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Abstract

Bayesian Optimization (BO) is a method for globally optimizing black-box func-
tions. While BO has been successfully applied to many scenarios, developing
effective BO algorithms that scale to functions with high-dimensional domains
is still a challenge. Optimizing such functions by vanilla BO is extremely time-
consuming. Alternative strategies for high-dimensional BO that are based on the
idea of embedding the high-dimensional space to the one with low dimension are
sensitive to the choice of the embedding dimension, which needs to be pre-specified.
We develop a new computationally efficient high-dimensional BO method that
exploits variable selection. Our method is able to automatically learn axis-aligned
sub-spaces, i.e. spaces containing selected variables, without the demand of any
pre-specified hyperparameters. We theoretically analyze the computational com-
plexity of our algorithm. We empirically show the efficacy of our method on several
synthetic and real problems.

1 Introduction

We study the problem of globally maximizing a black-box function f(x) with an input domain
X = [0, 1]D, where the function has some special properties: (1) It is hard to calculate its first and
second-order derivatives, therefore gradient-based optimization algorithms are not useful; (2) It is
too strong to make additional assumptions on the function such as convexity; (3) It is expensive
to evaluate the function, hence some classical global optimization algorithms such as evolutionary
algorithms (EA) are not applicable.

Bayesian optimization (BO) is a popular global optimization method to solve the problem described
above. It aims to obtain the input x∗ that maximizes the function f by sequentially acquiring queries
that are likely to achieve the maximum and evaluating the function on these queries. BO has been
successfully applied in many scenarios such as hyper-parameter tuning [Snoek et al., 2012, Klein
et al., 2017], automated machine learning [Nickson et al., 2014, Yao et al., 2018], reinforcement
learning [Brochu et al., 2010, Marco et al., 2017, Wilson et al., 2014], robotics [Calandra et al., 2016,
Berkenkamp et al., 2016], and chemical design [Griffiths and Hernández-Lobato, 2017, Negoescu
et al., 2011]. However, most problems described above that have been solved by BO successfully
have black-box functions with low-dimensional domains, typically with D ≤ 20 [Frazier, 2018].
Scaling BO to high-dimensional black-box functions is challenging because of the following two
reasons: (1) Due to the curse of dimensionality, the global optima is harder to find as D increases; and
(2) computationally, vanilla BO is extremely time consuming on functions with large D. As global
optimization for high-dimensional black-box function has become a necessity in several scientific
fields such as algorithm configuration [Hutter et al., 2010], computer vision [Bergstra et al., 2013]
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and biology [Gonzalez et al., 2015], developing new BO algorithms that can effectively optimize
black-box functions with high dimensions is very important for practical applications.

A large class of algorithms for high-dimensional BO is based on the assumption that the black-box
function has an effective subspace with dimension de ≪ D [Djolonga et al., 2013, Wang et al., 2016,
Moriconi et al., 2019, Nayebi et al., 2019, Letham et al., 2020]. Therefore, these algorithms first
embed the high-dimensional domain X to a space with the embedding dimension d pre-specified by
users, do vanilla BO in the embedding space to obtain the new query, and then project it back and
evaluate the function f . These algorithms are time efficient since BO is done in a low-dimensional
space. Wang et al. [2016] proves that if d ≥ de, then theoretically with probability 1 the embedding
space contains the global optimum. However, since de is usually not known, it is difficult for users to
set a suitable d. Previous work such as Eriksson and Jankowiak [2021] shows that different settings
of d will impact the performance of embedding-based algorithms, and there has been little work on
how to choose d heuristically. Letham et al. [2020] also points out that when projecting the optimal
point in the embedding space back to the original space, it is not guaranteed that this projection point
is inside X , hence algorithms may fail to find an optimum within the input domain.

We develop a new algorithm, called VS-BO (Variable Selection Bayesian Optimization), to solve
issues mentioned above. Our method is based on the assumption that all the D variables (elements)
of the input x can be divided into two disjoint sets x = {xipt,xnipt}: (1) xipt, called important
variables, are variables that have significant effects on the output value of f ; (2) xnipt, called
unimportant variables, are variables that have no or little effect on the output. Previous work such
as Hutter et al. [2014] shows that the performance of many machine learning methods is strongly
affected by only a small subset of hyperparameters, indicating the rationality of this assumption.
We propose a robust strategy to identify xipt, and do BO on the space of xipt to reduce time
consumption. In particular, our method is able to learn the dimension of xipt automatically, hence
there is no need to pre-specify the hyperparameter d as embedding-based algorithms. Since the space
of xipt is axis-aligned, issues caused by the space projection no longer exist in our method. We
theoretically analyze the computational complexity of VS-BO, showing that our method can decrease
the computational complexity of both steps of fitting the Gaussian Process (GP) and optimizing the
acquisition function. We formalize the assumption that some variables of the input are important
while others are unimportant and derive the regret bound of our method. Finally, we empirically show
the good performance of VS-BO on several synthetic and real problems.

The source code to reproduce the results from this study can be found at https://github.com/
Kingsford-Group/vsbo. This work has been accepted in AutoML 2023, with camera-ready version
https://openreview.net/forum?id=QXKWSM0rFCK1.

2 Related work

The basic framework of BO has two steps for each iteration: First, GP is used as the surrogate to
model f based on all the previous query-output pairs

(
x1:n, y1:n

)
:

y1:n ∼ N
(
0,K(x1:n,Θ) + σ2

0I
)
,

Here y1:n = [y1, . . . , yn] is a n-dimensional vector, yi = f(xi) + ϵi is the output of f with random
noise ϵi ∼ N (0, σ2

0), and K(x1:n,Θ) is a n×n covariance matrix where its entry Ki,j = k(xi,xj ,Θ)
is the value of a kernel function k in which xi and xj are the i-th and j-th queries respectively. Θ and
σ0 are parameters of GP that will be optimized each iteration, and I is the n× n identity matrix. A
detailed description of GP and its applications can be found in Williams and Rasmussen [2006].

Given a new input x′, we can compute the posterior distribution of f(x′) from GP, which is again a
Gaussian distribution with mean µ(x′ | x1:n, y1:n) and variance σ2(x′ | x1:n) that have the following
forms:

µ(x′ | x1:n, y1:n) = k(x′,x1:n)[K(x1:n,Θ) + σ2
0I]

−1(y1:n)⊤

σ2(x′ | x1:n) = k(x′,x′,Θ)− k(x′,x1:n)[K(x1:n,Θ) + σ2
0I]

−1k(x′,x1:n)⊤

Here, k(x′,x1:n) = [k(x′,x1,Θ), . . . , k(x′,xn,Θ)] is a n-dimensional vector.
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The second step of BO is to use µ and σ to construct an acquisition function acq and maximize it to
get the new query xnew, on which the function f is evaluated to obtain the new pair (xnew, ynew):

xnew = argmaxx′∈X acq(µ(x′ | x1:n, y1:n), σ(x′ | x1:n)).

A wide variety of methods have been proposed that are related to high-dimensional BO, and most of
them are based on some extra assumptions on intrinsic structures of the domain X or the function f .
As mentioned in the previous section, a considerable body of algorithms is based on the assumption
that the black-box function has an effective subspace with a significantly smaller dimension than
X . Among them, REMBO [Wang et al., 2016] uses a randomly generated matrix as the projection
operator to embed X to a low-dimensional subspace. SI-BO [Djolonga et al., 2013], DSA [Ulmasov
et al., 2016] and MGPC-BO [Moriconi et al., 2019] propose different ways to learn the projection
operator from data, of which the major shortcoming is that a large number of data points are required
to make the learning process accurate. HeSBO [Nayebi et al., 2019] uses a hashing-based method to
do subspace embedding. Finally, ALEBO [Letham et al., 2020] aims to improve the performance of
REMBO with several novel refinements.

