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Abstract

It is increasingly common for therapies in oncology to be given in combination. In

some cases, patients can benefit from the interaction between two drugs, although often

at the risk of higher toxicity. A large number of designs to conduct phase I trials in

this setting are available, where the objective is to select the maximum tolerated dose

combination (MTC). Recently, a number of model-free (also called model-assisted) designs

have provoked interest, providing several practical advantages over the more conventional

approaches of rule-based or model-based designs. In this paper, we demonstrate a novel

calibration procedure for model-free designs to determine their most desirable parameters.

Under the calibration procedure, we compare the behaviour of model-free designs to a

model-based approach in a comprehensive simulation study, covering a number of clinically

plausible scenarios. It is found that model-free designs are competitive with the model-

based design in terms of the proportion of correct selections of the MTC. However, there

are a number of scenarios in which model-free designs offer a safer alternative. This is

also illustrated in the application of the designs to a case study using data from a phase

I oncology trial.
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1 Introduction

The aim of phase I clinical trials investigating a single therapy is to find the highest dose that

can be administered whilst ensuring that patients are at a low risk of serious side effects. To offer

patients a higher chance of successful treatment, there is willingness to accept a dose that leads

to more toxic responses, commonly labelled as dose-limiting toxicities (DLTs). The highest dose

for which the treatment has a prespecified probability of leading to a toxic outcome is called

the maximum tolerated dose (MTD). In an analysis of over 400,000 clinical trials conducted

between 2000 and 2015 [21], it was found that 57.6% of all phase I oncology trials successfully

progressed to phase II. It was found that in 73% of trials excluding oncology, treatments were

successful in moving to phase II, thus demonstrating the importance of successful dose-finding

methods in oncology, where drugs are clearly harder to develop.

In this work, we consider phase I oncology trials in which a combination of two therapies are

investigated. Here the objective is to identify a maximum tolerated dose combination (MTC),

the highest dose combination with a probability of toxicity at the target. Phase I oncology

trials in this dual-agent setting have recently provoked notable interest [22]. In particular, it

was found that immunotherapy, a targeted agent that stimulates the immune system to fight

cancerous cells [3], can provide benefit to patients when administered in combination with

chemotherapy or another targeted agent [17]. One difficulty in the dual-agent setting is that

the order of toxicity is unknown for some combinations – if the amount of one compound in the

combination is increased while another is decreased, it is unknown whether the overall toxicity

goes up or down.

A number of dose-finding methods for dual-agent combination phase I trials relaxing the

monotonicity assumption on the order of some of the combinations have been proposed in

the literature. They broadly belong to one of three categories; rule-based, model-based and

model-free (also known as model-assisted) designs. Rule-based designs (e.g. 3+3+3 or exten-

sions of this [6]) rely on a number of prespecified rules to determine when a dose is escalated,

de-escalated and chosen as the MTD. Model-based designs (e.g. six-parameter model [19])

model the relationship between dose and probability of toxicity through a parametric func-

tion. Through the course of a trial, parameter estimates are updated to better describe this

relationship. The model-free designs [1, 10], do not pre-specify any relationship between dose

and toxicity, thus do not rely on any parametric assumptions in their search for the MTD.

However, unlike rule-based designs, the decision process in which the dose can be escalated or

de-escalated is assisted with a statistical model.

Despite numerous papers demonstrating flaws in rule-based designs and their performance

in drug combination trials [15, 18, 2], it was reported that less than 5% of combination trials

in oncology between 2011 and 2013 deviated from rule-based designs [16]. It is perhaps the
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restrictions associated with model-based designs, such as difficulty of implementation or com-

munication to clinicians, that have made these less commonly used in real trials. Recently,

model-free designs have attracted attention due to their practicality [20], although these have

not yet been fully evaluated in the literature.

The objective of this work is to review four recently proposed model-free dose-finding designs

for phase I dual-agent combination studies, namely, the Bayesian Optimal Interval design [7,

BOIN], the Keyboard design [23, KEY], the surface-free design [9, SFD], and the product of

independent beta probabilities design [8, PIPE]. We evaluate their performance in an exten-

sive simulation study. To compare the methods on equal grounds, we propose a calibration

procedure that selects the parameters of each of the designs that maximise the proportion of

correct selections (subject to a safety constraint). We compare the performance of these de-

signs to the Bayesian Logistic Regression Model (BLRM), a model-based approach that uses

a two-parameter logistic model for each compound [13], as well as a non-parametric optimal

benchmark. We also evaluate the performance of each of the designs in a case study of neratinib

and temsirolimus [5], to highlight the differences between approaches in a real trial setting.

The rest of the paper continues as follows. We provide a review of model-free designs in

Section 2, before using a novel method to calibrate the parameters of each design leading to

good performance in Section 3. We then present detailed results from our simulation study

across a wide range of toxicity scenarios in Section 4, including a conventional model-based

design for comparison. Each design is also applied to a real case study of a dose finding trial

from combination therapies in Section 5. We finish with a discussion of our results and thoughts

in Section 6.

2 Methodological Review

In this section, we describe the dose escalation procedure for each of the four approaches in

a general dose-finding trial. It is assumed patients enter the trial in cohorts, and the dose

combination for the next cohort is assigned once the previous cohort’s responses are available.

We first define the admissible combinations for each design. These are the dose combinations

that are allowable for assignment for the next cohort of patients based on the last tested

combination. We then describe the details of the escalation procedure in each of the designs in

the following setting. Consider a dual-agent trial with I doses of drug A, denoted dA1 < · · · < dAI
and J doses of drug B, denoted dB1 < · · · < dBJ . Let dij represent the combination of doses dAi

and dBj for i = 1, . . . , I and j = 1, . . . , J . The total number of patients who receive combination

dij and the number of those who experience a toxic response on dij during the trial are denoted

nij and yij respectively. The probability of toxic response at dij is written as πij and the target

toxicity is denoted φ.
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2.1 Admissible Combinations

Before deciding on a dose for the next cohort, each design defines a set of combinations that

are admissible; i.e. combinations that the next cohort could be allocated to. These are best

illustrated with a diagram, Figure 1. Suppose we are at d22 in Figure 1, indicated by the ‘ ’

symbol. Admissible combinations for the BOIN and KEY designs are the same combination or

adjacent combinations to the current one, represented by the ‘#’ symbols.

In addition to these combinations, the other designs we consider also allow for diagonal

de-escalation, where the next cohort is administered a combination that is one dose level lower

in each drug, and also allow for anti-diagonal escalation, meaning the next cohort receives a

combination that is one dose level higher in one drug and one dose level lower in the other.

