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Abstract

Bayesian adaptive designs have gained popularity in all phases of clinical trials with

numerous new developments in the past few decades. During the COVID-19 pandemic,

the need to establish evidence for the effectiveness of vaccines, therapeutic treatments

and policies that could resolve or control the crisis emphasized the advantages offered

by efficient and flexible clinical trial designs. In many COVID-19 clinical trials, due to

the high level of uncertainty, Bayesian adaptive designs were considered advantageous.

Designing Bayesian adaptive trials, however, requires extensive simulation studies that

are generally considered challenging, particularly in time-sensitive settings such as a

pandemic. In this article, we propose a set of methods for efficient estimation and un-

certainty quantification for design operating characteristics of Bayesian adaptive trials.

Specifically, we model the sampling distribution of Bayesian probability statements

that are commonly used as the basis of decision making. To showcase the implemen-

tation and performance of the proposed approach, we use a clinical trial design with

an ordinal disease-progression scale endpoint that was popular among COVID-19 trial.

However, the proposed methodology may be applied generally in clinical trial context

where design operating characteristics cannot be obtained analytically.
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1 Introduction

Adaptive designs are one category of flexible alternatives to conventional fixed-size random-

ized clinical trials (RCTs). In adaptive designs, decisions to stop or adapt may be made

at interim analyses according to accumulating evidence which, in some cases, can result in

reduced sample sizes and cost. In addition, participants benefit from an increased chance of

receiving a beneficial treatment. While adaptive designs in clinical trials go beyond Bayesian

adaptive trials (Pallmann et al., 2018; Burnett et al., 2020), Bayesian methods in adaptive

trials have become popular. The main reasons for this popularity are that the Bayesian

framework naturally accommodates sequential analysis of accumulating data and that the

validity of Bayesian probability statements is not affected by small sample sizes or incorpo-

ration of stopping rules (Berry et al., 2010).

There have been major developments in the design of Bayesian adaptive trials during

the past few decades (Berry, 1989; Berry and Eick, 1995; Carlin et al., 1998). Specifically

these designs have been widely applied to drug development (Thall et al., 2006; Müller et al.,

2006) and disease specific fields such as cancer trials (Buzdar et al., 2005; Zhou et al., 2008;

Barker et al., 2009; Biswas et al., 2009).

Despite their growing use of Bayesian methods in clinical trials, proposed Bayesian adap-

tive designs are primarily assessed by regulatory agencies based on their frequentist operating

characteristics such as power and false positive rate. The Food and Drug Administration

(FDA), for example, emphasizes the importance of simulation studies in evaluating operating

characteristics in adaptive trials of drugs and biologics (?).

Various stopping rules may be incorporated into a Bayesian adaptive trial design with

multiple interim analyses. Common decision rules include stopping the trial for efficacy or
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futility, or eliminating an arm if the probability of effectiveness is small for the correspond-

ing treatment. Stopping rules are most commonly defined based on a Bayesian test statistic

derived from the posterior distribution of model parameters. These include the posterior

or posterior predictive probability of effectiveness. i.e. the alternative hypothesis. Efficacy

or futility are then defined based on high and low thresholds for these Bayesian probabil-

ity statements. Another common adjustment is response adaptive randomization, where

allocation ratios are adjusted with respect to posterior or posterior predictive probability

statements.

Similar to the critical region of a frequentist test statistic, thresholds for Bayesian prob-

abilities can be specified to achieve satisfactory design operating characteristics ( DOCs).

Power, for instance, may be defined as the probability of observing a high posterior probabil-

ity of effectiveness given an assumed effect size. The sampling distribution of the posterior

or posterior predictive probability statement (Bayesian test statistic) is therefore required to

obtain power. Unlike in the classical hypothesis testing framework, however, the sampling

distribution of a Bayesian probability statement is not available in closed form. Therefore,

DOCs are typically estimated via Monte Carlo methods, i.e., by simulating the trial and the

sampling distribution of the Bayesian test statistic for a given set of parameters.

Simulation studies for design of Bayesian adaptive trials can be time consuming since the

combination of plausible ranges of model parameters, includingeffect size and baseline mea-

sure assumptions, together with possible design parameters, including efficacy and futility

thresholds, sample sizes and frequency of interim analyses, can result in a large number of

simulation scenarios. In many cases, a complex trial design and/or analysis model without

analytically tractable posteriors requires a significant amount of computation — involving

methods such as Markov chain Monte Carlo (MCMC) approaches — for a single trial sim-

ulation which is multiplied by the number of simulation scenarios as well as by the number

of iterations.