Another assumption is that the black-box function has an additive structure. Kandasamy et al. [2015]
first develops a high-dimensional BO algorithm called Add-GP by adopting this assumption. They
derive a simplified acquisition function and prove that the regret bound is linearly dependent on the
dimension. Their framework is subsequently generalized by Li et al. [2016], Wang et al. [2017] and
Rolland et al. [2018].

As described in the previous section, our method is based on the assumption that some variables
are more “important" than others, which is similar to the axis-aligned subspace embedding. Several
previous works propose different methods to choose axis-aligned subspaces in high-dimensional
BO. Li et al. [2016] uses the idea of dropout, i.e, for each iteration of BO, a subset of variables are
randomly chosen and optimized, while our work chooses variables that are important in place of the
randomness. Eriksson and Jankowiak [2021] develops a method called SAASBO, which uses the
idea of Bayesian inference. SAASBO defines a prior distribution for each parameter in the kernel
function k, and for each iteration the parameters are sampled from posterior distributions and used in
the step of optimizing the acquisition function. Since those priors restrict parameters to concentrate
near zero, the method is able to learn a sparse axis-aligned subspaces (SAAS) during BO process.
Similar to vanilla BO, the main drawback of SAASBO is that it is very time consuming. While
traditionally it is assumed that the function f is very expensive to evaluate so that the runtime of BO
itself does not need to be considered, previous work such as Ulmasov et al. [2016] points out that in
some application scenarios the runtime of BO cannot be neglected. Spagnol et al. [2019] proposes a
similar framework of high-dimensional BO as us; they use Hilbert Schmidt Independence criterion
(HSIC) to select variables, and use the chosen variables to do BO. However, they do not provide a
comprehensive comparison with other high-dimensional BO methods: their method is only compared
with the method in Li et al. [2016] on several synthetic functions. In addition, they do not provide
any theoretical analysis.

3 Framework of VS-BO

Given the black-box function f(x) : X → R in the domain X = [0, 1]D with a large D, the goal
of high-dimensional BO is to find the maximizer x∗ = argmaxx∈X f(x) efficiently. As mentioned
in the introduction, VS-BO is based on the assumption that all variables in x can be divided into
important variables xipt and unimportant variables xnipt, and the algorithm uses different strategies
to decide values of the variables from two different sets.

The high-level framework of VS-BO (Algorithm 1) is similar to Spagnol et al. [2019]. For every Nvs

iterations VS-BO will update xipt and xnipt (line 8 in Algorithm 1), and for every BO iteration t only
variables in xipt are used to fit GP (line 11 in Algorithm 1 ), and the new query of important variables
xt
ipt is obtained by maximising the acquisition function (line 12 in Algorithm 1). Unlike Spagnol et al.

[2019], VS-BO learns a conditional distribution p(xnipt | xipt,D) from the existing query-output
pairs D (line 5, 9 in Algorithm 1). This distribution is used for choosing the value of xnipt to make
f(x) large when xipt is fixed. Hence, once xt

ipt is obtained, the algorithm samples xt
nipt from

p(xnipt | xt
ipt,D) (line 13 in Algorithm 1), concatenates it with xt

ipt and evaluates f({xt
ipt,x

t
nipt}).
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Algorithm 1 VS-BO
1: Input: f(x), X = [0, 1]D, Ninit, N , Nvs

2: Output: Approximate maximizer xmax

3: Initialize the set of xipt to be all variables in x, xipt = x, and xnipt = ∅
4: Uniformly sample Ninit points xi and evaluate yi = f(xi), let D = {(xi, yi)}Ninit

i=1
5: Initialize the distribution p(x | D)
6: for t = Ninit + 1, Ninit + 2, . . . Ninit +N do
7: if mod(t−Ninit, Nvs) = 0 then
8: Variable selection to update xipt and let xnipt = x \ xipt (Algorithm 2)
9: Update p(x | D), then derive the conditional distribution p(xnipt | xipt,D)

10: end if
11: Fit a GP to Dipt := {(xi

ipt, y
i)}t−1

i=1

12: Maximize the acquisition function to obtain xt
ipt.

13: Sample xt
nipt from p(xnipt | xt

ipt,D)

14: Evaluate yt = f(xt) + ϵt = f({xt
ipt,x

t
nipt}) + ϵt and update D = D ∪ {(xt, yt)}

15: end for
16: return xmax which is equal to xi with maximal yi

Compared to Spagnol et al. [2019], our method is new on the following three aspects: First, we
propose a new variable selection method that takes full advantage of the information in the fitted
GP model, and there is no hyperparameter that needs to be pre-specified in this method; Second, we
develop a new mechanism, called VS-momentum, to improve the robustness of variable selection;
Finally, we integrate an evolutionary algorithm into the framework of BO to make the sampling of
unimportant variables more precise. The following subsections introduce these three points in detail.

Algorithm 2 Variable Selection (line 8 in Algorithm 1)
1: Input: D = {(xi, yi)}ti=1
2: Output: Set of important variables xipt

3: Fit a GP to D and calculate important scores of variables IS where IS[i] is the important score
of the i-th variable

4: Sort variables according to their important scores, [xs(1), . . . ,xs(D)], from the most important to
the least

5: for m = 1, 2, . . . D do ▷ Stepwise forward selection
6: Fit a GP to Dm := {(xi

s(1):s(m), y
i)}t−1

i=1 where xi
s(1):s(m) is the i-th input with only the first

m important variables, let Lm to be the value of final negative marginal log likelihood
7: if m < 3 then
8: continue
9: else if Lm−1 − Lm ≤ 0 or Lm−1 − Lm < Lm−2−Lm−1

10 then
10: break
11: end if
12: end for
13: return xipt = {xs(1), . . . ,xs(m−1)}

3.1 Variable selection

The variable selection step in VS-BO (Algorithm 2) can be further separated into two substeps:
(1) calculate the importance score (IS) of each variable (line 3 in Algorithm 2), and (2) do the
stepwise-forward variable selection [Derksen and Keselman, 1992] according to the importance
scores.

For step one, we develop a gradient-based IS calculation method, called Grad-IS, inspired by
Paananen et al. [2019]. Intuitively, if the partial derivative of the function f with respect to one
variable is large on average, then the variable ought to be important. Since the derivative of f is
unknown, VS-BO instead estimates the expectation of the gradient of posterior mean from a fitted

4



GP model, normalized by the posterior standard deviation:

IS = Ex∼Unif(X )

 ∇xEp(f(x)|x,D)

[
f(x)

]√
V arp(f(x)|x,D)

[
f(x)

]
 = Ex∼Unif(X )

[
∇xµ(x | D)

σ(x | D)

]

≈ 1

Nis

Nis∑
k=1

∇xµ(x
k | D)

σ(xk | D)
xk i.i.d∼ Unif(X ).

Here, both ∇xµ(· | D) and σ(· | D) have explicit forms. Both the Grad-IS and
Kullback-Leibler Divergence (KLD)-based methods in Paananen et al. [2019] are estimations of

Ex∼Unif(X )

[
∇xEp(f(x)|x,D)[f(x)]√
V arp(f(x)|x,D)[f(x)]

]
. Since the KLD method only calculates approximate derivatives

around the chosen points in D that are always unevenly distributed, it is a biased estimator, while our
importance score estimation is unbiased.