These are depicted by the ‘∗’ symbols in Figure 1, where reaching d11 requires diagonal de-

escalation and reaching d31 or d13 requires anti-diagonal escalation. The rationale is that by

enabling faster movement across the combination grid, the design can move to the MTC quickly,

and de-escalate quickly if patients are treated at highly toxic combinations.

All designs prohibit diagonal escalation, where the next cohort receives a combination one

dose level higher in each drug and no dose levels can be skipped. These non-admissible doses

are shown by the ’×’ in the red cells in Figure 1.

dA4 × × × ×
dA3 ∗ # × ×
dA2 #  # ×
dA1 ∗ # ∗ ×

dB1 dB2 dB3 dB4

Figure 1: Illustration of the admissible combinations for each design. The ‘ ’ symbol illustrates
the current dose combination, and the symbols ‘#’ and ‘∗’ represent the possible combinations
the next cohort could receive for different designs.

2.2 The BOIN Design

The Bayesian Optimal Interval (BOIN) design [7] uses the intuitive estimator π̂ij = yij/nij for

the probability of toxicity at combination dij, so that π̂ij is the proportion of observed toxic

responses on dij across the whole trial. The estimator π̂ij only updates after patient responses

are observed on dij, and is then used to guide dose escalation. This escalation process is defined

by pre-specified values of λe, λd to which π̂ij is compared after each cohort. Values of λe < φ

and λd > φ are chosen to locally minimise the chance of incorrect escalation and de-escalation

decisions during a trial, and are calculated using constants φ1 and φ2. Whilst φ is the target

toxicity, φ1 is the highest toxicity probability deemed sub-therapeutic and φ2 is the lowest
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toxicity probability deemed overly toxic. These can be specified by the clinicians. λe and λd

are defined in Equation (1):

λe =
log
(

1−φ1
1−φ

)
log
(
φ(1−φ1)
φ1(1−φ)

) and λd =
log
(

1−φ
1−φ2

)
log
(
φ2(1−φ)
φ(1−φ2)

) . (1)

Both λe and λd are invariant to dij, nij and yij, so that optimising these parameters depends

only on constants φ, φ1 and φ2. After defining λe and λd, the rules for the dose-finding procedure

are as follows:

• If π̂ij ≤ λe, the next combination is chosen from AE =
{
d(i+1)j, di(j+1)

}
.

• If π̂ij ≥ λd, the next combination is chosen from AD =
{
d(i−1)j, di(j−1)

}
.

• Otherwise, λe < π̂ij < λd and the next combination is the same.

In this way, dose skipping, diagonal escalation and diagonal de-escalation are prohibited – see

Section 2.1 for more details. If the next combination is to be chosen from an empty AE or

AD (for example the current combination is the highest in both doses and the design chooses

to escalate), then the next cohort receives the same combination. The design assumes each

patient response is independent, yij ∼ Binomial(nij, πij) and assigns a vague Beta(1,1) prior

distribution to each πij, giving the posterior distribution for πij as

πij|nij, yij ∼ Beta(yij + 1, nij − yij + 1). (2)

To choose between combinations in the chosen set, the BOIN design computes the posterior

probability P(πij ∈ (λe, λd)|nij, yij). The combination maximising this probability is admin-

istered to the next cohort. For combinations yet to be tested, calculating this probability is

based on the vague prior distribution only. In the event of ties, which is always the case when

multiple potential combinations are yet to be administered, the next combination is selected

at random from the chosen set. Note that no toxicity information is borrowed between the

combinations under this model as the combinations are treated independently.

The design uses an overdosing criterion stating that a combination, and any that are more

toxic under monotonicity, satisfying P(πij > φ|nij, yij) ≥ εBOIN for some overdosing probability

threshold 0 < εBOIN ≤ 1, cannot be administered to the next cohort. For the BOIN design,

if dij satisfies this condition, dose dij and higher combinations are eliminated from the trial,

and the dose maximizing P(πij ∈ (λe, λd)|nij, yij) within AD is chosen for the next cohort. If

combination d11 satisfies the overdosing criterion, the trial is terminated earlier for safety.

After all patients are treated, estimates of each πij are calculated via matrix isotonic regres-

sion [4]. The simple technique guarantees that estimates of πij at higher combinations are at
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least as high as estimates of πij at lower combinations, which follows the assumption of mono-

tonicity. The MTC is selected as the combination with estimated πij closest to φ via isotonic

regression [4].

2.3 The Keyboard Design

The Keyboard design (KEY) [23] is very similar to the BOIN design, defining an interval about

the target toxicity φ, denoted Itarget = (φ−∆1, φ+∆2), for constants ∆1,∆2 > 0, which can be

chosen by the clinicians. A combination with estimated toxicity probability within this interval

is said to have acceptable toxicity. The design then divides the (0,1) space into “keys”, defined

as intervals It of equal length ∆1 + ∆2 (allowing for shorter keys at either end of (0,1)) for

t = 1, . . . , T , where T is the number of keys. The interval Itarget is fixed pre-trial, chosen to

minimise the chance of incorrect escalation and de-escalation decisions.

The KEY design assigns a vague Beta(1,1) prior distribution to each πij, and assumes that

the number of toxic responses follows a binomial distribution, yij ∼ Binomial(nij, πij). The

posterior distribution for each πij is computed as in Equation 2. Again, this means there is no

borrowing of toxicity information across combinations. The design then identifies the key It

that is most likely to contain πij, labelled Imax,

Imax = argmax
It:t∈(1,...,T )

P(πij ∈ It|nij, yij). (3)

Once the key Imax is identified, escalation and de-escalation decisions happen as follows:

• If Imax < Itarget, the next combination is chosen from AE =
{
d(i+1)j, di(j+1)

}
.

• If Imax > Itarget, the next combination is chosen from AD =
{
d(i−1)j, di(j−1)

}
.

• If Imax = Itarget, the next combination is the same.

To choose between combinations in AE (or AD), the design computes the posterior probability

P(πij ∈ Itarget|nij, yij) for all combinations in AE (or AD). The combination maximising this

probability is administered to the next cohort. The remainder of the escalation process and

the selection of the MTC is analogous with the BOIN design, with an identical overdosing rule

using εKEY and the MTC chosen via isotonic regression [4].

Both the BOIN and KEY designs model dose combinations independently, however in the

following two designs, the connections between the dose combinations are also taken into ac-

count.
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2.4 The Surface-Free Design

The surface-free design (SFD) [9] does not restrict the MTC search to a parametric surface

and does not require the order of toxicity between combinations to be known. The main

idea is to parametrise ratios between toxicity probabilities for different combinations, defining

θ = 1− π11, and θi =
1−πi,j

1−πi−1,j
. Then θ is the probability of a patient having no toxic response

on the lowest dose combination and θi denotes the ratio between the probability of a patient

having no toxic response on dose combinations dij and d(i−1)j for j = 2, . . . , J and i = 2, . . . , I.

