
1 
 

A Bayesian Method for Estimating Uncertainty in Excavated Material 

Mehala Balamurali 

Australian Centre for Field Robotics, The University of Sydney 

mehala.balamurali@sydney.edu.au 
http://orcid.org/0000-0003-0083-5772 

 

Abstract 

This paper proposes a method to probabilistically quantify the moments (mean and variance) of 

excavated material during excavation by aggregating the prior moments of the grade blocks around 

the given bucket dig location. By modelling the moments as random probability density functions 

(pdf) at sampled locations, a formulation of the sums of Gaussian based uncertainty estimation is 

presented that jointly estimates the location pdfs, as well as the prior values for uncertainty coming 

from ore body knowledge (obk) sub block models. The moments calculated at each random location 

is a single Gaussian and they are the components of Gaussian mixture distribution. The overall 

uncertainty of the excavated material at the given bucket location is represented by the Gaussian 

Mixture Model (GMM) and therefore moment matching method is proposed to estimate the 

moments of the reduced GMM. The method was tested in a region at a Pilbara iron ore deposit 

situated in the Brockman Iron Formation of the Hamersley Province, Western Australia, and suggests 

a frame work to quantify the uncertainty in the excavated material that hasn’t been studied 

anywhere in the literature yet.  

 

1. Introduction 

Significant effort has put into characterise the spatial uncertainty of grades through ore control block 

models. Although, these geological models allow for reasonable uncertainty information to be 

attached to specific volumes, there is little, and no attention given to how these estimated values 

are further blend during excavation process. Uncertainty information behaves in non-trivial ways 

when material is being mixed. Not only the grade blocks are getting blended during excavation, also 

the process increase the uncertainty of the measurement of exact dig locations (Fig1). As a first step 

in the material tracking pipeline, estimating the exact material in the bucket and its uncertainty, can 

be utilised throughout the material movement pipeline. 

In this paper, we propose a method to probabilistically quantify the moments of excavated material 

by aggregating the prior distribution of iron weight percentage (Fe wt%) of the grade blocks around 

the given bucket dig location. The model captures the uncertainty introduced by the uncertain 

bucket dig location, by stochastically simulating multiple bucket locations across the bench and then 

estimates the pdf of excavated material at each location. The final GMM constructed through a 

linear combination of Gaussian densities at each simulated random bucket dig locations gives the 

material uncertainty associated with the given bucket. The moments of the excavated material is 

then estimated using the method of moment matching. A case study was conducted in a test region 

at Pilbara iron ore deposit situated in the Brockman Iron Formation of the Hamersley Province, 

Western Australia. 

The remainder of the paper is structured as follows. The need of the proposed work is presented 

under background at Section2. The detail about the uncertainty attached to the excavated material 

http://orcid.org/0000-0003-0083-5772


2 
 

problem is presented in Section 3 and describes the mathematical description of the solution and 

the application of GMM-moment matching to estimate the moments. The Data and the results are 

presented in Sections 4 and 5 and are followed by the conclusions. 

 

 

Figure1: Hitachi, an ultra-large hydraulic excavator in Australia during trial excavation, July 2020, published in News and 

Events, Autonomous tech news 

 

2. Background 

Accuracy of grade control determines the success of mine that directly influences the profitability of 

the overall mine operation. This begins with the quality of the mining program that controls how the 

ore is collected, stored and assayed geological data. This is then followed by the accurate prediction 

of grade variable of interest. These forecasted grades then determine the destination for waste and 

ore. Once the locations are determined, the material is moved using diggers and haulage trucks. 

However, tracking material only by its most likely type or mean grade results does not convey the 

confidence into the assumed values and their likelihood of deviating from the expectation. Once the 

statistical probability distribution of the variable is known or can be assumed, it is possible to derive 

confidence limits to describe the region within which the true value of the variable may be found.  

The standard mine modelling practice often involves investing significant effort into the 

interpretation of the deposit and identification of 3D geological models to provide the block 

estimates. Irregular geometric shapes, grade blocks, are used to simplify the representative ore and 

waste regions. These grade blocks are further subdivided into smaller cuboid sizes in order to better 

model boundaries and the values are inferred in to the blocks using various geostatistical simulation 

methods (Rossi & Deutsch, 2014, Isaaks & Srivastava, 1989, Srivastava, 1987; Boucher and 

Dimitrakopoulos, 2012, Melkumyan and Ramos, 2009). 