Each time the algorithm fits GP to the existing query-output pairs, the marginal log likelihood (MLL)
of GP is maximized by updating parameters Θ and σ0. VS-BO takes negative MLL as the loss and
uses its value as the stopping criteria of the stepwise-forward selection. More specifically, VS-BO
sequentially selects variables according to the important score, and when a new variable is added, the
algorithm will fit GP again by only using those chosen variables and records a new final loss (line 6
in Algorithm 2). If the new loss is nearly identical to the previous loss, the loss of fitted GP when
the new variable is not included, then the selection step stops (line 9 in Algorithm 2) and all those
already chosen variables are important variables.

Consider the squared exponential kernel, a common kernel choice for GP, which is given by

k(x,x′,Θ = {ρ21:D, α2
0}) = α2

0 exp

−1

2

D∑
i=1

ρ2i (xi − x′
i)

2

 ,

where ρ2i is the inverse squared length scale of the i-th variable. On the one hand, when only a small
subset of variables in x are important, the variable selection is similar to adding a L0 regularization
for GP fitting step. Let ρ = [ρ21, . . . , ρ

2
D], the variable selection step chooses a subset of variables and

specifies ρ2i = 0 when i-th variable is in xnipt, leading∥ρ∥0 to be small. Therefore, fitting GP by
only using variables in xipt is similar to learning the kernel function with sparse parameters. On the
other hand, when in the worst case every variable is equally important, xipt is likely to contain nearly
all the variables in x, and in that case VS-BO degenerates to vanilla BO.

3.2 Momentum mechanism in variable selection

The idea of VS-momentum is to some extent similar to momentum in the stochastic gradient
descent [Loizou and Richtárik, 2017]. Intuitively, queries obtained after one variable selection step
can give extra information on the accuracy of this variable selection. If empirically a new maximizer
is found, then this variable selection step is likely to have found real important variables, hence
most of these variables should be kept at the next variable selection step. Otherwise, most should be
removed and new variables need to be added.

More specifically, we say that the variable selection at iteration t+Nvs is in an accurate case when
maxk∈{t+1,...,t+Nvs} y

k > maxk∈{1,...,t} y
k, otherwise it is in an inaccurate case. In the accurate

case, VS-BO first uses recursive feature elimination (RFE) based algorithm to remove redundant
variables in xipt that is selected at t, then it adds new variables into the remaining only if the loss
decreases evidently (Figure 1a). In the inaccurate case, variables selected at t will not be considered
at t+Nvs unless they still obtain very high important scores at t+Nvs (marked by the blue box in
Figure 1b). New variables are added via stepwise-forward algorithm. The details of variable selection
with momentum mechanism are described in section A of the appendix.

3.3 Sampling for unimportant variables

We propose a method based on Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to obtain
the new value of unimportant variables for each iteration. CMA-ES is an evolutionary algorithm for

5



Figure 1: Momentum mechanism in VS-BO. (a) Accurate case, RFE is first used to remove redundant
variables, and then new variables are added. (b) Inaccurate case, most variables are removed except
those that are considered very important in both variable selection steps (blue box). New variables
are then added.

numerically optimizing a function. For each generation k, the algorithm samples new offsprings from
a multivariate Gaussian distribution N

(
m(k−1), (σ(k−1))2

)
and updates m(k−1) and (σ(k−1))2

based on these new samples and their corresponding function values. Details of this algorithm can be
seen in Hansen [2016].

Using the same approach as CMA-ES, VS-BO uses the initialized data {(xi, yi)}Ninit
i=1 to initialize

the multivariate Gaussian distribution p(x | D) (line 5 in Algorithm 1), and for every Nvs iterations,
it updates the distribution based on new query-output pairs (line 9 in Algorithm 1). Because of the
property of Gaussian distribution, the conditional distribution p(xnipt | xipt,D) is easily derived
which is also a multivariate Gaussian distribution. Therefore, xt

nipt can be sampled from the Gaussian
distribution p(xnipt | xt

ipt,D) (line 13 in Algorithm 1) when xt
ipt is obtained.

Compared to BO, it is much faster to update the evolutionary algorithm and obtain new queries,
although these queries are less precise than those from BO. VS-BO takes advantage of the strength of
these two methods by using them on different variables. Important variables are crucial to the function
value, therefore VS-BO uses the framework of BO on them to obtain precise queries. Unimportant
variables do not effect the function value too much so there is no need to spend large time budget to
search for extremely precise queries. Hence, they are determined by CMA-ES to reduce runtime. In
addition, when the variable selection step is inaccurate, VS-BO degenerates to an algorithm that is
similar to CMA-ES rather than random sampling, therefore this sampling strategy may help improve
the robustness of the performance of the whole algorithm.

4 Computational complexity analysis

From the theoretical perspective, we prove that running BO by only using those important variables
is able to decrease the runtime of both the step of fitting the GP and maximizing the acquisition
function. Specifically, we have the following proposition:
Proposition 4.1. Suppose the cardinality of xipt is p and the Quasi-Newton method (QN) is used
for both fitting the GP and maximizing the acquisition function. Under the choice of commonly used
kernel functions and acquisition functions, if only variables in xipt is used, then the complexity of
each step of QN is O(p2 + pn2 + n3) for fitting the GP and O(p2 + pn+ n2) for maximizing the
acquisition function, where n is the number of queries that are already obtained.

The proof is in section B of the appendix. Note that the method for fitting the GP and maximizing the
acquisition function under the framework of BoTorch is limited-memory BFGS, which is indeed a QN
method. Since the complexity is related to the quadratic of p, selecting a small subset of variables (so
that p is small) can decrease the runtime of BO. Figure 6 empirically shows that compared to vanilla
BO, VS-BO can both reduce the runtime of fitting a GP and optimizing the acquisition function,
especially when n is not small.

5 Regret bound analysis

Let x∗ be one of the maximal points of f(x). To quantify the efficacy of the optimization algorithm,
we are interested in the cumulative regret RN , defined as: RN =

∑N
t=1

[
f(x∗)− f(xt)

]
where xt is

6



the query at iteration t. Intuitively, the algorithm is better when RN is small, and a desirable property
is to have no regret: limN→∞ RN/N = 0. Here, we provide an upper bound of the cumulative regret
for a simplified VS-BO algorithm, called VS-GP-UCB (Algorithm 6 in the appendix). Similar to
Srinivas et al. [2009], for proving the regret bound we need the smoothness assumption of the kernel
function. In addition, we have the extra assumption that the D− d variables in x are unimportant (for
convenience we index unimportant variables from d+ 1 to D without loss of generality), meaning
the absolute values of partial derivatives of f on those D − d variables are in general smaller than
those on important variables. Formally, we have the following assumption:
Assumption 5.1. Let X ⊂ [0, 1]D be compact and convex, D ∈ N, and f be a sample path of a GP
with mean zero and the kernel function k, which satisfies the following high probability bound on the
derivatives of f for some constants a, b > 0, 1 > α ≥ 0:

P (sup
x∈X

∣∣∣∣∣ ∂f∂xj

∣∣∣∣∣ > L) ≤ a exp

(
−
(
L

b

)2
)
, j = 1, . . . , d

And:

P (sup
x∈X

∣∣∣∣∣ ∂f∂xj

∣∣∣∣∣ > L) ≤ a exp

(
−
(

L

αb

)2
)
, j = d+ 1, . . . , D,

In VS-GP-UCB, the values of unimportant variables are fixed in advance (line 4 in Algorithm 6),
denoted as x0

[d+1:D], and the important variables are queried at each iteration by maximizing the
acquisition function upper confidence bound (UCB) [Auer, 2002] with those fixed unimportant
variables (line 6 in Algorithm 6). We have the following regret bound theorem of VS-GP-UCB:
Theorem 5.1. Let X ⊂ [0, 1]D be compact and convex, suppose Assumption 5.1 is satisfied, pick
δ ∈ (0, 1), and define

βt = 2 log
8π2t2

3δ
+ 2(D − d) log

αDt2b

√
log

(
8Da

δ

)
+ 1

+ 2d log

Dt2b

√
log

(
8Da

δ

) .

