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Abstract

Using the fact that some depth functions characterize certain family of distribution functions,

and under some mild conditions, distribution of the depth is continuous, we have constructed

several new multivariate goodness of fit tests based on existing univariate GoF tests. Since ex-

act computation of depth is difficult, depth is computed with respect to a large random sample

drawn from the null distribution. It has been shown that test statistic based on estimated depth

is close to that based on true depth for a large random sample from the null distribution. Some

two sample tests for scale difference, based on data depth are also discussed. These tests are

distribution-free under the null hypothesis. Finite sample properties of the tests are studied

through several numerical examples. A real data example is discussed to illustrate usefulness of

the proposed tests.

Keywords: Half space depth; Multivariate Goodness of Fit; Two sample problem; Zonoid

depth.

AMS subject classification: 62G10; 62G30.

1 Introduction

Testing goodness of fit (GoF) of a given dataset w.r.t. a given probabilistic model is an essential as-

pect of any data analysis. Most GoF tests have been developed for univariate distribution functions

(except for multivariate normality). Theoretically, Pearson’s chi-square test can be used for GoF

test of any multivariate distribution function. This requires division of data into disjoint classes.

Such a test is sensitive to categorisation and the optimal way to decide the class boundaries is not

clear. Moore and Stubblebine (1981) suggested taking class boundaries as concentric hyper-ellipses

centred at the sample mean and shape determined by inverse of the covariance matrix. However,

theoretical properties of such tests are not known.

Let X1, X2, . . . , Xn be a random sample from a population having absolutely continuous distri-

bution F on Rd, the d-dimensional Euclidean space. Let F0 be a specified absolutely continuous

distribution F on Rd. Consider testing

H0 : F = F0 against HA : F 6= F0. (1)
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Some multivariate goodness of fit tests based on data depth

Although a large number of goodness of fit tests have been proposed for specific F0 (e.g. multivariate

normal), only a few tests have been proposed for general F0. Two popular tests for testing (1) are

multivariate Kolmogorov-Smirnov test (Justel et al. (1997)) and a test based on the empirical

characteristic function (Fan (1997); Jiménez-Gamero et al. (2009)).

Rosenblatt (1952) proposed a multivariate generalisation of the probability integral transform.

Justel et al. (1997) utilized this to construct a multivariate Kolmogorov-Smirnov (MKS) test for

testing (1), and provided an algorithm to implement the test procedure for dimension two. For the

multivariate case, owing to the fact that the empirical distribution function has jumps not only

at sample points but also at many other points, evaluation of the MKS test statistic in higher

dimension can be cumbersome. The MKS test algorithm is not available for dimensions greater

than two.

Characteristic function characterizes the distribution function and empirical characteristic func-

tion is a consistent estimator of the true characteristic function (Feuerverger and Mureika (1977)).

Many authors including Fan (1997) and Jiménez-Gamero et al. (2009), exploited this to construct

a GoF test based on empirical characteristic function. An important advantage of multivariate

GoF test based on the empirical characteristic function is that these can be used for discrete dis-

tribution functions as well as for composite null hypothesis, but computation of the test statistic

and critical value is challenging. Most of these tests are implemented using bootstrapping and the

test algorithm is dependent on the null distribution. This makes the test computationally quite

expensive.

In the statistics literature, data depth of a data point is a measure of centrality of the point with

respect to the data cloud (or, a distribution function), which provides an ordering of observations of

a multivariate dataset (Liu et al. (1999)). There are various notions of data depth (Zuo and Serfling

(2000)), and we are interested in those which give characterization for some family of distribution

functions.

In this article, we aim to study GoF tests, based on data depth functions when F is completely

specified. Zhang et al. (2012) discussed some GoF tests for bivariate uniform and bivariate normal

distributions, based on Mahalanobis depth and projection depth. Mahalanobis depth depends

on only first two moments of distribution function which may not characterise the distribution

function, while projection depth is based on outlyingness, which again depends on some statistics

which may not characterize the distribution. So, these tests have very limited applicability. Li

(2018) studied univariate GoF tests based on Tukey’s half-space depth (and simplicial depth) and

found that these tests perform better than usual GoF tests in case of scale differences.

Koshevoy (2003) proved that the Tukey’s half-space depth uniquely determines absolutely con-

tinuous distribution function with compact support, Hassairi and Regaieg (2008) found that the

Tukey depth characterises absolutely continuous distribution functions with connected support and

density function being continuous on the interior of the support, while Kong and Zuo (2010) proved

that distribution with smooth depth contours is completely determined by its Tukey’s half-space

depth (e.g., elliptically symmetric distributions). Mosler (2002) showed that zonoid depth charac-

terises general probability distribution with finite first moment. Since in dimension greater than
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one, exact value of most of depth functions are difficult to compute, the empirical depth with re-

spect to a large random sample from null distribution, are reasonable approximations. As empirical

Tukey’s half-space and empirical zonoid depths converge almost surely and uniformly to their pop-

ulation versions respectively (Zuo and Serfling (2000), Dyckerhoff (2016)), these depth functions

are suitable candidates for our GoF tests.

The above discussed problem of goodness of fit is also known as a one sample problem. Suppose

that two samples are given from two unknown distributions. The problem of testing, whether these

two distributions are the same or not, is known as the two sample problem. Here, we are interested

in testing the scale, or shape difference between populations. Two popular scale difference tests

were given by Liu and Singh (2006) and Li and Liu (2016). The Kolmogorov-Smirnov (KS) test,

the Cramér-von Mises (CvM) test and Anderson-Darling (AD) test have been extended to two

sample problems. We study these tests based on data depth and compare their performance with

tests proposed by Liu and Singh (2006) and Li and Liu (2016).