However, in practice it is difficult to precisely define the ore-waste boundaries. Thus this introduces 

dilution and ore loss (Dimitrakopoulos & Godoy, 2014; Verly, 2005). The choice of block size 

becomes inadequate to precisely and feasibly model the grade estimation and its uncertainty, 

because, the mining equipment cannot exactly stop digging at the boundaries and it is impossible to 

mine isolated ore or waste blocks. The infeasibility of freely mining block by block is the major 

impediment of the current grade control methodologies. Some studies proposed optimal dig-limits 

by taking into account the digability of excavating equipment. Digability measures the difficulty of 

mining an ore or waste region depends on the geometry of the region to be excavated (Isaaks et. al 

2014, Norrena and Deutsch ,2001). In order to better create the selective mining unit Wilde and 
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Deutsch (2007) replaced dig-limits with a truck-by-truck approach where the mine block is further 

discretised ( Vasylchuk and Deutsch, 2015). However, there are only very few studies available in this 

direction and the methods are only available in publication. Furthermore, the data used in these 

studies were synthesised on grid spaces. While the grade control model blocks are vertical, the 

excavator digs a face at the rill angle. This also highly depends on the operator’s skill and operating 

conditions. Thus, diggers further blend the material when they reclaim the material from the ground 

and introduce high uncertainty when they load material to trucks. Hence the geological domain 

developed for grade estimation do not always meet the production target.  

The key idea of this paper is to take the next step forward from geostatistical modelling of grades 

and block-by-block decision making using other information coming from the mine site. GPS 

positions of excavating equipment and excavators’ bucket dig positional data (the position where 

the bucket engage with ground during excavating) are some of the available data sources at the time 

of digging. This paper presents a model approach to quantify the estimated mean grade for each 

bucket and the uncertainty of that estimation by utilising the excavator’s bucket dig locations and 

parametric information coming from ore body knowledge.  

A simple approach to estimate the values for a bucket, is to directly assign the pre-estimated 

moments of the 3D block to that bucket’s content where the bucket falls or assign the sum of 

weighted values of the blocks that are intersecting with the corresponding bucket. The weights are 

the fraction of bucket volumes that intersects with the block. The uncertainty attached to the bucket 

content comes from the variance of spatially correlated blocks. However, bucket positions are not 

always sensed or measured on the stable-solid ground, because the process of excavation blends the 

material across the bench. Hence, the bucket dig locations shouldn’t be constrained with respect to 

geo statistical grade blocks’ boundaries. Instead, the material associated with the bucket dig 

location, can represent a mixture of material from the nearest sub-blocks.  

In order to deal with the uncertain bucket dig locations, the proposed model uses the grade values 

taken from adjacent locations for the estimation of moments of excavated material.  GMM and 

moment matching are the basis of the analytical technique proposed in this work.  

 

3. Problem Statement and formulation 

We are interested to model the probabilistic estimation p(Fs) of the Fe wt% of the material 

excavated by the single bucket based on blocks around the given bucket dig location x. We first 

defined a set of individual estimation, Fsj at random bucket dig location xj, as independent events 

with respect to each other.  

The system’s uncertain variables are {𝑣𝑠𝑖 ,𝐹𝑏𝑖}, where each 𝐹𝑏𝑖 is an Fe wt% of block i. The prior 

distribution p(Fbi) of the Fe wt% is known for block i from the ore body block model.  The adjacent 

blocks’ estimations are spatially correlated. The bucket content, for a sampled bucket dig location, is 

according to the volume intersection with relevant blocks as presented in Figure 2. Therefore, we 

model each 𝑣𝑠𝑖 as the intersecting volume of the bucket and the ith block, and assume this volume is 

perfectly known if the location of the bucket is known. That is, for a given bucket dig location xj, the 

volumes {𝑣𝑠1
𝑗 ,… , 𝑣

𝑠𝑖
𝑗 , …} are known; where the bucket volume 𝑣 = ∑ 𝑣

𝑠𝑖
𝑗

𝑖  . Therefore, the excavated 

material at jth location is given by the model  

𝐹𝑠
𝑗
= ∑ 𝑣𝑠𝑖

𝑗
𝐹𝑏𝑖𝑖                                              Eq1 
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In Eq1, the conditional probability 𝑝(𝐹𝑠
𝑗
|𝑥𝑗) is Gaussian, and so a joint probability p(Fs, x) can be 

obtained by generating samples xj ~ p(x), and computing the Gaussian 𝑝(𝐹𝑠
𝑗
|𝑥𝑗)  for each sample.  

However, observations coming from geo spatial references should not be treated statistically 

independent. Those observations are highly correlated at the nearest locations. In the Eq1 

𝐹𝑠
𝑗 = 𝑣𝑠1

𝑗 𝐹𝑏1 + 𝑣𝑠2
𝑗 𝐹𝑏2 + ⋯+ 𝑣𝑠𝑛

𝑗 𝐹𝑏𝑛 

If (𝐹𝑏1 ,𝐹𝑏2 , . . , 𝐹𝑏𝑛) are correlated then the joint distribution 𝑝(𝐹𝑏1 ,𝐹𝑏21 , . . , 𝐹𝑏𝑛) with moments, 

[
 
 
 
𝐹̂𝑏1

𝐹̂𝑏2

⋮
𝐹̂𝑏𝑛 ]

 
 
 

, [

𝜖11 ⋯ 𝜖1𝑛
𝜖21 ⋯ 𝜖2𝑛

⋮ ⋱ ⋮
𝜖𝑛1 ⋯ 𝜖𝑛𝑛

] 