Running the VS-GP-UCB, with probability ≥ 1− δ, we have:

RN

N
=

∑N
t=1 rt
N

≤ 2

√
C1

βNγN
N

+
π2

3N
+ αb

√
log

(
8Da

δ

)
(D − d),

Here, γN := maxA⊂X :|A|=N I(yA; fA) is the maximum information gain with a finite set of sampling
points A, fA = [f(x)]x∈A, yA = fA + ϵA, and C1 = 8

log(1+σ−2
0 )

.

The proof of Theorem 5.1 is in section C of the appendix. Srinivas et al. [2009] upper bounded the
maximum information gain for some commonly used kernel functions, for example they prove that
by using SE kernel with the same length scales (ρi = ρ0 for all i), γN = O

(
(logN)D+1

)
so that

limN→∞(βNγN )/N = 0. However, every variable is equally important in the SE kernel with the
same length scales, which does not obey Assumption 5.1. We hypothesize that by using SE kernel
of which the length scales are different such that Assumption 5.1 is satisfied, the statement that
limN→∞(βNγN )/N = 0 is also correct, although we do not have proof here.

Li et al. [2016] also derives a regret bound for its dropout algorithm (Lemma 5 in Li et al. [2016]).
Compared to the regret bound in Srinivas et al. [2009] (Theorem 2 in Srinivas et al. [2009]), both
Li et al. [2016] and our work have an additional residual in the bound, while ours contains a small
coefficient α. In the case when α → 0, the bound in Theorem 5.1 is the same as that in theorem 2 of
Srinivas et al. [2009] and there is no regret. These results show the necessity of the variable selection
since it can help decrease the value of α. In addition, compared to fixing unimportant variables in
VS-GP-UCB, sampling from the CMA-ES posterior may further decrease the residual value.

6 Experiments

We compare VS-BO to a broad selection of existing methods: vanilla BO, REMBO and its variant
REMBO Interleave, Dragonfly, HeSBO and ALEBO. The details of implementations of these methods
as well as hyperparameter settings are described in section D of the appendix.
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Figure 2: Performance of BO methods on Branin, Hartmann6 and Styblinski-Tang4 test functions.
For each test function, we do 20 independent runs for each method. We plot the mean and 1/8
standard deviation of the best maximum value found by iterations.

6.1 Synthetic problems

We use the Branin (de = 2), Hartmann6 (de = 6) and Styblinski-Tang4 (de = 4) functions as
test functions. Previous high-dimensional BO work extends these functions to high dimension by
adding unrelated variables, while in our work we present a harder test setting that has not been
tried before by adding both unrelated and unimportant (but not totally unrelated) variables. For
example, in the Hartmann6 case with the standard Hartmann6 function fHartmann6(x[1:6]) we
first construct a new function Fhm6(x) by adding variables with different importance, Fhm6(x) =
fHartmann6(x[1:6])+ 0.1fHartmann6(x[7:12])+ 0.01fHartmann6(x[13:18]), and we further extend it
to D = 50 by adding unrelated variables; see section D for full details. The dimension of effective
subspace of Fhm6 is 18, while the dimension of important variables is only 6. We hope that VS-BO
can find those important variables successfully. For each embedding-based methods we evalualte
both d = 4 and d = 6.

Figures 2 and 4 show performance of VS-BO as well as other BO methods on these three synthetic
functions. When the iteration budget is fixed (Figure 2), the best value in average found by VS-BO
after 200 iterations is the largest or slightly smaller than the largest in all three cases. When the wall
clock time or CPU time budget for BO is fixed (Figure 4), results show that VS-BO can find a large
function value with high computational efficiency. Figure 5 shows that VS-BO can accurately find
all the real important variables and meanwhile control false positives. We also test VS-BO on the
function that has a non-axis-aligned subspace, and results in Figure 7 show that VS-BO also performs
well. Vanilla BO under the framework of BoTorch can also achieve good performance for the fixed
iteration budget, however, it is very computationally inefficient. For embedding-based methods, the
results reflect some of their shortcomings. First, the performance of these methods are more variable
than VS-BO; for example, HeSBO with d = 6 performs very well in the Styblinski-Tang4 case but
not in the others; Second, embedding-based methods are sensitive to the choice of the embedding
dimension d, they perform especially bad when d is smaller than the dimension of important variables
(see results of the Hartmann6 case) and may still perform not well even when d is larger (such
as ALEBO with d = 6 in the Styblinski-Tang4 case), while VS-BO can automatically learn the
dimension. One advantage of embedding-based methods is that they may have a better performance
than VS-BO within a very limited iteration budget (for example 50 iterations), which is expected
since a number of data points are needed for VS-BO to make the variable selection accurate.

6.2 Real-world problems

We compare VS-BO with other methods on two real-world problems. First, VS-BO is tested on
the rover trajectory optimization problem presented in Wang et al. [2017], a problem with a 60-
dimensional input domain. Second, it is tested on the vehicle design problem MOPTA08 [Jones,
2008], a problem with 124 dimensions. On these two problems, we evaluate both d = 6 and d = 10
for each embedding-based method, except we omit ALEBO with d = 10 since it is very time
consuming. The detailed settings of these two problems are described in section D of the appendix.
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Figure 3: Performance of BO methods on the rover trajectory and MOPTA08 problems. We do 20
independent runs on the rover trajectory problem and 15 on the MOPTA08 problem. We plot the
mean and 1/4 standard deviation of the best maximum value found by iterations. Curves of vanilla
BO and ALEBO with d = 6 do not reach the maximum iteration since they are time consuming and
cannot run the maximum within the wall clock time budget (3600 seconds for the rover trajectory
problem for each run and 4800 seconds for the MOPTA08 problem).

Figures 3 and 8 show the performance of VS-BO and other BO methods on these two problems.
When the iteration budget is fixed (Figure 3), VS-BO and vanilla BO have a better performance than
other methods on both problems. When the wall clock or CPU time is fixed (Figure 8), Dragonfly and
VS-BO reach the best performance on the rover trajectory problem, and Dragonfly performs the best
on MOPTA08 problem while VS-BO has the second best performance. Vanilla BO is computationally
inefficient so it does not have good performance with the fixed runtime. The left column of Figure 9
shows the frequency of being chosen as important for each variable when VS-BO is used. Since
there is no ground truth of important variables in real-world cases, we use a sampling experiment to
test whether those more frequently-chosen variables are more important. Specifically, we sample
the first 5 variables that have been chosen most frequently by a Sobol sequence and fix the values of
other variables with the values in the best query we have found (the query having the highest function
value). We then calculate the function values of this set of samples. Likewise, we also sample the first
5 variables that have been chosen least frequently and evaluate the functions. The right column of
Figure 9 shows that the variance of function values from the first set of samples is significantly higher
than that from the second, especially on the MOPTA08 problem, indicating that those frequently
selected variables indeed have more significant effect on the function value.

