
BI-DIRECTIONAL GRID CONSTRAINED STOCHASTIC

PROCESSES’ LINK TO MULTI-SKEW BROWNIAN MOTION

ALDO TARANTO, RON ADDIE, SHAHJAHAN KHAN

School of Sciences
University of Southern Queensland
Toowoomba, QLD 4350, Australia

Abstract. Bi-Directional Grid Constrained (BGC) stochastic processes (BGC-

SPs) constrain the random movement toward the origin steadily more and

more, the further they deviate from the origin, rather than all at once im-
posing reflective barriers, as does the well-established theory of Itô diffusions

with such reflective barriers. We identify that BGCSPs are a variant rather

than a special case of the multi-skew Brownian motion (M-SBM). This is be-
cause they have their own complexities, such as the barriers being hidden

(not known in advance) and not necessarily constant over time. We provide

a M-SBM theoretical framework and also a simulation framework to elabo-
rate deeper properties of BGCSPs. The simulation framework is then applied

by generating numerous simulations of the constrained paths and the results

are analysed. BGCSPs have applications in finance and indeed many other
fields requiring graduated constraining, from both above and below the initial

position.
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Notation

Term Description
BGC Bi-Directional grid constrained
BGCSP BGC stochastic process
M-SBM Multi-skew Brownian motion
Xt Stochastic process over time t
Bt Brownian motion over time t
Wt Wiener process over time t
T Time
f(Xt, t), µ Drift coefficient of X over t
g(Xt, t), σ Diffusion coefficient of X over t
Ψ(Xt, t) BGC coefficient of X over t
sgn[Xt] Sign function of Xt

BL Lower barrier
BU Upper barrier
τB Stopping time when B is hit
|x| Absolute value of x

1. Introduction

In Taranto et al. [33], the concept of Bi-Directional Grid Constrained (BGC) sto-
chastic processes (BGCSPs) was introduced, and the impact of BGC on the iterated
logarithm bounds of the corresponding stochastic differential equation (SDE) was
derived. In the subsequent paper (Taranto and Khan [32]), the hidden geometry
of the BGC process was examined, in particular how the hidden reflective barriers
are formed, the various possible formulations that can be formed, and an algorithm
to simulate BGCSPs was provided. BGCSPs were also compared to the Langevin
equation, the Ornstein-Uhlenbeck process (OUP), and it was shown how BGCSPs
are more complex due to a more general framework that does not always admit an
exact solution. In this paper, we examine in what respects a BGCSP resembles and
in what respect it differs from a type of multi-skew Brownian motion (M-SBM).

Before we do this, we recall that the BGC term sgn[Xt]Ψ(Xt, t), from now onwards
simply Ψ(Xt, t), unless required to be fully expressed, has been defined as impacting
the dt term as in [33] or the dWt term to a lesser extent as in [32]. Here, we notice
that even if this term is placed as a factor outside the sum of the dt and dWt terms,
it will still constrain the Itô diffusion in a slightly different, yet fundamentally the
same way. Since Ψ(x) is continuous and differentiable, we require Ψ(x) to include
the infinitessimal d, giving dΨ(x). We thus provide the following third alternative
definition of the BGCSP.



BGC STOCHASTIC PROCESSES’ LINK WITH M-SBM 3

Definition 1.1. (Definition III of BGC Stochastic Processes). For a com-
plete filtered probability space (Ω,F , {F}t>0,P) and a (continuous) BGC function
Ψ(x) : R→ R, ∀x ∈ R, f(Xt, t) is the drift coefficient, g(Xt, t) is the diffusion co-
efficient, Ψ(Xt, t) is the BGC function. f(Xt, t), g(Xt, t) and Ψ(Xt, t) are convex
functions and sgn[x] is the sign function defined in the usual sense,

sgn[x] =


1 , x > 0

0 , x = 0

−1 , x < 0

.

Then, the corresponding BGC Itô diffusion is defined as follows,

dXt = f(Xt, t) dt+ g(Xt, t) dWt − sgn[Xt] dΨ(Xt, t)︸ ︷︷ ︸
BGC

. (1.1)

�

By choosing Ψ(Xt, t) to be a ‘suitable’ parabolic cylinder function in relation to

the underlying Itô diffusion, as shown in [32], namely Ψ(Xt, t) =
(
Xt

10

)2
, the hidden

barriers become visible when enough simulations hit them. Figure 1 shows that
(1.1) is simulated 1,000 times for both with and without BGC, together with the
hidden lower reflective barrier a = BL and the hidden reflective upper barrier
b = BU also being displayed.

Figure 1. Hidden Reflective Barriers due to Ideal Ψ(Xt, t)

Blue = Unconstrained Itô process, Red = BGC Itô process. Even though there are

no hard reflective barriers present, the function Ψ(Xt, t) constrains the Itô process

‘as if ’ there are two hidden reflective barriers BL, BU .
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An even more specialized case that is of great interest, due to its simplicity, is where
drift function f(x) : R → R is set to f(x) = µ, ∀x ∈ R and similarly, the diffusion
function g(x) : R → R is set to g(x) = σ, ∀x ∈ R. One can even define f(x) and
g(x) in a more gradual manner such that in the limit they approach the typical
constant expressions for the drift and diffusion coefficients,

lim
x→∞

f(x) = µ , lim
x→∞

g(x) = σ. (1.2)

Depending on whether the generalized f(x) and g(x) are used, or whether the
simplified µ and σ are used, then the resulting reflective boundary theorems will
either have more complexity, or less complexity, respectively.

Before proceeding to the Methodology section, (1.1) is discussed within a multi-
Dimensional context with some examples, which will help explain the multidimen-
sionality of M-SBMs.

Remark 1.2. By multi-Dimensional diffusion, we are not referring to the usage
in papers such as Sacerdote et al. [27] in which each dimension is reserved for each
possible path or simulation, as shown in Figure 2(a).

(a). (b).

Figure 2. Clarifying Subtle Differences for BGC Stochastic Processes
(a). Two unconstrained 1-D Itô diffusions are not considered in this paper as one 2-D
Itô diffusion.