Similarly, τj =
1−πi,j

1−πi,j−1
is defined as the ratio between the probability of a patient having no

toxic response on dij and di(j−1) for j = 2, . . . , J and i = 2, . . . , I. Thus, the probability of

toxicity for each combination dij is

πij = 1− θθ2 . . . θiτ2 . . . τj. (4)

Due to monotonicity, each ratio θi, τj ∈ (0, 1) and the SFD assigns each of these ratios an

independent Beta prior distribution. The hyper-parameters of the prior distributions can be

chosen to match the clinicians’ prior mean estimates of toxicity probability on each combination

and effective sample sizes.

After each cohort, the SFD updates the posterior means for ratios θ, θ2, . . . , θI , τ2, . . . , τJ

using Bayes theorem, which can be related back to πij through Equation (4) to give estimates

of the toxicity probabilities. In this way, the SFD is borrowing information across various

drug combinations previously collected in the trial to make an informed decision on escalation.

Additionally, the continual multiplication of Beta random variables implies that πij for higher

combinations has higher variance, allowing for more cautious escalation at higher combinations.

Considering all neighbouring combinations apart from the one higher in both doses, the next

combination is chosen as the one with estimated πij closest to φ. An overdosing criterion

prohibits any combination from being administered if P(πij > φ|nij, yij) ≥ εSFD for some

εSFD > 0, and the trial is terminated if this is satisfied for d11.

Once all patients have been treated, the MTC is selected as the combination with toxicity

probability closest to φ. Note that the SFD design is more computationally intensive than

the other model-free designs as MCMC methods are required to sample from the posterior

distribution.

2.5 The PIPE Design

The PIPE design [8] differs from other model-free designs in that it was originally proposed to

find the MTC contour, labelled MTCφ. This is a line partitioning the combination space into

safe and overly toxic combinations. Those below the contour are believed to have toxicity prob-
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ability less than target toxicity φ, whilst those above are believed to have toxicity probability

greater than φ.

Assuming the πij are independent, they are assigned a Beta prior distribution, πij ∼
Beta(aij, bij) for hyper-parameters aij and bij, for i = 1, . . . , I and j = 1, . . . , J . Priors can

be prespecified if knowledge on the toxicity of combinations is available. Assuming each pa-

tient is independent such that yij ∼ Binomial(nij, πij) ∀i, j, the posterior for πij can be written

as

πij|nij, yij ∼ Beta(yij + aij, nij − yij + bij). (5)

The posterior distribution is only updated after a cohort of patients is treated on the cor-

responding combination, but the MTCφ is re-estimated regardless of which combination was

tested. The monotonicity assumption means that the PIPE design needs only to consider

contours satisfying this property, limiting the number of possible contours to
(
I+J
I

)
.

Each contour can be represented by a binary matrix, where entries are 0 or 1 depending on

whether estimates of the toxicity probability for a combination are below or above the contour

respectively. Let ϑ be the set of all monotonic contours for an I × J dose combination space

and define Cs ∈ ϑ as the binary matrix representing the contour s = 1, . . . ,
(
I+J
I

)
.

To estimate the MTCφ given the current data, the design calculates the posterior probability

of each toxicity probability being less than or equal to φ, that is

pij(φ|nij, yij) = P(πij ≤ φ|nij, yij, aij, bij), (6)

where the right-hand side of Equation (6) is equal to the cumulative distribution function of a

Beta distribution. Equation (7) gives the general formula for calculating the probability that

the MTCφ is defined by the matrix Cs:

P(MTCφ = Cs|nij, yij) =
I∏
i=1

J∏
j=1

{1− pij(φ|nij, yij)}Cs[i,j] pij(φ|nij, yij)1−Cs[i,j], (7)

where [i, j] represents the entry in the ith row and jth column of the binary matrix Cs. The

contour maximising Equation (7) is the contour most likely to be the MTCφ given the current

data. This contour then assists the escalation process by identifying the combinations closest to

it, before the design selects one of these for the next cohort based on a weighted randomisation

procedure. This involves weighting each combination by the inverse of their sample size, with

the rationale being varied experimentation around the MTCφ. Escalation continues in this way

until all patients are treated, at which point all combinations closest from below the MTCφ are

recommended for phase II.

The design uses an overdosing rule which considers the expected probability of dij being
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above the most probable MTCφ averaged over all monotonic contours. This is written as

qij =
∑
Cs∈ϑ

Cs[i, j]P(MTCφ = Cs|Y (m)),

and dij cannot be administered to the next cohort if qij ≥ εPIPE for some εPIPE > 0. A trial is

terminated if combination d11 satisfies this condition.

The PIPE design can recommend multiple combinations for phase II, as it recommends

all combinations closest from below its MTCφ. For consistency across designs, in our imple-

mentation we ensure only one combination is recommended as the MTC. Therefore for each

recommended combination, we find the posterior mean probability of toxicity, which can be

calculated using the posterior distributions in Equation (6). The combination with posterior

mean closest to φ is selected as the MTC, only choosing a combination at random in the event

of a tie.

3 Calibration of Designs

Model-based and model-free designs based on a Bayesian framework give clinicians more control

over their performance. The PIPE design, the SFD and most model-based designs allow for

knowledge on the toxicity of each drug from monotherapy trials to be incorporated into the

design through their prior distributions. As the BOIN and KEY designs assign vague priors to

the toxicity probabilities, their behaviour is primarily determined by the pre-defined intervals

guiding escalation. Although it is in theory possible to incorporate historical data through the

prior in the BOIN and KEY designs, for the purpose of this comparison, it would defeat the

purpose of a design with all escalation boundaries pre-specified at the design stage for ease of

implementation.

In this comparison study, the purpose of the calibration procedure is to give all designs a

set-up which leads to consistently high proportions of selections of combinations with toxicity

probability close to φ in all scenarios. To achieve this, we calibrate each design using a novel

two-stage approach. The first stage of the calibration is concerned with choosing values for

hyper-parameters that give a good performance in selecting the MTC without considering safety.

The second stage then focusses on safety, calibrating the overdose rule taking into account not

only good performance in terms of correct selections, but also the number of patients who are

treated at unsafe doses.

This approach employs a grid search over hyper-parameter or interval values (depending

on the design), each stage involving running simulations over four clinically plausible scenarios

and determining which values lead to superior performance. We refer to the priors resulting

in superior performance across the four scenarios as operational priors. Although, for the
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purposes of this work, they will serve as a way of a fairer comparison between the Bayesian

designs, addressing the challenge of ensuring that the same amount of prior information is used

for each design, the obtained operational priors can be also applicable in the practical case

where no reliable prior information about the compound is available.