7 Conclusion

We propose a new method, VS-BO, for high-dimensional BO that is based on the assumption that
variables of the input can be divided to two categories: important and unimportant. Our method
can assign variables into these two categories with no need for pre-specifying any crucial hyper-
parameter and use different strategies to decide values of the variables in different categories to reduce
runtime. The good performance of our method on synthetic and real-world problems further verify the
rationality of the assumption. We show the computational efficiency of our method both theoretically
and empirically. In addition, information from the variable selection improves the interpretability
of BO model: VS-BO can find important variables so that it can help increase our understanding of
the black-box function. We also notice that in practice vanilla BO under the framework of BoTorch
usually has a good performance if the runtime of BO does not need to be considered, especially
when the dimension is not too large (D < 100). However, this method is usually not considered as a
baseline to compare with in previous high-dimensional BO work.

We also find some limitations of our method when running experiments. First, when the dimension of
the input increases, it becomes harder to do variable selection accurately. Therefore, embedding-based
methods are still the first choice when the input of a function has thousands of dimensions. It might be
interesting to develop new algorithms that can do variable selection robustly even when the dimension
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is extremely large. Further, Grad-IS might be invalid when variables are discrete or categorical,
therefore new methods for calculating the importance score of these kinds of variables are needed.
These are several directions for future improvements of VS-BO. It is also interesting to do further
theoretical study such as investigating the bounds on the maximum information gain of kernels that
satisfy Assumption 5.1.
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A Variable selection with momentum mechanism

In this section, we provide pseudo-code for the algorithm of variable selection with momentum
mechanism. Note that Algorithm 4 (momentum in the inaccurate case) is similar to Algorithm 2,
except the lines that are marked with red color.

Algorithm 3 Variable Selection (VS) with Momentum
1: Input: iteration index t, D = {(xi, yi)}ti=1, Ninit, Nvs, set of important variables chosen at

iteration t−Nvs, denote as x̂ipt

2: Output: Set of important variables chosen at iteration t, denote as xipt

3: if t = Ninit +Nvs or x̂ipt = x then ▷ First time to do variable selection or x̂ipt contains all
variables

4: return Algorithm 2
5: else if maxk∈{t−Nvs+1,t−Nvs+2,...,t} y

k ≤ maxk∈{1,...,t−Nvs} y
k then ▷ Inaccurate case

6: return Algorithm 4
7: else ▷ Accurate case
8: return Algorithm 5
9: end if

Algorithm 4 Momentum in the inaccurate case
1: Input: D = {(xi, yi)}ti=1, Nvs, set of important variables chosen at iteration t−Nvs, denote as

x̂ipt

2: Output: Set of important variables chosen at iteration t, denote as xipt

3: Fit a GP to D and calculate important scores of variables IS where IS[i] is the important score
of the i-th variable

4: Sort variables according to their important scores, [xs(1), . . . ,xs(D)], from the most important to
the least

5: for n = 1, . . . D do
6: if xs(n) /∈ x̂ipt then
7: break
8: end if
9: end for

10: for m = n, n+ 1, . . . D do ▷ Stepwise forward selection
11: Fit a GP to Dm := {(xi

s(1):s(m), y
i)}t−1

i=1 where xi
s(1):s(m) is the i-th input with only the first

m important variables, let Lm to be the value of final negative marginal log likelihood
12: if m− n < 2 then
13: continue
14: else if Lm−1 − Lm ≤ 0 or Lm−1 − Lm < Lm−2−L(m−1)

10 then
15: break
16: end if
17: end for
18: return xipt = {xs(1), . . . ,xs(m−1)}

B Proof of Proposition 4.1

Proof of Proposition 4.1. Given query-output pairs D = {(xi, yi)}ni=1, the marginal log likelihood
(MLL) that need to be maximized at the step of fitting a GP has the following explicit form:

log p(Θ = {ρ21:D, α2
0}, σ0 | D) = −1

2
yM−1y⊤ − 1

2
log|M | − n log 2π

2

where y = [y1, . . . yn] is an n-dimensional vector and M =
(
K(x1:n,Θ) + σ2

0I
)
. When the

quasi-Newton method is used for maximizing MLL, the gradient should be calculated for each
iteration:

▽Θ,σ0
log p(Θ, σ0 | D) = −1

2
yM−1

(
▽Θ,σ0

M
)
M−1y⊤ − 1

2
tr
(
M−1

(
▽Θ,σ0

M
))
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Algorithm 5 Momentum in accurate case
1: Input: D = {(xi, yi)}ti=1, Nvs, set of important variables chosen at iteration t−Nvs, denoted

as x̂ipt, with cardinality w =
∣∣x̂ipt

∣∣
2: Output: Set of important variables chosen at iteration t, denote as xipt

3: Fit a GP to D and calculate important scores of variables IS where IS[i] is the important score
of the i-th variable

4: Sort variables according to IS, [xs(1), . . . ,xs(D)], from the most important to the least
5: Fit a GP by using variables in x̂ipt, i.e. fit a GP to {(x̂i

ipt, y
i)}ti=1, and calculate important scores

of these variables ÎS. Let L̂w be the value of final negative marginal log likelihood
6: Sort variables in x̂ipt according to ÎS, [xs′(1), . . . ,xs′(w)], from the most important to the least.
7: for m = w − 1, w − 2, . . . 0 do ▷ Recursive feature elimination
8: if m = 0 then
9: Set xipt = {xs′(1)}

10: break
11: end if
12: Fit a GP by only using the first m important variables according to ÎS. Let L̂m to be the

value of final negative marginal log likelihood
13: if L̂m > L̂m+1 then
14: Set xipt = {xs′(1), . . . ,xs′(m+1)}
15: Set L0 = L̂m+1

16: break
17: end if
18: end for
19: for m = 1, 2, . . . D do ▷ Stepwise forward selection
20: if xs(m) ∈ xipt then
21: Set Lm = Lm−1, Lm−1 = Lm−2

22: continue
23: end if
24: Fit a GP by using variables in xipt ∪ {xs(m)}. Let Lm to be the value of final negative

marginal log likelihood
25: if m < 2 then
26: xipt = xipt ∪ {xs(m)}
27: continue
28: else if Lm−1 − Lm ≤ 0 or Lm−1 − Lm < Lm−2−L(m−1)

10 then
29: break
30: end if
31: xipt = xipt ∪ {xs(m)}
32: end for
33: return xipt

When only variables in xipt are used, we define the distance between two queries xi and xj as:

d(xi,xj) =

√ ∑
m:m∈xipt

ρ2m(xi
m − xj

m)2

and all the other inverse squared length scales corresponding to unimportant variables are fixed to 0.
Commonly chosen kernel functions are actually functions of the distance defined above, for example
the squared exponential (SE) kernel is as the following:

kSE(x
i,xj ,Θ) = α2

0 exp

(
−1

2
d2(xi,xj)

)
and the Matern-5/2 kernel is as the following:

kMt(x
i,xj ,Θ) = α2

0

(
1 +

√
5d(xi,xj) +

5

3
d2(xi,xj)

)
exp

(
−
√
5d(xi,xj)

)
Since the cardinality of xipt is p, the cardinality of parameters in the kernel function that are not
fixed to 0 is p+ 1, hence the complexity of calculating the gradient of the distance is O(p), therefore
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whatever using SE kernel or Matern-5/2 kernel, the complexity of calculating ▽Θk(x
i,xj ,Θ) is

O(p).

