bayesian model comparison. It determines how far one collection of
information should alter one’s level of belief in one model versus another. In using Bayes factors, it is
essential to calculate the marginal likelihood of two models.

Consider the circumstances that we are doing the model comparison. Suppose we have a pool of models
that we would use to describe a given phenomenon. In other words, we want to find out which of them fits
the data best. Thinking probabilistically about this. One way to frame the problem would be to calculate
the posterior probability that we ascribe to model 1 (M1) conditional to the data that we collect, and we can
compare that with the posterior probability of model 2 (M2) given our data. This is just the circumstance
where we’ve got two models that we want to compare. How could we calculate either of these terms? It is
not difficult if we realize that each of these terms is essentially the posterior distribution.
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The model comparison problem we mentioned here could be formulated as

P (M1|y) vs P (M2|y)

We denote the posterior probability of model M1 as P (M1|y), where y is a given collection of data.

By the classic Bayes rule, we have that

P (M1|y) =
P (y|M1)P (M1)

P (y)
(1.1)

where we call P (y|M1) the marginal likelihood of model M1, it describes the probability of getting data y
under the assumptions of model M1. P (M1) is the prior probability of M1. In circumstance where we have
two models that we are choosing between, P (M1) is usually just 1− P (M2). Finally, the denominator P (y)
is also a marginal likelihood, except now it is the marginal likelihood over both models.

To calculate each of these terms in detail, let’s start with the marginal likelihood of model M1, P (y|M1).
Here we use another application of Bayes rule. In traditional Bayesian inference, we are trying to find out
the posterior probability, or the probability density of some parameter vector θi in the model Mi conditional
on data y.

P (θi|y) =
P (y|θi)P (θi)

P (y)
(1.2)

By writing down our Bayes rule for inference implicitly, we are typically conditioning on a single model. So
we could write as

P (θ1|y,M1) =
P (y|θ1,M1)P (θ1|M1)

P (y|M1)
(1.3)

Then we can see that the denominator in 1.3, P (y|M1), is that we are trying to calculate. Then we could
calculate P (y|M1) by integrating out a continuous parameter vector, or summing for a discrete one, about
the numerator of 1.3 as

P (y|M1) =

∫
P (y|θ1,M1)P (θ1|M1)dθ1 (1.4)

And essentially here by integrating with respect to θ1, what we are doing is marginalizing out our θ1

dependence from our numerator, which is why we get a marginal density on bottom of 1.3 which doesn’t
depend on θ1. Note that, θ1 is a parameter vector, in other words, we’ve got a model with a lot of parameters.
Then 1.4 will be a high dimensional integral. That is some of the difficulties behind calculating the marginal
likelihoods.

About how to calculate the denominator of 1.1, the idea is that it is the marginal likelihood of our data
across both models, i.e. marginalized over the model choice. So

P (y) = P (y|M1)P (M1) + P (y|M2)P (M2) (1.5)

Importantly, this denominator term, P (y), is the same whether we’re working out P (M1|y) or P (M2|y),
because it contains contributions from each of the models. So the odds for M1 verses M2 given data then is

P (M1|y)

P (M2|y)
=
P (y|M1)

P (y|M2)
× P (M1)

P (M2)

The first term on the right is called the Bayes factor (BF). So the Bayes factor is defined as the ratio of the
marginal likelihoods for the two models that we are comparing:

BF =
P (y|M1)

P (y|M2)

Harold Jeffreys gave a widely used scale for interpretation of BF <3> as shown in table 1.

There are some issues with using this kind of framework, particularly using the odds P (M1|y)/P (M2|y),
to compare between models:
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Table (1) Harold Jeffreys’ scale for interpretation of Bayes factor

BF Strength of evidence for M1

< 100 Negative

100 to 101/2 Barely worth mentioning

101/2 to 101 Substantial

101 to 103/2 Strong

103/2 to 102 Very strong

> 102 Decisive

• Difficulties in calculating the marginal likelihoods P (y|Mi) not only because they are inherently a high
dimensional integration or sum but also how the two terms that we are integrating or summing over
interact with one another, which makes this integration pathological to calculate.

• Marginal likelihoods P (y|Mi) are very sensitive to our choice of the prior for each of the models in
Bayes rule for inference, i.e. to P (θi|Mi). Marginal likelihoods could change significantly as we change
our prior on parameters θi, even if those changes to the prior on parameters do not affect the posterior
P (Mi|y) particularly much. This kind of sensitivity is not preferable for a model comparison framework,
since we don’t want to change the prior P (θi|Mi) if it does not affect our posterior P (Mi|y).