The paper is organized as follows. In Section 2, we briefly discuss Tukey depth and zonoid depth,

and introduce some new multivariate GoF tests based on data depth and derive their properties.

The finite sample performance of the proposed tests is studied through several numerical studies.

A summary of the study is given in Section 3, and conclusion of the study is given in Section 4.

All proofs are given in the Appendix.

2 One sample GoF tests

Data depth of a data point is a measure of centrality of the point with respect to the data cloud (or,

a distribution function). There are several notions of data depths studied in literature (Liu et al.

(1999); Zuo and Serfling (2000)). Here we are interested in Tukey depth (Hodges (1955); Tukey

(1975)) and zonoid depth (Koshevoy and Mosler (1997)), as these two depths satisfy desirable

conditions required for characterisation of some families of distribution functions (Donoho and

Gasko (1992); Dyckerhoff (2016)).

Definition 1. Tukey’s half-space depth of x ∈ Rd with respect to F is defined as

HDF (x) := inf{PF (H) : H is a closed half space in Rd such that H 3 x},

where PF denotes probability measure corresponding to the distribution function F .

Tukey’s half-space depth is also known as Tukey’s depth or, half space depth.

Definition 2. Let α ∈ (0, 1] and suppose F has finite first moment. Take

Dα(F ) :=

{∫
Rd

x g(x) dF (x) : g : Rd →
[
0,

1

α

]
and

∫
Rd

g(x) dF (x) = 1

}
.
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Zonoid depth of y ∈ Rd with respect to F is defined as follows

ZDF (y) :=

sup{α : y ∈ Dα(F )}, if the set is non empty,

0, otherwise.

The sample version of these depths are obtained by replacing F by empirical distribution function

Fn, with sample size n.

For the testing problem (1), we draw a large random sample W1,W2, . . . ,WN from F0, inde-

pendent of {X1, X2, . . . , Xn}. Let D(·, F ) be a depth function with respect to distribution function

F . Suppose D(·, F ) satisfies following assumptions:

(A1) Distribution function of D(·, F ) is continuous.

(A2) The sample version converges almost surely and uniformly to the population version.

Many commonly used depths satisfy assumptions (A1) and (A2). For absolutely continuous distri-

bution functions, Tukey’s depth satisfies assumptions (A1) and (A2) (Donoho and Gasko (1992);

Massé (2002)). Zonoid depth also satisfies assumption (A1) and (A2), for absolutely continuous

distribution functions (Mosler (2002); Cascos and López-Dı́az (2016); Dyckerhoff (2016)).

Consider the following notation:

D := D(·, F0), depth function with respect to distribution function F0.

DN := D(·, FN ), empirical depth function with respect to sample {W1,W2, . . . ,WN}.
FD := distribution function of D(W1).

FDN := ecdf of {D(W1), D(W2), . . . , D(WN )}.

GN (x) :=
1

N

∑N
i=1 I(DN (Wi) ≤ DN (x)).

FD
N,n =: (((FD(D(X1)), F

D(D(X2)), . . . , F
D(D(Xn)))))T .

GD
N,n := (((GN (X1), GN (X2), . . . , GN (Xn))))T .

Theorem 1 (Liu and Singh (1993)). Under the null hypothesis H0 and assumption (A1),

FD
N,n

d
= (U1, U2, . . . , Un), where Ui

iid∼ U [0, 1].

Using Theorem 1, under the null hypothesis H0, distribution of any measurable function of FDN,n
doesn’t depend on F . When D determines the distribution function uniquely, the testing problem

reduces to

H0 : FD(Xi)
iid∼ U [0, 1] against HA : FD(Yi)

iid� U [0, 1], i = 1, 2, . . . , n. (2)

Several GoF tests for U [0, 1] are known to have good properties e.g. Kolmogorov-Smirnov (KS),

Anderson-Darling (AD), Cramer-von Mises (CvM), Greenwood tests, etc. (see D’Agostino and

Stephens (1986)). Since exact computation of most of depth functions is difficult, FDN,n is unobserv-

able. Depth functions satisfying assumptions (A1) and (A2), GDN,n can be used as an approximation

of FDN,n for large N . So, GDN,n is close to a random sample from U [0, 1], and hence can be used for
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the testing (1). We have utilised this idea to construct new GoF tests for absolutely continuous

distribution functions based on data depth.

Suppose we have a random sample X1, X2, . . . , Xn from F and wish to test H0 : F = F0 against

HA : F 6= F0. The steps of proposed tests are as follows.

Steps of Test

1. Fix a large N and take a large sample W1,W2, . . . ,WN from F0. Let D(·, F0) be Tukey’s

depth or zonoid depth with respect to the distribution function F0 and DN (·) = D(·, FN ) be

the corresponding sample depth with respect to the sample {W1,W2, . . . ,WN}.

2. Compute {DN (W1), DN (W2), . . . , DN (WN )} and {DN (X1), DN (X2), . . . , DN (Xn)}.

3. Compute GN (Xj) =
1

N

∑N
i=1 I(DN (Wi) ≤ DN (Xj)) for j = 1, 2, . . . , n.