Where 𝐹̂𝑏1 are the mean of block i and 𝜖𝑖𝑗 are the correlation between the blocks i and j. If the bucket 

intersects with n blocks, then the weight matrix consists a covariance matrix of size n n . We define 

our model as 

𝐹𝑠 = [𝑣𝑠1 ,𝑣𝑠2, . . , 𝑣𝑠𝑛] [

𝐹𝑏1

𝐹𝑏2

⋮
𝐹𝑏𝑛

]                                   Eq2 

Hence the mean at location xj is translated as 

𝐹̂𝑠
𝑗 = [𝑣𝑠1

𝑗 ,𝑣𝑠2
𝑗 , . . , 𝑣𝑠𝑛

𝑗 ]

[
 
 
 
𝐹̂𝑏1

𝐹̂𝑏2

⋮
𝐹̂𝑏𝑛 ]

 
 
 

                                      Eq3 

and the covariance as 

𝜖𝑠
𝑗
= [𝑣𝑠1

𝑗
,𝑣𝑠2

𝑗
, . . , 𝑣𝑠𝑛

𝑗 ] [

𝜖11 ⋯ 𝜖1𝑛
𝜖21 ⋯ 𝜖2𝑛

⋮ ⋱ ⋮
𝜖𝑛1 ⋯ 𝜖𝑛𝑛

]

[
 
 
 
 𝑣𝑠1

𝑗

𝑣𝑠2
𝑗

⋮

𝑣𝑠𝑛
𝑗 ]

 
 
 
 

          Eq4 

 

KD-tree with minimum radius search is used to find the blocks that contribute to the estimation of 

excavated material at location x. It can be observed that the available bucket dig locations includes a 

significant number of repeatable measurements in the z direction, because the excavator, in general, 

cuts the bench vertically in a comparatively narrow working area across the bench. Therefore, this 

excavation process results high uncertainty in vertical direction during excavation and thus all blocks 

across the bench in the bucket movement direction are forced to be included in the adjacent blocks’ 

list for a given bucket dig position x. Then the random bucket dig locations xj are simulated on the 3D 

spatial grid and the space near the given location is convolved using a separable Gaussians coming 

from each bucket at simulated random locations. KD-tree is again used to find the intersecting 

blocks to the simulated bucket dig location xj . Spherical shape is assumed for bucket volumes with 

constant radius. The Figure 2 is showing the schematic representation of the estimation made for a 

single bucket. 
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3.1. Aggregating uncertainty from random simulations: GMM and moment matching 

GMM is a probabilistic model for representing a mixture of populations with prior Gaussian 

distribution functions. Mixture distributions provide a useful way for describing heterogeneity in a 

population, especially when an outcome is a composite response from multiple sources. This paper 

proposes using GMM to aggregate the conditional distribution of the excavated material 

independently sampled at random locations.  

In our model, suppose Nm bucket dig locations are sampled from the given region. Then the mean 

and variance, { 𝐹̂𝑠
𝑗
, 𝜖𝑠

𝑗
} , of each excavated material, Figure 2, are calculated using the Eq3 and Eq4. 

From the bucket volumes at random locations, the joint distribution is represented by the ensemble, 

{(x1, N(𝐹̂𝑠
1,𝜖𝑠

1 )),…,(xNm, N(𝐹̂𝑠
𝑁𝑚, 𝜖𝑠

𝑁𝑚))}. A marginal estimate p(Fs) then is the GMM,  

𝐹𝑠
𝑁𝑚 = 𝑣𝑠1

𝑁𝑚𝐹𝑏1 

𝐹𝑠
1 = 𝑣𝑠1

1 𝐹𝑏1 + 𝑣𝑠2
1 𝐹𝑏2 + 𝑣𝑠3

1 𝐹𝑏3+ 𝑣𝑠4
1 𝐹𝑏4 

𝑣𝑠1
1  𝑣𝑠2

1  

𝑣𝑠3
1  𝑣𝑠4

1  

𝐹𝑠
2 = 𝑣𝑠1

2 𝐹𝑏1 + 𝑣𝑠2
2 𝐹𝑏2 

𝑣𝑠1
𝑁𝑚 

𝑣𝑠1
2  𝑣𝑠2

2  

Figure 2 The estimated grade distribution at each location that is sampled around the given bucket-dig location is 

integrated into a single GMM. b and s represent block and bucket(scoop) respectively. Coloured square regions show 

the blocks in vertical direction. Circle region shows the bucket volume that intersects with blocks and the triangle 

shows the centre of the bucket. Variables in the formulas are as described in the text. 

𝑝(𝐹𝑠) = ∑𝑤𝑗N(𝑥𝑗 |𝐹𝑠

𝑗̂
,𝜖𝑠

𝑗  )

𝑗
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                                                    𝑝(𝑭𝒔) = ∑ 𝑤𝑗N(𝑥𝑗 |𝐹̂𝑠

𝑗
,𝜖𝑠

𝑗
 )𝑗                                                Eq7 

composed of Nm equally weighted Gaussian components from the Nm simulated bucket dig 

locations. The final pdf reflects the spread in the ensemble of conditional realizations used to 

characterize the uncertainty associated at buckets’ content from the given region. 