• In practice it is very hard to come up with sensible ways to ascribing prior probabilities P (Mi). Partic-
ularly when you consider that comparing M1, which is relatively a simple model with few parameters,
with M2, which is a relatively complex model. Surely in this case, we might want to assign less proba-
bility to M2 than M1. But exactly how much less probability we should give it?

• Even if we do what a lot of people do, they just simply set the ratio P (M1)/P (M2) = 1, there are still
issues using the Bayes Factor to do the model comparison. Like, say what is the cutoff I prefer M1 over
M2? Is BF= 1.00001 makes a difference to BF= 1?

In <4>, Andrew Gelman says that the correct way or a better way to do model comparison is via measures
of predictive accuracy. These are things like Widely Applicable Information Criterion (WAIC) <5> or leave-
one-out cross-validation (LOO-CV). This idea provides a much more nuanced way of doing model comparison
because you could select your cross-validation data set to echo the eventual use of your model as opposed to
Bayes factor framework which is very rigid in the way you do model comparison.

1.1.2. Approximation methods for Bayes factor

Due to the computational difficulties and other issues we mentioned in the previous section, usually exact
Bayes factor is not used directly by scientists in their research. Alternatively, it is always approximated by
Bayesian information criterion (BIC), or Schwarz information criterion (also SIC, SBC, SBIC) as brought
out by Schwarz in 1978 <1>, or a variant BIC <2>. In this section, we will give a derivation of BIC using
Laplace method for approximation integrals.

Definition 1. The Bayesian information criterion (BIC) for candidate model M is defined as

BIC = −2 logL(θ̂|y) + p log n (1.6)

where θ̂ is the maximum likelihood estimate (MLE) of θ that maximize the likelihood function L(θ|y), p is
the number of parameters in the model, i.e. the dimension of θ, |θ|, and n is the number of observations, i.e.
|y|.
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In practice, BIC is computed for each of the candidate models, and the model with the smallest BIC is
selected as the best model. However, Schwarz’s BIC was only justified under the assumption of independent,
identically distributed (i.i.d.) observations, and only under linear models with the likelihood is from the
regular exponential family <1>. These limitations are the motivation of our research. We generalized the
original BIC to the mixed-effects models in which the observations are correlated within the subjects and to
other more general models. We will talk about this in detail in next section.

Theorem 1.1. The log marginal likelihood P (y|M) for model M could be approximated as

logP (y|M) ≈ logL(θ̂|y)− p

2
log n (1.7)

where θ̂ is the MLE of θ that maximize the likelihood function L(θ|y).

The basic idea in the proof is the Laplace’s method for approximating an integral. Suppose the function
f(x) is a twice continuously differentiable function on [a, b] with a unique global maximum at x0 ∈ (a, b),
additionally f ′′(x0) < 0. Then ∫ b

a

eλf(x) ≈

√
2π

λ|f ′′(x0)|
eλf(x0) as λ→∞.

The detailed proof of Theorem 1.1 is as follows.

Proof. From 1.4 we know that the marginal likelihood of model M could be written as

P (y|M) =

∫
f(y|θ,M)g(θ|M)dθ

short as
=======

∫
f(y|θ)g(θ)dθ

=

∫
exp {log [f(y|θ)g(θ)]} dθ

(1.8)

where f(y|θ) is the density of the data given the parameters θ and g(θ) is the prior density of the parameters
θ under model M .

Define θ̃ as the mode of the posterior distribution h(θ|y), at where f(y|θ)g(θ) attains its maximum then
log [f(y|θ)g(θ)] attains its maximum also.

θ̃ = arg max
θ

h(θ|y) = arg max
θ

f(y|θ)g(θ)∫
f(y|θ)g(θ)dθ

Remark. When we use the noninformative prior, for example let g(θ) = 1, then L(θ|y) = f(y|θ) attains its

maximum at the MLE of θ, i.e. θ̃ = θ̂. To simplify the notation, we will use θ̂ as our posterior mode.