4. LetG(1), G(2), . . . , G(n) be the order statistics corresponding toGN (Xj), j = 1, 2, . . . , n. Then,

the proposed depth based test statistics are given by the following expressions,

KS type test statistic dKSn = sup
u∈[0,1]

∣∣∣∣ 1n∑n
j=1 I

(
G(j) ≤ u

)
− u
∣∣∣∣

CvM type test statistic dCvMn = 1
12n +

∑n
j=1 [[[2j−12n −G

(j)]]]

AD type test statistic dADn = −n−
∑n

j=1
2j−1
n [[[ log(G(j))− log(G(n−j+1))]]]

Greenwood type test statistic dGDn = 1
n

∑n
j=1 [[[n(G(j) −G(j−1))]]]2.

5. The computed test statistic in the last step, can be compared with the critical value of the

corresponding test statistic for U [0, 1] to arrive at a decision.

Our test procedure translates the multivariate GoF problem to testing uniformity on [0, 1]. An

advantage of this procedure is that it remains unaffected by the dimension of the data.

2.1 Theoretical Results

Using Theorem 1, any statistic based on FD
N,n is distribution-free. For testing uniformity, several

tests based on FD
N,n are known to have good properties, e.g., KS, AD, CvM, Greenwood test

statistics, etc. (see D’Agostino and Stephens (1986)). Due to practical considerations, we propose

to use GD
N,n in place of FD

N,n. The following result gives a relation between these two.

Theorem 2. Under assumptions (A1) and (A2), for finite n,

||FD
N,n −GD

N,n||
a.s.−−−−→

N→∞
0,

where || · || denotes the Euclidean norm.
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Theorem 2 says that for finite n, the distance between GD
N,n and FD

N,n converges almost surely

to zero as N →∞.

Theorem 3. Under assumptions (A1) and (A2), and for finite n , test statistics dKSn, dCvMn,

dADn and dGDn converge almost surely to KS, CvM, AD and Greenwood test statistics based on

FD
N,n respectively, as N →∞.

Using Theorem 3, we have for finite n some common test statistics based on GD
N,n converge

almost surely to those based on FD
N,n as N →∞.

If the depth D determines distribution function uniquely, then KS, AD and CvM tests based

on FD
N,n are consistent for F 6= F0 (see, e.g., DasGupta (2008)). Also if depth D determines

distribution function uniquely, then Greenwood tests based on FD
N,n is asymptotically locally most

powerful among symmetric spacings tests based on FD
N,n (Sethuraman and Rao (1970)). Spacings

based on FD
N,n correspond to depth spacings defined by Li and Liu (2008).

Observe that Theorems 2 and 3 hold even if d > n, which is unusual in multivariate procedures.

Because the depth is computed with respect to simulated sample W1,W2, . . . ,WN and Theorems

2-3 require N → ∞, and we can choose N . Generally, multivariate procedures are valid only for

d < n.

3 Two sample tests

In the multivariate setup, Liu and Singh (1993) introduced the rank sum test based on data depth.

Liu et al. (1999) proposed depth-depth plot and thereafter, many two sample tests were proposed

in the literature based on depth-depth plot (Li and Liu (2004), Dovoedo and Chakraborti (2015)).

These tests are mostly based on permutations. Depth-depth plot based tests are useful to detect

change in location or scale. There are some other depth based tests discussed in the literature (Liu

and Singh (1993), Chenouri et al. (2011)). Li et al. (2011) discussed some statistics of type KS

and CvM and permutation based tests thereof.

Let X1, X2, . . . , Xn and Y1, Y2, . . . , Ym be independent random samples from d-dimensional un-

known continuous distributions F and G, respectively. We aim to test the null hypothesis

H0 : F (x) = G(x) ∀x ∈ Rd against HA : F (x) 6= G(x) for some x ∈ Rd.

If there is a scale difference between distributions F and G (in the sense that G has higher dispersion

than F ), then Xi’s are more likely to be concentrated near geometrical centre of the joint sample

and Yi’s are more likely to be spread towards outer positions of the cluster of the joint data. This

observation guides us to construct tests for scale difference by using some measure of outlyingness

of sample points with respect to a data cloud.

Let us denote the joint sample as Z1, Z2, . . . , ZN , where N = n + m. Let D be a given depth

function, and D(·, HN ) denote the depth with respect to the joint sample. Denote:

X∗i = D(Xi, HN ) for i = 1, 2, . . . , n;

Y ∗i = D(Yi, HN ) for i = 1, 2, . . . ,m and
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Z∗i = D(Zi, HN ) for i = 1, 2, . . . , N .

Define F ∗n , G∗m and H∗N as

F ∗n(t) =
1

n

n∑
i=1

I(X∗i ≤ t), G∗m(t) =
1

m

m∑
i=1

I(Y ∗i ≤ t),

and H∗N (t) =
1

N

N∑
i=1

I(Z∗i ≤ t), t ∈ R.

We can define two sample KS, CvM and AD statistics based on F ∗n and G∗m, as follows.

(i) Two sample KS test statistic based on data depth:

˜dKS = sup
t∈R

∣∣F ∗n(t)−G∗m(t)
∣∣ = max

1≤i≤N

∣∣F ∗n(Z∗i )−G∗m(Z∗i )
∣∣.