The methods proposed in the present article aremotivated by a clinical trial design exer-

cise in the context of the COVID-19 pandemic. A brief introduction to this clinical trial is

provided in Section 2. In early discussions among the team of investigators, the ordinal scale

3



disease progression endpoint, as defined by the World Health Organization (WHO) (WHO,

2020), was considered as the primary endpoint of the trial with the goal of evaluating the

effect of the intervention in reducing the severity of COVID-19. The Proportional Odds (PO)

ordinal logistic regression was considered as the analysis model which is one of the simplest

statistical models used for the analysis of the ordinal scale outcome (Harrell and Lindsell,

2020). Bayesian inference for the PO model, however, requires MCMC sampling since the

analytic form of the posterior is not available. Therefore, assessing DOCs for Bayesian trials

with the ordinal scale outcome requires extensive simulations and carries a significant com-

putational burden. The computational requirements, together with the uncertainty of the

risk associated with the levels of the ordinal scale outcome, resulted in a simplification of

the design that used a binary endpoint. This shifted the focus to the risk of infection rather

than disease severitywhich was a necessary change to meet deadlines for funding applications

and regulatory approvals dictated by the time-sensitive situation.

As a motivating example, we consider the hypothetical case with the ordinal scale disease

progression outcome and the PO model used in the design of the above COVID-19 trial.

The link between COVID-19 infection and disease severity may have been strong prior to

vaccination. In the absence of a strong association, however, changing the primary outcome

for computational reasons would not have been acceptable and could have impacted the

patient outcomes and the efficiency or appeal of the study. The present work will facilitate

choosing the clinically correct endpoint by addressing computational feasibility.

In this article, we propose a set of methods to overcome the computational hurdles

in evaluating DOCs as well as assessing the sensitivity of DOCs to the model and design

parameters in Bayesian adaptive trials. The methodology can be employed in general for

design of clinical trials where power analysis and assessing DOCs relies on simulations rather

than analytic forms for the sampling distribution of the test statistic. The proposed approach

is to estimate the sampling distribution of Bayesian probability statements i.e., the test

statistics) through the model parameter space which is then used to provide computationally

efficient estimates of DOCs for a wide range of assumptions and decision parameters without

the need for additional simulations. A simple parametric density estimation approach is
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employed where the sampling distribution of the probability statement is assumed to follow

a Beta distribution whose parameters are modelled as Gaussian processes (GP) with distance-

based correlation structure across the parameter space. The GPs are trained over an initial

set of simulated distributions for the test statistic at a select set of parameter values.

The novelty of the present article is in proposing a set of methodology for the design of

Bayesian adaptive trials beyond simple Monte Carlo simulations for the assessment of DOCs.

Currently, methods for estimating the operating characteristics for a given set of parameters

rely solely on simulations and are not accompanied with adequate uncertainty quantifica-

tion. The present work sets the foundation for development of methods that facilitate the

use of Bayesian measures for decision making in clinical trials while satisfying traditional

requirements.

As mentioned above, the ordinal scale outcome together with the PO model is used to

showcase the implementation and performance of the proposed approach. One interesting

but challenging aspect of using the ordinal scale outcome is incorporating the uncertainty

associated with the risks for disease severity levels in the trial design. This is addressed

by exploring the DOCs over a range of plausible risk vectors. The vector of probabilities

must add up to one which results in a simplex. Moreover, in GP-based models, satisfactory

prediction performance throughout the input (parameter) space, is achieved by spreading

the initial set of target function evaluations uniformly using a space-filling design (O’Hagan,

1978; McKay et al., 1979; Sacks et al., 1989; Johnson et al., 1990; Morris and Mitchell,

1995). Space-filling designs over non-rectangular, constrained spaces have recently received

considerable attention (Lin et al., 2010; Lekivetz and Jones, 2014; Mak and Joseph, 2018).

Generating a space–filling design on a simplex, however, is not straightforward. We use

the method of Lekivetz and Jones (2014), which generates a covering sample of the target

space, clusters the sample points and selects the cluster centroids as the design points. We

propose a sampling technique for generating an initial sample on a simplex as an efficient

and effective alternative to simple Monte Carlo.

The remainder of this article is organized as follows. The clinical trial design that mo-

tivates the development of the proposed approach is described in Section 2. In Section 3,
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Table 1: Levels and description of the ordinal scale disease-severity endpoint.

Patient State Descriptor Level

Uninfected Uninfected; no viral RNA detected 0
Ambulatory mild disease Asymptomatic; viral RNA detected 1

Symptomatic; independent
Symptomatic; assistance needed

Hospitalised: moderate disease Hospitalised; no oxygen therapy 2
Hospitalised; oxygen by mask or nasal prongs

Hospitalised: severe disease Hospitalised: oxygen by NIV or high flow 3
Intubation and mechanical ventilation

Dead Dead 4

we introduce a method for emulating and predicting the sampling distribution of a Bayesian

test statistic using a beta prior distribution with GP parameters. We apply the proposed

approach to the motivating example in Section 4. We also discuss the design of the training

set for this application and assessment of estimation using cross-validation. Section 5 follows

with a discussion of the limitations of the proposed approach and future extensions.

2 Motivating Example

This work was motivated by the design of a clinical trial investigating the effectiveness of high-

dose vitamin D in preventing severe cases of COVID-19 (PRevention of COVID-19 with high

dose Oral Vitamin D supplemental Therapy in Essential healthCare Teams—PROTECT).