We can now expand Q = log [f(y|θ)g(θ)] about θ̂ using Taylor’s theorem and omit the remainder term
as:

log [f(y|θ)g(θ)] ≈ log
[
f(y|θ̂)g(θ̂)

]
+ (θ − θ̂)∇θQ|θ̂ +

1

2
(θ − θ̂)THθ̂(θ − θ̂) (1.9)

where ∇θQ is the gradient of Q such that

(∇θQ)i =
∂

∂θi
Q

and Hθ̂ is the Hessian matrix of dimension |θ| × |θ| = p× p such that

Hml =
∂2

∂θm∂θl
Q

∣∣∣∣
θ̂
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Since Q attains its maximum at θ̂, ∇θQ|θ̂ = 0. Also since Q is concave around θ̂ and the Hessian matrix

Hθ̂ is negative definite. Denote H̃θ̂ = −Hθ̂, so H̃θ̂ is positive definite and symmetric. So equation 1.8 could
be approximated as

p(y|M) ≈
∫

exp

{
Q |θ̂ + (θ − θ̂)∇θQ|θ̂ −

1

2
(θ − θ̂)T H̃θ̂(θ − θ̂)

}
dθ

= exp
(
Q |θ̂

) ∫
exp

{
−1

2
(θ − θ̂)T H̃θ̂(θ − θ̂)

}
dθ

let X=θ−θ̂
========= exp

(
Q |θ̂

) ∫
exp

{
−1

2
XT H̃θ̂X

}
dX

(1.10)

Since H̃θ̂ is symmetric, we could do the spectral decomposition for H̃θ̂ as

H̃θ̂ = STΛS

where Λ is a diagonal matrix whose diagonal elements are eigenvalues of H̃θ̂, and the columns of S are the
corresponding independent eigenvectors. Note that S is full rank and orthogonal, i.e. STS = SST = I. Let’s
change of variable as X = STU, or write it in detail as

X =


X1

X2

...
Xp

 = STU =


s11 s21 · · · sp1
s12 s22 · · · sp2
...

... · · ·
...

s1p s2p · · · spp



U1

U2

...
Up

 =


∑p
i=1 si1Ui∑p
i=1 si2Ui

...∑p
i=1 sipUi


In other words Xm =

∑p
i=1 simUi, which implies

∂

∂Ul
Xm = slm

So the Jacobian matrix J would be

J =


∂X1

∂U1
· · · ∂X1

∂Up

... · · ·
...

∂Xp

∂U1
· · · ∂Xp

∂Up

 =


s11 s21 · · · sp1
s12 s22 · · · sp2
...

... · · ·
...

s1p s2p · · · spp

 = ST

Also note that ST is orthogonal, so

det(STS) = det(ST ) det(S) =
[
det(ST )

]2
= det(I) = 1

So
det(J) = det(ST ) = ±1

Let’s continue with equation 1.10, so we have

p(y|M) ≈ exp
(
Q |θ̂

) ∫
exp

{
−1

2
UTSSTΛSSTU

}
|det(J)| dU

= exp
(
Q |θ̂

) ∫
exp

{
−1

2
UTΛU

}
dU

= exp
(
Q |θ̂

) ∫
exp

{
−1

2

p∑
i=1

U2
i λi

}
dU

(1.11)

the last step here could be more clear if we write out the details as

UTΛU =
(
U1 U2 · · · Up

)

λ1

λ2
. . .

λp



U1

U2

...
Up

 =

p∑
i=1

U2
i λi
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Note here we have a p−dimensional integration, each of them is a one dimensional integration of a normal
kernel and could be evaluated using the property of the normal density.

p(y|M) ≈ exp
(
Q |θ̂

) ∫
· · ·
∫

exp

{
−1

2

p∑
i=1

U2
i λi

}
dU1 · · · dUp

= exp
(
Q |θ̂

) p∏
i=1

∫
exp

{
−1

2
U2
i λi

}
dUi

= exp
(
Q |θ̂

) p∏
i=1

√
2π

λi

= exp
(
Q |θ̂

) (2π)p/2∏p
i=1 λ

1/2
i

= exp
(
Q |θ̂

) (2π)p/2[
det
(
H̃θ̂

)]1/2

(1.12)

where the last step is using the fact that

det
(
H̃θ̂

)
= det

(
STΛS

)
= det(ST ) det(Λ) det(S) = det(Λ) =

p∏
i=1

λi

Thus, the log marginal likelihood of model M has the relation

logP (y|M) ≈ log f(y|θ̂) + log g(θ̂) +
p

2
log(2π)− 1

2
log
[
det
(
H̃θ̂

)]
(1.13)

Remark. We will derive the results further under the noninformative priors, i.e. when g(θ) = 1. Also, we
assume the observations y1, y2, · · · , yn are independent and identically distributed (i.i.d.), in which case the
Hessian matrix becomes the observed Fisher information matrix. Also, assume n is large which coincides
with the condition λ→∞ in Laplace’s method and more importantly allows us to use the weak law of large
numbers. I may want the readers to keep reminding themselves of this remark in the rest sections or even
throughout this project since this is the core motivation of our research.