To evaluate which design inputs lead to superior performance in recommending the MTC

in the first stage, the proportion of correct selections (PCS) is examined in each of the four

scenarios. That is, the proportion of trials in which a design selects any combination with a

true toxicity probability of exactly 0.30. To summarise overall performance across these four

scenarios, the geometric mean PCS is considered. Suppose x1, . . . , xN represent the PCS in N

scenarios. The geometric mean,
(∏N

i=1 xi

)1/N
, is used instead of the arithmetic mean because

it has the useful property of penalising cases in which PCS are more dispersed across scenarios.

The design with priors or intervals resulting in highest geometric mean PCS across the four

scenarios will be the design variant we choose. For the remainder of this section, the mean will

refer to the geometric mean. We note that during the first stage of the calibration procedure,

no overdosing rules are included, meaning no trials are to be stopped before all patients have

been recruited, because we choose to calibrate the parameter controlling the overdosing rule in

the separate second stage. Once the first stage of calibration is complete, this will lead to the

selection of intervals for the BOIN and KEY designs, and operational priors for the PIPE, SFD

and BLRM designs.

The second stage of the calibration procedure is for ε, the parameter regulating the over-

dosing rule in each model-free design. Calibration of ε involves decreasing its value starting

from 1, and observing the proportion of correct outcomes in the chosen scenarios. As selecting

overly toxic combinations is more of an ethical concern, as a general rule we take as a starting

point the highest value of ε resulting in at least 85% of trials recommending no combinations

when considering an overly toxic scenario. We acknowledge this proportion may differ in prac-

tice depending on the clinicians’ judgement. It is important to note that the interpretation

of ε differs between designs because of the construction of each overdosing rule, and should

be accounted for when communicating with clinicians. This is reflected by subscripts for the

individual designs in the following specifications. The second stage of the calibration procedure

for each design is illustrated in Figure 2.

3.1 Setting

Each design is calibrated in the same setting that is then explored in the simulation study (see

Section 4.1), representative of a phase I trial in oncology. There are two drugs with three dose

levels each, which results in nine combinations, and the first cohort is treated at the lowest

combination. The objective is to select a single combination as the MTC with true toxicity
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probability φ = 0.30. The sample size is 36 patients for which are recruited in cohorts of three

patients. All combination-toxicity scenarios are presented in Table 1. However, four scenarios

are chosen to explore noticeably different clinical cases, in which the number and location of the

MTCs vary, whilst restricting the number of scenarios makes the procedure computationally

feasible.

In stage 1 of the calibration procedure, Scenarios 1, 8, 10 and 13 are chosen. Scenarios 1

and 13 are chosen to represent the extremes: when the highest combination is the only true

MTC and all others are safe, and when the lowest combination is the only true MTC and all

others are overly toxic, respectively. Scenario 8 covers situations in which most combinations

are safe but true MTCs do not lie on the same diagonal. Scenario 10 captures the case where

most combinations are overly toxic and true MTCs lie on the same diagonal. Note that we

often refer to the set of combinations in a scenario as the combination grid.

In stage 2, simulations are run for each design over Scenarios 8, 10, 13 and 14 for different

values of ε. In Scenarios 8, 10 and 13, the PCS is as previously defined, whilst in the unsafe

Scenario 14 we consider the PCS as the proportion of trials in which no combinations are

selected. We refer to selecting no combinations in Scenario 14 as the ‘correct outcome’.

3.2 Calibrating the BOIN Design

To guide dose escalation, the BOIN design relies on the interval (λe, λd) around the target toxi-

city. Interval boundaries λe and λd are a function of φ, φ1 and φ2, where φ1 = a1φ and φ2 = a2φ

for constants a1 < 1, a2 > 1. To calibrate the design, we run 4000 simulations for each sce-

nario for pairs (a1, a2) from the sets a1 = {0.85, 0.80, . . . , 0.40} and a2 = {1.15, 1.20, . . . , 1.60},
resulting in a total of 100 pairs. As constants a1 and a2 deviate further from 1, the interval

becomes wider, thus the design will choose to escalate and de-escalate on fewer occasions.

The optimal values are found to be a1 = 0.65 and a2 = 1.4, which substituting into Equa-

tion (1), we generate the interval boundaries λe and λd to give the interval (0.245, 0.359) to guide

dose escalation. This interval implies that escalation occurs if πij is below 0.245, de-escalation

occurs if πij is above 0.359, else the combination remains the same.

In the second stage of calibration, we find that as εBOIN decreases, the design benefits more in

Scenario 14, where the proportion of trials in which no combinations are recommended increases

(see Figure 2). For εBOIN ≤ 0.84, over 85% of trials recommend no combinations in Scenario

14. The trade-off in the other scenarios with this εBOIN value is that PCS increases steeply

when εBOIN increases, as well as the number of patients treated on overly toxic doses increasing.

Therefore εBOIN = 0.84 is chosen.
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3.3 Calibrating the Keyboard Design

Using a similar method to BOIN, we first calibrate the parameters which define the interval

for KEY. The interval Itarget = (b1, b2) guides escalation entirely so is an important component

of the design. We run 4000 simulations across each scenario for pairs (b1, b2) from the sets

b1 = {0.27, 0.25, . . . , 0.19} and b2 = {0.33, 0.35, . . . , 0.41}, resulting in a total of 25 pairs. Mean

PCS are displayed Figure 2 in the online supplementary materials, indicating that interval (0.21,

0.39) yields the highest mean PCS, which differs from the recommendation of (0.25, 0.35) in

the original paper [23]. As explained in Section 2.3, this means escalation occurs only if the

posterior probability P(πij ∈ (0.03, 0.21)|nij, yij) is higher than P(πij ∈ (0.21, 0.39)|nij, yij).
In the second stage of calibration, we find that as εKEY decreases, the design benefits more in

Scenario 14, where the proportion of trials in which no combinations are recommended increases.

Choosing εKEY = 0.84 leads to approximately 85% of trials correctly selecting no combinations

in Scenario 14, as shown in Figure 2, in line with the value obtained for the BOIN design.

3.4 Calibrating the Surface-Free Design

The SFD assigns Beta priors to each of its parameters; the ratios between toxicity probabilities.

In this setting, there are five ratios (θ, θ2, θ3, τ2 & τ3 defined in Section 2.4) to parametrise,

meaning a total of 10 hyper-parameters for the beta priors must be defined for the operational

priors. Instead of specifying these directly, we specify a prior mean and prior effective sample

size for each ratio, which can be used to calculate the corresponding hyper-parameters. To

make the calibration task computationally feasible, we assume that all prior mean ratios, m,

are equal (meaning the increase in dose corresponds to the same proportion increase in toxicity)

and all effective sample sizes for each ratio, sSFD, are equal. Thus we only need to calibrate pairs

of m and s, which we choose from sets m = {0.95, 0.925, . . . , 0.85} and sSFD = {1, 2, . . . , 5}.
For each pair, we run 500 simulations (which is lower than other model-free designs due

to the computational demands of the design) and examine the mean PCS across the four

scenarios. Our results in Figure 4 in the online supplementary materials show that the mean

PCS is highest for m = 0.875 and sSFD = 4. This is equivalent to every ratio being assigned

the prior distribution Beta(3.5, 0.5), and corresponds to mean prior toxicity probabilities on d11

and d33 of 0.125 and 0.487 respectively.