Given the goal of the study, the ordinal scale disease progression outcome recommended

by the WHO (WHO, 2020) was of interest. The clinical progression scale has ten disease

progression level from uninfected to dead. The challenge in use of a ten-level endpoint in

clinical trials is the lack of granular data to inform the base rate assumptions as well as the

dimensionality of the parameter space in statistical inference. Therefore, simplifications of

the 10-level ordinal scale that merge levels may be used. Table 1 shows the definition of the

five-level ordinal scale disease progression endpoint with categories uninfected, mild disease,

moderate disease, severe disease and dead.

While the ordinal scale endpoint was considered in early stages of the design of PRO-
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TECT, due to the scale of simulation studies required to assess the DOCs and the level

of uncertainty in the base risks associated with each outcome level, the focus was changed

to the risk of infection and a binary primary outcome (incidence of laboratory-confirmed

COVID-19 infection) that would accommodate closed-form posterior updates. The PRO-

TECT study adopted a Bayesian adaptive design that allowed for an interim analysis when

75% of (approximately 1000) patients completed their follow-up time (16 weeks). The total

sample size was estimated via simulations to achieve at least 80% probability of success.

The trial could be concluded for efficacy at the interim analysis in case of sufficient evidence

in favour of effectiveness. The control risk of infection was also monitored and the data up

to the interim analysis would be used to obtain the posterior predictive power at the final

analysis. If the posterior predictive power was below the 80% target, the study would be

prolonged for up to 24 weeks of follow-up in order to achieve a higher chance of success.

The interim analysis and the adaptive components were essential due to the quickly evolv-

ing situation of the pandemic. The PROTECT study was funded by the CIHR COVID-19

Rapid Research Funding Opportunity approved by Health Canada and started recruiting

in February 2021 (ClinicalTrials.gov Identifier: NCT04483635). However, the launch of the

study coincided with the widespread distribution of vaccines to health care workers, which

resulted in a significant drop in recruitment rates and, eventually, termination of the trial

due to lack of feasibility.

In Section 4, we consider the hypothetical case where the ordinal scale outcome is used as

the primary outcome in the PROTECT design and argue that the proposed techniques in this

article can improve the design of adaptive clinical trials by enabling the use of outcomes of

interest with more realistic statistical models while accounting for the uncertainty associated

with parameter assumptions in a computationally efficient framework.

We focus on the probability of stopping early for superiority at the interim analysis with

75% of participant outcomes as the DOCs of interest in order to illustrate the implemen-

tation and performance of the proposed approach. We emphasize that implementation and

performance do not necessarily depend on the specific trial design or the specific DOCs of

interest.
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3 Methodology

Statistical success or significance in Bayesian adaptive clinical trials is commonly defined

based on posterior or posterior predictive probability of the alternative hypothesis (Berry

et al., 2010). Stopping decisions are made according to the same criterion. For example,

the decision of stopping the trial for efficacy at an interim analysis may be made if the

posterior probability of effectiveness exceeds a prespecified upper probability threshold U

(e.g., U = 0.95), that is, if

π(yt) = P (HA | yt) > U, (1)

where HA is the alternative hypothesis that is often formulated as the treatment having at

least a certain magnitude of effect and yt denotes the participants’ outcomes accumulated

up to the decision time t. Therefore, π(yt) can be viewed as a test statistic and U is the

critical value with respect to which statistical significance is determined. We use π as general

notation for a Bayesian test statistic used in a generic Bayesian adaptive trial.

Within the conventional RCT framework, the known sampling distribution of the test

statistic under the null and alternative hypotheses are used to specify critical values that

achieve target DOCs such as a 5% false-positive rate and 80% power. The sampling distribu-

tion of a posterior probability statement π, however, is not available in general. Therefore,

DOCs are typically estimated using Monte Carlo simulations for a given set of model pa-

rameters that correspond to points under the null and alternative hypotheses as well as a

range of critical values.

Evaluating π for every simulated set of y may require MCMC sampling except for simple

models where a conjugate prior is available. While this is not generally a hurdle in Bayesian

inference given the vast number of sampling algorithms, approximation methods and com-

putational advancements in the literature, involved Bayesian computation can within a sim-

ulation study can be impractical. For example, estimating DOCs in a trial design with I

(interim and final) analyses, at nT sets of model parameter values and L decision thresholds

via M simulation iterations and J MCMC iterations per evaluation of π has a computational

complexity of O(nT IMJL). In the following we propose an approach that reduces this com-
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putational complexity to O(ntIMJ) where nt � nT and the range of decision threshold

values does not contribute to the computational complexity.

Denote the model parameter space, including the plausible range of all baseline and

treatment effect parameters, by Θ. The null and alternative hypotheses define a partition

of the parameter space, Θ = Θ0 ∪ΘA ( where H0 : θ ∈ Θ0 and HA : θ ∈ ΘA). In simulation

studies designed to asses operating characteristics of a clinical trial design, a variety of

parameter values within Θ that correspond to various parameter points under the null and

alternative hypotheses need to be explored. In addition to power and false positive rate, a

variety of other DOCs are of interest in adaptive designs. For example, power at a given

interim analysis, i.e., the probability of stopping the trial early due to a correct efficacy

conclusion, is

Py(πint > U | θ∗ ∈ ΘA), (2)

where πint is the Bayesian test statistic at the interim point and the subscript y denotes the

probability under the data or sampling distribution. Therefore, the sampling distribution of

πint over the parameter space Θ is key to assessing DOCs.