As described in Bar-Shalom et al., 2001, page 56, moment matching is a form of density estimation 

that is used to reduce a total number of components in a GMM while remaining invariant in the 

original first and second moment. Thus, the marginal estimation p(Fs) described by Eq7 can be 

replaced into a single Gaussian with the moments 

𝑭𝒔̂ = ∑𝑤𝑗𝐹𝑠
𝑗

𝑗

 

                                                                 𝝐𝒔 = ∑ 𝑤𝑗𝑗 (𝜖𝑠
𝑗
+ (𝐹̂𝑠

𝑗
− 𝑭𝒔̂)(𝐹̂𝑠

𝑗
− 𝑭𝒔̂)

𝑇
)              Eq8 

The steps used to estimate the moments of a given bucket locations is described in Algorithm 1. 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Propagation of uncertainty via buckets 

 

Algorithm 1: GMM-Moment matching in bucket uncertainty estimation 

Inputs: Blocks moments  𝑝(𝐹𝑏1, 𝐹𝑏21, . . , 𝐹𝑏𝑛) around a given bucket dig location, block covariances Σ , grid locations P(x) 

within the bench where the bucket dig location falls, bucket volume Vs 

Outputs: Moments of bucket content (Fs, 𝝈𝑠  ) for a given dig location.  

Step1: Radius neighbour search in three-dimensional on uniform grid locations P(x) = {x1, . . ., xN}, 

1. N (q, R) = {p ∈ P | ||p − q|| < R} inside an R of a given query point (bucket dig location) q;  R~bench height  

Step2: Estimate the moments at each grid locations(x) chosen from Step1. 

2. for j ← 1 to N do 

3.       for i ← 1 to nj do 

4.             𝑣𝑠(𝑖) = Vol(Vs∩  𝐹𝑏𝑖)/𝑉𝑠           intersecting blocks Fbi , i=1: nj at sampled location xj 

5.             𝐹𝑠(𝑗) = 𝐹𝑠(𝑗) + (𝑣𝑠(𝑖). 𝐹𝑏(𝑖)) 

6.       end for 

7.       𝜖𝑠(𝑗) = 𝑉∑𝑉𝑇                                        ∑ is the block covariance, V=[vs(1), vs(2),..,vs(nj)] 

8. end for 

Step3: Estimate the moments of excavated material at given location  

9. for j ←1 to N do  

10.       𝑤𝑗 = 1/𝑁 

11.       𝑭𝑠 = 𝑭𝑠 + 𝑤𝑗𝐹𝑠(𝑗) 

12.       𝝐𝑠 = 𝝐𝑠 + 𝑤𝑗( 𝜖𝑠(𝑗) + (𝐹𝑠(𝑗) − 𝑭𝑠)(𝐹𝑠(𝑗) −𝑭𝑠)𝑇 ) 

13. end for 

14. 𝝈𝑠 = 𝑠𝑞𝑟𝑡(𝝐𝑠) 
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Figure 3 Work flow of materials transport in an open-pit mine 

 

In addition to that, this model can be directly implemented to find the uncertainty of the Fe wt% of 

the material loaded to truck. When the truck is loaded from the near buckets dig locations the 

values in the buckets are spatially correlated. From the prior conditional probability 𝑝(𝐹𝑠
𝑗|𝑥𝑗) of Fe 

wt% of the bucket at given bucket dig locations xj; j=1:n, we can calculate the joint probability 

distribution P(FD|x) at dump locations. Here, P(FD) can be the distribution of Fe wt% of the truck that 

are directly loaded by buckets coming from N (n=N) dig locations or it can be the joint distribution of 

buckets coming from M (n=M) dig locations that are sent to a dump location such as stockpiles or 

crushers; M>N. The overall work flow of materials transport in an open-pit mine can be seen in 

Figure 3.  

The modified Eq1 is given by, 

𝐹𝐷 = 𝑣𝑡𝐹𝑠1 + 𝑣𝑡𝐹𝑠2 + ⋯+ 𝑣𝑡𝐹𝑠𝑛 

Where FD is the estimated value for a dump location(truck/stockpile/crusher) from the estimated 

buckets’ values Fsi  ; i=1..n for n buckets and vt is the fraction of bucket volume out of total volume 

transferred. Thus, vt =1/n. 

If (𝐹𝑠1 , 𝐹𝑠2 , . . , 𝐹𝑠𝑛) are correlated then the joint distribution 𝑝(𝐹𝑠1 , 𝐹𝑠2 , . . , 𝐹𝑠𝑛) with moments, 

[
 
 
 𝐹̂𝑠1

𝐹̂𝑠2

⋮
𝐹̂𝑠𝑛]

 
 
 

, [

𝜖11 ⋯ 𝜖1𝑛
𝜖21 ⋯ 𝜖2𝑛

⋮ ⋱ ⋮
𝜖𝑛1 ⋯ 𝜖𝑛𝑛

] 

Where 𝐹𝑠𝑖̂ are the mean of the estimated distribution of bucket content i and 𝜖𝑖𝑗 are the covariance 

between bucket dig locations i and j.  