(ii) Two sample CvM test statistic based on data depth:

˜dCvM =
nm

n+m

∫ ∞
−∞

(F ∗n(t)−G∗m(t))2 dH∗N (t) =
nm

(n+m)2

N∑
i=1

(F ∗n(Z∗i )−G∗m(Z∗i ))2.

(iii) Two sample AD test statistic based on data depth:

˜dAD =
nm

n+m

∫ ∞
−∞

(F ∗n(t)−G∗m(t))2
1

H∗N (t)(1−H∗N (t))
dH∗N (t)

=
nm

(n+m)2

N∑
i=1

(F ∗n(Z∗i )−G∗m(Z∗i ))2
1

H∗N (Z∗i )(1−H∗N (Z∗i ))
.

Suppose that the ranks of {X∗1 , X∗2 , . . . , X∗n} and {Y ∗1 , Y ∗2 , . . . , Y ∗m} in the joint sample {Z∗1 , Z∗2 , . . . , Z∗N}
be {R11, R12, . . . , R1n} and {R21, R22, . . . , R2n}, respectively. Using the information from ranks, the

above mentioned statistics can be re-written as

˜dKS = max
1≤j≤N

∣∣∣∣ 1n
n∑
i=1

I(R1i ≤ j)−
1

m

m∑
i=1

I(R2i ≤ j)
∣∣∣∣,

˜dCvM =
nm

(n+m)2

N∑
j=1

(
1

n

n∑
i=1

I(R1i ≤ j)−
1

m

m∑
i=1

I(R2i ≤ j)

)2

,

˜dAD =
nm

(n+m)2

N−1∑
j=1

1

j(N − j)

(
1

n

n∑
i=1

I(R1i ≤ j)−
1

m

m∑
i=1

I(R2i ≤ j)

)2

Depth ranking may lead to ties and hence tie braking becomes important. We use random tie

breaking scheme for numerical study. Other tie breaking scheme discussed by Liu and Singh (2006)

can also be used. Under random tie breaking scheme we have following result.

Theorem 4. Under H0, statistics ˜dKS, ˜dCvM and ˜dAD are distribution-free and have the same

distribution as usual two sample KS, CvM and AD test statistics, respectively.
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Theorem 4 conveys that the proposed test statistics ˜dKS, ˜dCvM and ˜dAD are distribution-free

and have same distribution as usual two sample KS, CvM and AD test statistics, respectively.

4 Numerical Study

For assessing the finite sample performances of the proposed tests, we perform following simulation

studies. Empirical powers are reported based on 1000 replicates.

4.1 One sample GoF tests

In this section, we report results on the small sample performance of proposed tests. We compare

their empirical powers with those of multivariate KS (MKS) test (Justel et al. (1997)) and empirical

characteristic function (ECF) based GoF proposed by Jiménez-Gamero et al. (2009) for bivariate

cases for which algorithms are available. We use an algorithm proposed by Jiménez-Gamero et al.

(2009) for ECF based GoF test for testing Morgenstern’s bivariate distribution. For this purpose,

we use true parameter value in place of estimated one. The ECF based GoF test is denoted by

ECFT. Implementation of the MKS test for d = 2 is carried out using the algorithm provided by

Justel et al. (1997), and we denote this test by MKST. For dKS and dCvM tests based on GDN,n,

estimated Type-I error rates are close to 0.05 at level 0.05 (see Table 1,3 and 6) for N = 5000,

other test statistics (AD, Greenwood, etc.) require larger N for this. So we consider only KS and

CvM test for empirical power study. We denote dKS and dCvM test based on Tukey’s depth and

zonoid depth by tdKS and tdCvM , and zdKS and zdCvM , respectively.

Indeed, the power of any GoF test depends on the sample size. For numerical power study, we

consider sample sizes n = 10, 25, 50, 100 and 200.

Example 1: Here, we consider N2(0, I2) as the null distribution. Empirical powers are computed

against alternatives N2(µ, I2), N2(0,Σ), N2(µ,Σ), t1(0, I2), t5(0, I2) and N2(0,Σ1), where

0 =

(
0

0

)
, µ =

(
1

1

)
, I2 =

(
1 0

0 1

)
, and Σ =

(
1.5 0

0 1.5

)
.

Empirical powers of these are compared with those of the MKS test. Empirical power of MKS test

is computed using the algorithm provided by Justel et al. (1997). ECF based test algorithm is not

available for this case.

Estimated Type-I error rates for the proposed tests are given in Table 1, which remains close

to the nominal value; estimated powers against the aforementioned alternatives are given in Table

2. For location difference, MKST performs better than the proposed tests for small sample size,

but for large samples, the proposed tests have empirical powers close to that of MKST. For heavy-

tailed alternatives (like multivariate Cauchy and multivariate t distributions), the proposed tests

are superior to MKST. Empirical powers of GoF tests (KS and CvM) based on half space depth

and zonoid depth are quite similar and it can not be concluded that GoF test based on which data

depth is superior. But, the performance of CvM test based on data depth is superior to the KS
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Table 1: Estimated Type-I error probability for testing N2(0, I2) at level 0.05.

Test n=10 25 50 100 200

tdKS 0.046 0.049 0.044 0.048 0.052
tdCvM 0.051 0.044 0.053 0.048 0.056
zdKS 0.050 0.045 0.052 0.054 0.053
zdCvM 0.053 0.050 0.056 0.055 0.047

test based on data depth (half space or zonoid). Example 2: Morgenstern’s system of bivariate

distributions with marginal distributions F and G is given by

F(x, y; θ) = F (x)G(y)[1 + θ{1− F (x)}{1−G(y)}], |θ| ≤ 1.

