

Capacitance Resistance Model and Recurrent Neural Network for

Well Connectivity Estimation – A Comparison Study

Deepthi Sen
Texas A&M University

1. Introduction

In this report, two commonly used data-driven models for predicting well production under a
waterflood setting – the capacitance resistance model (CRM) and recurrent neural networks (RNN)
are compared. Both models are completely data-driven and are intended to learn the reservoir
behavior during a waterflood from historical data. The python implementation of the CRM model
used in this report is available from the associated GitHub repository1.

2. Capacitance Resistance Model

The capacitance resistance model for inferring interval connectivity was initially developed at UT
Austin by Yousef et al (2006). This draws upon the analogy between a reservoir system under
pseudo-steady state with a resistance-capacitance (RC) circuit. The inputs to the CRM are the
injection rates applied at the injectors and the outputs are the production rates at the producer wells.
The production rates are computed as a function of the injection rates and several parameters that
may be related to the properties of the reservoir system.

2.1. Theory

For the pseudo-steady state condition, the rate of decrease in pressure 𝑝 at any point in the drainage
volume at any time is a constant given by

𝜕𝑝
𝜕𝑡

=
𝜕𝑝
𝜕𝑡

= 	𝑐𝑜𝑛𝑠𝑡 = −
𝑞,-.
𝑐.𝑉0

where

(1)

𝑐. : Total compressibility
𝑉0 : Pore volume in drainage
𝑝 : Average pressure in drainage volume
𝑞,-. : Net flow out of the drainage volume

Then we have

𝑐.𝑉0
𝑑𝑝
𝑑𝑡

= 𝑖 − 𝑞

(2)

𝑖 : Injection rate
𝑞 : Production rate

Assuming a linear productivity model,

𝑞 = 𝐽(𝑝 − 𝑝56) (3)
where 𝐽 is the productivity index that is assumed to be constant,

1 https://github.com/deepthisen/CapacitanceResistanceModel

𝑑𝑞
𝑑𝑡

= 𝐽
𝑑𝑝
𝑑𝑡

−
𝑑𝑝56
𝑑𝑡

(4)

𝑑𝑝
𝑑𝑡

=
1
𝐽
𝑑𝑞
𝑑𝑡

+
𝑑𝑝56
𝑑𝑡

(5)

Substituting the expression for :0
:.

 into eqn (2)

𝑐.𝑉0
1
𝐽
𝑑𝑞
𝑑𝑡

+
𝑑𝑝56
𝑑𝑡

= 𝑖 − 𝑞
(6)

Defining 𝜏 = <=>?
@

 and substituting into eqn (6)

𝜏
𝑑𝑞
𝑑𝑡

+ 𝜏𝐽
𝑑𝑝56
𝑑𝑡

= 𝑖 − 𝑞
(7)

Rearranging and integrating over time 𝑡 = 𝑡A to 𝑡 = 𝑡:

𝑞 𝑡 = 𝑞 𝑡A 𝑒
C.C.DE +

𝑒C
.
E

𝜏
𝑒
F
E𝑖 𝜉 𝑑𝜉

FH.

FH.D

+ 𝐽 𝑝56 𝑡A 𝑒
C.C.DE − 𝑝56 𝑡 +

𝑒C
.
E

𝜏
𝑒
F
E𝑝56 𝜉 𝑑𝜉

FH.

FH.D

(8)

Extending this to multiple wells, we may have different variations of CRM which are as follows:

2.1.1. CRM Tank (CRMT)

Here the entire reservoir is considered as a tank system and there are but one injector and one
producer. Hence, we are only concerned with the injection and net production from the system.
The general formula for CRM-T is given by Eqn (8). However, in order to adapt the model for
discrete samples of historical data, we start with the particular solution to Eqn (7) written as

𝑞 𝑡 = 𝑞 𝑡A 𝑒
C.C.DE +

𝑒C
.
E

𝜏
𝑒
F
E𝑖 𝜉 𝑑𝜉

FH.

FH.D

−
𝑒C

.
E

𝜏
𝐽𝑒

F
E
𝑑𝑝56
𝑑𝜉

	𝑑𝜉

FH.

FH.D

	
(9)

Then we apply integration by parts to the second term to obtain

𝑞 𝑡 = 𝑞 𝑡A 𝑒
C.C.DE + 𝑖 𝑡 − 𝑒C

.C.D
E 𝑖 𝑡A − 𝑒C

.
E 𝑒

F
E
𝑑𝑖 𝜉
𝑑𝜉

+ 𝐽
𝑑𝑝56 𝜉
𝑑𝜉

𝑑𝜉
FH.