Then the mean of loaded material to truck or dump location is given by 
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𝐹𝐷̂ = [𝑣𝑡,𝑣𝑡, . . ,𝑣𝑡]

[
 
 
 
𝐹̂𝑠1

𝐹̂𝑠2

⋮
𝐹̂𝑠𝑛 ]

 
 
 

                                       

Since the buckets’ contents are correlated, the covariance as 

𝜖𝐷 = [𝑣𝑡, 𝑣𝑡, . . , 𝑣𝑡] [

𝜖𝑠11 ⋯ 𝜖𝑠1𝑛
𝜖𝑠21 ⋯ 𝜖𝑠2𝑛

⋮ ⋱ ⋮
𝜖𝑠𝑛1 ⋯ 𝜖𝑠𝑛𝑛

][

𝑣𝑡
𝑣𝑡
⋮
𝑣𝑡

]           

However, because we are using the volumetric covariance of blocks coming from ore body block 

model as the priors for the proposed model, the model approach has been further modified to 

estimates the values in the dump locations directly from the simulated bucket dig locations by 

generating samples xj ~ p(x).  

Below example shows how the truck values are simulated from the simulated bucket dig locations. 

                                                                                

 

Figure 4 Schematic representation of randomly chosen single simulated bucket dig location for the given dig locations for 

bucket1, bucket2, bucket 3 and .... 𝐹𝑠1
1 ,𝐹𝑠2

1 , 𝐹𝑠3
1  are the estimated values at simulated locations from the volume intersection 

model using four blocks, two blocks and a single block respectively. 𝑣𝑠𝑖
𝑗

> 0 ; is simulated bucket for the given dig location j 

intersecting volumes with blocks i. 

If buckets are loaded onto truck T from the recorded bucket dig locations i and we choose the single 

simulated bucket dig location j given each bucket dig location i, then the values 𝐹𝑠𝑖
𝑗
 for those buckets 

can be estimated using Eq1 (Fig 4). 

From Eq1,  

estimated value at the simulated location j=1 for bucket 1,  

𝐹𝑠1
1 = 𝑣𝑠1

1 𝐹𝑏1+ 𝑣𝑠2
1 𝐹𝑏2 + 𝑣𝑠3

1 𝐹𝑏3 + 𝑣𝑠4
1 𝐹𝑏4 

estimated value at the simulated location j=1 for bucket 2, 

𝐹𝑠2
1 = 𝑣𝑠1

2 𝐹𝑏1 + 𝑣𝑠2
2 𝐹𝑏2 

estimated value at the simulated location j=1 for bucket 3,  

𝐹𝑠3
1 = 𝑣𝑠1

3 𝐹𝑏1 

⋮ 

 

Hence the first simulated truck value is 

𝐹𝑇
1 = 𝐹𝑠1

1 + 𝐹𝑠2
1 + 𝐹𝑠3

1 + ⋯ 

𝐹𝑇
1 = 𝑣𝑠1

1 𝐹𝑏1+ 𝑣𝑠2
1 𝐹𝑏2 + 𝑣𝑠3

1 𝐹𝑏3+ 𝑣𝑠4
1 𝐹𝑏4 + 𝑣𝑠1

2 𝐹𝑏1+ 𝑣𝑠2
2 𝐹𝑏2 + 𝑣𝑠1

3 𝐹𝑏1+ ⋯ 

𝐹𝑠1
1  𝐹𝑠2

1  𝐹𝑠3
1  

… 
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𝐹𝑇
1 = (𝑣𝑠1

1 +𝑣𝑠1
2 + 𝑣𝑠1

3 + ⋯)𝐹𝑏1 + (𝑣𝑠2
1 +𝑣𝑠2

2 + ⋯)𝐹𝑏2 + (𝑣𝑠3
1 + ⋯)𝐹𝑏3 + (𝑣𝑠4

1 +⋯)𝐹𝑏4 + ⋯ 

𝐹𝑇
1 = 𝑣𝑡1𝐹𝑏1+ 𝑣𝑡2𝐹𝑏2+ 𝑣𝑡3𝐹𝑏3 + 𝑣𝑡4𝐹𝑏4 + ⋯ 

 

𝐹𝑇
1 is a single Gaussian and 𝐹𝑏1,𝐹𝑏2,𝐹𝑏3 𝑎𝑛𝑑 𝐹𝑏4 are correlated blocks. 𝑣𝑠𝑖

𝑗
 is the jth bucket volume 

intersecting with block i and 𝑣𝑡𝑖 is the truck volume intersecting with block i; 𝑣𝑡𝑖 = ∑ 𝑣𝑠𝑖
𝑗

𝑗 . 