Here we consider Morgenstern’s bivariate distribution with uniform marginals and θ = 0, and

0.50 as null distributions. Empirical powers of proposed tests are computed against Morgenstern’s

bivariate alternatives with Beta marginals and compared with those of the multivariate KS test.

Empirical Type-I error rate are given in Table 3 and empirical powers for various alternatives

are given in Tables 4-5. U [0, 1]2 corresponds to Morgenstern’s bivariate distribution with uniform

marginals and θ = 0. In this case, we compare empirical powers of the proposed tests with

MKS test and ECF based GoF test. Empirical power of MKST is computed using the algorithm

provided by Justel et al. (1997). Jiménez-Gamero et al. (2009) discussed ECF based GoF test

and provided algorithm for the test when underlying null distribution is Morgenstern’s bivariate

distribution, we use this algorithm to the compute empirical powers. For this numerical power study,

we consider bivariate Morgenstern distribution with U [0, 1] marginals as the null distribution, and

alternatives as Morgenstern’s bivariate distributions with marginals Beta(a1, b1) and Beta(a2, b2).

We have computed Type-I error rates and numerical powers for θ ∈ {0, 0.25, 0.50, 0.75} and

a1 = a2 = b1 = b2 = 0.5; a1 = a2 = b1 = b2 = 0.5; and a1 = a2 = 2, and b1 = b2 = 3.

In this case, the Type-I error rate remains close to the nominal value 0.05 as well. For all

alternatives, the proposed tests perform better than MKS test and ECF based GoF test. The

distribution Beta(1.5, 1.5) is close to U [0, 1], for the alternative with marginals Beta(1.5, 1.5),

MKS test and ECF based GoF test have very low power in small sample case but the proposed

tests show satisfactory power in this case also. Jiménez-Gamero et al. (2009) had observed that

ECF based GoF tests may not be unbiased in the present test when the alternative has marginals

Beta(1.5, 1.5) However, the proposed tests do not suffer from such anomaly.

Example 3: Here, we consider N5(05, I5) as the null distribution. Empirical powers are computed

against alternatives N5(µ1, I5), N5(05, 1.5I5), N5(µ1, 1.5I5), t1(05, I5) and t5(05, I5), where 05 is the

5-dimensional column vector with zero entries, µ1 is the 5-dimensional column vector with entries

one and I5 is the 5-dimensional identity matrix.

Estimated Type-I error rates for proposed tests are given in Table 6, which remain close to

the nominal value. Estimated powers against aforementioned alternatives are given in Table 7.

No algorithm is available when dimension is greater than two for either MKS, or ECF based

multivariate GoF tests. So, we have not compared empirical power of proposed tests with any

9
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Table 2: Empirical power of tests for N2(0, I2) at level 0.05.

Alternative Test n=10 25 50 100 200

N2(µ, I2) tdKS 0.533 0.858 0.989 1.000 1.000
tdCvM 0.598 0.911 0.997 1.000 1.000
zdKS 0.535 0.862 0.990 1.000 1.000
zdCvM 0.595 0.911 0.997 1.000 1.000
MKST 0.962 1.000 1.000 1.000 1.000

N2(0,Σ) tdKS 0.180 0.353 0.584 0.890 0.992
tdCvM 0.212 0.409 0.676 0.921 0.997
zdKS 0.181 0.349 0.590 0.893 0.992
zdCvM 0.211 0.404 0.677 0.922 0.997
MKST 0.111 0.121 0.165 0.318 0.600

N2(µ,Σ) tdKS 0.671 0.964 1.000 1.000 1.000
tdCvM 0.722 0.988 1.000 1.000 1.000
zdKS 0.676 0.963 1.000 1.000 1.000
zdCvM 0.726 0.987 1.000 1.000 1.000
MKST 0.937 1.000 1.000 1.000 1.000

t1(0, I2) tdKS 0.420 0.870 1.000 1.000 1.000
tdCvM 0.476 0.850 0.996 1.000 1.000
zdKS 0.420 0.868 0.998 1.000 1.000
zdCvM 0.478 0.850 0.996 1.000 1.000
MKST 0.158 0.374 0.668 0.978 1.000

t5(0, I2) tdKS 0.112 0.168 0.220 0.436 0.756
tdCvM 0.118 0.202 0.246 0.446 0.760
zdKS 0.114 0.172 0.226 0.426 0.754
zdCvM 0.118 0.200 0.244 0.442 0.762
MKST 0.086 0.082 0.056 0.108 0.128

Table 3: Estimated Type-I error probability for testing Morgenstern’s bivariate distribution with
uniform marginals and different θ at level 0.05.

Test n=10 25 50 100 200

θ = 0 tdKS 0.037 0.041 0.046 0.056 0.04
tdCvM 0.042 0.038 0.054 0.05 0.054
zdKS 0.039 0.047 0.045 0.057 0.042
zdCvM 0.041 0.043 0.054 0.051 0.055
ECFT 0.053 0.048 0.051 0.046 0.041

θ = 0.50 tdKS 0.042 0.042 0.058 0.052 0.054
tdCvM 0.040 0.038 0.066 0.058 0.060
zdKS 0.044 0.044 0.062 0.056 0.056
zdCvM 0.038 0.036 0.064 0.056 0.056
ECFT 0.058 0.060 0.062 0.028 0.036
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Table 4: Empirical power of tests for U [0, 1]2 at level 0.05 for Morgenstern’s bivariate alternatives
with beta(a1, b1) & beta(a2, b2) marginals and θ = 0.