H̃ml = − ∂2 log [f(y|θ)g(θ)]

∂θmθl

∣∣∣∣
θ=θ̂

= − ∂2 log [f(y|θ)]

∂θmθl

∣∣∣∣
θ=θ̂

= −
∂2 log [

∏n
i=1 f(yi|θ)]

∂θmθl

∣∣∣∣
θ=θ̂

= −
∂2
∑n
i=1 log [f(yi|θ)]

∂θmθl

∣∣∣∣
θ=θ̂

= −
∂2
∑n
i=1 logL(θ|yi)
∂θmθl

∣∣∣∣
θ=θ̂

= −
∂2
[
1
n

∑n
i=1 n logL(θ|yi)

]
∂θmθl

∣∣∣∣∣
θ=θ̂

Consider n logL(θ|yi) as a new random variable, by weak law of large number we obtain

1

n

n∑
i=1

n logL(θ|yi)
in probability−−−−−−−−→ E [n logL(θ|yi)] for ∀i as n→∞.
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So each element in the observed Fisher information matrix is

H̃ml = − ∂2E [n logL(θ|y1)]

∂θmθl

∣∣∣∣
θ=θ̂

= n

{
− ∂2E [logL(θ|y1)]

∂θmθl

∣∣∣∣
θ=θ̂

}
= n[I(θ)]ml

where I(θ) is the Fisher information matrix for a single data y1. So

det
(
H̃θ̂

)
= np det (I(θ))

Plugging this back to equation 1.13 and as n→∞ we only keep the terms involving sample size n, we have

logP (y|M) ≈ logL(θ̂|y) + log g(θ̂) +
p

2
log(2π)− 1

2
log
[
det
(
H̃θ̂

)]
= logL(θ̂|y)− p

2
log n− 1

2
log [det (I(θ))]

= logL(θ̂|y)− p

2
log n

(1.14)

A lot of literature just keep the result in equation 1.14 as the definition of BIC for model M , but I will use
the definition for BIC as shown earlier in Definition 1 which is a variation of equation 1.14 since it coincides
with the formula for BIC in the programming language R, which will easier to interpret in our later numerical
experiments section.

To remind ourselves, the Definition 1 for BIC is

BIC = −2 logL(θ̂|y) + p log n = −2 logP (y|M)

So when given two models, say M1 and M2, we will calculate the BIC for both of them and the Bayes factor
for model comparison between M1 and M2 could then be approximated as

BF =
P (y|M1)

P (y|M2)

= exp

{
log

[
P (y|M1)

P (y|M2)

]}
= exp {logP (y|M1)− logP (y|M2)}

≈ exp

{
−1

2
(BIC1 − BIC2)

}
= exp

{
−1

2
∆BIC

}
From this, we could see that it is the difference between two BICs that matters, the model with the lowest
BIC is always considered to be the best. The strength of the evidence against the model with the higher
BIC value can be summarized <6> as in Table 2. Readers could compare this table with the previous Table
1 which is the scale of BF in the model comparison. These two tables are corresponding with each other
approximately.

1.2. Linear Mixed-effects Models

Linear mixed-effects models are an extension of simple linear models which include both fixed and random
effects. Consider an example where we have N patients, and we measure the blood pressure, age, weight,
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Table (2) Strength of Evidence Provided by the Difference in BIC Values.

∆BIC Evidence against higher BIC

0 to 2 Not worth more than a bare mention

2 to 6 Positive

6 to 10 Strong

> 10 Very Strong

height, etc. at each morning during a week for each patient. We want to predict the blood pressure using
the rest of the variables. If we assume that all the patients have the same slope and intercept relating blood
pressure to age, weight, and height, then we can fit a regular linear model with blood pressure as the response
and the other variables as the predictors.

A mixed-effects model has both random and fixed effects. It usually happens when we have a model
with a categorical predictor and the observations are divided into groups according to the category values.
In our example, the categorical predictor could be the patient ID. Then the random effects can account
for individual differences when a week’s observations within persons are more correlated than observations
between persons.

A general linear mixed model with Gaussian errors for subjects i (or patient i in the example above) is
<7; 8; 9>

yi = Xiβ + Ziαi + εi, i = 1, 2, · · · , N. (1.15)

where

• yi =

 yi1
...

yini

 is a column vector of length ni of the response variables for subject i, and yij is the jth

observation on the ith subject. For example, y23 could be the blood pressure for the second patient
measured on the third day of a week.