We propose a model for the sampling distribution of π that allows us to “learn” the

distribution function of π over Θ through the empirical sampling distribution obtained at

a small set of parameter values. We assign the following prior distribution to π at a given

point θ ∈ Θ:

π | θ ∼ Beta (a(θ), b(θ)) (3)

with

a(θ) ∼ GP(µa, ρa(θ, θ
′)) and b(θ) ∼ GP(µb, ρb(θ, θ

′)), (4)

where GP(µ, ρ(θ, θ′)) denotes a GP with a constant mean µ and a covariance function ρ(θ, θ′).

The mean and covariance parameters of the GP prior distribution are trained independently

for the shape and scale parameters of the beta distribution in (3).

The GP priors in (4) are based on the assumption that the parameters of the target

distribution f(π | θ) are smooth in Θ. This, in turn, results in predictions for DOCs that
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are also smooth in Θ. We take the covariance functions of the GP processes in (4) to be

the squared exponential covariance function, which is one of the most common choices in

GP modelling (Rasmussen and Williams, 2006). This choice of covariance function assumes

infinite differentiability with respect to θ. This may prove an unrealistic assumption in

some applications and may give rise to convergence issues when estimating GP parameters.

However, we do not encounter such issues in the application described in Section 4.

The GPs in (4) are trained over the parameter space using estimates of a(θ) and b(θ) at

select θ ∈ Θ. Let θt denote the training set of size nt. The trial is simulated for M iterations

according to the specified design for the parameter values in θt, which results in a Monte

Carlo sample of the distribution of π. A beta distribution is fit over the Monte Carlo sample

at each training point using the method of moments to obtain estimates of a(θ) and b(θ)

that match the mean and variance of the empirical distribution. These estimates, â = â(θt)

and b̂ = b̂(θt) are then used as realizations to obtain the posterior GPs for any parameter

values throughout Θ:

a(θ∗) | â ∼ N (µpost
a , V (a(θ∗))) and b(θ∗) | b̂ ∼ N (µpost

b , V (b(θ∗))), (5)

where

µpost
a = µa + k>a (Ka + σ2

aI)−1a, µpost
b = µb + k>b (Ka + σ2

bI)−1b,

V (a(θ∗)) = ka(θ
∗, θ∗) + k>a (Ka + σ2

aI)−1ka

and

V (b(θ∗)) = kb(θ
∗, θ∗) + k>b (Kb + σ2

bI)−1kb.

The ks are vectors of size nt whose components are ρ(θt, θ
∗), the Ks are covariance matrices

whose components are ρ(θt, θt′), and the σ2s are the observation variances estimated for each

GP model.

Once the posterior GPs are obtained, the sampling distribution of π is fully specified

(predicted) at any point in Θ and any DOCs of interest may be evaluated as a tail probabil-
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ity of the beta distribution. For example, the interim power in (2) is the 100U% upper tail

probability of a Beta distribution whose parameters are given as in (5). The posterior un-

certainty of these parameters will translate into uncertainty estimates for the corresponding

tail probability, i.e., the DOCs estimates.

The specification of the training set θt is important in the performance of the proposed

model, as in any predictive-modelling framework. There exists much literature on GP mod-

elling and the design of computer experiments regarding techniques for constructing training

sets on a parameter (input) space. Specifically, space-filling designs are recommended to opti-

mize predictive performance (O’Hagan, 1978; McKay et al., 1979; Sacks et al., 1989; Johnson

et al., 1990; Tang, 1993; Morris and Mitchell, 1995; Ye, 1998; Santner et al., 2003; Jin et al.,

2005; Joseph and Gul, 2015). For a comprehensive review, see Joseph (2016) and the ref-

erences therein. In the next section, we apply the proposed approach to a specific DOC

estimation example, discuss the construction of a space-filling design on a nonrectangular,

nonconvex parameter space and propose a simple design algorithm.

4 Application to the PROTECT Design

In this section, we consider the design of the PROTECT study and a hypothetical scenario

that the ordinal scale disease progression endpoint is the primary outcome. The primary

analysis is performed using a PO model inspired in Harrell and Lindsell (2020). This refer-

ence also provides a comprehensive discussion of the design of Bayesian adaptive trials with

ordinal-scale outcomes.

For the DOC of interest, we will focus on the probability of stopping early for efficacy or

futility at the interim analysis with 75% of participant outcomes. Without loss of generality,

we consider a four-level outcome. We apply the model proposed in the previous section

to estimate the data distribution of the posterior probability of effectiveness throughout

the model parameter subspace that corresponds to a set of credible base risks and effect

assumptions under the null and alternative hypotheses. Then we estimate the probability of

stopping early for a number of decision thresholds.
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An individual outcome is assumed to follow a multinomial distribution, Y ∼ Multinom(1,p =

(p1, . . . , p4)), where pk (k = 1, . . . , 4) is the risk associated with the kth level of disease severity

and
∑4

k=1 pk = 1. The PO model is a logistic regression of the tail probability,

P (Y ≥ k | A) =
1

1 + exp[−(αk + βA)]
for k = 2, 3, 4. (6)

Note that P (Y ≥ 1 | A) = 1 and

αk = − log

∑k−1
i=1 pi

1−
∑k−1

i=1 pi
.

