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Abstract
For fixed training data and network parameters in the

other layers the L1 loss of a ReLU neural network as
a function of the first layer’s parameters is a piece-wise
affine function. We use the Deep ReLU Simplex algo-
rithm to iteratively minimize the loss monotonically on
adjacent vertices and analyze the trajectory of these vertex
positions. We empirically observe that in a neighbourhood
around a local minimum, the iterations behave differently
such that conclusions on loss level and proximity of the
local minimum can be made before it has been found:
Firstly the loss seems to decay exponentially slow at
iterated adjacent vertices such that the loss level at the
local minimum can be estimated from the loss levels of
subsequently iterated vertices, and secondly we observe a
strong increase of the vertex density around local minima.
This could have far-reaching consequences for the design
of new gradient-descent algorithms that might improve
convergence rate by exploiting these facts.
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I. INTRODUCTION AND MOTIVATION

Due to its relevance for the design of efficient neural
network training algorithms, a deeper understanding of the
loss landscape of neural networks is of great interest and
a topic of active research. However, being a non-convex
function of a typically very high number of parameters which
is usually explored only point-wise or path-wise by training
algorithms, insight in its structure requires sophisticated ideas
and techniques.

Related literature covers both, theoretical results for specific
settings and experimental studies. In [1] it is shown that
for squared error loss, specific networks and limited training
samples the training loss behaves nicely in the sense that
almost all local minima are global. The work [2] studies loss
visualization techniques and qualitatively relates geometrical
properties, generalization error and trainability. The authors
of [3] and [4] experimentally analyze the loss landscape, its
properties such as curvature and Hessian matrix along the
trajectories of various optimization algorithms and compare
their resulting converged local minima. In this work we
perform a novel analysis of the vertex structure of the layer-
wise L1 loss of feed-forward ReLU neural networks.

Feed-forward ReLU neural networks with L ∈ N hidden
layers and layer widths (n0, . . . , nL+1) ∈ NL+2 are functions
fθ : Rn0 → RnL+1 of the form

fθ(x) =WL+1gθL ◦ · · · ◦ gθ1(x) + bL+1 for x ∈ Rn0 (1)

with layer transition functions gθl : Rnl−1 → Rnl , x 7→
ReLU(Wlx + bl), l ∈ {1, · · · , L} that use a coordinate-wise
application of the activation function ReLU : t 7→ max(0, t).
The parameter θ determines the weight and bias matrices, i.e.
θ = (θ1, . . . , θL+1) with θl = (Wl, bl) ∈ Rnl×nl−1 × Rnl ,
l ∈ {1, . . . , L+ 1}. These functions are piece-wise affine on
convex regions which have the form of a feasible region of
linear inequalities.

We recently published the Deep ReLU Simplex (DRLSim-
plex) method [5] which is a novel algorithm for the iterative
minimization of such functions. It iterates on vertices of feed-
forward ReLU neural networks and is closely related to the
simplex algorithm from linear programming. The main exten-
sion of the DRLSimplex over the standard simplex algorithm is
the ability to efficiently change the feasible region at a vertex.
The path of visited vertices has the important property that
the corresponding function values are non-increasing. Figure 1
qualitatively depicts the iteration behaviour: In the initial
phase, a set of active constraints is constructed while the initial
affine region determined by the starting position is not left and
takes the role of the feasible region in linear programming
(steps depicted in green). After a vertex has been found, the
feasible region is changed to some of the adjacent regions
and the iteration continues by finding an adjacent vertex and
changing the feasible region (steps depicted in red). The next
vertex is chosen such that the objective function is decreased
and the iteration terminates when the objective function value
is larger at all adjacent vertices. This way, after a finite number
of iterations the DRLSimplex algorithm converges at a local
minimum.