FH.D
	

(10)

When applied to a field with several wells, this has an added disadvantage that the individual
variations in producer bottomhole pressures (BHP) cannot be accounted for. Then the 𝑝56 terms
are to be eliminated.

Doing so, this model contains at most 3 parameters to be fitted: 𝑞 𝑡A , 𝜏 and 𝑓K, where the latter
accounts for partial support of net injection to the well group in question.

Now we can assume various profiles of injection rates and BHP control rates. Sayarpour (2008)
considers two cases:
• Injection rates are constant from 𝑡A to 𝑡 and BHP profile changes linearly from 𝑡A to 𝑡. In
this case :L F

:F
= 0 and

:0NO F
:F

= P0NO
P.

 where 𝛥𝑡 = 𝑡 − 𝑡A

• Both injection rates and BHP profile changes linearly from 𝑡A to 𝑡. In this case :L F
:F

= PL
P.

and
:0NO F

:F
= P0NO

P.
 where	𝛥𝑖 = 𝑖(𝑡) − 𝑖(𝑡A) and 𝛥𝑡 = 𝑡 − 𝑡A

2.1.2. CRM Producer (CRMP)

This model considers a field with 𝑁0ST producers and 𝑁L,U injectors. The control volume for this
model is the drainage volume of each producer. Hence, we have 𝑁0ST time-constant parameters:
𝜏U for each producer, 1 ≤ 𝑗 ≤ 𝑁0ST. Furthermore, only a fraction of the injected volume at, say the
𝑖.Y injector flows to the 𝑗.Y producer. This gives rise to yet another parameter, the gain 𝑓LU, which
is closely related to the flux allocation from injector. Starting with Eqn. 10 and extending it to
multi-well case, we get

𝑞U 𝑡 = 𝑞U 𝑡A 𝑒
C.C.DEZ + 𝑓LU 𝑖 𝑡 − 𝑒

C.C.DEZ 𝑖 𝑡A

[\]Z

LH^

− 𝑒
C .EZ 𝑒

F
EZ 𝑓LU

𝑑𝑖 𝜉
𝑑𝜉

[\]Z

LH^

+ 𝐽U
𝑑𝑝56Z 𝜉

𝑑𝜉
𝑑𝜉

FH.

FH.D
	

(11)

 As with CRMT, one can impose various assumptions on the injection and BHP profiles. Going
further, we impose the condition where injection rates are constant from 𝑡A to 𝑡 and BHP varies
linearly in the same time. Then we obtain the recursive expression, given the assumption that
injection rate remains constant and BHP varies linearly from 𝑡,C^ to 𝑡,.

𝑞U 𝑡, = 𝑞U 𝑡,C^ 𝑒
CP.]EZ + 1 − 𝑒

CP.]EZ 𝑓LU𝐼L 𝑡,

[\]Z

LH^

− 𝐽U𝜏U
𝛥𝑝56Z
𝛥𝑡,

	
(12)

It is to be noted that Eqn (12) is what is implemented in the attached python module. However,
this expression can further be expanded in terms of 𝑞 𝑡A as

𝑞U 𝑡, = 𝑞U 𝑡A 𝑒
C.]C.DEZ + 𝑒

C.]C.`EZ 1 − 𝑒
CP.`EZ 𝑓LU𝐼L 𝑡a

[\]Z

LH^

− 𝐽U𝜏U
𝛥𝑝56Z

a

𝛥𝑡a

,

aH^

	
(13)

2.1.3. CRMIP (Injector-Producer)

The control volume is further divided into injector-producer bundles in this version of CRM. This
leads to more number of 𝜏 (specifically 𝑁L,U×𝑁0ST), bringing up the number of trainable
parameters to 4× 𝑁L,U×𝑁0ST . Even though this is not covered in detail in this report, there is not
much conceptual difference from CRMP, except for more granularity in defining the control
volume, hence more model complexity. The general discretized formula for a case where injection
rates remain constant and BHP changes linearly across time steps is given below.