In Equation (6), A is the treatment indicator, i.e., A = 1 indicates that the patient has

received the treatment and A = 0 indicates assignment to the control arm. The ratio of the

odds of disease severity is then represents the effect of the treatment:

OR =
P (Y ≥ k | A = 1)

P (Y ≥ k | A = 0)
= exp(β).

This simple parametrization reduces the treatment effect to a single parameter. While this

might not be a realistic modelling framework for ordinal outcomes in general, it is a welcome

simplification in the absence of prior information on the mechanism of the effect with respect

to different levels of disease severity. For an example of a more robust variation of the PO

model, see Murray et al. (2018).

For the remainder of the article, we focus on p and OR rather than αk and β as the

model parameters since the formulation of the hypotheses and the baseline assumptions are

made for these parameter transformations. Specifically, the null and alternative hypotheses

are H0 : OR ≥ 1 and HA : OR < 1.

The trial hypothesis may be defined according to a minimum clinically important effect,

e.g., OR < 0.9. However, even a small effect was clinically important in the PROTECT

study. The methods described in Section 3 apply to generic HA.

For making Bayesian inference, however, prior distributions are specified for the αk and

β, and the inference is based on the posterior distribution of these parameters given the
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observed data y. This posterior distribution is analytically intractable and needs to be ap-

proximated or estimated by MCMC. We use the R package developed in James (2020) that

uses Hamiltonian Monte Carlo implemented in Stan to sample from the posterior distribu-

tion of the PO model parameters. The posterior distributions of p and OR are obtained

respectively as transformations of the posterior samples of αk and β.

The posterior probability of effectiveness is then

π = P (HA | y) = P (OR < 1 | y).

We focus on the probability of stopping the trial early for efficacy or futility at the interim

analysis. Superiority and futility decisions are made if π > U or π < `, where U and `

are prespecified upper and lower probability thresholds, respectively. The DOCs of interest

are therefore the probabilities of these events under the data (sampling) distribution for a

variety of model parameter values under the null and alternative hypotheses. For example,

the false-positive rate is Py(π > U | pT = p∗,ORT ≥ 1), where pT and ORT are the assumed

“true” values of the model parameters.

As explained in Section 3, the key to estimating probabilities of this form is to estimate

the sampling distribution of π throughout the parameter space given an initial set of samples

drawn from this sampling distribution via trial simulation at a training set. Denote the trans-

formed parameter space for the PO model by Θ = P × O, where P is the four-dimensional

simplex of all plausible values of the vector of probabilities p and O is the interval of OR

values that can be realistically assumed as the effect of the intervention.

Generating a space-filling design on Θ is challenging since P is a simplex defined by the

constraints
∑4

k=1 pk = 1 and plk < pk < puk where the plks and puks determine realistic

ranges of values for the risk associated with each category. In Section 4.1, we describe a

simple design algorithm that generates a space-filling design on P . The design over P is

then combined with a set of equally spaced OR values to provide training and test sets over

the parameter space Θ.
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4.1 Space-filling design over the simplex parameter subspace

Most space-filling design algorithms, such as those mentioned above, assume a rectangular

input space. However, the problem of generating designs on nonrectangular spaces has

recently received more attention (Lin et al., 2010; Lekivetz and Jones, 2014; Mak and Joseph,

2018). We use the method of Lekivetz and Jones (2014), which generates and clusters a

covering sample of the target space. The cluster centroids are used as the design points.

This strategy assures that no two points are too close to each other. Generating a uniform

covering sample on a simplex, however, is not straightforward. We propose a sequential

Monte Carlo sampling technique that generates an initial sample on the simplex as an efficient

and effective alternative to simple Monte Carlo.

Consider the constrained space P ⊆ [0, 1]4. Generating a uniform sample over P is

equivalent to sampling from

π>(p) =
U(p)1P(p)∫
P U(p)dp

,

where U(·) is the density function of a uniform distribution with the domain [0, 1]4 and 1P(p)

is an indicator function that is equal to one if p ∈ P and is zero otherwise.

We use the sequentially constrained Monte Carlo (SCMC) sampling approach proposed

in Golchi and Campbell (2016) to sample from π>(p). Specifically, we define the deviation

of a given point p from the constraints that define the design region P as

CP(p) =

(∣∣∣∣∣
4∑

k=1

pk − 1

∣∣∣∣∣ , (pk − puk)4k=1 , (plk − pk)
4
k=1

)
.

For any point p ∈ P , the first component of the deviation vector is zero and the rest are

negative. For any point p /∈ P , CP(p) measures the deviation from each of the constraints.