Since M is a n× n matrix and each entry Mij equals to k(xi,xj ,Θ) + σ2
01(i = j), the complexity

of calculating ▽Θ,σ0M is O(pn2). the complexity of calculating the inverse matrix M−1 is O(n3)
in general, and the following matrix multiplication and trace calculation need O(pn2), therefore the
complexity of calculating the gradient of MLL is O(pn2 + n3). Once the gradient is obtained, each
quasi-Newton step needs additional O(p2), therefore the complexity of one step of quasi-Newton
method when fitting a GP is O(p2 + pn2 + n3).

As described in section 2, the acquisition function is a function that depends on the posterior mean µ
and the posterior standard deviation σ, hence the gradients of µ and σ should be calculated when the
gradient of the acquisition function is needed.

When only variables in xipt are used, the gradient of µ with respect to xipt has the following form:

▽xipt
µ(xipt | D) =

(
▽xipt

K(xipt,x
1:n
ipt )
)(

K(x1:n
ipt ,Θ) + σ2

0I
)−1

y⊤

Here
(
K(x1:n

ipt ,Θ) + σ2
0I
)−1

y⊤ is fixed so that its value can be calculated in advance and stored as

a n-dimensional vector. K(xipt,x
1:n
ipt ) is a n-dimensional vector of which each element is a kernel

value between xipt and xi
ipt, hence the complexity of calculating the gradient of each element in

K(xipt,x
1:n
ipt ) is O(p). Therefore, the complexity is O(pn) to calculate ▽xipt

K(xipt,x
1:n
ipt ) and

O(pn) for additional matrix manipulation, hence the total complexity for calculating ▽xiptµ(xipt |
D) is O(pn).

The gradient of σ has the following form:

▽xiptσ(xipt | D) = ▽xipt

√
k(xipt,xipt,Θ)−K(xipt,x1:n

ipt )[K(x1:n
ipt ,Θ) + σ2

0I]
−1K(xipt,x1:n

ipt )
⊤

= −

(
▽xiptK(xipt,x

1:n
ipt )
)(

K(x1:n
ipt ,Θ) + σ2

0I
)−1

√
k(xipt,xipt,Θ)−K(xipt,x1:n

ipt )[K(x1:n
ipt ,Θ) + σ2

0I]
−1K(xipt,x1:n

ipt )
⊤

Once ▽xipt
K(xipt,x

1:n
ipt ) is calculated, O(pn+ n2) is needed for additional matrix manipulation,

hence the total complexity for calculating ▽xipt
σ(xipt | D) is O(pn+ n2).

For commonly used acquisition functions such as upper confidence bound (UCB) [Auer, 2002]:

UCB(xipt | D) = µ(xipt | D) +
√

βnσ(xipt | D)

and expected improvement (EI) [Močkus, 1975]:

EI(xipt | D) =
(
µ(xipt | D)− y∗n

)
Φ

(
µ(xipt | D)− y∗n

σ(xipt | D)

)
+ σ(xipt | D)φ

(
µ(xipt | D)− y∗n

σ(xipt | D)

)

where y∗n = maxi≤n y
i, Φ(·) is the cumulative distribution function of the standard normal dis-

tribution, and φ(·) is the probability density function, once the gradients of µ and σ are derived,
only additional O(p) is needed for vector calculation, hence the total complexity of calculating
the gradient of the acquisition function is O(pn+ n2). Again, once the gradient is obtained, each
quasi-Newton step needs additional O(p2), therefore the complexity of one step of quasi-Newton
method for maximising the acquisition function is O(p2 + pn+ n2).

C Proof of Theorem 5.1

We show the details of VS-GP-UCB and provide the proof of Theorem 5.1 below.
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Algorithm 6 VS-GP-UCB
1: Input: domain X , GP prior with mean µ0 = 0 and the kernel function k, maximal iteration N
2: Output: Approximate maximizer xmax

3: Let D = ∅
4: Fix the last D − d variables, x0

[d+1:D]

5: for t = 1, 2, . . . N do
6: Choose xt

[1:d] = argmaxx[1:d]
µ({x[1:d],x

0
[d+1:D]} | D) +

√
βtσ({x[1:d],x

0
[d+1:D]} | D)

7: Sample yt = f
(
xt = {xt

[1:d],x
0
[d+1:D]}

)
+ ϵt, where ϵt ∼ N (0, σ2

0) is a noise

8: Update D = D ∪ {(xt, yt)}
9: end for

10: return xmax that is equal to xi with maximal yi

Proof of Theorem 5.1. The second inequality of Assumption 5.1 is equivalent to the following in-
equality:

P (sup
x∈X

∣∣∣∣∣ ∂f∂xj

∣∣∣∣∣ > αL) ≤ a exp

(
−
(
L

b

)2
)
, j = d+ 1, . . . , D

Therefore, according to Assumption 5.1 and the union bound, we have that w.p. ≥ 1 −

Da exp

(
−
(

L
b

)2)
:

∀x,x′ ∈ X ,
∣∣f(x)− f(x′)

∣∣ ≤ L
∥∥∥x[1:d] − x′

[1:d]

∥∥∥
1
+ αL

∥∥∥x[d+1:D] − x′
[d+1:D]

∥∥∥
1

Let δ
2 = Da exp

(
−
(

L
b

)2)
, meaning L = b

√
log
(

2Da
δ

)
, we have that w.p. ≥ 1− δ

2 ,

∀x,x′ ∈ X ,
∣∣f(x)− f(x′)

∣∣ ≤ b

√
log

(
2Da

δ

)(∥∥∥x[1:d] − x′
[1:d]

∥∥∥
1
+ α

∥∥∥x[d+1:D] − x′
[d+1:D]

∥∥∥
1

)

Algorithm 7 GP-UCB (Algorithm 1 in Srinivas et al. [2009])
1: Input: domain X , GP prior with mean µ0 = 0 and the kernel function k, maximal iteration N
2: Output: Approximate maximizer xmax

3: Let D̂ = ∅
4: for t = 1, 2, . . . N do
5: Choose x̂t = argmaxx∈X µ̂(x | D̂ = {(x̂i, ŷi)}t−1

i=1) +
√
βtσ̂(x | D̂ = {(x̂i, ŷi)}t−1

i=1)
6: Sample ŷt = f

(
x̂t
)
+ ϵ̂t, where ϵ̂t ∼ N (0, σ2

0) is a noise
7: Update D̂ = D̂ ∪ {(x̂t, ŷt)}
8: end for
9: return x̂max that is equal to x̂i with maximal ŷi

Now we consider the standard GP-UCB algorithm (Algorithm 7). Given the same GP prior and the
same kernel function, since VS-GP-UCB and GP-UCB are two different algorithms, for each iteration
they obtain different queries and have different posterior mean and standard deviation. We use the
hat symbol to represent elements from GP-UCB, and in the following proof we use µt(·) (µ̂t(·))
to represent µ(· | D = {(xi, yi)}ti=1) (µ̂(· | D̂ = {(x̂i, ŷi)}ti=1)) and σt(·) (σ̂t(·)) to represent
σ(· | D = {(xi, yi)}ti=1) (σ̂(· | D̂ = {(x̂i, ŷi)}ti=1)) for convenience.