Alternative Test n=10 25 50 100 200

a1 = a2 = 0.5 tdKS 0.574 0.874 0.994 1.000 1.000
b1 = b2 = 0.5 tdCvM 0.652 0.910 1.000 1.000 1.000

zdKS 0.574 0.878 0.996 1.000 1.000
zdCvM 0.650 0.910 1.000 1.000 1.000
ECFT 0.172 0.352 0.744 0.984 1.000
MKST 0.198 0.338 0.680 0.944 1.000

a1 = a2 = 1.5 tdKS 0.190 0.440 0.768 0.972 1.000
b1 = b2 = 1.5 tdCvM 0.208 0.492 0.808 0.990 1.000

zdKS 0.188 0.448 0.766 0.976 1.000
zdCvM 0.212 0.492 0.810 0.990 1.000
ECFT 0.036 0.052 0.124 0.406 0.890
MKST 0.036 0.060 0.144 0.328 0.792

a1 = a2 = 2 tdKS 0.460 0.918 0.996 1.000 1.000
b1 = b2 = 3 tdCvM 0.538 0.958 1.000 1.000 1.000

zdKS 0.464 0.932 0.996 1.000 1.000
zdCvM 0.536 0.958 1.000 1.000 1.000
ECFT 0.342 0.932 1.000 1.000 1.000
MKST 0.430 0.976 1.000 1.000 1.000

Table 5: Empirical power of tests for Morgenstern’s bivariate alternatives with U [0, 1] marginals,
θ = 0.50 at level 0.05 for Morgenstern’s bivariate alternatives with beta(a1, b1) & beta(a2, b2)
marginals and θ = 0.50.

Alternative Test n=10 25 50 100 200

a1 = a2 = 0.5 tdKS 0.544 0.894 0.998 1.000 1.000
b1 = b2 = 0.5 tdCvM 0.610 0.940 1.000 1.000 1.000

zdKS 0.544 0.896 0.998 1.000 1.000
zdCvM 0.614 0.940 1.000 1.000 1.000
ECFT 0.170 0.194 0.270 0.302 0.426
MKST 0.236 0.372 0.624 0.954 1.000

a1 = a2 = 1.5 tdKS 0.196 0.430 0.758 0.966 0.998
b1 = b2 = 1.5 tdCvM 0.222 0.522 0.840 0.986 0.998

zdKS 0.202 0.432 0.760 0.968 0.998
zdCvM 0.232 0.524 0.844 0.986 0.998
ECFT 0.032 0.048 0.100 0.126 0.282
MKST 0.044 0.068 0.088 0.268 0.714

a1 = a2 = 2 tdKS 0.558 0.918 1.000 1.000 1.000
b1 = b2 = 3 tdCvM 0.634 0.954 1.000 1.000 1.000

zdKS 0.550 0.914 1.000 1.000 1.000
zdCvM 0.642 0.960 1.000 1.000 1.000
ECFT 0.088 0.456 0.874 0.998 1.000
MKST 0.352 0.936 1.000 1.000 1.000
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Table 6: Estimated Type-I error probability for testing N5(05, I5), N = 5000 at level 0.05.

Test n=10 25 50 100 200

tdKS 0.042 0.054 0.042 0.040 0.050
tdCvM 0.040 0.058 0.046 0.054 0.053
zdKS 0.052 0.052 0.043 0.048 0.056
zdCvM 0.058 0.056 0.045 0.052 0.054

Table 7: Empirical power of tests for N2(05, I5), N = 5000 at level 0.05.

Alternative Test n=10 25 50 100 200

N5(µ, I5) tdKS 0.848 0.996 1.000 1.000 1.000
tdCvM 0.924 0.998 1.000 1.000 1.000
zdKS 0.844 0.996 1.000 1.000 1.000
zdCvM 0.922 0.998 1.000 1.000 1.000

N5(05, 1.5I5) tdKS 0.314 0.704 0.964 1.000 1.000
tdCvM 0.424 0.812 0.986 1.000 1.000
zdKS 0.316 0.724 0.96 1.000 1.000
zdCvM 0.432 0.818 0.984 1.000 1.000

N5(µ, 1.5I5) tdKS 0.950 1.000 1.000 1.000 1.000
tdCvM 0.972 1.000 1.000 1.000 1.000
zdKS 0.950 1.000 1.000 1.000 1.000
zdCvM 0.976 1.000 1.000 1.000 1.000

t1(05, I5) tdKS 0.614 0.976 1.000 1.000 1.000
tdCvM 0.65 0.976 1.000 1.000 1.000
zdKS 0.606 0.982 1.000 1.000 1.000
zdCvM 0.648 0.976 1.000 1.000 1.000

t5(05, I5) tdKS 0.174 0.33 0.624 0.916 1.000
tdCvM 0.202 0.356 0.6 0.884 1.000
zdKS 0.172 0.368 0.712 0.968 1.000
zdCvM 0.212 0.378 0.616 0.892 1.000

other test. Numerical power shows that the proposed tests continue to have satisfactory power for

this case as well.