A probabilistic version of the constraint indicator 1P(p) is
∏

Φ(−τCP(p)), where Φ is

the cumulative distribution function for the standard normal distribution and the parameter

τ controls the slope of the probit function. The number of terms in the product is equal to

the number of constraints defined by CP(p), which is nine in the present example. We have
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that

lim
τ→∞

∏
Φ(−τCP(p)) ∝ 1P(p).

From a uniform sample of size N on the unit hypercube [0, 1]4, the goal is to filter this sample

towards the simplex, P through a sequence of increasingly constrained densities. The SCMC

sequence of densities is

πt(p) ∝ U(p)
∏

Φ(−τtCP(p)),

where t = 0, . . . , T and 0 = τ0 < τ1 < · · · < τT →∞.

An effective sequence of constraint parameters (the τts) can be achieved adaptively (Jasra

et al., 2011). At each step, the next value in the sequence is determined such that the effective

sample size (ESS) does not fall below a certain threshold, e.g., half of the sample size, N/2.

This is done by numerically solving for τt in

ESS =

(∑N
n=1w

t
n(τt)

)2
∑N

n=1 (wtn(τt))
2

=
N

2
,

where

wtn(τt) =

∏
Φ(−τtCP(pt−1n ))∏

Φ(−τt−1CP(pt−1n ))

and τT = 106.

Figure 1 shows the two-dimensional marginal samples generated over P using the SCMC

sampling scheme. The lower and upper limits for p are arbitrarily specified as pl =

(0.5, 0.05, 0.01, 0.005) and pu = (0.9, 0.30, 0.05, 0.025), respectively. In practice, any in-

formation on credible values for the base risk of each disease severity level should be used

to specify these thresholds. Note that pl and pu do not need to belong to P , i.e., the limit

vectors do not need to satisfy the constraint that
∑4

k=1 pk = 1.

once a covering sample over the target space is generated, we use the method proposed in

Lekivetz and Jones (2014), which uses K-means clustering and selects the cluster centroids

as the design points. This sampling-based approach aims to generate a design in which no

two points are too close to each other without relying on a distance measure such as the
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Figure 1: Two-dimensional marginals of the sample generated over the simplex P.

Euclidean distance, which does not realistically represent distances in a constrained subspace.

Various other methods have been developed in the experimental design literature that can

be employed here (Welch et al., 1996; Draguljić et al., 2012; Joseph and Gul, 2015; Gomes

et al., 2018). Simplicity of implementation motivates our choice here.

4.2 Predicted probability of stopping early

We consider the PROTECT study design with an interim sample size of 1000 and estimate

the probabilities of stopping early at the interim analysis for efficacy and futility for a range of

baseline risks p and OR. We can similarly estimate power (the probability of efficacy at the

interim or final analysis) or any other DOCs for more complex designs with multiple interim

analyses and adaptive features. Design complexities will only need to be implemented in

initial simulations and do not have any implications on the prediction methods thereafter.
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The goal is to predict the probabilities that

P (OR < 1 | y) > U (7)

and

P (OR < 1 | y) < ` (8)

over the input space Θ = P ×O where

P = {p :
4∑

k=1

pk = 1, 0.5 < p1 < 0.9, 0.05 < p2 < 0.3, 0.01 < p3 < 0.05,

0.005 < p4 < 0.025}

For the training set, a space-filling design of size 20 is generated over P using the methods

described in Section 4.1. The Cartesian product of this set and a grid of size four over

O = (0.7, 1) is used as the final design of size 80 over Θ. Trial data are then simulated from

the PO model described in Section 4 for each of the (p,OR) pairs in the training set. For

every simulated trial, the probability of superiority of the treatment (given in Equation (1))

is obtained to estimate the sampling distribution of π. A beta density function is fit to the

Monte Carlo samples of π at every θ = (p,OR) to obtain estimates of a(θ) and b(θ). GPs

are then fit to these simulated values.

The sampling distribution of π is then predicted over a test set of size 800 generated over

Θ in the same fashion as the training set. Figures 2a and 2b show the predicted probability

of stopping early for efficacy (using a decision threshold of U = 0.95) derived from the

distribution of π together with 95% credible intervals over a two-dimensional subspace of

Θ, i.e., p1 × OR. The upper panel shows a slice of the subspace where the training set

(denoted by square dots) is located while the lower panel shows a slice of the subspace “in

between” the training points. The 95% credible intervals represent two layers of uncertainty,

i.e., the observation (Monte Carlo) error of the initial DOCs evaluations and the uncertainty

associated with the estimation/prediction step in obtaining the sampling distribution of the
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test statistic and the DOCs as its quantile.

As mentioned earlier, a strength of the proposed approach is that it obtains the sampling

distribution of the test statistic rather than focusing on a single operating characteristic

corresponding to a fixed decision criterion. This means that once the model is trained, one

can readily explore a variety of decision thresholds U in (7) without any additional simulation

runs.