(b). Blue = Unconstrained Itô diffusion, Red = BGC Itô diffusion, noting that the BGC

process exhibits a ‘skew’ above and below and can be considered as a 2-SBM.

Notice that in Figure 2(b), the BGCSP exhibits a ‘skew’ and can be considered as
a 2-SBM -which will be elaborated in the Methodology section. Instead of the usage
in Figure 2(a), we use the standard interpretation and generally accepted usage of
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(a). 2-D Itô Diffusion as seen from X (b). 2-D Itô Diffusion as seen from Y

Figure 3. 2-Dimensional Itô Diffusion as seen from 2 Different Dimensions

The colour scale is a hot to cold measure indexed on the time variable t in dimension T

for t ∈ [0,1000].

the term ‘multi-Dimensional diffusion’ in which each dimension is reserved for each
co-ordinate of the multivariate Itô process, as shown in Figure 3.

We also note that the Methodology, Results and Discussion sections are either di-
rectly multi-Dimensional or can be extended to multi-Dimensional expressions.

�

We now have a more geometric understanding of how BGCSPs can be constrained
along multiple dimensions, to be in a better position to express (1.1) in a more
generalized n-Dimensional framework in (1.3).

Definition 1.3. (Definition IV - Multi-Dimensional BGC Stochastic Pro-
cesses). Let X : [0,∞)×Ω→ Rn defined on a probability space (Ω,F , {F}t>0,P) be
an Itô diffusion satisfying the conditions given in the definition of the 1-Dimensional
Itô process for each {1 6 i 6 n}, {1 6 j 6 m}, then we can form n 1-Dimensional
Itô processes in an SDE of the form,

dX1 = f1(Xt, t) dt+ g1,1(Xt, t) dW1(t) + · · ·+ g1,m(Xt, t) dWm(t)︸ ︷︷ ︸
m

− sgn[Xt] dΨ1(Xt, t)− ...− sgn[Xt] dΨm(Xt, t)︸ ︷︷ ︸
m BGC

...
...

...
dXn = fn(Xt, t) dt+ gn,1(Xt, t) dW1(t) + · · ·+ gn,m(Xt, t) dWm(t)︸ ︷︷ ︸

m

− sgn[Xt] dΨ1(Xt, t)− ...− sgn[Xt] dΨm(Xt, t)︸ ︷︷ ︸
m BGC

(1.3)

where Wt = (W1(Xt, t), ...,Wm(Xt, t)) is an m-Dimensional Wiener process and
f : Rn → Rn and g : Rn → Rn×m are the drift and diffusion fields respectively. For
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a point x ∈ Rn, let Px denote the law of X given initial datum X0 = x, and let Ex
denote expectation with respect to Px. Now, (1.3) can also be expressed in matrix
notation as,

dXt = ft dt+ gt dWt − ht, (1.4)

where,

Xt =

 dX1(t)
...

dXn(t)

 , ft =

 f1(Xt, t)
...

fn(Xt, t)

 , gt =

 g1,1(X1(t), t) · · · g1,m(X1(t), t)
...

. . .
...

gn,1(Xn(t), t) · · · gn,m(Xn(t), t)

 ,

dWt =

 dW1(t)
...

dWn(t)

 , ht =

 sgn[X1(t)] dΨ1(X1(t), t)
...

sgn[Xn(t)] dΨn(Xn(t), t)

 ,

for vectors ft, ht, Wt and matrix gt. �

Having reviewed the multi-Dimensional nature of unconstrained and BGC Itô diffu-
sions, the paper is structured as follows; Section 2 provides the Literature Review,
Section 3 the Methodology, Section 4 the Results and Discussion, and finally, Sec-
tion 5 the Conclusion.

2. Literature Review

2.1. Constraining Stochastic Processes by Reflective Barriers. The con-
straining of stochastic processes in the form of discrete random walks and con-
tinuous Wiener processes has been researched for many decades. By reviewing
Weesakul [34] and the references therein, we see an established and rigorous anal-
ysis of random walks between a reflecting and an absorbing barrier. Lehner [16]
extended this to 1-Dimensional random walks with a partially reflecting (semiper-
meable) barrier. Gupta [9] generalised this concept further to random walks in
the presence of a multiple function barrier (MFB) where the barrier can either be
partially reflective, absorptive, transmissive or hold for a moment, but not termi-
nating or killing the random variable. Dua et al. [7] extended the work of [16] to
random walks in the presence of partially reflecting barriers in which the probabil-
ity of a random variable or datum reaching certain states was determined. Lions
and Sznitman [20] extended the research on reflecting boundary conditions through
the refinement to SDEs. Percus [24] considered an asymmetric random walk, with
one or two boundaries, on a 1-Dimensional lattice. At the boundaries, the walker
is either absorbed or reflected back to the system. Budhiraja and Dupuis [5] con-
sidered the large deviation properties of the empirical measure for 1-Dimensional
constrained processes, such as reflecting Wiener processes, the M/M/1 queue, and
discrete-time analogs. L’epingle [18] examined stochastic variational inequalities
to provide a unified treatment for SDEs existing in a closed domain with normal
reflection and (or) singular repellent drift. When the domain is a polyhedron, he
proved that the reflected-repelled Wiener process does not hit the non-smooth part
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of the boundary. Bramson et al. [4] examined the positive recurrence (to the origin)
of reflecting Wiener processes in 3-Dimensional space. Ball and Roma [3] examined
the detection of mean reversion within reflecting barriers with an application to the
European exchange rate mechanism (EERM).

2.2. Multi-Skew Brownian Motion. The concept of skew Brownian motion
(SBM) was first introduced in the book by Itô and McKean [13] as a diffusion
with a drift represented by a generalized function, which solves an SDE involving
its symmetric local time. Specifically, an SBM X = {Xt}t∈[0,T ] is the solution of,

Xt = Bt + (2α− 1)L0
t (X), α ∈ (0, 1),

where B = {Bt}t∈[0,T ] is a standard Brownian motion (BM). However, standard
Brownian motion is oftentimes abbreviated as SBM, so to reduce any possible con-
fusion and to eliminate any reference to the original botanical context of Robert
Brown -to which the term ‘Brownian motion’ is attributed -we will express Bt in the
rest of this paper in the more mathematically precise context as a Wiener process

W = {Wt}t∈[0,T ]. L0
t (X) = limε↓0

1
2ε

∫ t
0
1{|BXs |6ε} ds is the symmetric local time

at X0. Note that for α = 1
2 , the above equation is reduced to a Wiener process.