For the calibration of εSFD, in Figure 2, we found that εSFD = 0.65 resulted in at least 85% of

trials selecting no combinations in Scenario 14. There is evidence to suggest that increasing or

decreasing εSFD not only has a sizeable effect on the PCS in Scenario 13, but also the number

of patients treated at unsafe doses, demonstrating the design is highly sensitive to changes in

its overdosing rule.
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3.5 Calibrating the PIPE Design

Similar to the SFD, the PIPE designs assigns beta priors to each πij. A prior mean and prior

sample size for each πij are specified, giving a total of 18 values to specify from which the hyper-

parameters for the beta priors can be calculated. To make calibration feasible, we assume that

prior sample size sPIPE is equal for each combination and to set the prior means, we divide the

grid of combinations into five diagonal segments, with toxicity increasing as we move through

each segment. In this way, the design follows the monotonicity assumption. To assign a toxicity

to each combination, we specify the toxicity of the lowest combination, ρ, and the size of the

increments in toxicity between each segment, δ. In the illustration in Figure 3, we have chosen

ρ = 0.05 and δ = 0.025 to construct the grid.

Our approach involves calibrating three parameters simultaneously to create operational

priors, and are chosen from the sets ρ = {0.025, 0.05, 0.075, 0.10}, δ = {0.025, 0.05, 0.075, 0.10}
and sPIPE = {1/72, 1/36, 1/18, 1/9}. For each triple, we run 2000 simulations in each of the

four scenarios, which is fewer than for the BOIN and KEY designs due to the minor increase in

computational expense. We provide one grid in Figure 5 in the online supplementary materials

to account for mean PCS on each sPIPE value. The triple sPIPE = 1/18, ρ = 0.05 and δ = 0.025

leads to the highest mean PCS, although we observe that there were many triples that resulted

in similar values. We note our choice of prior sample size, sPIPE = 1/18, only differs to the

recommendation of 1/9 in the original paper [8]. For prior sample sizes sPIPE ≤ 1/18, the design

is found to be robust. Mean PCS only varies between 37% and 40%, suggesting that a number

of operational priors could lead to consistently high PCS.

For the second stage of the calibration, the value of εPIPE is varied as shown in Figure 2,

and εPIPE = 0.50 is chosen as it provides at least an 85% chance of correctly recommending

no combinations in Scenario 14, as well as balancing the number of patients treated at unsafe

doses in the four considered scenarios.

4 Simulation Study

In this section we describe the setting for the simulation study before presenting the results,

including a comparison to a model-based approach and a non-parametric optimal benchmark.

4.1 Setting

In order to compare the discussed designs, we conduct a simulation study, performing 2000

simulations of each of the 15 scenarios depicted in Table 1 for all five designs. As before, the

objective is to select a single combination as the MTC with true toxicity probability φ = 0.30.

Any combination with probability of toxicity greater than 0.33 is labelled as overly toxic, and
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any combination with probability of toxicity in the interval [0.16,0.33] is labelled as acceptable.

In this section, the mean refers to the arithmetic mean. All simulations are carried out using

R [14], with code provided in the online supplementary materials.

In general, the number of overly toxic combinations available for selection increases as we

move through Scenarios 1 to 14. Scenario 1 has a single MTC which is the highest combination

available. Scenarios 3 and 4 contain very few overly toxic combinations and have MTCs on

the edge of the grid. Scenario 5 is similar to these, except its only MTC is located in the

centre of the grid. In Scenarios 2, 6, 7, 8, 9 and 10, there are multiple combinations to explore

which have toxicity probability φ. In particular, Scenarios 8 and 9 aim to investigate design

behaviour when underlying MTCs are not on the same diagonal. Scenarios 11, 12 and 13

represent settings in which most combinations are overly toxic, meaning designs should avoid

combinations away from d11. Scenario 14 is of importance because all of its combinations

are overly toxic, making the trial very unethical. In this instance, the only correct outcome

is to recommend no combination for phase II. Scenario 15 represents a situation where all

combinations are true MTCs, and is used to monitor escalation behaviour when combinations

are safe and increasing the dose of either drug does not affect toxicity.

In order to accentuate the differences in the designs, we do not implement any accuracy or

sufficient information rules, as these may mask some key elements of the designs. We focus

on the operating characteristics of proportion of correct selections (PCS) and proportion of

acceptable selections (PAS) as measures of accuracy, and proportion of overly toxic selections

and the number of patients treated on unsafe dose combinations as measures of safety.

4.2 A Model-Based Comparator

To provide a comparison between model-free and model-based designs, we also consider a

conventional model-based approach in our simulation study, the Bayesian Logistic Regression

Model (BLRM) [13]. In this approach, the toxicity probability for each combination, πij, are

modelled as in Equation 8 for i = 1, . . . , I and j = 1, . . . , J , where doses dAi and dBj are scaled

by reference doses. Let dij be combination of dAi and dBj , while nij and yij are the number of

patients and toxic responses on each combination respectively. Parameters α1 and β1 describe

the toxicity of drug A, α2 and β2 describe the toxicity of drug B, and η models the interaction

between drugs. The five parameters are assigned normal prior distributions, and the likelihood

is a product of Bernoulli densities, proportional to
∏I

i=1

∏J
j=1 π

yij
ij (1 − πij)

nij−yij . After each

cohort is observed, the joint posterior distribution is approximated using MCMC methods, and

samples of each parameter are drawn from their full conditional distributions. Estimates of πij

are made by sampling parameters from their posteriors and substituting these along with the

corresponding doses into Equation 8. Note that all parameters except η are sampled on the log
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scale and then exponentiated since they must be positive.

πij(α1, α2, β1, β2, η|dAi , dBj ) =

[
α1(d

A
i )β1 + α2(d

B
j )β2 + α1α2(d

A
i )β1(dBj )β2

]
exp(ηdAi d

B
j )

1 +
[
α1(dAi )β1 + α2(dBj )β2 + α1α2(dAi )β1(dBj )β2

]
exp(ηdAi d

B
j )
. (8)

The BLRM can only escalate to combinations satisfying the neighbourhood constraint and

Escalation With Overdose Control (EWOC) principle. The neighbourhood constraint prevents

escalation or de-escalation to any combination that is more than one dose level of either drug

away, and also prevents escalation to a combination in which both dose levels are higher.