To showcase this feature, Figure 3 shows the results in Figure 2a—excluding the training

points—for the decision thresholds U = 0.98 and U = 0.9. These values correspond to

more- and less-conservative decision rules relative to U = 0.95, respectively. Using the more-

conservative decision criterion (U = 0.98) results in a smaller probability of stopping early for

superiority for OR < 1, but controls the probability of a false positive result at the interim

analysis (Figure 3a, where OR = 1). The more-permissive decision threshold (U = 0.9),

however, increases the chance of stopping the trial early due to efficacy but increases the

chance of a false positive result to 12.5% (Figure 3b, where OR = 1).

Likewise, we may explore other operating characteristics such as the probability of con-

cluding futility, according to (8) for various decision thresholds `. Figure 4 shows the prob-

abilities of concluding futility at the interim analysis for a restricted range of parameter

values. This probability is negligible for larger effect sizes with the specified design settings.

The results in Figures 2–4 help to select a set of decision criteria for a given set of model

parameters corresponding to baseline risks and effect assumptions. For example, if a base

risk vector of p = (0.75, 0.22, 0.01, 0.02) and OR = 0.7 is assumed, then to allow a 65% (CI:

56%–75%) chance of stopping the trial early for superiority while controlling the interim false

positive rate at 2.3% (CI:1.3%–3.5%) requires a superiority decision threshold of U = 0.98.

For the same set of assumptions for p but assuming no effect (OR = 1) a futility decision

threshold of ` = 0.05 allows for about a 5% (CI: 1.1%–16%) chance of stopping the trial

early for futility at the interim analysis.
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(a)

(b)

Figure 2: Point estimates for the interim probability of concluding superiority (grey round
dots) with 95% credible intervals. Panel (a) shows a slice of the subspace where the training
set (denoted by square dots) is located. Panel (b) shows a slice of the subspace “in between”
the training points.
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(a)

(b)

Figure 3: Point estimates and 95% credible intervals for the probability of concluding supe-
riority with the decision thresholds (a) 0.98 and (b) 0.9.

20



(a)

(b)

Figure 4: Point estimates and 95% credible intervals for the probability of concluding futility
with the decision thresholds (a) 0.01 and (b) 0.05.
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4.3 Computational savings

We next present the computational savings in the application of the proposed approach in

the previous subsection. All operations were performed in serial. Clearly, further savings can

be attained through parallel computing. We argue, however, that significant computational

resources are required to achieve the same level of savings through only parallel computing.

On a 1.4 GHz Quad-Core Intel Core i5 processor, one trial simulation with one chain

and 1000 Hamiltonian Monte Carlo iterations took slightly over two seconds. Therefore,

1000 trial simulations for one set of model parameters would take about 30 min if run in

serial. For 80 points in the training set, this takes about 40 h and for the 800 points in

the test set, 400 h. The proposed approach relies on the 80-training-point simulation and

therefore includes the 40 h of computation time. However, it takes about 20 s to fit each

GP model (2 chains and 2000 iterations each), i.e., less than a minute in total. Sampling

from the posterior predictive distribution for the test set takes about a minute. Therefore,

the computation time for making predictions on the test set is reduced from 400 h to two

min. To reduce the computation time via parallel computing alone to a comparable level

would require significant computational resources (thousands of processing units). Of course,

parallel computing together with the proposed methods can result in further reductions in

computation times.

4.4 Assessment of predictive performance via cross-validation

In this section we provide an assessment of the accuracy and precision of the proposed

approach in estimating DOCs relative to trial simulation. We use the training set θt (of size

nt = 80) used in the previous section to calculate the root mean squared error (RMSE) using

leave-one-out cross-validation:

RMSE =

√√√√ 1

ntK

nt∑
i=1

K∑
k=1

(φk(θi)− φt(θi))2.
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Here, φk(θi) = P (π > 0.95 | ak(θi), bk(θi)) is the estimate of the interim probability of

superiority obtained as an upper tail probability of a beta distribution with the parameters

given by the kth posterior samples ak(θi) and bk(θi) drawn from GP posteriors trained over

the nt − 1 points in θt with θi excluded, and φt(θi) is the “true” interim power obtained via

trial simulation at θi.

The RMSE, as defined above, is averaged both over the posterior distribution and the

parameter space and is evaluated at 0.036. The estimation error—including both bias and

variance—varies across the parameter space. Therefore, assessing pointwise accuracy and

precision is important. Figure 5 shows the cross-validated bias and posterior standard error

for the 80 points in the training set.

While estimation bias is small in magnitude overall (Figure 5a) there appears to be a

systematically positive bias in the OR ≈ 0.8 region of the parameter space. This is the

region where the sampling distribution changes and as is discussed in Section 5, the beta

distribution with stationary GP prior distributions is not able to adequately capture this

change. The same phenomenon contributes to the large posterior variance in these regions

(Figure 5b). However, the estimation error remains small and the 95% credible intervals

provide 100% coverage as indicated in Figure S.1 of the supplementary material.

For a more-extensive assessment of the proposed approach that takes into account the

sensitivity of the predictions to the design of the training set, see the simulation study

provided in the supplementary material. The simulation study is designed within the simple

framework of a binary outcome with a beta–binomial model to be able to take advantage

of the conjugate modelling framework and the consequent analytic posterior distribution.