Harrison and Shepp [10] then considered diffusions with a discontinuous local time.
The literature on SBMs was consolidated by Harrison and Shepp [10] and later
by Lejay [17]. Applications of SMBs were extended by Ramirez [26] by applying
multi-SBM (M-SBM) and diffusions in layered media that involve advection flows.
Appuhamillage and Sheldon [1] linked SBMs to existing research by deriving the
first passage time (FPT) of SBM. In 2015, the multiple barrier research of [26] was
extended by Atar and Budhiraja [2], Ouknine et al. [23] who collapsed barriers to
an accumulation point, and by Dereudre et al. [6] who derived an explicit represen-
tation of the transition densities of SBM with drift and two semipermeable barriers.
Mazzonetto [21] extended her prior research [6] on SBMs by deriving exact simula-
tions of SBMs and M-SBMs with discontinuous drift in her Doctoral dissertation.
Gairat and Shcherbakov [8] applied SBMs and their functionals to finance. Krykun
[14] also extended the convergence of SBM with local times at several points that
are contracted into a single one. Mazzonetto [22] has also recently examined the
rates of convergence to the local time of oscillating and SBMs.

For applications of BGC stochastic processes, the reader is referred to [30], [28],
[29], [31].

3. Methodology

Before proceeding to the main result of this paper, it is instructive to establish a
theoretical foundation by considering the key research for Itô diffusions constrained
by two reflective barriers and then examining the necessary extensions that need
to be derived for M-SBM constrained Itô diffusions.
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3.1. Itô Diffusions Constrained by Two Reflective Barriers. Given a filtered
probability space Λ := (Ω,F , {Ft}t>0,P) with the filtration {Ft}t>0, then the re-
flected diffusion {Xt : t > 0} with two-sided barriers BL, BU at a, b respectively
can be defined as,

dXt = f(Xt) dt+ g(Xt) dWt +

a︷︸︸︷
dAt −

b︷︸︸︷
dBt︸ ︷︷ ︸

regulators

, X0 ∈ (a, b), x ∈ [a, b]. (3.1)

Remark 3.1. The process A and B are known in the literature as ‘regulators’ for
the points a and b, however, we believe that a better term is ‘detectors’ because they
mainly detect or count how many times Xt reaches a and b.

Here, the drift f(x) is Lipschitz continuous, the diffusion g(x) is strictly positive
and Lipschitz continuous. a, b with −∞ < a < b < +∞ are given real numbers,
and (Wt, 0 6 t < ∞) is the 1-Dimensional standard Wiener process on Λ. The
processes A = {At}t>0 and B = {Bt}t>0 are the minimal non-decreasing and non-
negative processes, which restrict the process Xt ∈ [a, b],∀t > 0. More precisely,
the processes {At, t > 0} and {Bt, t > 0} increase only when Xt hits the boundary
a and b, respectively, so that A0 = B0 = 0, 1 is the characteristic function of the
set and, ∫ ∞

0

1{Xt>a} dAt = 0,

∫ ∞
0

1{Xt<b} dBt = 0. (3.2)

Furthermore, the processes A and B are uniquely determined by the following
properties (Harrison [11]),

(1) both t→ At and t→ Bt are nondecreasing processes,
(2) A and B increase only when X = a and X = b, respectively, that is∫ t

0
1{Xs=a} dAs = At and

∫ t
0
1{Xs=b} dBs = Bt, for t > 0.

We can consider the two reflective barriers as forming a 2-SBM. Furthermore, it is
instructive for BGCSP to see the two barriers a and b in R2, shown in Figure 4(a)
as embedded in R3 by a governing BGC surface Ψ(Xt, t), as shown in Figure 4(b).

Remark 3.2. Many papers such as [12] and Linetsky [19] define the two barriers at
the boundaries of [0, r] for some r ∈ R+. By applying a series of transformations,
one can map their findings to the context of BGCSP, as shown in Figure 5.

�
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(a). Barriers in R2 - Contour plot (b). Barriers in R3- Contour & surface plot

Figure 4. Diffusion Between Two Constant Reflective Barriers

As the light blue plane z = k for k ∈ R+ descends to the origin, the orange contour

lines of the red constant reflective barriers do not change. The contour lines arise

from when the blue plane intersects the barrier surface in R3 that acts as two

barriers in R2.

Figure 5. Mapping Traditional Barriers to BGC Barriers

By applying the transformations α and β to the barriers at 0 and r, the result is a

linear combination of mappings with the same properties as the original for the

barriers at a and b.

3.2. Multi-Skew Brownian Motion. Having examined Itô diffusions constrained
by two reflective barriers, we now consider the so-called multi-skew Brownian mo-
tion, constrained by multiple barriers of varying degrees of reflectiveness.
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Definition 3.3. (M-SBM). A multi-skew Brownian motion (M-SBM) represented
(adapted from Mazzonetto [21]) by (β1, ..., βn)-SBM, or more simply by β-SBM
with n semipermeable barriers of varying permeability coefficients, respectively β =
(β1, ..., βn), x0 is the starting position, the coefficients βj ∈ [−1, 1], barriers x1 <
... < xn, local times L

xj

t , and E is the set of all parameters of the M-SBM, then the
M-SBM is expressed as,


dXt = µdt+ σ dWt + β1 dL

x1
t + ...+ βn dL

xn
t

X0 = x0

E =
{
µ, σ, (β1, ..., βn)

}
∈ R

L
xj

t =
∫ t
0
1{Xs=xj} dL

xj
s , ∀j ∈ {1, ..., n}

.