• Xi is an ni × p matrix of observed variables, usually with the first column as all 1’s, i.e. Xi =
1 xi;1,1 xi;1,2 · · · xi;1,(p−1)
1 xi;2,1 xi;2,2 · · · xi;2,(p−1)
...

...
... · · ·

...
1 xi;ni,1 xi;ni,2 · · · xi;ni,(p−1)

. According to the blood pressure example, the second column

vector of Xi could be the weight of patient i measured in a week. Similarly, the third column could be
the height, and the fourth column could be the age, and so on.

• β is the unknown regression coefficients of length p, which is the fixed effects vector need to be estimated.

• Zi =


1 zi;1,1 zi;1,2 · · · zi;1,(q−1)
1 zi;2,1 zi;2,2 · · · zi;2,(q−1)
...

...
... · · ·

...
1 zi;ni,1 zi;ni,2 · · · zi;ni,(q−1)

 is an ni × q matrix, usually with the first column all 1’s,

for the random effects, αi.

• αi are the unknown random effects vectors of length q, which are assumed to be independently dis-
tributed across subjects with distribution αi ∼ N(0,G).

• εi is the random error vector which is assumed to be independent across subjects with distribution
εi ∼ N(0,Σi).

8



• Here we also assume that αi and εi are independent.

Then the covariance matrix of the response yi is

Var(yi) = Var(Xiβ + Ziαi + εi)

= Var(Ziαi + εi)

= Var(Ziαi) + Var(εi)

= ZiVar(αi)Z
T
i + Var(εi)

= ZiGZTi + Σi

(1.16)

We will see how this variance is important in the next section 2.1. Model 1.15 is our main model for the whole
research, in other words, we are considering improving the definition for BIC under the mixed-effects model
case. Mixed-effects model plays an important role in model selection when the data is not independent, for
example, clustering data or longitudinal data, etc. The improved BIC provides a more precise method to
select between mixed-effects models which also gives a better theoretical foundation than the original BIC
for the data that is not independent.

2. Improved definitions for BIC

The expression of BIC is under the assumption that the observations y1, y2, · · · , yn are independent and
identically distributed (i.i.d.), in which case the Hessian matrix becomes the observed Fisher information
matrix. However, we do not always have i.i.d. samples in practice. For example, clustered observations
tend to be more similar to each other within the same group than those observations in other groups,
and longitudinal data is collected by measuring the same subject repeatedly<9>. In these scenarios, the
assumption in BIC, the observations are independent, is not satisfied. The concept of effective sample size
was brought up in many literatures like <9; 10; 11>. I will give a detailed explanation about these ideas
in the following sections, and improved BIC is defined by replacing the sample size n in the original BIC
expression with the effective sample size.

2.1. New BIC using effective sample size

The Bayesian Information Criterion (BIC) model selection procedure provides a consistent, compared with
AIC, and easily performed method <12>. However, the BIC expression differs from one software to another.
Since in the penalty part, p log n, the effective sample size, n, and the effective number of parameters, p, are
not well defined in the non-iid observation circumstances such as in mixed-effects models. The log n penalty
is implemented in the R package nlme <13> and lme4 <14> and in the SPSS procedure MIXED <15>
where n is the total number of observations, while the logN penalty is used in Monolix <16>, saemix <17>
or in the SAS proc NLMIXED <18> where N is the number of subjects in mixed models. Two improved
BICs are defined for general mixed-effects models using the effective sample size discussed in section 2.1.1
and later in section 2.2.

2.1.1. The Effective Sample Size

Let’s start this section with an example mentioned in <11>:

On a scale of 0 to 10, how much does the average citizen of the Republic of Elbonia trust
the president? You’re conducting a survey to find out, and you’re going to need a sample of 100
statistically independent individuals. Now you have to decide how to do this.

You could stand in the central square of the capital city and survey the next 100 people who walk
by. But these opinions won’t be independent: probably politics in the capital isn’t representative of

9



politics in Elbonia as a whole. So you consider traveling to 100 different locations in the country
and asking one Elbonian at each. But apart from anything else, this is far too expensive for you
to do. Maybe a compromise would be OK. You could go to 10 locations and ask 20 people at each?
30? How many would you need to match the precision of 100 independent individuals - to have
an “effective sample size” of 100?