4.2 Two sample tests

We now compare the proposed two sample tests with tests proposed by Liu and Singh (2006) and

Li and Liu (2016). For this simulation study, we take m = n = 100. Tests proposed by Liu and

Singh (2006) and Li and Liu (2016) are denoted by ˜dW and d̃S, respectively. The test d̃S is based

on bootstrap, and 1000 bootstrap samples are considered for the testing purpose.

Example 4: In this example, we consider F = N (0, I2) and different G. For different alterna-

tives, Table 8 gives the empirical powers of the tests. Here, L(µ,Σ) denotes bivariate Laplace

distribution with location parameter µ and scale parameter Σ, and td(µ,Σ) denotes the multi-

variate t distribution with location parameter vector µ, scale parameter matrix Σ and degrees of

freedom d, where µ ∈ R2 and Σ > 0 is 2 × 2 matrix. The first row of Table 8 shows that for
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Table 8: Empirical powers of the tests for two sample tests at level 0.05 with F = N (0, I2) and
different G.

Tests

G ˜dKS ˜dCvM ˜dAD ˜dW d̃S

N(0, I2) 0.051 0.050 0.053 0.054 0.052
N(0, 1.5I2) 0.580 0.609 0.600 0.654 0.740
N(0, 2I2) 0.957 0.972 0.974 0.983 1.000
L(0, I2) 0.728 0.851 0.885 0.650 0.652
t2(0, I2) 0.807 0.734 0.850 0.638 0.835

Table 9: Empirical powers of the tests for two sample tests at level 0.05 with F = t1 (0, I2) and
different G.

Tests

G ˜dKS ˜dCvM ˜dAD ˜dW d̃S

t1(0, I2) 0.046 0.05 0.052 0.05 0.051
t1(0, 3I2) 0.855 0.913 0.914 0.902 0.995
t2(0, I2) 0.423 0.474 0.559 0.397 0.674
t5(0, I2) 0.941 0.927 0.965 0.829 0.991
L(0, I2) 0.995 0.997 0.999 0.993 0.999

all the tests, Type-I error rates are close to the nominal value. For normal alternatives, the test

d̃S performs better than other tests. For larger dispersion (or, heavy tailed alternatives), some of

the proposed tests perform either the best or close to d̃S. Specially performance of the test ˜dAD

appears good for all heavy tailed alternatives.

Example 5: In this example, we take F = t1 (0, I2) and different G. For different alternatives,

Table 9 gives the empirical powers of the tests. The first row of Table 8 indicates that Type-I error

rates for all the tests are close to the nominal value. For all alternatives, ˜dCVM and ˜dAD tests

performances are close to the best test d̃S. So, considering time required for the tests, the tests
˜dCVM and ˜dAD should be preferred.

Our simulation study suggests that proposed tests can perform reasonably well when the under-

lying distribution of one (or, both) samples are heavy-tailed. The test d̃S performs the best most

of the time but, it takes much more time to execute as compared to the other tests. Moreover, if

there is high kurtosis difference between distributions of the samples (e.g., N(0, I2) vs. L(0, I2)),

the test ˜dAD is performs better than all other considered tests.

5 Real data example

We now illustrate the performances of two sample tests on a classical tooth growth data set. This

data set is available in R, under the library “ToothGrowth”. The data consists of the length of

odontoblasts (cells responsible for tooth growth) in 60 guinea pigs. There were three vitamin C
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dose levels and two delivery methods (VC and OJ). Each of the pigs received one of three dose

levels of vitamin C by one of two delivery methods. There are 30 observations corresponding to

each delivery method. If we consider each delivery method corresponds to a population, then the

data is suitable for our two sample test. From the depth-depth plot of the data (see Figure 1), it

is evident that these two samples have difference in scales. We have used the proposed two sample

tests to investigate whether these tests are able to detect this difference. Tukey depth is used for

the analysis. The observed p-value of the tests are reported in Table 12. Since one co-ordinate of

this data is discrete (which results into ties of computed depths), we used permutation method to

compute the p-values.
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Figure 1: Depth-depth plot of the “ToothGrowth” data.

Table 10: p-values of different tests for the “ToothGrowth” data.

Tests

˜dKS ˜dCvM ˜dAD ˜dW d̃S

p-value 0.253 0.115 0.03 0.40 0.394

It is evident from the result in Table 10 that the proposed tests are quite useful. Different two

sample test statistics measures different kind of departure of the populations. Hence, different tests

are useful in different situations. One would need to apply a battery of tests in a given situation.

6 Concluding remarks

In this paper, we have studied several new multivariate GoF tests for continuous distribution

functions. The proposed tests are based on notions of the popular Tukey’s half-space and zonoid

depths. For testing bivariate normality, dKS and dCvM tests perform better than the MKS test

when there is a difference in scale (or, alternative is heavy-tailed). For location difference the MKS

test performs better than dKS and dCvM tests for small sample size, while for large sample powers
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are comparable. Also, for testing Morgenstern’s bivariate distribution with U [0, 1] marginals, dKS

and dCvM tests perform better than MKS and ECF based GoF tests. For dimension greater than

two, algorithm for implementation of MKS and ECF based GoF tests are not available in literature.

Thus, implementation of these test procedures are difficult. Our proposed tests are applicable in

higher dimensions and the algorithm is exactly the same. For testing pentavariate normality, the

proposed tests have satisfactory powers. Empirical powers of the proposed GoF tests (KS and

CvM) based on Tukey and zonoid depths are similar, and it can not be concluded that GoF test

based on one data depth is superior to one based on the other data depth. But, the performance

of CvM test based on data depth (half space or zonoid) is superior to KS test based on the data

depth.