�

Remark 3.4. The term σ has been added to the [21] definition so that the process
can fit a wider range of models. We require that βi ∈ [−1, 1]. The cases when
βi = {−1, 1} are said to exhibit zero permeability (i.e. impermeability or full reflec-
tiveness), and when βi ∈ (−1, 1) the process is said to exhibit partial reflectiveness
(i.e. semi permeability). Note that a 0-SBM is simply a Wiener process and a ± 1-
SBM is a positively/negatively reflected Wiener process. The definition of M-SBM
is illustrated in Figure 6, representing a typical example of M-SBM. The standard
definition of a skew Brownian motion has a drift term µ ∈ R making it no longer,
strictly speaking, Brownian motion.
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Figure 6. Example Standard M-SBM Framework
(a). Red barriers have permeability values βj < 0 so reflect to the left (upwards).

The more negative the value is within βj ∈ [−1,0), the more reflective the barrier is
(i.e. the less permeable it is).

(b). Blue barriers have permeability values βj > 0 so reflect to the right

(downwards). The more positive the value is within βj ∈ (0,1], the more reflective
the barrier (i.e. the less permeable it is).

(c). Barriers that have permeability values βj = 0 are not depicted since they have

no (constraining) effect.

The M-SBM of Definition 3.3 allows any barrier combination to be either fully
reflective or semipermeable.

Remark 3.5. If the permeability is βj = 1 at the barrier xj for some j ∈ {1, ..., j1, j, j+
1, ..., n} and the initial position is x0 ∈ (xj ,+∞), then the lower barriers x1, ..., xj−1
will almost surely be never reached [21]. For this to happen, it must be that βj = −1,
so that as the Itô diffusion descends (down) to xj, it is fully reflected back (up).
This of course assumes that the diffusion coefficient σ is ‘relatively small’ and so
allows the Itô diffusion to be ‘well behaved’ and never ‘jump over’ and go below the
xj barrier, as also illustrated in Figure 6.

Theorem 3.6. (Multiple Barriers of M-SBM Merging to One, adapted
from Mazzonetto [21]). Before expressing the skewness parameter β for a gen-
eral number of barriers n, we derive β for the first two simplest scenarios.

If n = 2, β1, β2 ∈ [−1, 1], µ ∈ R and x
(n)
2 = x1 + 1

n , ∀n ∈ N. Let,
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β :=
β1 + β2
1 + β1β2

.

Let us denote by (X
(n)
t )t the (β1, β2)-SBM with drift µ, barriers x1, ..., xn, and

denote by (Yt)t the 1-SBM with drift µ, and barrier x1. Let us assume X
(n)
0 = Y0,

then X(n) converges to Y in the following sense,

E

[
sup
s∈[0,t]

|X(m)
s − Ys|

]
m→∞−−−−→ 0, ∀t > 0.

The same holds in the case of n > 2 barriers merging. In this case (X
(n)
t )t is

the (β1, ..., βn)-SBM with drift µ ∈ R, skewness parameters β1, ..., βn ∈ [−1, 1] and

barriers x1 ∈ R, xj+1 := j
n + x1, ∀j ∈ {1, ..., n− 1}.

The skewness parameter β of the limit 1-SBM is given by,

β :=

n∏
j=1

(1 + βj)−
n∏
j=1

(1− βj)

n∏
j=1

(1 + βj) +

n∏
j=1

(1− βj)
. (3.3)

If n is even,

β =

n∑
j=1

βj +
∑

j1<j2<j3

βj1βj2βj3 + ...+
∑

j1<...<jn−1

βj1 ...βjn−1

1 +
∑
j1<j2

βj1βj2 +
∑

j1<...<j4

βj1βj2βj3βj4 + ...+ β1β2...βjn
. (3.4)

If n is odd,

β =

n∑
j=1

βj +
∑

j1<j2<j3

βj1βj2βj3 + ...+ βj1 ...βjn

1 +
∑
j1<j2

βj1βj2 +
∑

j1<...<j4

βj1βj2βj3βj4 + ...+
∑

j1<...<jn−1

β1β2...βjn−1

. (3.5)

Proof. Refer to [21] and [15]. �

The M-SBM framework also only considers one half-plane at a time, so that the
transition density (or distribution) of the upper plane is assumed to be the same
for the lower half plane, which is not always the case (except for BGCSP). We show
below that whilst BGCSPs are a special case of M-SBMs, they have some unique
properties that make them of particular interest among the larger class.
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3.3. Constructing BGC Stochastic Processes. We can compliment Mazzonetto
by condensing all possible local barrier combinations to the following four possible
global barrier combinations that comprise a lower barrier αj and an upper barrier
αk, as shown in Figure 7.

(a). (b).

(c). (d).

Figure 7. Generalised Barrier Combination Arguments
(a). All Itô diffusions will almost surely end up above the two negative fully
reflective barriers.

(b). All Itô diffusions will almost surely end up below the two positive fully

reflective barriers.
(c). All Itô diffusions will almost surely end up within the two fully reflective

barriers.

(d). All Itô diffusions will almost surely end up above or below (but not in between)

the two fully reflective barriers.

The diagrammatic summary of possible cases represented in Figure 7 is formally
stated as Lemma 3.7 which is then used in Theorem 3.8. This Theorem formally
expresses that the barriers of an M-SBM merge to a 1-SBM, to which the process
converges.

Lemma 3.7. If any |αj | < 1 for some |αk| = 1, or similarly for any |αk| < 1, then
the barrier ±1 will dominate the barrier 6= ±1, almost surely, as shown in Figure
7. Furthermore, if there are more than two fully reflective barriers, they will merge
and effectively operate as one of the four possible combinations of Figure 7.

Proof. We first assume that there exists only one reflective barrier |αj | = 1 and n
semipermeable barriers |αj | < 1. We then consider the two SDEs;



14 BGC STOCHASTIC PROCESSES’ LINK WITH M-SBM

Xt = µ1 dt+ σ1 dWt + α1 dL
α1
t︸ ︷︷ ︸

|αi|=1

+α2 dL
α2
t + ...+ αn dL

αn
t︸ ︷︷ ︸

|αi|<1

Yt = µ2 dt+ σ2 dWt + α1 dL
α1
t︸ ︷︷ ︸

|αi|=1

, (3.6)

where Yt is an unconstrained Itô diffusion and Xt is a constrained Itô diffusion
according to the above barrier constraints. Let δ =

∑n
i=1 αi, so δ < 1 or δ > 1.