𝑞U 𝑡, = 𝑞LU(𝑡,)

[\]Z

LH^

= 𝑞LU 𝑡A 𝑒
C.]C.DE\Z

[\]Z

LH^

+ 𝑓LU𝐼L 𝑡a − 𝐽LU𝜏LU
𝛥𝑝56Z

a

𝛥𝑡a
𝑒
C.]C.`EZ 1 − 𝑒

CP.`EZ

,

aH^

[\]Z

LH^

	

(14)

The production from the 𝑗.Y producer is obtained by summing over individual contributions of
each injector-producer bundle ending at the producer in question.

2.2. Implementation

The CRM can be easily implemented in an iterative manner using a recursive expression such as
Eqn (12). In this report, CRMP with constant injection rates and linearly varying BHP across each
timestep was implemented into a python module2. The basic parts of the module are explained
here

a. Initialization: A CRMP object is created by accepting a list of parameters that include
𝜏, 𝑓, 𝑞(𝑡A) and 𝐽 (if we need to consider pressure, which is given by the include_press
parameter). These are set as attributes to the object.

b. Prim_prod, inject_term, bhp_term calculates the respective terms in Eqn (12) and assigns

these are object attributes at any given timestep.

c. Prod_pred: computes the predicted time series given a series of inputs. Depending whether
the model is in training or not, it also computes the gradients of the loss function with
respect to the parameters at each timestep.

d. Compute_grad_tau, Compute_grad_lambda, Compute_grad_q0, Compute_grad_J

computes the respecting gradients. These functions are called by prod_pred while in
training mode. The gradients computed are as follows:

e. Compute_loss: Calculates a scaled version of the mean squared error, given an observed

production timeseries.

f. Obj_func_fit and Jac_func_fit are used to compute the loss and gradients since these are
fed into the SLSQP method called during fitting

g. Fit_model takes in a list of parameters as initial guess and runs the SLSQP algorithm with

non-negativity bounds on all parameters and addition constraints such as making sure that
𝑓LU

[\]Z
LH^ ≤ 1. For this report, I have set this as an equality constraint, since we are working

with voidage replacement ratio = 1 (There is no unaccounted influx or outflux).

3. Recurrent Neural Networks

RNNs have been shown to offer excellent performance in time-series prediction problems such as
stock market prediction, sentence completion etc. These may also be used in reservoir engineering
application such as developing a fully data-driven model of connectivity and production
prediction.

RNNs have the added advantage of ease of implementation using libraries such as keras/tensorflow
where training and hyperparameter tuning may be achieved easily.

2 https://github.com/deepthisen/CapacitanceResistanceModel

3.1. Theory

The basic RNN consisted of a neural network that computes the output at any timestep given the
input at that timestep and the output from the previous timestep. This is illustrated in Figure 1.
Therefore,

𝑦. = 𝜎(𝐴𝑥. + 𝐵𝑦.C^ + 𝑏)	
𝑦.C^ = 𝜎(𝐴𝑥.C^ + 𝐵𝑦.Cj + 𝑏)	

⋮
𝑦^ = 𝜎(𝐴𝑥^ + 𝐵𝑦A + 𝑏)	

(15)

Here, 𝐴, 𝐵 represent the kernel and recurrent weights respectively and 𝑏 represents the bias and 𝜎
represents the activation function. In this application, the activation function has been set to linear.
Additionally, ignoring the bias, at any timestep:

𝑦. = 𝐴𝑥. + 𝐵(𝐴𝑥.C^ + 𝐵(… .+𝐵𝑦A))	 (16a)
𝑦. = 𝐴 𝑥. + 𝐵𝑥.C^ + 𝐵j𝑥.Cj + ⋯+ 𝐵.C^𝑥^ + 𝐵.𝑦A	 (16b)	

However, we specify a time-window (TS) over which this kind of calculation happens:

𝑦. = 𝐴 𝑥. + 𝐵𝑥.C^ + 𝐵j𝑥.Cj + ⋯+ 𝐵.C^𝑥.Cno + 𝐵.𝑦.CnoC^	 (17)	

In this application, we use ‘stateless RNNs’, where for calculation at each time step, 𝑦𝑡−𝑇𝑆−1 is set
to zero. Stateful RNNs set the 𝑦𝑡−𝑇𝑆−1 at the actual predicted value of this timestep. However, the training
process becomes slightly more involved with the need to choose batchsize carefully to prevent overlap
between successive batches.

Figure 1 Schematic illustration of the recurrent neural network implemented

3.2. Implementation

A custom RNN layer was implemented with additional constraints on

• the 𝐴 matrix to impose location constraints in case of large field applications. This has not
been imposed on the problems covered in this report.