The mean is calculated from the estimated bucket values and the variance is estimated using the 

covariance of the relevant block’s using the obk sub block model covariance function.  

Similarly, truck values 𝐹𝑇
𝑖  ; i=1: n are simulated using 2nd, 3rd, … and Nth simulated bucket dig 

locations of the given dig location 2, 3, … and n. 

𝐹𝑇
2 = 𝐹𝑠1

2 + 𝐹𝑠2
2 + ⋯+ 𝐹𝑠𝑁

2  

𝐹𝑇
3 = 𝐹𝑠1

3 + 𝐹𝑠2
3 + ⋯+ 𝐹𝑠𝑁

3  

⋮ 

𝐹𝑇
𝑛 = 𝐹𝑠1

𝑛 + 𝐹𝑠2
𝑛 + ⋯+ 𝐹𝑠𝑁

𝑛  

 

The final estimation FT is calculated from the n simulated truck values 𝐹𝑇
1,𝐹𝑇

2,…, 𝐹𝑇
𝑛 for truck T using 

moment matching. 

The step by step guide to estimate the moments at truck and dump locations are given below. 

Step 1: For a given truck T (or dump location) find the corresponding bucket dig locations, say N 

buckets. 

Step2: For i=1 to N  

A[i]← the adjacent simulated bucket dig locations at grids. Size(A[i]) =ni 

Step3: For j=1 to M; where M=min (n1, n2, …, nN)  

 𝐹̂𝑇
𝑗

= [𝑣𝑡,𝑣𝑡, . . , 𝑣𝑡]

[
 
 
 𝐹̂𝑠1

𝐹̂𝑠2

⋮
𝐹̂𝑠𝑛 ]

 
 
 

                                       

𝜖𝑇
𝑗

= [𝑣𝑡1,𝑣𝑡2 , . . , 𝑣𝑡𝑛][

𝜖𝑠11 ⋯ 𝜖𝑠1𝑛
𝜖𝑠21 ⋯ 𝜖𝑠2𝑛

⋮ ⋱ ⋮
𝜖𝑠𝑛1 ⋯ 𝜖𝑠𝑛𝑛

][

𝑣𝑡1

𝑣𝑡2

⋮
𝑣𝑡𝑛

]         

Where 𝐹𝑠1
𝑗̂

 are the mean of the bucket at location j and 𝜖𝑖𝑗 are the covariance between the 

blocks i and j. If the truck volume is estimated from n blocks, then the weight matrix consists 

a covariance matrix of size n×n. 𝑣𝑡 is the truck volume divided by number of buckets. 𝑣𝑡𝑖 is 

the truck volume intersecting with block i; 𝑣𝑡𝑖 = ∑ 𝑣𝑠𝑖
𝑗

𝑗  

Step4: Estimate the mean and variance for the truck T 

𝑭𝑻̂ = ∑𝑤𝑗 𝐹̂𝑇
𝑗

𝑗
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                                                                 𝝐𝑻 = ∑ 𝑤𝑗𝑗 (𝜖𝑇
𝑗
+ (𝐹̂𝑇

𝑗
− 𝑭𝑻̂)(𝐹̂𝑇

𝑗
− 𝑭𝑻̂)

𝑇
)          

where wj is 1/N. 

 

4. Data 

Data were collected from the Pilbara iron ore deposit situated in the Brockman I ron Formation of the 

Hamersley Province, Western Australia. The models were tested on 3477 measured bucket dig 

locations that were used to excavate a grade block. The blast hole length weighted averaged Fe wt% 

of grade block is 59.93. Figure5(a) shows the bucket dig locations corresponding to the high-grade 

grade block that are queried from the load haul cycle data. The green area shows the region of low-

grade adjacent block that is located next to the high-grade block. The grade block is situated in the 

bench X10 and the bench is 10m in height. In the study region, altogether there are 3336 blast holes 

including the blast holes at above and below benches and the area is further subdivided into sub 

blocks. There are 684018 sub blocks.  

 

 

Figure5(b) and (c) show the selected plan view of obk sub blocks that are coloured by their estimated 

mean Fe wt% and the uncertainty of the estimation respectively. These stats are inferred using the 

Gaussian process (GP) model that is used to model the spatial stochastic process. As a supervised 

learning process, GP hyperparameters such as length scales in x, y and z directions, amplitude and 

noise were learnt using the exploration-only data. The hyperparameters learnt with the corresponding 

data were then used to inference the mean Fe wt% and the estimation uncertainty of the sub blocks. 

Estimation of grade distribution of the sub blocks are out of scope of this paper. The proposed model 

in this paper used the prior information coming from obk sub block models:  estimated mean Fe wt%, 

uncertainty of the estimation and the block covariance matrices.  