We have also discussed some new two sample tests based on data depth for multivariate dis-

tributions. These tests are distribution-free under the null hypothesis. Simulation study suggests

that the proposed tests are useful against some popular competitors for heavy-tailed distributions.

Performance of the test ˜dAD is second best after the test d̃S. The test d̃S is based on bootstrap,

and such a test requires much more time to execute. The proposed tests do not suffer from such

a disadvantage. When there is high kurtosis difference between distributions of the samples, the

test ˜dAD is performs better than all other considered tests. A real data example that conveys the

same is presented.

Appendix

Theorem 5 (Chung (1949)). Let F is continuous distribution function on R and FN be empirical

distribution function corresponding to a random sample of size N from F , then

lim sup
N→∞

sup
x∈R

√
N

log logN

∣∣FN (x)− F (x)
∣∣ ≤ 1.

Lemma 1. Under assumptions (A1), if n = o

(
N

log logN

)
then

||FD
N,n − (((FD

N (D(X1)), FD
N (D(X2)), . . . , FD

N (D(Xn)))))|| a.s.−−−−→
N→∞

0.

Proof. Observe that,

||FD
N,n − (((FDN (D(X1)), F

D
N (D(X2)), . . . , F

D
N (D(Xn)))))||

≤
√
n× sup

D(y):x∈Rd

|FD(D(x))− FDN (D(x))|

a.s.−−−−→
N→∞

0, if n = o

(
N

log logN

)
, using Theorem 5 (stated above).

15



Some multivariate goodness of fit tests based on data depth

Lemma 2. Under assumptions (A1) and (A2), for any y ∈ Rd

∣∣GN (x)− FDN (D(x))
∣∣ a.s.−−−−→
N→∞

0.

Proof. Under the assumptions,

I[DN (Wi) < DN (x)]− I[D(Wi) < D(x)]
a.s.−−−−→

N→∞
0.

Also due to continuity,

Pr[D(Wi) = D(x)] = 0.

Thus, we get,

GN (x)− FDN (D(x)) =
1

N

N∑
i=1

{
I[DN (Wi) ≤ DN (x)]− I[D(Wi) ≤ D(x)]

}
a.s.−−−−→

N→∞
0.

Proof of Theorem 2. Observe that

||FD
N,n −GD

N,n||

≤||FD
N,n − (((FDN (D(X1)), F

D
N (D(X2)), . . . , F

D
N (D(Xn)))))||

+ ||(((FDN (D(X1)), F
D
N (D(X2)), . . . , F

D
N (D(Xn)))))−GD

N,n||
a.s.−−−−→

N→∞
0, due to Lemmas 1 and 2.

Proof of Theorem 3. Let u ∈ [0, 1]. Define Gan(u) :=
1

n

∑n
i=1 I[FD(D(Xi)) ≤ u],

and Hn(u) :=
1

n

∑n
i=1 I[GN (Xi) ≤ u].

Observe that

√
n
∣∣Gan(u)− u

∣∣ ≤ √n ∣∣Gan(u)−Hn(u)
∣∣+
√
n
∣∣Hn(u)− u

∣∣
=

1√
n

∣∣∣∣ n∑
i=1

{
I[FD(D(Xi)) ≤ u]− I[GN (Xi) ≤ u]

}∣∣∣∣+
√
n
∣∣Hn(u)− u

∣∣

⇒
√
n
∣∣Gan(u)− u

∣∣−√n ∣∣Hn(u)− u
∣∣ ≤ 1√

n

∣∣∣∣ n∑
i=1

{
I[FD(D(Xi)) ≤ u]− I[GN (Xi) ≤ u]

}∣∣∣∣.
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Similarly, for any u ∈ (0, 1), we have

√
n |Hn(u)− u| −

√
n |Gan(u)− u| ≤ 1√

n

∣∣∣∣ n∑
i=1

{
I[FD(D(Xi)) ≤ u]− I[GN (Xi) ≤ u]

}∣∣∣∣
⇒
∣∣∣∣∣∣√n |Hn(u)− u| −

√
n |Gan(u)− u|

∣∣∣∣∣∣ ≤ 1√
n

∣∣∣∣ n∑
i=1

{
I[FD(D(Xi)) ≤ u]− I[GN (Xi) ≤ u]

}∣∣∣∣.
Using Theorem 2 and arguments similar to proof of Lemma 2, it can be shown that

1√
n

∣∣∣∣ n∑
i=1

{
I[FD(D(Xi)) ≤ u]− I[GN (Xi) ≤ u]

}∣∣∣∣ a.s.−−−−→
N→∞

0

⇒
∣∣∣∣∣∣√n |Hn(u)− u| −

√
n |Gan(u)− u|

∣∣∣∣∣∣ a.s.−−−−→
N→∞

0.

Using the continuous mapping theorem and Slutsky’s lemma, the proof is complete for the KS test

statistic. Proof for AD, CvM and Greenwood test statistics follows in a similar way.

Proof Theorem 4. Observe that underH0, the joint distribution of (R11, R12, . . . , R1n, R21, R22, . . . , R2n)T

is uniform over all permutations of {1, 2, . . . , N}. Thus the proposed test statistics ˜dKS, ˜dCvM

and ˜dAD are distribution-free and have same distribution as the usual two sample KS, CvM and

AD test statistics, respectively.
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