Srinivas et al. [2009] has the following lemma:

Lemma C.1 (Lemma 5.6 in Srinivas et al. [2009]). Consider subsets Xt ⊂ X with finite size,
|Xt| < ∞, pick δ ∈ (0, 1) and set βt = 2 log

(
|Xt|πt

δ

)
, where

∑
t≥1 π

−1
t = 1, πt > 0. Running

GP-UCB, we have that∣∣f(x)− µ̂t−1(x)
∣∣ ≤√βtσ̂t−1(x) ∀x ∈ Xt,∀t ≥ 1
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holds with probability ≥ 1− δ.

By using the same proof procedure, we can easily obtain the following lemma:

Lemma C.2. Consider subsets Xt ⊂ X with finite size, |Xt| < ∞, pick δ ∈ (0, 1) and set

βt = 2 log
(
|Xt|πt

δ

)
, where

∑
t≥1 π

−1
t = 1, πt > 0. Running VS-GP-UCB, we have∣∣f(x)− µt−1(x)

∣∣ ≤√βtσt−1(x) ∀x ∈ Xt,∀t ≥ 1

holds with probability ≥ 1− δ.

Now consider Xt to be the following discretization: for each dimension j = 1, . . . , d, discretize it
with τt uniformly spaced points, and for each dimension j = d + 1, . . . , D, discretize it with ατt
uniformly spaced points plus the j-th element in xt, xt

j = x0
j (note that xt

j is fixed when j ≥ d+ 1).

Denote (̃x)t be the closest point in Xt to x under L1 norm (note that xt is the t-th query of the
VS-GP-UCB algorithm, while (̃xt)t′ is its closet point in Xt′), then because of the smoothness
assumption, we have w.p. ≥ 1− δ

2 :∣∣∣∣f(x)− f
(
(̃x)t

)∣∣∣∣ ≤ b

√
log

(
2Da

δ

)
d

τt
+ αb

√
log

(
2Da

δ

)
D − d

ατt
= b

√
log

(
2Da

δ

)
D

τt
,

∀x ∈ X ,∀t ≥ 1

By choosing τt = Dt2b

√
log
(

2Da
δ

)
, we have w.p. ≥ 1− δ

2 :∣∣∣f(x)− f((̃x)t)
∣∣∣ ≤ 1

t2
∀x ∈ X ,∀t ≥ 1

Under this situation, we have:

|Xt| = (ατt + 1)D−dτdt =

αDt2b

√
log

(
2Da

δ

)
+ 1

D−dDt2b

√
log

(
2Da

δ

)d

Combine with Lemma C.2, by setting:

βt = 2 log

(
4|Xt|πt

δ

)
= 2 log

4πt

δ
+ 2(D − d) log

αDt2b

√
log

(
2Da

δ

)
+ 1


+ 2d log

Dt2b

√
log

(
2Da

δ

)
then w.p. ≥ 1− δ:∣∣∣∣f(x)− µt−1

(
(̃x)t

)∣∣∣∣ ≤ ∣∣∣∣f(x)− f
(
(̃x)t

)
+ f

(
(̃x)t

)
− µt−1

(
(̃x)t

)∣∣∣∣
≤
∣∣∣∣f(x)− f

(
(̃x)t

)∣∣∣∣+∣∣∣∣f ((̃x)t)− µt−1

(
(̃x)t

)∣∣∣∣
≤ 1

t2
+
√
βtσt−1

(
(̃x)t

)
∀x ∈ X ,∀t ≥ 1.

Likewise, by setting the same βt, we have w.p. ≥ 1− δ:∣∣∣∣f(x)− µ̂t−1

(
(̃x)t

)∣∣∣∣ ≤ 1

t2
+
√
βtσ̂t−1

(
(̃x)t

)
∀x ∈ X ,∀t ≥ 1.
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Let xt
mix = {x̂t

[1:d],x
0
[d+1:D]} (first d variables are equal to those in x̂t, and the others are equal to

x0
[d+1:D]), again because of the smoothness assumption, we have w.p. ≥ 1− δ

2 :

∣∣f(xt
mix)− f(x̂t)

∣∣ ≤ αb

√
log

(
2Da

δ

)∥∥∥x0
[d+1:D] − x̂t

[d+1:D]

∥∥∥
1
≤ αb

√
log

(
2Da

δ

)
(D − d)

Note that the point in Xt that is closest to xt
mix is (̃xt

mix)t =

{
(̃x̂t

[1:d])t
,x0

[d+1:D]

}
because all

elements in x0
[d+1:D] are contained in the discretization. Since xt

[1:d] is the maximizer of UCB with
fixed D − d variables, we have:

µt−1

(
(̃xt

mix)t

)
+
√

βtσt−1

(
(̃xt

mix)t

)
≤ µt−1(x

t) +
√
βtσt−1(x

t)

Similarly, considering GP-UCB algorithm, we have:

µ̂t−1((̃x∗)t) +
√

βtσ̂t−1((̃x∗)t) ≤ µ̂t−1(x̂
t) +

√
βtσ̂t−1(x̂

t)

To finish the proof, we need to use another lemma in Srinivas et al. [2009]:

Lemma C.3 (Lemma 5.5 in Srinivas et al. [2009]). Let {x̂t} be a sequence of points chosen by
GP-UCB, pick δ ∈ (0, 1) and set βt = 2 log

(
πt

δ

)
, where

∑
t≥1 π

−1
t = 1, πt > 0. Then,

∣∣f(x̂t)− µ̂t−1(x̂
t)
∣∣ ≤√βtσ̂t−1(x̂

t),∀t ≥ 1

holds with probability ≥ 1− δ.

By using the same proof procedure, we can easily obtain the following lemma:

Lemma C.4. Let {xt} be a sequence of points chosen by VS-GP-UCB, pick δ ∈ (0, 1) and set
βt = 2 log

(
πt

δ

)
, where

∑
t≥1 π

−1
t = 1, πt > 0. Then,

∣∣f(xt)− µt−1(x
t)
∣∣ ≤√βtσt−1(x

t),∀t ≥ 1

holds with probability ≥ 1− δ.

Finally, by using δ
4 and setting (often set πt =

π2t2

6 ):

βt = 2 log
16πt

δ
+ 2(D − d) log

αDt2b

√
log

(
8Da

δ

)
+ 1

+ 2d log

Dt2b

√
log

(
8Da

δ

)
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w.p. ≥ 1 − δ the simple regret rt of VS-GP-UCB, rt = f(x∗) − f(xt = {xt
[1:d],x

0
[d+1:D]}), is

upper bounded by:

rt = f(x∗)− f(xt)

≤ µ̂t−1((̃x∗)t) +
√

βtσ̂t−1((̃x∗)t) +
1

t2
− f(xt)

≤ µ̂t−1(x̂
t) +

√
βtσ̂t−1(x̂

t) +
1

t2
− f(xt)

= µ̂t−1(x̂
t) +

√
βtσ̂t−1(x̂

t)− f(x̂t) + f(x̂t)− f(xt
mix) + f(xt

mix)− f(xt) +
1

t2

≤ 2
√
βtσ̂t−1(x̂

t) + αb

√
log

(
8Da

δ

)
(D − d) + µt−1

(
(̃xt

mix)t

)
+
√
βtσt−1

(
(̃xt

mix)t

)
− f(xt) +

2

t2

≤ 2
√
βtσ̂t−1(x̂

t) + αb

√
log

(
8Da

δ

)
(D − d) + µt−1(x

t) +
√

βtσt−1(x
t)− f(xt) +

2

t2

≤ 2
√
βtσ̂t−1(x̂

t) + 2
√

βtσt−1(x
t) +

2

t2
+ αb

√
log

(
8Da

δ

)
(D − d)