 

 

 

Figure 5(a) shows the plan view of interested region. The region enclosed by the yellow bounding box shows a high -

grade block. The dense red points show the bucket dig locations digging from south to north. (b) shows the plan 

view of obk sub block model. The colors of the blocks show the estimated mean Fe wt%. Similarly, the colours in the 

(c) represents the uncertainty (standard deviation) of the estimated Fe wt% of the corresponding sub blocks 

(a) (b) (c) 
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5. Results and Discussion 

Uncertainty of Fe wt% in buckets 

The model was tested on two different test regions chosen from two different benches and the results 

are presented in Figures 6 and 8. Uncertainty of the prior estimation of adjacent blocks were used in 

this analysis.  

From our models it can be clearly seen that the uncertainty of the estimation in the bucket content 

is relatively large where the adjacent blocks prior estimated mean values are highly deviate. In figure 

6c the circled area shows the area where low and high grades blocks intersect. The main advantage 

of this kind of probabilistic model is, they clearly highlight us, that the material taken from the 

circled areas in Figures 6b and 8b are high risk while the material taken from the rest of the area is 

low risk because we are high confidence of the estimated value of the excavated material from the 

area (Fig6c and 8c). Knowing this kind of variance is quite important because in the downstream, 

high uncertain values should be treated with care. 

 

       

                                                         

Figure 6: (a) the estimated mean of the excavated material (b) shows the standard deviation calculated for the given bucket 
location (c) grade block with the bucket dig location (d) shows the mean and standard deviation of the grade value estimates 

for each bucket with respect to time of dig. 

 

The variance calculated by the moment matching does a good job as it is not only capturing the 

variance of excavated material at each random location, also the mean difference of those pdfs.  Figure 

7 compares the uncertainty estimation at two bucket locations chosen from low and high-risk areas. 

Figure 7c clearly shows that the prior mean of the blocks near block boundaries are significantly varied. 

As seen in Figures 7a and 7b the variance values are achieved when the merged components are close 

in a normalized distances and Figure 7c and 7d show when the increasing distance between 

(a) (b) 

(c) (d) 
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components forces reduction in component variances. The estimated standard deviation for the 

buckets in Figures 7(a) and 7(c) are 0.51 and 3.08 respectively.         

 

 

 Figure 7(a) shows the pdfs of the excavated material sampling around the high confident bucket dig location and the red 
line shows the moments matched from the components. (c) shows the pdfs of the excavated material sampling around the 

low confident bucket dig location and its corresponding moments matched pdf. (b) and (d) show the cumulative density 

function of (a) and (c) respectively. 

We run the model in another test region at bench X20 and observed similar results (Fig 8).  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Bucket loaded time stamp 

Figure 8 shows the results obtained at test region 2. (a) and (b) shows the estimated mean and standard deviation of Fe 
wt% of each bucket material. (c) shows the bucket dig location around the blocks center locations. Block centre locations 

are coloured according to its bocks prior Fe wt%. (d) shows the moment calculated for each buckets.  

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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The method proposed in this paper was built on the prior block model that are given with estimated 

Fe wt% and the uncertainty for each blocks. Grade estimation of these block models was inferred 

using the ordinary GP and the hyperparameters were learned for each individual geological domain 

using the assay data coming from exploration drill holes. Based on different interpolation or 

extrapolation methods to infer the values and different sampling techniques, the estimated 

moments differ for each block models. Hence, the bucket estimation calculated in this work may not 

provide the similar results with other 3D block models. 

This work has addressed the uncertainty in the excavated material by aggregating the stats provided 

by the 3D block models. The adjacent blocks are chosen across the bench and 12m distance in XY 

direction. Figure 9 shows some results obtained by changing some of the parameters used in the 

proposed model. The results compared estimated Fe wt% and the uncertainty of two buckets that 

dug at low risk region and the high risk (boundaries at high- and low-grade regions) region. As seen 

in Figure 9(a), the estimated uncertainty is stable at low risk region and as expected it is varying at 

high risk region with increasing search radius. Increasing the search radius includes more grid 

locations that are sampled around the given bucket locations, hence increase the number of 

components contributed in final estimation. On the other hand, increasing the sample interval in 

Figure 9b, includes a smaller number of Gaussian components in the final calculation.  Sampling 

interval on grids doesn’t impact the results obtained at low risk region but at high risk region 

(Fig9(b)).  

The model was further tested with different bucket sizes provided in different mining excavators’ 

manuals. The volumes of the buckets change from 15 m3 to 45 m3. The estimated uncertainty stays 

stable for different volumes of buckets that dug at both low and high-risk regions (Fig 9c).  

The model can be further modified by weighting the sampled bucket dig locations for a given bucket 

dig location using the inverse distance squared, thus the uncertainty coming from the closest 

buckets’ moments are more likely to contribute on the estimation for GMM. The model is flexible to 

adjust the search parameters. 

 

Figure 9 Estimated mean and standard deviation versus the (a)search radius, (b)sampling interval on grids and (c) different 

bucket volumes.  

(a) (b) 

(c) 
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Propagation of uncertainty via buckets 

Using the 3477 buckets analysed in this study region, there were altogether 342 trucks loaded and 

then the trucks dumped at ten locations including various stock piles and crushers. The results are 

presented in Figure 10.  