The precision mentioned above is typically defined as the reciprocal of the variance of an estimator. In
practice, precision often refers to the closeness of two or more observations to each other. A high variance
estimator has low precision and vice versa. Then in <11>, we have a “loose” definition for the effective
sample size as:

Definition 2. The Effective Sample Size of an estimator is the number ne with the property that our
estimator has the same precision (or variance) as the estimator got by sampling ne independent individuals.

Example 1. <11> When we have observations y1, y2, · · · , yn are independent and identically distributed
(iid). One estimator for the population mean µ could be the sample mean, i.e.

1

n
y1 +

1

n
y2 + · · ·+ 1

n
yn

Since y1, y2, · · · , yn are iid, then the variance of this estimator is

Var

(
1

n
y1 +

1

n
y2 + · · ·+ 1

n
yn

)
= n ·Var

(
1

n
y1

)
= n · 1

n2
Var(y1) =

σ2

n

where σ2 is the population variance. In other words, the precision of this estimator is

precision =
n

σ2

which increases as the sample size n increases.

Now suppose we have a random sample y1, y2, · · · , yn by which the observations do not need to be
independent of each other. Let µ̂ be an estimator of the population mean µ with variance Var(µ̂), then the
precision of the estimator µ̂ is

precision =
1

Var (µ̂)

If we want to obtain the same precision by sampling ne observations independently, then

precision =
1

Var (µ̂)
=
ne
σ2

Hence, the effective sample size of µ̂ is defined as

ne =
σ2

Var (µ̂)
= population variance× precision of the estimator

Definition 3. <11> The magnitude |R| of an invertible n×n matrix R is the sum of all n2 entries of R−1.

Since calculating the inverse is computationally expensive, however, solving linear systems is faster than
computing inverses. Then to get |R| we do not have to get the inverse of R. A much easier way would be
using Gaussian elimination to solve

Rw = 1

Then
|R| = 1

TR−11 = 1
TR−1Rw = 1

Tw =
∑

wi

Theorem 2.1. The effective sample size of an unbiased linear estimator of the population mean is the
magnitude of the sample correlation matrix R.

10



Proof. Suppose we have n observations denoted as yT = (y1, y2, · · · , yn) which are identically but not nec-
essary independent distributed. Suppose we are only consider linear unbiased estimator of the population
mean µ, so the estimator could be written as

µ̂ = aTy

for some vector aT = (a1, · · · , an), such that

E (µ̂) = µ.

Then the variance of the estimator µ̂ is

Var (µ̂) = aTVar(y)a = σ2aTRa

The effective sample size is

ne =
σ2

Var(µ̂)
=

1

aTRa

So the maximum effective size among all possible linear unbiased estimator is defined as

sup

{
1

aTRa
: a ∈ Rn,

n∑
i=1

ai = 1

}
By Cauchy-Schwarz inequality, we have that the supremum is obtained at a = w/|R|, i.e.

maximum ne =
1

wT

|R|R
w
|R|

=
1

wT

|R|21
=

|R|2∑n
i=1 wi

=
|R|2

|R|
= |R|

OR usually approximately,
ne = |R| = magnitude of correlation matrix

The effective sample size does not need to be less than the total number of observations. One simple
example would explain it.

Example 2. <11> Suppose we have two observations y1 and y2. The correlation matrix is

R =

(
1 ρ
ρ 1

)
Then

R−1 =
1

1− ρ2

(
1 −ρ
−ρ 1

)
So the effective sample size equals the magnitude of the correlation matrix, which is

ne = |R| = 1

1− ρ2
(1− ρ+ 1− ρ) =

2(1− ρ)

1− ρ2
=

2

1 + ρ

Then we could see that when ρ is some negative number between −1 and 0, we will have an effective sample
size which is greater than 2.

2.1.2. BICne

Definition 4. The Bayesian information criterion (BIC) using the effective sample size ne for candidate
model M is defined as

BICne
= −2 logL(θ̂|y) + p log ne (2.17)

where θ̂ is the maximum likelihood estimate (MLE) of θ that maximize the likelihood function L(θ|y), p
is the number of parameters in the model, i.e. the dimension of θ, |θ|, and ne is the effective sample size
defined in Theorem 2.1, i.e. ne = |R|=magnitude of correlation matrix R.

11



We will bring in another innovative BIC in the following section, i.e. the BICh. Then we will conduct a
simulation study to compare the performance of BICne and BICh with two widely used BIC, the one with
the sample size equals the number of subjects N and the one with the sample size takes the total number of
observations n.