Because of the analytic posterior distribution, the DOCs can be estimated for a large number

of points across the parameter space and for multiple training sets arising from the random

training set design. This allows a thorough exploration of the accuracy and precision of

DOCs estimates. The results of the simulation study are consistent with the conclusions

drawn from the cross-validated performance measures above.
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(a)

(b)

Figure 5: Cross-validated (a) bias and (b) posterior standard error in estimates of the prob-
ability of stopping early for 80 points across the parameter space.
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5 Discussion

In this article we propose a set of methods for estimating the sampling distribution of a

Bayesian probability statement—used for decision making in Bayesian adaptive trials—over

a model parameter space. Our goal is to estimate a variety of DOCs and to assess their

sensitivity to trial assumptions and design configurations in an efficient manner. We take

advantage of the spatial correlation throughout the model parameter space to interpolate

the parameters of the sampling distribution. We model the parameters of the sampling

distribution as independent GPs trained over a set of estimates obtained by simulating the

trial design over an initial set of model parameter values.

The main advantage of the proposed approach is that it enables exploration of a variety

of operating characteristics as well as adequate uncertainty quantification. The methods

presented in this article add efficiency to the overall process of collaborative trial design

(possibly involving several iterations resulting from proposed changes and extensive explo-

rations) in two ways: first, by reducing the number of simulations required at each iteration

of the process following a major change to the design and, second, by eliminating the need for

additional simulations if the changes are only through model parameters or decision thresh-

olds. This feature is showcased in Section 4, where the probabilities of stopping early for

superiority or futility are estimated for a variety of decision thresholds with no additional

simulation runs.

We apply the proposed methods to a hypothetical clinical trial design where an ordinal

scale disease progression endpoint is used with the PO model. The vector of base risks

associated with the levels of the ordinal outcome is defined as a simplex contained within

the unit hypercube. This results in unique challenges in the design of the initial set of

simulations used for training the GPs and in the exploration of DOCs estimates across the

parameter space. We describe a specialized design algorithm for this problem.

This article sets the foundation for the development of methods that facilitate the adop-

tion of Bayesian measures for decision-making in clinical trials. However, the proposed

approach goes beyond trials that employ Bayesian decision rules and may be used generally
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where the sampling distribution of a test statistic is not available in an analytic form. For

example, Barnett et al. (2021) recently proposed a novel statistical test in clinical trials with

response adaptive randomization whose sampling distribution of the test statistic needs to

be estimated by simulation: this approach can benefit from the methods proposed in this

article. The proposed methodology is also applicable where the sampling distribution of the

test statistic is only available asymptotically (which is the case for most frequentist tests) or

only for large samples at interim analyses (Hadad et al., 2021).

We acknowledge that this work is a starting point that has limitations. There remains

much room for further developments. We lay out some directions for future work below.

The parameters of the beta distribution must be positive. Therefore, specifying a GP

prior that assigns nonzero probabilities to negative values is problematic. We address this

issue using rejection sampling from the posterior predictive distribution. For the application

in this article the rejection rates remain zero or very small throughout the parameter space

(see Section C in the supplementary materials).

In cases where rejection sampling is inefficient, however, constraints need to be incor-

porated into the model. A variety of methods have been proposed for fitting GP models

to observations from constrained functions (Riihimäki and Vehtari, 2010; Lin and Dunson,

2014; Golchi et al., 2015; Wang and Berger, 2016). As a common approach, the warped GP

(Snelson et al., 2004) maps observations onto the real line via a monotonic function. All

existing methods create a non-Gaussian process prior over the original function for which

analytic predictions conditional on GP parameters cannot be obtained. Given the practical

efficiency of a simple rejection-sampling scheme for the application in this paper and the

simplicity of unconstrained GP models, we did not find the additional complexities in in-

corporating positivity constraints to be justifiable. Doing so may be necessary in different

modelling settings, however.

Another challenging feature of the problem is the quickly changing form of the sampling

distribution of the test statistic in certain parts of the parameter space. The GP is not the

most appropriate model for the parameters of this distribution as this assumes stationarity

throughout the input space. This can lead to increased bias in certain parts of the model
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parameter space. A variety of methods have been proposed to model nonstationary response

surface (Schmidt and O’Hagan, 2003; Gramacy and Lee, 2008; Gramacy and Apley, 2013;

Heinonen et al., 2016). In most cases, however, the solution comes at the cost an analytic

form for the predictions or uncertainty estimates and an increased computational burden.

In the examples explored in the present article, the resulting bias is small enough, so we

consider the fit of a conventional GP to be satisfactory.

Finally, the parametric form assumed for the Bayesian test statistic, e.g., the beta dis-

tribution alone might not capture the true sampling distribution throughout the model pa-

rameter space. A nonparametric modelling approach is therefore a potential future direction

for this work.

Code

The code for the simulation study as well as the implementation of the methods for the ordi-

nal scale endpoint and the PO model used in this article are provided in a public repository

on GitHub, at https://github.com/sgolchi/ DOCsest.
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