Fig. 1. Qualitative illustration of the DRLSimplex algorithm iterating on
vertices of a continuous, piece-wise affine function given in the form of a
feed-forward ReLU neural network. In the first phase (green) a vertex is
found similarly to standard linear programming and in subsequent iterations
then the feasible regions is changed.
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The L1 training loss

L(θ) =

N∑
i=1

nL+1∑
j=1

|(yi)j − fθ(xi)j | (2)

of N ∈ N samples (x1, y1), . . . , (xN , yN ) ∈ Rn0 × RnL+1

itself can be written as a ReLU feed-forward neural network
when only one layer shall be optimized while keeping the other
layer parameters fixed. Therefore, we can apply the DRLSim-
plex algorithm to generate a sequence of network parameters
(weight matrix and bias vector entries) corresponding to a
specific layer which have non-increasing L1 loss value. We
analyze the behaviour of this sequence of vertex positions
and loss values as we approximate a local minimum. The
DRLSimplex algorithm is well suited for this kind of analysis
due to the following reasons:

1) Compared to gradient descent, where the step size is
usually a function of past step sizes or decaying at a
predetermined rate, the step size of the DRLSimplex
algorithm is automatically determined in every iteration
by the proximity of the next vertex in the selected
direction. This way we directly get access to local
properties of the underlying objective function, i.e. the
loss landscape.

2) Gradient descent algorithms do not guarantee that the
training loss values decay in every iteration. Without
proper step size control, they do not necessarily con-
verge. In contrast, the DRLSimplex algorithm is guar-
anteed to terminate in a local minimum without any
adjustments.

From these two facts it is clear that the DRLSimplex algorithm
provides a finite loss-decreasing trajectory of adjacent vertices
which has a direct relation to the converged local minimum
and is not affected by an arbitrary externally defined factors
such as step size control rules. This makes this algorithm
perfectly suited for an analysis on how local vertex density
and corresponding quantities behave as we approximate local
minima.

II. SIMULATION AND RESULTS

For simplicity we only consider the case of first layer L1
optimization, i.e. we search a local minimum of the function

L1,θ∗ : θ1 7→ L
(
(θ1, θ

∗
2 , . . . , θ

∗
L+1)

)
. (3)

with fixed weight matrices and bias vectors θ∗2 , . . . , θ
∗
L+1 for

the other layers. Note that this is not a strong restriction since
by equations (2) and (1) for every layer the L1 loss optimiza-
tion of this layer’s parameters can be interpreted as first-layer
parameter training of the smaller network starting with that
layer and using different training predictors transformed by
the lower layers instead of the original predictors.

As we have shown in [5] our DRLSimplex can be im-
plemented efficiently by making use of the insight and best-
practices concerning performance and numerical stability that
evolved over decades in the field of linear programming.
However, such an implementation still has to be written and

tested such that at the present state we rely on complete matrix
inversion instead of simplex tableau modifications to favour
correctness over performance. Therefore we were are only able
perform our analysis on a small scale.

Our simulation was carried out as follows: We picked
the network architecture L = 4 and (n0, . . . , n5) =
(4, 5, 4, 3, 2, 1) such that there are n1(n0 + 1) = 25 first
layer parameters consisting of the 5 × 4 weight matrix and
the 5-element bias vector that are applied to the network
input. For the fixed other layers’ parameters θ∗2 , . . . , θ

∗
L+1 we

sampled all entries from a uniform distribution on [−1, 1].
We then generated N = 500 random training samples
(x1, y1), . . . , (x500, y500) ∈ R4×R all with entries from inde-
pendent uniform distributions on [−3, 3]. Finally we sampled
a random initial position with uniformly distributed entries on
[−20, 20] in the 25-dimensional parameter space of first layer
parameters to start the iteration there using our DRLSimplex
algorithm. We performed our analysis several times also with
a different number of layers and other layer widths and the
results were always similar. We will illustrate our findings in a
representative simulated case of such a optimization trajectory
of vertices ending in a local minimum θ̂1 generated by our
DRLSimplex algorithm.

In Figures 2, 3 and 4 we depict the path of the training loss,
a smoothed curve of the L2 distance of consecutive iterated
parameter estimates and the distance to the local minimum
vertex that our algorithm has finally converged to. At the
beginning of the training process, our DRLSimplex algorithm
iterates in the boundary of the same initial feasible region
while successively adding hyperplane constraints until a vertex
has been found. This process generates the first 25 iteration
positions. In consequence, all iterated parameter estimates
starting with index 25 are vertices of the layer-wise loss (3).
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Fig. 2. First layer training loss (3) at iterated first layer parameters returned
by our DRLSimplex algorithm against iteration number in logarithmic scale.
The loss sequence is non-increasing by construction.