• the 𝐵 matrix to limit the influence of producers on each other. This may be relaxed if
needed.

As mentioned before, the activation function used is linear and bias has been set to zero.

4. Case Studies
4.1. Case Study 1: Streak Case

4.1.1. Description
This synthetic case with 5 injectors and 4 producers has been widely studied in CRM literature. It
is a homogenous field with two high permeability streaks that connect two pairs of injector-
producer. The streak case permeability field is shown in Figure 2 and the prescribed injection rates
for the five injectors are shown in Figure 3.

Figure 2 Permeability field of Synthetic Case 1 (Streak Case)

Figure 3 Injection rates prescribed in the Streak Case. These were obtained from Sayarpour (2008).

4.1.2. Results and Discussion

It is seen from Figure 4 that the prediction accuracies for the producers P1 and P4, which are
connected to the injectors via the high-perm streaks, are very high for both RNN and CRMP.
However, there is significant degradation in performance at test time for P2 and P3, especially in
CRMP. This may be attributed to the non-linearity in the response of these producers to the input
signals.

Insight on the connectivity of the field can be gained from both the fitted CRMP parameters as
well as the trained RNN weights.

Table 4.1 and Table 4.2 show the fitted CRM parameters. Theoretically, 𝜏 represents the relative
sizes of the drainage volumes associated with each producer. However, it is seen that the objective
function is highly non-convex in 𝜏 and the converged values of 𝜏 are highly dependent on the
initial condition. This effect is greatly amplified in the optimization for 𝑞(𝑡A) where the gradients
with respect to these are extremely small and there is not much optimization taking place by
varying 𝑞(𝑡A).

Figure 4 Performance of CRMP and RNN on the streak case of Fig .The red plot represents the actual total
reservoir volumes production from each producer. The blue and green continuous line represents the training
time predict of the CRMP and RNN respectively, whereas the corresponding broken lines represent the test time
prediction.

Table 4.1 CRMP fitted parameters for streak case: 𝜏 and 𝑞(𝑡A)

 P1 P2 P3 P4

𝜏 0.1 0.5 1.7 0.6

𝑞(𝑡A) 0.0 0.25 0.02 0.01

Table 4.2 CRMP Fitted gain matrix for the streak case.

 P1 P2 P3 P4

I1 0.95 0.02 0.00 0.03

I2 0.51 0.03 0.12 0.29

I3 0.03 0.00 0.10 0.87

I4 0.18 0.12 0.07 0.63

I5 0.16 0.02 0.16 0.66

However, the most valuable information is contained in the gain matrix 𝑓 (Table 4.2). There exists
a direct correlation between this and the actual rate allocation factor from injector to producer (in
fact, by definition). An illustration of the gain matrix is provided in Figure 5(a), where it is clear
how the higher values for 𝑓LU for a particular injector-producer pair corresponds to those with high
physical connectivity in terms of volumetric flux (as observed from the number of streamlines
between a well-pair as in Figure 5(c)).

	
(a)

	
(b)	

	
(c)

Figure 5 Comparison of connectivities inferred from (a) CRMP (b) RNN and (c) Flow simulation via
streamlines

In the case of RNN, the connection between the injectors and producers are signified by the kernel
weight matrix 𝐴. These are shown in Table 4.3 and schematically illustrated in Figure 5(b). The
concurrence between the simulation-based connectivity and the A matrix is clear from Figure 5.
The recurrence weight matrix 𝐵 represents the influence that the previous value of the production
has over the current production (Table 4.4).

Table 4.3 Trained kernel weights A for RNN model for streak case

 P1 P2 P3 P4

I1 0.95 0.01 0.00 0.00

I2 0.45 0.01 0.09 0.18

I3 0.15 0.01 0.00 0.68

I4 0.11 0.09 0.00 0.39

I5 0.11 0.00 0.09 0.40

Table 4.4 Trained recurrence weights B for RNN model for streak case

 P1 P2 P3 P4

P1 0.04 0 0 0

P2 0 0.39 0 0

P3 0 0 0.50 0

P4 0 0 0 0.35

4.2. Case Study 2: Non-Streak Case
In order to further test the efficacy of using CRMP and RNN when the responses are highly
nonlinear functions of the input, I removed the streak cases and generated a fully homogenous (1
mD permeability) model with the same injectors and producers (Figure 6), with the effect that the
nonlinearity in the responses at all producers is more noticeable (Figure 7).