If δ < 1, then αi will dominate δ as it will vanish (i.e. δ → 0) such that,

sup
t→∞

{
|Xt| − |Yt|

}
= 0.

If δ > 1, then δ will dominate α1 and merge (i.e. α1 → δ) such that,

sup
t→∞

{
|Xt| − |Yt|

}
= Xt.

Next, assume that there exist two fully reflective barriers |αj | = 1, |αk| = 1 and n
semipermeable barriers |αi| < 1. (3.6) now equates to,

Xt = µ1 dt+ σ1 dWt + α1 dL
α1
t︸ ︷︷ ︸

|αi|=1

+α2 dL
α2
t + ...+ αn dL

αn
t︸ ︷︷ ︸

|αj |=1, |αk|=1

+α1 dL
α1
t︸ ︷︷ ︸

|αi|=1

+α2 dL
α2
t + ...+ αn dL

αn
t︸ ︷︷ ︸

δ=|αi|<1

Yt = µ2 dt+ σ2 dWt + α1 dL
α1
t︸ ︷︷ ︸

δ=|αi|<1

. (3.7)

If δ < 1, then αj and (or) αk will dominate δ and as it will vanish (i.e. δ → 0) and
if δ > 1, then δ will dominate αj and (or) αk hence merge to αj and αk, such that

supt→∞

{
|Xt| − |Yt|

}
= 0 and supt→∞

{
|Xt| − |Yt|

}
= Xt, respectively.

Finally, if there are more than N > 3 fully reflective barriers |αi| = 1 and n semiper-
meable barriers, then the new barriers will effectively be a linear combination of
any two possible combinations in Figure 7, depending on how the fully reflective
barriers of N are defined, completing the proof for all scenarios. �

To contrast Figure 4 for two reflective constant barriers, for BGCSP we have two
hidden reflective barriers which also constrain the interior between the boundaries,
as shown in Figure 8, where (a) shows the multiple barriers in R2, and (b) shows
how the multiple barriers are projected from R3.

Leveraging the work of Ramirez [26], we partition X into countably infinite intervals
Ik = (xk, xk+1), ∀k ∈ R forming the sequence {I−∞, ..., I−1, I1, ..., I∞} such that the
standard conditions are met; Ik

⋂
Ik+1 = ∅ ∀k ∈ R, ∅ /∈ X and

⋃∞
k=−∞ Ik = X.

We wish to shrink the size of each interval |Ik| = |xk+1 − xk| to zero as we apply
more and more intervals, where limk→∞ |xk+1−xk| → 0 and

∫∞
−∞ Ik dk <∞. This

is because we wish to constrain the Itô diffusion by the BGC function Ψ(Xt, t) ∈ R.
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(a). Barrier in R2 - Contour plot (b). Barrier in R3- Contour & surface plot

Figure 8. Diffusion Between Two BGC Reflective Barriers

As the light blue plane z = k for k ∈ R+ descends to the origin, the green (and

orange) contour lines of the BGC reflective barriers change in accordance with the

red BGC function Ψ(Xt, t).

In terms of BGC stochastic processes, we effectively have a (β−n, ..., β−1, β1, ..., βn)-
SBM and will express it as,



dXt = µdt+ σ dWt +

−1∑
j=−n

βj dL
xj

t︸ ︷︷ ︸
<0

+

n∑
j=1

βj dL
xj

t︸ ︷︷ ︸
>0︸ ︷︷ ︸

Ψ(Xt, t)

X0 = 0

E =
{
µ, σ, (β−n, ..., β−1, β1, ..., βn)

}
∈ R

L
xj

t =
∫ t
0
1{Xs=zj} dL

xj
s , j ∈ {−n, ...,−1, 1, ..., n}

, (3.8)

as illustrated in Figure 9.

Theorem 3.8. (Skewness Parameter of BGC Stochastic Processes). Let

us denote by (X
(n)
t )t the (β−n, ..., βn)-SBM with drift µ and barriers x−n, ..., xn,

and denote by (Yt)t the 2-SBM (i.e. β1, β2-SMB) with drift µ, diffusion σ and

barrier x1. Let us assume X
(n)
0 = Y0, then X(n) converges to Y in the following

sense,
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Figure 9. Constructing BGC Stochastic Processes from M-SBM Framework

As the Itô process reaches further and further intervals Ik from the origin, the

intervals’ permeability decreases and is scaled by βk. The less permeable the

interval becomes, the more it operates as a reflective barrier. Eventually, there

exists an interval that for the given Itô diffusion is effectively fully reflective,

forming the hidden barrier of BGC stochastic processes.

lim
n→∞

{
E
[

sup
s∈[0,t]

|X(n)
s − Ys|

]}
= 0, ∀t ∈ [0, T ].

The same holds in the case of n > 2 barriers merging. In this case (X
(n)
t )t is

the (β−n, ..., βn)-SBM with drift µ ∈ R, diffusion σ ∈ R, skewness parameters

β−n, ..., βn ∈ [−1, 1] and barrier x1 ∈ R, xj+1 := j
n + x1, ∀j ∈ {1, ..., n− 1}. Then

β = 0.

Proof. In contrast to the skewness parameter of the limit 1-SBM in (3.3), the
corresponding skewness parameter of the limit 2-SBM for BGCSP is given by (3.9),
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β :=

n∏
j=1

(1 + βj)−
n∏
j=1

(1− βj)

n∏
j=1

(1 + βj) +

n∏
j=1

(1− βj)︸ ︷︷ ︸
>0

+

−n∏
j=−1

(1 + βj)−
−n∏
j=−1

(1− βj)

−n∏
j=−1

(1 + βj) +

−n∏
j=−1

(1− βj)︸ ︷︷ ︸
<0

=


n∏
j=1

(1 + βj)−
n∏
j=1

(1− βj)


−n∏
j=−1

(1 + βj) +

−n∏
j=−1

(1− βj)
+


n∏
j=1

(1 + βj) +

n∏
j=1

(1− βj)


−n∏
j=−1

(1 + βj)−
−n∏
j=−1

(1− βj)



n∏
j=1

(1 + βj) +
n∏
j=1

(1− βj)