After a number of initial training iterations we observe
that the remaining training process can be partitioned in two
phases:

1) In the exponential decay phase we observe that the
training loss, the L2 distance between successive iter-
ated parameter estimates and the distance to the finally
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Fig. 3. Running mean of 40 consecutive L2-distances of iterated first layer
parameters (the first 39 mean values are based on fewer observations).
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Fig. 4. L2-distance of iterated first-layer parameters to the final converged
local minimum θ̂1 (last element of sequence of iterated adjacent vertices)
returned by the DRLSimplex algorithm.

converged minimum all decrease roughly exponentially
against the iteration index as can be seen in Figures 2,
3 and 4 respectively. This is a typical observation we
made in each of our repeated simulations. In this phase
we approximate the local minimum in a systematic and
stable way. The fact that our considered iterations are
adjacent vertices of L1,θ∗ allows us to conclude that the
vertex density increases exponentially during this phase
as we approximate the local minimum θ̂1.

2) In the fine tuning phase we observe a slower loss
decrease than in the exponential decay tuning phase.
The step size of consecutive vertices iterations and the
distance to the final local minimum do not show a sys-
tematic behaviour across our simulations. We conclude
that in contrast to the exponential decay phase, this phase
is highly individual and case-specific.

III. INTERPRETATION

The decreasing distance observed in the trajectory of ad-
jacent vertices approaching a local minimum corresponds to
a higher vertex density, i.e. more and smaller affine regions
around local minima. If the number of regions is considered
as a natural measure of function complexity, this observation
indicates that the function complexity of the considered layer-
wise L1 loss function is greater around local minima.

Furthermore, the two phases we observed in the training
path of iterated parameter estimates indicate that the neigh-
bourhood of local minima of the layer-wise L1 loss is also
two fold as shown in Figure 5:
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Fig. 5. Schematic interpretation of neighbourhood of layer-wise L1 loss local
minima θ̂1 based on our results.

1) There is an outer exponential neighbourhood that be-
haves essentially similarly for all local minima we ob-
served in the sense that the vertex distance, the distance
to the local minimum and the loss level decay exponen-
tially on a sequence of adjacent vertices approaching the
local minimum.

2) Furthermore there is an inner specific neighbourhood
where the loss decay of such a sequence is slower
and both, the vertex distance and the distance to the
local minimum are individual and do not have a typical
behaviour.

The general behaviour repeatedly observed in the outer
exponential neighbourhood suggests that the vertex structure
of most local minima behaves consistently in a similar way
in their neighbourhood. This fact could be used to extract
information about a local minimum based on the iterated
parameter values. For example, we can already give a good
estimate on the loss value at a local minimum θ̂1 that the
DRLSimplex algorithm finally converges to before that local
minimum has been found, based on an exponential decay
fit as soon as this decay regime is recognized. In other
words, without having found a local minimum the trajectory
of vertices returned by our DRLSimplex algorithm already
reveals insight in its loss level.

In future research one could analyze this information leak
of local minima onto their neighbourhood. Furthermore, in
the light of neural network training one can speculate on the
relation of over-fitting and the inner specific neighbourhood,
and a deeper analysis would be a second interesting research
direction.

IV. CONCLUSION

In this work we considered the L1 training loss of ReLU
feed-forward neural network as a function of the first layer’s
parameters and for fixed parameters in the other layers. This
function is piece-wise affine on convex regions and induces a
vertex structure. We used the DRLSimplex algorithm to obtain
a loss-decreasing sequence of adjacent vertices ending in a



local minimum. Our numerical experiments results suggest
that locally around local minima the vertex density of the
layer-wise L1 loss is larger, which indicates that there are
more and smaller regions located around local minima and
this can be interpreted as higher function complexity.

A further insight is the fact that that layer-wise L1 loss local
minima seem to leak information to their neighbourhood and
that this information can be retrieved from the steps of an
iterating optimization procedure. We used our DRLSimplex
algorithm to get access to local properties of the loss function
such as vertex density and in future research it might be
interesting to analyze to what extent also the trajectory of
iteration parameters generated by popular training procedures
carries information on proximity, direction or loss level of
nearby local minima that could be used to adjust step size
control in gradient-descent like minimization procedures and
ultimately improve convergence rate of neural network training
algorithms.
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