Figure 6 Homogenous permeability and porosity field with the same well configuration as the streak case.

Figure 7 The injection profile is the same as the streak case. However, the responses from the producers are

high linear.

The results obtained by fitting a CRMP and an RNN are shown in Figure 8. The inability of CRM
at capturing nonlinearity is more apparent at all wells in this case. However, it is again seen that
the RNN does a better job, both at training and test time. This may be attributable to the window-
based way in which the stateless RNN is trained. Hence the effect of fitting the early part of the
production profile on the prediction of the latter portion (at test time), is reduced.

Table 4.1 and Table 4.2 show the fitted CRMP parameters. From Figure 9(a), the CRMP seems to
have picked up spurious connectivity trends, such the increased connection between I1- P2 and I5-
P3, despite this being a completely homogenous case. However, the injector-producer
connectivities obtained from the RNN (Figure 9(b)) is more representative of the homogeneity
since all connections are almost equally weak, as seen in Table 4.5.

Furthermore, the recurrence weights 𝐵 for the RNN (Table 4.6) also clearly shows higher values
in comparison with those for the streak case (Table 4.4)

Figure 8 Performance of CRMP and RNN on the non-streak case of Figure 6.The red plot represents the actual

total reservoir volumes production from each producer. The blue and green continuous line represents the
training time predict of the CRMP and RNN respectively, whereas the corresponding broken lines represent

the test time prediction.

	
(a)

	
(b)	

	
(c)

Figure 9 Comparison of connectivities for the non-streak case inferred from (a) CRMP (b) RNN and (c) Flow
simulation via streamlines

Table 4.5 Trained kernel weights A for RNN model for non-streak case

 P1 P2 P3 P4

I1 0.09 0.10 0.03 0.03

I2 0.06 0.02 0.06 0.01

I3 0.05 0.06 0.06 0.06

I4 0.03 0.08 0.06 0.08

I5 0.04 0.04 0.08 0.09

Table 4.6 The recurrence weight B for the RNN model for the non-streak case

 P1 P2 P3 P4

P1 0.79 0 0 0

P2 0 0.76 0 0

P3 0 0 0.79 0

P4 0 0 0 0.79

4.3. Computational Efficiency

Despite better performance with respect to non-linearity, the RNN model built on
Keras/Tensorflow is slower during training due to the need to run several epochs of fitting for the
weights to converge. However, the number of epochs at training is tunable and procedures like
early-stopping etc. may be useful in bringing down the required number of epochs. Nevertheless,
this is unlikely to be comparable to the time required to fit a CRM using an optimization method
such as SLSQP, which is lesser by an order of magnitude, as seen in Table 4.7

Table 4.7 A comparison of CPU times for CRMP vs. RNN during training for the two synthetic cases

Model CPU Time(s)

CRM – Streak 0.2

RNN – Streak (500 epoch) 5.6

CRM – No Streak 0.1

RNN – No Streak (500 epoch) 5.5

At test time, both CRMP and RNN are quite comparable and both are faster than running a
conventional simulator by several orders of magnitude, as is seen in Table 4.8.

Table 4.8 A comparison of CPU times for CRMP, RNN vs. commercial simulator for the two synthetic cases

Model CPU Time(s)

CRM – Streak 0.003

RNN – Streak (500 epoch) 0.006

Eclipse – Streak 2.3

CRM – No Streak 0.004

RNN – No Streak (500 epoch) 0.006

Eclipse – No Streak 4.7

5. Future Work

The synthetic case-2 (non-streak case) illustrates a situation where the CRMP fails to capture the
reservoir dynamics perfectly. The next logical improvement to the current work will be to
implement a model of the next level of complexity: the CRMIP. This has been left for future
work.

Furthermore, one may incorporate a better activation function for the RNN model, that does a
better job at accounting for non-linear dynamics. Other ways of trying to incorporate nonlinearity
effectively includes the use of stacked RNNs or perhaps a better RNN variant such as LSTM.

6. References

Yousef, A.A., Gentil, P.H., Jensen, J.L., & Lake, L.W. (2006). A Capacitance Model To Infer
Interwell Connectivity From Production and Injection Rate Fluctuations.

Sayarpour, M. 2008. Development and Application of Capacitance-Resistive Models to
Water/CO2 Floods. PhD thesis, The University of Texas at Austin, Austin, Texas (2008)