2.2. New BIC using hybrid sample size

According to <19>,

... the information is of order N (the number of units) for fixed effects with associated random effects,
and of order n (the number of total observations) for fixed effects with no associated random effect. This
shows that the penalty term appearing in BIC will depend on which parameters are tested and on the specific
variance-covariance structure of the model.

This idea leads to the definition of a new BIC using the hybrid sample size.

Theorem 2.2. The Bayesian information criterion (BIC) using the hybrid sample size for candidate model
is defined as <20>

BICh = −2 logL(θ̂|y) + |θR| logN + |θF | log n (2.18)

where θ̂ is the maximum likelihood estimate (MLE) of θ that maximize the likelihood function L(θ|y), θR
is the random components of parameter vector θ in the model, and |θR| the dimension of θR. Similarly, |θF |
the dimension of θF , the fixed components of parameter vector θ. And same as before, N is the number of
subjects in the mixed effects model and n is the number of total observations.

Suppose we have a linear mixed-effects model

yi = Xiψi + εi

where Xi is the design matrix and εi ∼ N(0,Σ). A linear model for ψi is also assumed as

ψi = Ciβ + ηi (2.19)

where ηi ∼ N(0,Ω). The vector of population parameters θ includes β and the parameter in Ω.

Equation 2.19 considers models in which certain individual parameters in vector ψi are random or fixed.
Degenerated Ω could be a block-diagonal matrix as

Ω =

(
0 0
0 ΩR

)
Here, when we use BICh, we assume that we know the structure of Ω, i.e. we know which diagonal elements
of Ω are zeros. From which we could see which parameters in the vector ψi are fixed and which are random.

I will use an example in the simulation study section in <20> to illustrate the BICh. The full proof of
the definition of BICh could be found in <20> section 2.

Example 3. <20> Suppose we have a linear mixed effects model as

yij = Xijψi + εij = ψi0 + ψi1xij + ψi2x
2
ij + εij

for i = 1, ..., N, j = 1, ..., n, where Xij =
(
1 xij x2ij

)
and ψi =

ψi0ψi1
ψi2

 with εij
iid∼ N(0, σ2). Here we have

ψi = Ciβ + ηi
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with

Ci =

1 0 0 0 0
0 1 0 ci 0
0 0 1 0 ci

 ; β =


µ0

µ1

µ2

α1

α2


and ηi

iid∼ N(0,Ω) with

Ω =

ω2
0 0 0

0 ω2
1 0

0 0 ω2
2


The vector of population parameters θ includes β and the parameter in Ω. Here, we reduce the model
selection problem to select the non zero elements between α1 and α2 under four possible variance models,
i.e. whether ω2

1 and ω2
2 are zeros or not. Thus, we have 4 × 4 = 16 possible situations as the combinations

of the following:

M1 :α1 = 0, α2 = 0

M2 :α1 6= 0, α2 = 0

M3 :α1 = 0, α2 6= 0

M4 :α1 6= 0, α2 6= 0

and

O1 :ω2
1 = 0, ω2

2 = 0

O2 :ω2
1 6= 0, ω2

2 = 0

O3 :ω2
1 = 0, ω2

2 6= 0

O4 :ω2
1 6= 0, ω2

2 6= 0

We will show one scenario in details here, and the full table of the elements of θR, θF and penalization
terms used by BICN , BICn and BICh will be shown in Table 3. Consider the case under O2 and M1,

O2 : ω2
1 6= 0, ω2

2 = 0; M1 : α1 = 0, α2 = 0

Now

Ω =

ω2
0 0 0

0 ω2
1 0

0 0 0

 and β =


µ0

µ1

µ2

0
0


Then

ψi = Ciβ + ηi =

 µ0

µ1 + α1ci
µ2 + α2ci

+

ηi0ηi1
ηi2

 =

µ0

µ1

µ2

+

ηi0ηi1
0

 =

µ0 + ηi0
µ1 + ηi1
µ2


Hence we can see that in the vector ψi, µ0 and µ1 are random, µ2 is fixed. Don’t forget the parameter θ
takes the elements in Ω and σ2 as well.

2.3. Simulation study

We have four different designs as the number of subjects, N = 20 or 100, and the number of observations
per subject, nsub = 5 or 100, vary. For each of these 64 models, the involved parameters and variables are
generated as follows:

• The n observation points in the design matrix, xi1, ..., xin were equally spaced in the interval [0, 10].

• The residual error was fixed as σ2 = 1.