 

 

  

Figure 11 shows the estimated moments of Fe wt% at (a) 342 trucks and (b) ten dump locations. 

 

As expected, the uncertainty estimated in the buckets reflects in the material loaded to truck. Hence 

high uncertainty is observed in the trucks that carried the material from the buckets near high risk 

regions (Fig10a).  

The data used in this paper were collected from a single grade block, thus the material transported 

to dump locations are spatially correlated. The same proposed method that used to infer the truck 

material was used for estimating the mean and uncertainty of Fe wt% at dump locations (Fig10b). In 

order to infer the moments at the dump locations, the model assumed that the trucks are 

continuously arrived at the dump locations. Hence the model aggregates the continuous truck loads 

to the destination and the same spatial correlation applied. As seen in Figure 10b, the high 

(a) 

(b) 
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uncertainty at the dump location F is due to the high uncertain truck loads that were loaded near 

high risk region. However, the uncertainty aggregated from the grade blocks are continuously 

significantly decreasing at trucks and then at dump locations (Fig 11). This is because, that the 

uncertainty of Fe wt% for a given bucket is estimated from the random sample locations, say n, and 

then the uncertainty of Fe wt % for a given truck is estimated from multiple buckets, say m, thus the 

samples are coming from nm simulated locations. Hence, increasing sample size reduces the 

standard deviation, but the mean doesn’t change significantly. 

 

 

Figure 11 compares the overall mean and standard deviation of Fe wt% estimated for buckets, trucks and dump locations. 

However, this might not be the case in reality. At the dump locations, different trucks coming from 

different load locations can dump materials sequentially. Hence the aggregated material for a given 

time period, doesn’t need to be coming from the same load locations. That is, because the trucks are 

sent to different dump locations, usually trucks at dump location for a given period are possibly 

coming from the distance bigger than the variogram range, thus the assumption of independency is 

hold (Neves, 2020). So, the trucks dump at this destination could be loaded from spatially 

uncorrelated regions. Once we know the distribution of Fe wt% in trucks from the model provided 

above, the distribution of the grade over a certain time period arrived at the stockpile or plant can 

be directly inferred using moment matching using the Eq8. Where the moments (𝑭𝑫̂ ,𝝐𝑫) of Fe wt% 

of material dump at given dump location for a given period ∆t is inferred from the prior component 

moments (𝐹̂𝑇
𝑗 , 𝜖𝑇

𝑗) of Fe wt% of N trucks arrives at the dump location during ∆t, j=1:N and 𝑤𝑗 = 1/𝑁. 

𝑭𝑫̂ = ∑𝑤𝑗 𝐹̂𝑇
𝑗

𝑗

 

                                                                 𝝐𝑫 = ∑ 𝑤𝑗𝑗 (𝜖𝑇
𝑗
+ (𝐹̂𝑇

𝑗
− 𝑭𝑫̂)(𝐹̂𝑇

𝑗
− 𝑭𝑫̂)

𝑇
)                

 

 

The method proposed for bucket estimation in this paper is also beneficial to infer the moments of 

the material in the trucks, thus at dump locations, when we don’t have the actual bucket dig 

positions. Sometimes, bucket sensors frequently go to off nominal states and the bucket dig 

positions are not always recorded for every truck load. However, inferencing the representative 

loading position in the bench is possible from the other sensor measurements coming from the 

excavators (Balamurali, 2021). Once this position is known for the truck, the estimated mean and 

standard deviation of the material to truck can be obtained from the blocks across the bench for a 

certain radius in XY direction. The estimations could be reasonably accurate in the low risk regions. 
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However, high uncertainty can be expected at the borders where grades are varied significantly. This 

is subject to further investigation. 

The major pitfall of this model is, the model doesn’t capture the dynamic of volume change as the 

materials are removed from the ground with every bucket dig location. Thus, extending the current 

model as a dynamic model, could be a possible solution for this particular problem. In addition to 

this, ore dilution and loss can occur with blasting and sheeting, grading of roads and benches, that 

moves the blocks from their original place. These issues have been further investigated in the 

continuation of this study. 

 

6. Conclusion 

A method is proposed to estimate the uncertainty in excavated material by aggregating the prior 
blocks’ moments. The model implementation is reasonably simple if we know the parametric 
description of each block or point locations. No studies in literature utilise block models to infer 
uncertainty attach to the material taken into bucket volumes and thus onto truck and other 
destinations, and no approaches use diggers sensor data as model inputs for this purpose. Hence the 
identified gap in research with which this paper addresses. 
 
From our models it can be clearly seen that the uncertainty of the estimation in excavated material 
is relatively large where the adjacent blocks’ prior mean values are highly deviate. Our model 
approach has proved that by probabilistically model the material at different locations such as 
bucket, truck and stockpile, allows us to identify the high-risk material which needs further 
processing down the tracking pipeline.  

The model will be continuously improved to address the pitfalls of the current model. 
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