−n∏
j=−1

(1 + βj) +
−n∏
j=−1

(1− βj)


=


n∏
j=1

(1 + βj)

−n∏
j=−1

(1 + βj) +

n∏
j=1

(1 + βj)

−n∏
j=−1

(1− βj)−
n∏
j=1

(1− βj)
−n∏
j=−1

(1 + βj)−
n∏
j=1

(1− βj)
−n∏
j=−1

(1− βj)



n∏
j=1

(1 + βj)

−n∏
j=−1

(1 + βj) +

n∏
j=1

(1 + βj)

−n∏
j=−1

(1− βj) +

n∏
j=1

(1− βj)
−n∏
j=−1

(1 + βj) +

n∏
j=1

(1− βj)
−n∏
j=−1

(1− βj)


+


n∏
j=1

(1 + βj)

−n∏
j=−1

(1 + βj)−
n∏
j=1

(1 + βj)

−n∏
j=−1

(1− βj) +

n∏
j=1

(1− βj)
−n∏
j=−1

(1 + βj)−
n∏
j=1

(1− βj)
−n∏
j=−1

(1− βj)



n∏
j=1

(1 + βj)

−n∏
j=−1

(1 + βj) +

n∏
j=1

(1 + βj)

−n∏
j=−1

(1− βj) +

n∏
j=1

(1− βj)
−n∏
j=−1

(1 + βj) +

n∏
j=1

(1− βj)
−n∏
j=−1

(1− βj)

.

(3.9)

Noting that due to the symmetry of BGCSP about the origin,

−n∏
j=−1

(1− βj) =

n∏
j=1

(1 + βj),

−n∏
j=−1

(1 + βj) =

n∏
j=1

(1− βj),

which allows the
∏n
j=1(1 + βj) terms to factor out in (3.9) giving,

β =

n∏
j=1

(1 + βj)

 −n∏
j=−1

(1 + βj) +

−n∏
j=−1

(1− βj)−
n∏
j=1

(1− βj)−
n∏
j=1

(1− βj)
−n∏
j=−1

(1 + βj)

/
n∏
j=1

(1 + βj)


n∏
j=1

(1 + βj)

 −n∏
j=−1

(1 + βj) +

−n∏
j=−1

(1− βj) +

n∏
j=1

(1− βj) +

n∏
j=1

(1− βj)
−n∏
j=−1

(1 + βj)

/
n∏
j=1

(1 + βj)



+

n∏
j=1

(1 + βj)

 −n∏
j=−1

(1 + βj)−
−n∏
j=−1

(1− βj)−
n∏
j=1

(1− βj) +

n∏
j=1

(1− βj)
−n∏
j=−1

(1 + βj)

/
n∏
j=1

(1 + βj)


n∏
j=1

(1 + βj)

 −n∏
j=−1

(1 + βj) +

−n∏
j=−1

(1− βj) +

n∏
j=1

(1− βj) +

n∏
j=1

(1− βj)
−n∏
j=−1

(1 + βj)

/
n∏
j=1

(1 + βj)



which expands to,
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β =

 −n∏
j=−1

(1− βj)−

 n∏
j=1

(1− βj)

2/
n∏
j=1

(1 + βj)


 −n∏
j=−1

(1 + βj) +
−n∏
j=−1

(1− βj) +
n∏
j=1

(1− βj) +

 n∏
j=1

(1− βj)

2/
n∏
j=1

(1 + βj)



+

− −n∏
j=−1

(1− βj) +

 n∏
j=1

(1− βj)

2/
n∏
j=1

(1 + βj)


 −n∏
j=−1

(1 + βj) +

−n∏
j=−1

(1− βj) +

n∏
j=1

(1− βj) +

 n∏
j=1

(1− βj)

2/
n∏
j=1

(1 + βj)


.

(3.10)

It is clear that the numerator equates to 0 and so β = 0, completing the proof. �

Remark 3.9. Due to the bi-directionality of BGC stochastic processes, then n in
(3.4) is always even, so β = 0. From Portenko [25], if |xi| 6 1, then |

∑n
i=1 αi| > 1

is of special interest. With BGCSP, α−n+αn = 0, α−n+1+αn−1 = 0,...,α−1+α1 =
0 due to their symmetry about the origin, hence |

∑n
i=1 αi| = 0 as well.

Theorem 3.10. (Cylindrical BGCSPs are 2-SBMs). For a complete filtered
probability space (Ω,F , {F}t>0,P) and a BGC function Ψ(y) : R → R, ∀y ∈ R,
then the corresponding BGC Itô diffusion is defined as follows,

dYt = f(Yt, t) dt+ g(Yt, t) dWt − sgn[Yt]Ψ(Yt, t)︸ ︷︷ ︸
BGC

, (3.11)

where f(Yt, t) is the drift coefficient, g(Yt, t) is the diffusion coefficient, sgn[x] is the
usual sign function, f(Yt, t), g(Yt, t), Ψ(Yt, t) are convex functions and the 2-SBM
is defined by,


dXt = µdt+ σ dWt + β−1 dL

x−1

t︸ ︷︷ ︸
<0

+β1 dL
x1
t︸ ︷︷ ︸

>0

X0 = 0, E
(
µ, σ, (β−1, β1)

)
L
xj

t =
∫ t
0
1{Xs=zj} dL

xj
s , j ∈ {−1, 1}

, (3.12)

then, Yt → Xt almost surely.
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Proof. It is conceivable that under general non-constant f(Xt, t) and g(Xt, t) and
some generalized BGC function Ψ′(f(Xt, t), g(Xt, t), Xt, t) that Ψ′(x) could mod-
ulate Xt such that it is bounded above and below by a constant barrier at a and
b, respectively, where b = −a. For this theorem, we are required to prove that
constant over time (i.e. cylindrical) BGC functions Ψ(Xt, t) will converge almost
surely to a 2-SBM. We know from at least Krykun [14] that if |αi| 6 1, i ∈ {1, ..., n},
there exists a strong solution to (3.12). Since the BGC functions Ψ(Xt, t) ∈ R are
convex, there exists some value κ for both a hidden lower barrier BL and a hid-
den upper barrier BL that are induced by Ψ(Xt, t). For BGCSP, there is no fully
reflective barrier defined in advance as there is with M-SBM. However, there are
still two fully reflective barriers in BGCSP because the BGC term Ψ(Xt, t) will
enable the constrained Itô process Yt to eventually be overtaken by the underlying

unconstrained Itô process Xt such that |X(n)
s | > |Ys| giving,

BU = κ for lim
n↑κ

{
E
(

sup
s∈[0,t]