For a trial with target toxicity φ = 0.30, the EWOC principle states that dij can only be

administered if P(πij > 0.33) < εBLRM. The combination maximising the probabilistic statement

P(0.16 < πij < 0.33) is administered to the next cohort. If no combinations satisfy the two

constraints, the trial is terminated. Once the sample size has been exhausted, the MTC is

selected from combinations which have been experimented on with at least six patients, and is

the one maximising P(0.16 < πij < 0.33). The BLRM requires dosing quantities for each drug

to be specified, in all of the implementations of the BLRM, these doses are 100, 200 and 300mg

for each drug. The same proposed calibration procedure as is applied to the other designs is

applied to the BLRM, with details provided in the online supplementary materials.

4.3 A Non-Parametric Optimal Benchmark Comparator

While the primary goal of this work is to compare the performance of different model-free

designs to each other, there is a risk that all methods might perform equally poorly on some

scenarios. In this case, the comparison of the designs to each other would not identify why the

poor performance is observed – due to the challenging scenario or due to all designs having

difficulties identifying a particular MTC. To provide context for the comparison of operating

characteristics, we include the performance of the non-parametric benchmark for combination

studies, a tool that provides an estimate for the upper bound on the PCS under the given

combination-toxicity scenario [11, 12]. The benchmark takes into account the “difficulty” of

a scenario in terms of how close the toxicity risks for the combinations (under this scenario)

are to the target level of 30%, and also accounts for the unknown monotonic ordering in the

combination setting. We refer the reader to the recent work by Mozgunov et al. [12] for further

technical details on the benchmark for combinations implementation.
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4.4 Results

4.4.1 Proportions of Correct and Acceptable Selections

Figure 4 presents the summary of the operating characteristics of the considered designs in terms

of the PCS and PAS (with the full set of results given in the online supplementary materials).

Scenarios 14 and 15 have been excluded as these have no true MTCs for the design to select. For

scenarios in which the only acceptable combinations are also correct combinations (Scenarios

6, 9, 10, 11 and 13), the PCS and PAS are equal. The mean PCS across Scenarios 1-13 for

the BLRM, BOIN, KEY, PIPE and SFD designs is 40.0%, 39.8%, 42.4%, 31.2% and 41.5%

respectively, whilst the mean PAS are 58.4%, 58.7%, 62.0%, 56.0% and 59.0% respectively.

First of all, the benchmark reveals the differences in how challenging it is to identify the

MTC in the considered scenarios: the PCS for the benchmark varies between approximately 35%

under Scenario 7 to more than 80% under Scenario 13. As expected, the benchmark corresponds

to the highest average PCS and PAS - 55% and nearly 70%, respectively. Similarly, under the

majority of scenarios the benchmark corresponds to the highest PCS and PAS as it employs the

concept of the complete information. The largest difference between the benchmark and other

designs can be seen under Scenario 13. At the same time, there are scenarios under which the

benchmark is outperformed by a competing design - this can be a sign of the design favouring

particular combinations under the calibrated priors - for example under Scenario 7.

The variety of performances across the scenarios demonstrates the variability between the

different designs in different settings. Considering the model-free designs, on average the KEY

design has the highest proportion of both correct and acceptable selections, but is vastly out-

performed in some scenarios by the SFD design. In six of the scenarios, the KEY has the

highest PCS out of all the model-free designs, being superior in scenarios with few overly toxic

combinations. However, for example in Scenario 11, where the MTC is the middle dose of drug

A and lowest dose of drug B, the SFD outperforms the next best performing design by 20.6%.

The PIPE design shows poor performance in many scenarios, most notably in Scenario 1 where

the PCS is 5.5% and PAS is 54.0%. A likely reason is that for the PIPE design, the choice of

MTC must be below the MTC contour, and a scenario where the true MTC is the highest dose

combination gives rise to underestimation since we cannot explore above the true MTC contour.

In addition, the procedure discussed in Section 2.5 to choose one MTC from the recommended

set will make our results differ from those originally reported by Mander and Sweeting [8],

where a ‘correct selection’ was defined as the MTC being in the set of recommended doses.

When considering the BLRM as a comparator, we see that in many scenarios the BLRM

outperforms the KEY. For example, in Scenario 1 where the MTC is the highest combination,

the BLRM has PCS over 20% higher than the next best performing design, the KEY. In fact,

when including the BLRM in the comparison, the KEY is only the best performing design in

16



one scenario, Scenario 8. The SFD does however outperform the BLRM in some cases, with the

BLRM having the highest PCS in Scenarios 1, 2, 3, 5, and 7 and the SFD is the best performing

in Scenarios 6, 9, 10, 11, and 12.

4.4.2 Proportions of Overly Toxic Selections

Figure 5 illustrates the proportion of overly toxic selections for each design. Scenarios 1 and 15

have no overly toxic combinations, so the proportion is zero for these cases. We observe that

the SFD and the BLRM recommend more overly toxic combinations on average, in 20.4% and

17.8% of trials respectively. This is evidence of the trade-off between selecting combinations

close to φ and the willingness to recommend more overly toxic combinations.

In three of the scenarios, the SFD recommends overly toxic combinations in over 25% of

the simulated trials and in 6 of the scenarios, it is the design with the highest proportion of

overly toxic recommendations. The BLRM stands out in Scenarios 9 and 11 with a very high

percentage of simulated trials recommending overly toxic doses, driving up the average across

scenarios.

The PIPE design demonstrates a very low proportion of overly toxic selections with a mean

of 9.2% across the 13 scenarios, 6.2% below any of the other designs. It has the lowest in all

but three scenarios. This is a further illustration of the feature of the design to recommend

combinations near but lower than the estimated MTC contour.

A focus on Scenario 14, where all dose combinations are overly toxic, shows the BLRM is

the most efficient at stopping for safety, with 93.7% of simulations not recommending any dose

combination.

4.4.3 Number of Patients Treated at Overly Toxic Combinations

Figure 6 outlines the mean number of patients treated at overly toxic combinations in Scenarios

1-15 for each design. Note that we report the number rather than proportion of patients, as

this will also give insight into how effectively each design stops for safety.

The most notable feature of these results are the large number of patients treated at overly

toxic combinations by the BLRM design. This aggressive escalation is driven by the informative

prior, calibrated to give high values of PCS. We refer the reader to the online supplementary

materials where an alternative prior leading to more conservative escalation (but considerably

lower PCS and PAS) is explored.

The SFD, KEY and BOIN have reasonable performance, with the SFD showing a strong

performance with the lowest overall mean number of patients treated on overly toxic doses of

seven patients.