• ci ∼ N(0, 1).

• µ0 ∼ N(0.01, 1).

• µ1 ∼ N(0.005, 1).
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Table (3) Elements of θR, θF and penalization terms used by different BICs

O M βR ΩR θF BICN BICn BICh

O1

M1 µ0 ω0 σ2, µ1, µ2 5 logN 5 log n 2 logN + 3 log n

M2 µ0 ω0 σ2, µ1, µ2, α1 6 logN 6 log n 2 logN + 4 log n

M3 µ0 ω0 σ2, µ1, µ2, α2 6 logN 6 log n 2 logN + 4 log n

M4 µ0 ω0 σ2, µ1, µ2, α1, α2 7 logN 7 log n 2 logN + 5 log n

O2

M1 µ0, µ1 ω0, ω1 σ2, µ2 6 logN 6 log n 4 logN + 2 log n

M2 µ0, µ1, α1 ω0, ω1 σ2, µ2 7 logN 7 log n 5 logN + 2 log n

M3 µ0, µ1 ω0, ω1 σ2, µ2, α2 7 logN 7 log n 4 logN + 3 log n

M4 µ0, µ1, α1 ω0, ω1 σ2, µ2, α2 8 logN 8 log n 5 logN + 3 log n

O3

M1 µ0, µ2 ω0, ω2 σ2, µ1 6 logN 6 log n 4 logN + 2 log n

M2 µ0, µ2 ω0, ω2 σ2, µ1, α1 7 logN 7 log n 4 logN + 3 log n

M3 µ0, µ2, α2 ω0, ω2 σ2, µ1 7 logN 7 log n 5 logN + 2 log n

M4 µ0, µ2, α2 ω0, ω2 σ2, µ1, α1 8 logN 8 log n 5 logN + 3 log n

O4

M1 µ0, µ1, µ2 ω0, ω1, ω2 σ2 7 logN 7 log n 6 logN + log n

M2 µ0, µ1, µ2, α1 ω0, ω1, ω2 σ2 8 logN 8 log n 7 logN + log n

M3 µ0, µ1, µ2, α2 ω0, ω1, ω2 σ2 8 logN 8 log n 7 logN + log n

M4 µ0, µ1, µ2, α1, α2 ω0, ω1, ω2 σ2 9 logN 9 log n 8 logN + log n
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Figure (1) Frequency of correct selection for the four BIC versions: BICN (blue), BICn(green), BICne(yellow) and BICh(red)
under different designs a(N = 20, nsub = 5), b(N = 20, nsub = 100), c(N = 100, nsub = 5), d(N = 100, nsub = 100).
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• µ2 ∼ N(0.0025, 1).

• α1, α2 ∼ N(0.01, 1).

• ω2
m ∼ U [0.01, 1.01], 0 ≤ m ≤ 2.

Frequency of correct selection for the four BIC versions: BICN (blue), BICn(green), BICne(yellow) and
BICh(red) under different designs a(N = 20, nsub = 5), b(N = 20, nsub = 100), c(N = 100, nsub = 5), d(N =
100, nsub = 100) are shown in Figure 1. We could see that the two new BICs give an overall better selection
procedure under different model selection problems.

3. Conclusions and Future Work

The deduction of the BIC formula in this chapter tells us that BIC is based on the assumption that the
observations are independent, identically distributed (i.i.d.). When the real-world data does not satisfy this
assumption, using BIC could be questionable since the sample size n is not well defined. To apply BIC in
such non-iid settings, like linear mixed model for clustered data, we define a new BIC, denoted as BICne

in our project, using the effective sample size ne. The effective sample size of an estimator is defined as a
function of the inverse of the information matrix, which would give the same precision as if we sample ne
independent individuals.

Simulation study is conducted to compare the performance of BICne with two widely used BIC, BICN ,
and BICn, and one innovation BIC defined in <20> in which the penalty term is defined as a hybrid of the
penalties in the classical BIC at two extreme cases. Using a simple linear mixed-effects model, we have found
that the performances of BICN and BICn differ a lot for different covariance structures. BICne

and BICh
behave as the best of the two standard BIC, whatever the random structure of the model. Moreover, our
BICne is easier to apply than BICh since we do not require the structure of the covariance. Thus, BICne has
a more general assumption when we apply it to real-world data.

Our ongoing work focus on generalize our BICne to more general cases besides linear mixed effect model.
Non-linear mixed effect models and other more complex models are also widely used in practice. How to
implement simulations on these data will be discussed in the future.
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