∣∣∣|X(n)
s | − |Ys|

∣∣∣)} = 0, (3.13)

BL = −κ for lim
n↓−κ

{
E
(

sup
s∈[0,t]

∣∣∣|X(n)
s | − |Ys|

∣∣∣)} = 0. (3.14)

For this to be true, it must be shown that κ > 0 exists. We create a small neighbor-
hoodN about the initial point x0 of radius ε ∈ R+ such thatN (x0) = (x0−ε, x0+ε).
As ε→ +∞, BL and BU will eventually lie in N (x0).

If x0 > 0, then sup{N (x0)} = x0 + min(ε) such that BU = sup{N (x0)} = κ.
If x0 = 0, then sup{N (x0)} = inf{N (x0)} such that BL = −BU = |BU | = κ.
If x0 < 0, then inf{N (x0)} = x0 −min(ε) such that BL = inf{N (x0)} = −κ.

Hence κ exists and its value is κ = f(Ψ(Xt, t), Xt, t, µ, σ) for some function f : R→
R. Having found κ, we know that the reflectiveness at ±κ, i.e. |βκ| = 1, |β−κ| = 1
and before ±κ, i.e. |βi| < 1, |β−i| < 1. Hence, β−κ, ..., β−1, β1, ..., βκ for Xt must
be scaled for Yt by Ψ(Xt, t) and since Ψ(Xt, t) is strictly convex and symmetrical
about the origin, then the ordering is preserved,

β−κ
Ψ(κ, t)

< ... <
β−1

Ψ(κ, t)
<

β1
Ψ(κ, t)

< ... <
βκ

Ψ(κ, t)
. (3.15)

(3.15) ensures that a strong solution to BGCSP exists within a 2-SBM framework,
completing the proof. �

So far, our formulations of BGC functions have been expressed in the general form
Ψ(Xt, t), but we have considered BGC barriers induced by time-independent convex
surfaces which can be specified by just Ψ(Xt), hence M-SBM is related to BGCSPs
with Ψ(Xt). However, since the barriers have been specified to be able to change not
only under space (distance) but over time as well, we demonstrate this additional
complexity of BGCSPs in Figure 10.
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Figure 10. Example BGC Function Ψ(Xt, t) Constraining BGC-
SPs over Space and Time, more so than in M-SBM

BGCSPs are more expansive than M-SBMs (compare with Figure 6) in the sense

that the barriers can change over time, hence Ψ(Xt, t) rather than the simpler

Ψ(Xt), which is related to M-SBM. The mesh plot on the left induces or dictates

how the BGCSP on the right is constrained, showing that the M-SBM doesn’t

cover such time-dependent constraints.

Having developed the M-SBM and 2-SBM frameworks for BGCSP, we can now
support this by numerical simulations in the Results and Discussion section.

4. Results and Discussion

In the following simulations, the underlying unconstrained Itô diffusions have drift
µ = 0 and diffusion σ = 1, resulting in just the Wiener process. This is so that the
subsequent impact of BGC can be easily compared. Despite this, we still refer to
these as the more general Itô diffusions because these parameters can be modified
for one’s specific requirements.

To validate the existing M-SBM research and to support our comparison of BGCSP
with M-SBM, we develop Algorithm 1 which is used to progressively introduce
additional reflective barriers. In the subsequent series of simulations, we introduce
2, 4, 8, 16 and finally 32 semipermeable barriers, with increasing reflectiveness (i.e.
decreasing permeability) the further the Itô diffusion is from the origin, which are
simulated via Algorithm 1.

The simplest application of Algorithm 1 is shown for two fully reflective barriers in
Figure 11.
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Algorithm 1: Approximating BGC Stochastic Processes via Successive
Reflective Barriers

1 # Pseudocode based on R

2 INPUT:

3 µ = drift, σ = diffusion, i = simulation index, s= # simulations = 10, 000, t =
time steps = 1001, j = time index, Print Simulations = TRUE

4 OUTPUT:

5 ID value← matrix(0 : 0, nrow = TimeSteps, ncol = Simulations)

6 T 1000← matrix(0 : 0, nrow = Simulations, ncol = 1)

7 for (i=1:s) do
8 for (j=1:t) do
9 if (t==1) then

10 ID value[t, i]← 0

11 else
12 dt = (t/T imeSteps)

13 ID value[t, i]← (µ ∗ dt+ σ ∗ rnorm(1))

14 Sum ID value← sum(ID value[, i])

15

16 # UPPER BARRIERS================================

17 if ((Sum ID value > 0) && (Sum ID value <= UpperBarrier 01)) then
18 Do nothing;

19 else if ((Sum ID value > UpperBarrier 01) && (Sum ID value <=

UpperBarrier 02)) then
20 ID value[t, i]← (ID value[t, i]− abs(ID value[t, i] ∗ ID value[t, i])/100)

21 else if (Sum ID value > UpperBarrier 16) then
22 ID value[t, i]← (−abs(ID value[t, i]))

23 else
24 ID value[t, i]← ID value[t, i]

25 end if

26

27 # LOWER BARRIERS================================

28 if ((Sum ID value < 0) && (Sum ID value >= LowerBarrier 01)) then
29 Do nothing;

30 else if (Sum ID value < LowerBarrier 16) then
31 ID value[t, i]← (abs(ID value[t, i]))

32 else
33 ID value[t, i]← ID value[t, i]

34 end if

35 end if

36 if (Print Simulations==TRUE) then
37 if (i==1) then
38 plot(T, cumsum(IDvalue[, i]), type = ”l”, ylim = c(yMax, yMin))

39 else
40 lines(T, cumsum(IDvalue[, i]), type = ”l”, ylim = c(yMax, yMin))

41 end if

42 end if

43 end for

44 T 1000[i] < −sum(ID value[, i])

45 end for

(a). 1,000 Simulations, (b). 10,000 Simulation Density
Figure 11. 10,000 Simulations of 1,000 Step 1-Dimensional Itô
Diffusions With 2 Reflective Barriers
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Figure 11 has 2 fully reflective barriers at ±10 generated using Algorithm 1. This
was then increased to 4 barriers (2 fully reflective and 2 semipermeable) as shown
in Figure 12.