Careful attention must again be paid to Scenario 14, where all dose combinations are overly
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toxic. The PIPE design treats an average of 20 patients per trial, over six cohorts, which

is an unacceptable level of exploration in such a scenario. In this scenario, we also consider

that although the BLRM showed good performance in stopping early for safety in the highest

number of simulated trials, it also has a high number of patients treated on average before

stopping.

We see that overall the model-free approaches are more conservative in their escalation than

the BLRM, with fewer patients treated on unsafe doses, with no noticeable increase in PCS. Of

the model-free approaches, the SFD shows the most promising PCS, at the cost of somewhat

higher overly toxic selections. It is also worth noting that the SFD has a substantially higher

computational cost than the other model-free designs. To investigate the escalation behaviour

further, we consider the application of each method to a case study in the following section.

5 Case Study

The simulation study gives insight into the operating characteristics of each design, however

for further insight into the escalation behaviour, we apply each method to an example case

study. We consider a phase I oncology (breast and lung cancer) study enrolling patients to

dosing combinations of four dose levels of neratinib and temsirolimus [5]. A total sample size

of 60 patients (cohorts of size 2 or 3) were treated on 12 of 16 possible dosing combinations.

Results from 52 patients were included and 10 DLTs were observed, with full results of the trial

displayed in Table 2.

The purpose of this case study is not to investigate whether each design chooses the same

MTC as the real study did, but to give an illustration of how each design explores the dosing

grid, given identical patient responses.

In order to use the calibrated prior specifications, and in line with the simulation study, we

restrict the dosing grid to three doses of each drug, removing the lowest dose of temsirolimus

and the highest dose of neratinib. We also fix the cohort size to three patients and maximum

total sample size to 36.

To ensure a fair comparison between designs, we define a fixed set of 36 ordered patient

responses for each dose combination. The first patient responses in this set are the true yij

DLT responses and nij − yij non-DLT responses, in a random permutation (note that this is

the same random permutation for each of the methods). The remaining 36− nij responses are

generated in the following way. Each patient has an individual probability of DLT, generated

from Beta(1 + yij, 1 + nij − yij). Then a binary response is generated with this probability.

Where there were no patients assigned to the dose combination in the real study, the individual

P(DLT) is generated from a Beta(3,3) distribution, to indicate the dose combination is unsafe,

since this is the reason the combination was not escalated to. This process uses the information
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from the real study, but also introduces enough variability in the subsequent responses to

account for the small sample size.

Table 2 displays the results of each of the methods, with the number of patients treated at

each combination, the number of DLTs observed, and the concluded MTC highlighted in bold.

The BOIN and KEY designs show very similar exploration, first escalating in neratinib,

then temsirolimus. The highest combination is not explored, as the combinations with the

next lowest dose of each drug were considered unsafe. The only difference is that the KEY

assigns one more cohort to the 200mg/50mg combination, even when the previous cohort had

2/3 observed DLT responses.

The PIPE design explores differently, not escalating to the highest dose of temsirolimus

at all, even though only 1/12 DLT responses were observed on the 160mg/50mg combination.

The SFD explores more of the highest dose of temsirolimus than any other of the model-free

designs, although still not the highest combination. An interesting observation here is that the

final recommended dose has observed 4/9 DLT responses, a level that would generally be an

unsafe standard. This is in line with the simulation results that showed this design to have the

highest level of overly toxic selections.

The BLRM is executed with two prior distributions, the calibrated prior and the alternative

prior. Both show a more aggressive escalation than the model free designs, with patients

allocated to the highest combination. The calibrated prior gives a slightly more aggressive

approach with a second cohort assigned, even when the first observed 2/3 DLT responses. This

also means that the dosing grid is not as well explored as some of the model-free designs, as the

lowest dose of temsirolimus is only explored in combination with the lowest dose of neratinib.

These results are in line with the simulation study for the calibrated prior, where the BLRM

had on average the most patients treated on overly toxic doses and also a high proportion of

overly toxic recommendations.

The case study highlights some key differences in the approaches, illustrating how both

the escalation schemes and final recommendation differ. Particularly of note is the somewhat

aggressive behaviour of not de-escalating when observing 2/3 observed DLT responses, and

recommending a final dose combination with 4/9 observed DLT responses from both the SFD

and BLRM. This behaviour, that could be considered unsafe, is not necessarily obvious from

simulation results and underlines the importance of studying the individual escalations in an

example case study. It is also important to consider that in practice, such a statistical approach

is a guidance for dose recommendation that should be supported by an overall evaluation of

the safety, pharmacokinetics and clinical rationale.
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6 Discussion

This paper provides a review of a wide range of combination designs in phase I oncology,

exploring the more recently proposed model-free designs in detail, as well as providing a novel

approach for the calibration of such designs. The comprehensive simulation study we conduct

suggests that model-free designs are competitive with the BLRM in terms of the proportion of

correct combinations selected. The operating characteristics of model-free designs in a number

of scenarios suggest they offer a safer alternative. The case study example highlighted the key

differences in how the methods explore the dosing grid given the same patient responses, with

more aggressive approaches missing the lower doses, and conservative approaches missing the

higher ones.

The discussed results depend upon the specification of the intervals for the BOIN and

KEY designs, and the operational priors for the PIPE, SFD and BLRM designs, which were

calibrated using a novel approach. This included calibrating the overdosing rules in each design

to reduce the risk of recommending overly toxic combinations for phase II. Naturally, our work

does not allow for comparison between designs when complete and reliable prior information

on the toxicity of each drug is available. In practice, the PIPE, SFD and BLRM designs can

exploit this prior knowledge to help the escalation process.

The calibration procedure, although novel in approach, is relatively straightforward to im-

plement. It does however highlight the computational intensity of the different methods. Both

the BLRM and SFD are very computationally intensive, with the calibration procedure taking

substantially longer than for any of the other designs. It has shown great promise in specifying

prior distributions that yield high PCS values.

Moreover, our simulations do not allow for the early selection of an MTC. For example,

if at least 9 patients are treated at a combination and the next cohort is recommended to be

treated at this combination, then a trial could be stopped and this combination selected as the

MTC. We acknowledge this rule is useful to reduce sample sizes, especially in scenarios where

the true MTC is a low dose combination. Another limitation in the work is in only evaluating

3× 3 combination grids. This was chosen as a balance between providing a large enough grid

to observe interesting differences between designs, but at the same time being computationally

feasible and realistic of a dose-finding study and sample size. We hence acknowledge our results

may not necessarily hold for all settings with varying grid sizes, and emphasize that the prior

specifications we have recommended here for comparison would need to be re-calibrated for a

different grid size, sample size or cohort size.

An additional area of interest for such dose-finding studies is the sample size and cohort

size. Conducting a sensitivity analysis on both of these for each design would be an excellent

opportunity to investigate whether designs can still achieve high PCS with fewer patients, or
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significantly higher PCS with extra patients, and whether a larger or smaller cohort size would

lead to better exploration of the dosing grid.

Finally, we conclude this comparison with an overview of recommendations for the use of

each design in the context of this work. The BOIN and KEY designs give a balanced approach,

with a good level of PCS and PAS across a range of scenarios. Overly toxic explorations and

selections are also well balanced across scenarios. The PIPE design is more cautious in its

selection, with a consistently low proportion of overly toxic selections, although at the cost

of also recommending correct combinations a lower proportion of the time. The Surface Free

design offers a high PCS and PAS and a generally low number of patients treated at overly

toxic selections, but this must be balanced with the high proportion of overly toxic selections.

The BLRM provides the most aggressive approach with a calibrated prior, with a large number

of patients treated on overly toxic doses, however a good level of PCS and PAS. With an

alternative, intuitive prior, the number of overly toxic explorations is reduced, but at the cost

of the high PCS values.
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Scenario 1

dB1 dB2 dB3
dA1 0.05 0.10 0.15

dA2 0.10 0.15 0.20

dA3 0.15 0.20 0.30

Scenario 2

dB1 dB2 dB3
dA1 0.05 0.10 0.15

dA2 0.10 0.20 0.30

dA3 0.20 0.30 0.45

Scenario 3

dB1 dB2 dB3
dA1 0.02 0.05 0.10

dA2 0.10 0.15 0.20

dA3 0.20 0.30 0.45

Scenario 4

dB1 dB2 dB3
dA1 0.05 0.10 0.15

dA2 0.10 0.20 0.30

dA3 0.20 0.45 0.60

Scenario 5

dB1 dB2 dB3
dA1 0.02 0.05 0.15

dA2 0.20 0.30 0.45

dA3 0.45 0.55 0.65

Scenario 6

dB1 dB2 dB3
dA1 0.10 0.15 0.30

dA2 0.15 0.30 0.45

dA3 0.30 0.45 0.60

Scenario 7

dB1 dB2 dB3
dA1 0.10 0.20 0.45

dA2 0.15 0.30 0.50

dA3 0.30 0.50 0.60

Scenario 8

dB1 dB2 dB3
dA1 0.05 0.10 0.20

dA2 0.10 0.20 0.30

dA3 0.30 0.45 0.55

Scenario 9

dB1 dB2 dB3
dA1 0.10 0.15 0.30

dA2 0.30 0.40 0.50

dA3 0.40 0.50 0.60

Scenario 10

dB1 dB2 dB3
dA1 0.15 0.30 0.45

dA2 0.30 0.45 0.55

dA3 0.45 0.55 0.65

Scenario 11

dB1 dB2 dB3
dA1 0.02 0.05 0.10

dA2 0.30 0.45 0.60

dA3 0.45 0.60 0.75

Scenario 12

dB1 dB2 dB3
dA1 0.20 0.30 0.45

dA2 0.45 0.50 0.55

dA3 0.65 0.70 0.75

Scenario 13

dB1 dB2 dB3
dA1 0.30 0.45 0.50

dA2 0.45 0.50 0.55

dA3 0.50 0.55 0.60

Scenario 14

dB1 dB2 dB3
dA1 0.45 0.50 0.55

dA2 0.50 0.55 0.60

dA3 0.55 0.60 0.65

Scenario 15

dB1 dB2 dB3
dA1 0.10 0.10 0.10

dA2 0.10 0.10 0.10

dA3 0.10 0.10 0.10

Table 1: Toxicity scenarios to evaluate the combination designs. Rows and columns refer to
the dose of drug A and B respectively. True MTCs are in bold and ‘acceptable’ combinations
are underlined.
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Raw Trial Data Temsirolimus

15mg 25mg 50mg 75mg

120mg 0/2 0/4 1/5 0/4

Neratinib 160mg 1/4 1/4 0/5 3/6

200mg 0/4 1/8 1/2

240mg 2/4

BOIN Temsirolimus

25mg 50mg 75mg

120mg 0/3 0/0 0/0

Neratinib 160mg 1/6 0/6 3/6

200mg 2/12 2/3 0/0

KEY Temsirolimus

25mg 50mg 75mg

120mg 0/3 0/0 0/0

Neratinib 160mg 1/6 0/6 3/6

200mg 2/9 3/6 0/0

PIPE Temsirolimus

25mg 50mg 75mg

120mg 0/3 0/0 0/0

Neratinib 160mg 1/3 1/12 0/0

200mg 2/15 2/3 0/0

SFD Temsirolimus

25mg 50mg 75mg

120mg 0/3 0/0 0/6

Neratinib 160mg 1/6 0/6 4/9

200mg 0/3 2/3 0/0

BLRM (c) Temsirolimus

25mg 50mg 75mg

120mg 0/3 0/3 0/6

Neratinib 160mg 0/0 0/9 4/9

200mg 0/0 0/0 5/6

BLRM (a) Temsirolimus

25mg 50mg 75mg

120mg 0/3 0/3 0/6

Neratinib 160mg 0/0 0/9 4/12

200mg 0/0 0/0 2/3

Table 2: Results for each of the designs applied to the case study, including the raw trial data
of the study by Gandhi et al. [5]. Each entry represents yij/nij. The MTC as chosen by
each design is highlighed in bold. In the case of the BLRM, (c) indicates the calibrated prior
hyperparameters were used and (a) indicates the alternative values were used.
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(a) BOIN: Patients treated at overly toxic
doses
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(b) BOIN: Proportion of correct selections
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(c) KEY: Patients treated at overly toxic doses
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(d) KEY: Proportion of correct selections
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(e) Surface-Free: Patients treated at overly
toxic doses
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(f) Surface-Free: Proportion of correct selec-
tions
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(g) PIPE: Patients treated at overly toxic doses
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(h) PIPE: Proportion of correct selections

Figure 2: Calibration of ε for the four designs
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Figure 3: Constructing prior mean toxicity probabilities when calibrating the PIPE design.
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Figure 4: An illustration of the PCS and PAS for Scenarios 1-13 for each design. The solid
bars measure the PCS and the more transparent bars measure the PAS. The rightmost group
of bars show the means.
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Figure 5: An illustration of the proportion of overly toxic selections across Scenarios 1-15 for
each design. The rightmost group of bars show the means.

28



0

10

20

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean
Scenario

M
ea

n 
N

um
be

r 
of

 P
at

ie
nt

s

Design

BLRM

BOIN

KEY

PIPE

SFD

Mean Number of Patients Treated on Overly Toxic Doses

Figure 6: An illustration of the number of patients treated at overly toxic combinations during
trials in Scenarios 1-15 for each design. The rightmost group of bars show the means.
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