(a). 1,000 Simulations, (b). 10,000 Simulation Density
Figure 12. 10,000 Simulations of 1,000 Step 1-Dimensional Itô
Diffusions With 4 Reflective Barriers

In Figure 12, we make the barriers at ±20 fully reflective and the barriers at ±10
now to be semipermeable. Although it may not yet be apparent due to the thickness
of the drawn barriers, we have and will continue to increase the thickness of the
barriers to highlight the increasing reflectiveness (and decreasing semipermeability)
the further the Itô diffusions are from the origin. The total number of barriers was
doubled again to result in 8 barriers (2 fully reflective and 6 semipermeable), as
shown in Figure 13.
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(a). 1,000 Simulations, (b). 10,000 Simulation Density
Figure 13. 10,000 Simulations of 1,000 Step 1-Dimensional Itô
Diffusions With 8 Reflective Barriers

In Figure 13(b), we start to notice a corrugation or ‘crinkling’ of the density due
to 2 fully reflective barriers and 6 semipermeable barriers. This was doubled again
to 16 barriers (2 fully reflective and 14 semipermeable), as shown in Figure 14.

(a). 1,000 Simulations, (b). 10,000 Simulation Density
Figure 14. 10,000 Simulations of 1,000 Step 1-Dimensional Itô
Diffusions With 16 Reflective Barriers

In Figure 14(b), we notice that the corrugation effect has become more pronounced
due to another doubling of the number of barriers. This was doubled again to 32
barriers (2 fully reflective and 30 semipermeable), as shown in Figure 15.
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(a). 1,000 Simulations, (b). 10,000 Simulation Density
Figure 15. 10,000 Simulations of 1,000 Step 1-Dimensional Itô
Diffusions With 32 Reflective Barriers

Finally, in Figure 15(b), we notice the most amount of the corrugation effect due
to yet another doubling of the number of semipermeable barriers. Due to the
importance of this density as a sufficient approximation of BGC densities, we plot
the density again in Figure 16 without the barriers depicted and slightly larger.
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Figure 16. Typical Density of BGC Itô Diffusions Approximated
by 10,000 Simulations of 1,000 Step 1-Dimensional Itô Diffusions
With 32 Reflective Barriers

Figure 16 shows that after 32 barriers, we effectively arrive at the typical density of
BGC Itô diffusions, which have an infinite number of increasingly reflective barriers,
with just 2 fully reflective hidden barriers. If we take the limit of this numerical
approximation process, the number of such barriers n would approach infinitely
many barriers, of smaller and smaller size and hence smaller constraining contribu-
tion. These approximation barriers are thus replaced by the main BGC function
itself, Ψ(Xt, t) = (Xt

10 )2, as shown in Figure 17, where the algorithm for BGCSP
was stated in [32].
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(a). 1,000 Simulations, (b). 10,000 Simulation Density
Figure 17. 10,000 Simulations of 1,000 Step BGC 1-Dimensional
Itô Diffusions

From Figure 17, we see the typical characteristics of BGCSPs; 1). a certain amount
of discretization or banding at various local times, 2). the emergence of two hidden
reflective barriers that are not known exactly in advance and can only be estimated,
3). the density is ‘corrugated’ or ‘rough’.

The random component of the Itô diffusions, i.e. the dWt term is sampled from a
standard normal distribution that is then constrained by BGCSP. The density of
Figure 17(b) has no discontinuities. However, if we sample the path increments from
a discrete binary (i.e. binomial) random distribution, we obtain a random walk that
is then constrained by BGCSP. When a histogram is derived for the corresponding
simulated data rather than fitting a density through the distribution, we obtain
Figure 18, which shows the discontinuities, also evident in [33].
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(a). t ∈ [0,1000], (b). t = 1000.

Figure 18. Histogram of 10,000 Simulations of 1,000 Step BGC
1-Dimensional Itô Diffusions Showing Discretization or Banding,
for Sampling dWt from a Binomial Distribution

Note that this is not a density plot as we do not want any Kernal density estimation

(KDE) to approximate the distribution. Increasing the bin size would similarly

approximate the histogram. The main point is that when we consider all points

along all paths in (a), we see gaps where the paths do not visit, or visit infrequently.

When we only detect the paths at the end of our timeframe in (b), we see many

more gaps and that the gaps are not as homogeneously dispersed as in (a).

Figure 18 shows that 1). reflection occurs at the barriers as seen by the peaks
on either side of the distribution (more prominent in (a)), and 2). discretization
or banding occurs at prominent local times that are contracted together due to
the BGC function Ψ(Xt, t). Figure 18(a) shows similar ‘corrugation’ as in the
continuous case in Figure 16. Figure 18(b) shows that at t = T , the BGC Itô
diffusion is less likely to be at the origin and more likely to be near the barrier(s).
To further demonstrate the characteristics of BGCSP, a detailed plot of 10,000
simulations are shown in Figures 19 and 20.
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5. Conclusions

This paper has extended the previous theoretical research on BGCSP by comparing
them to a type of multi-skew Brownian motion (M-SBM). This was achieved both
theoretically by leveraging existing research, and heuristically by generating new
simulations. Working within the M-SBM framework, we proved one Lemma and
two Theorems for BGCSPs. This research provides a richer framework in which
the semipermeable barriers are modulated in a non-constant manner over distance
X, allowing for a new constraining regime that is more complex than the Ornstein-
Uhlenbeck process (OUP) and yet still related to it. BGCSPs have applications
in many fields requiring the constraining of the underlying stochastic process in a
gradual manner where the two ultimate reflective barriers are not known in advance.
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