By using Lemma 5.4 in Srinivas et al. [2009] and the Cauchy-Schwarz inequality, both∑N
t=1 2

√
βtσ̂t−1(x̂

t) and
∑N

t=1 2
√
βtσt−1(x

t) are upper bounded by
√
C1NβNγN , where C1 =

8

log(1+σ−2
0 )

, and γN := maxA⊂X :|A|=N I(yA; fA) is the maximum information gain with a finite set

of sampling points A, fA = [f(x)]x∈A, yA = fA + ϵA. Therefore, we have:

RN =

N∑
t=1

rt ≤ 2
√

C1NβNγN +
π2

3
+ αb

√
log

(
8Da

δ

)
N(D − d)

Hence:

RN

N
=

∑N
t=1 rt
N

≤ 2

√
C1

βNγN
N

+
π2

3N
+ αb

√
log

(
8Da

δ

)
(D − d)

D Detailed experimental settings and extended discussion of experimental
results

We use the framework of BoTorch to implement VS-BO. We compare VS-BO to the following
existing BO methods: vanilla BO, which is implemented by the standard BoTorch framework2;
REMBO and its variant REMBO Interleave [Wang et al., 2016], of which the implementations are
based on Metzen [2016]3; Dragonfly4 [Kandasamy et al., 2020], which contains the Add-GP method;
HeSBO [Nayebi et al., 2019] which has already been implemented in Adaptive Experimentation
Platform (Ax)5; And ALEBO6 [Letham et al., 2020]. By the time when we write this manuscript,
source codes of the work Spagnol et al. [2019] and Eriksson and Jankowiak [2021] have not been
released, so we cannot compare VS-BO with these two methods. Both VS-BO and vanilla BO use
Matern 5/2 as the kernel function and expected improvement as the acquisition function, and use

2https://botorch.org
3https://github.com/jmetzen/bayesian_optimization
4https://github.com/dragonfly/dragonfly/
5https://github.com/facebook/Ax/tree/master/ax/modelbridge/strategies
6https://github.com/facebookresearch/alebo
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limited-memory BFGS (L-BFGS) to fit GP and optimize the acquisition function. The number of
initialized samples Ninit is set to 5 for all methods, and Nvs in VS-BO is set to 20, Nis is set to
10000 for all experiments. The number of the interleaved cycle for REMBO Interleave is set to
4. Since our algorithm aims to maximize the black-box function, all the test functions that have
minimum points will be converted to the corresponding negative forms.

In synthetic experiments, as described in section 6.1, for each test function we add some unimportant
variables as well as unrelated variables to make it high-dimensional. The standard Branin function
fBranin has two dimensions with the input domain XBranin = [−5, 10]× [0, 10], and we construct
a new Branin function Fbranin as the following:

Fbranin(x) = fBranin(x[1:2]) + 0.1fBranin(x[3:4]) + 0.01fBranin(x[5:6]),

x ∈

 3⊗
i=1

XBranin

 44⊗
i=1

[0, 1]

where
⊗

represents the direct product. We use de = [2, 2, 2] to represent the dimension of the
effective subspace of Fbranin, the total effective dimension is 6, however, the number of important
variables is only 2.

Likewise, for the standard Hartmann6 function fHartmann6 that has six dimensions with the input
domain [0, 1]6, we construct Fhm6 as:

Fhm6(x) = fHartmann6(x[1:6]) + 0.1fHartmann6(x[7:12]) + 0.01fHartmann6(x[13:18]) x ∈ [0, 1]50

and use de = [6, 6, 6] to represent the dimension of the effective subspace. For the Styblinski-Tang4
function fST4 that has four dimensions with the input domain [−5, 5]4, we construct FST4 as:

FST4(x) = fST4(x[1:4]) + 0.1fST4(x[5:8]) + 0.01fST4(x[9:12]) x ∈ [−5, 5]50

and use de = [4, 4, 4] to represent the dimension of the effective subspace. All synthetic experiments
are run on the same Linux cluster that has 40 3.0 GHz 10-Core Intel Xeon E5-2690 v2 CPUs.

Figure 4: Performance of BO methods on Branin, Hartmann6 and Styblinski-Tang4 test functions.
For each test function, we do 20 independent runs for each method. We plot the mean and 1/8
standard deviation of the best maximum value found by wall clock time used for BO (first row) and
CPU time (second row).

Figure 2 and 4 show performances of different BO methods. They are compared under the fixed
iteration budget (Figure 2), the fixed wall clock time budget used for BO itself (time for evaluating the
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Figure 5: The total frequency of being chosen as important for each variable on Branin case (left),
Hartmann6 case (middle) and Styblinski-Tang4 case (right). For the Branin function, the first two
variables are important; for the Hartmann6 function, the first six variables are important; and for the
Styblinski-Tang4 function, the first four variables are important.

black box function is excluded) or the fixed CPU time budget (Figure 4). Figure 5 shows the frequency
of being chosen as important for each variable in steps of variable selection of VS-BO. Since we
do 20 runs of VS-BO on each test function, each run has 210 iterations and important variables are
re-selected every 20 iterations, the maximum frequency each variable can be chosen as important is
200. In the Branin case with de = [2, 2, 2], the first two variables are important, and the left panel
of Figure 5 shows that the frequency of choosing the first two variables as important is significantly
higher than that of choosing the other variables; In the Hartmann6 case with de = [6, 6, 6], the first
six variables are important, and the middle panel of Figure 5 shows that the frequency of choosing
the first six variables as important is the highest; In the Styblinski-Tang4 case with de = [4, 4, 4], the
first four variables are important, and again the right panel of Figure 5 shows that the frequency of
choosing the first four variables as important is the highest. These results indicate that VS-BO is able
to find real important variables and control false positives.

Figure 6 shows the wall clock time or CPU time comparison between VS-BO and vanilla BO for
each iteration under the step of fitting a GP or optimizing the acquisition function. As the number of
iterations increases, the runtime of vanilla BO increases significantly, while for VS-BO the runtime
only has a slight increase. These results empirically show that VS-BO is able to reduce the runtime
of BO process.

To test the performance of VS-BO on the function that has a non-axis-aligned subspace, we construct
a rotational Hartmann6 function Frot_H(x) by using the same way as Letham et al. [2020]. We
sample a rotation matrix A from the Haar distribution on the orthogonal group SO(100) [Stewart,
1980], and take the form of Frot_H(x) as the following:

Frot_H(x) = fHartmann6(A[: 6]x)

where A[: 6] ∈ R6×100 represents the first 6 rows of A and x ∈ [−1, 1]100 is the input. We then run
VS-BO as well as other methods on this function and compare their performance. Figure 7 shows that
in this case REMBO with d = 6 has the best performance. VS-BO also has a good performance, and
surprisingly it outperforms several embedding-based methods such as ALEBO (d = 6) and REMBO
Interleave (d = 6), although it tries to learn an axis-aligned subspace.

Spagnol et al. [2019] introduces several methods to sample unimportant variables and shows that
the mix strategy is the best, that is for each iteration, the algorithm samples values of unimportant
variables from the uniform distribution with probability 0.5 or use the values from the previous query
that has the maximal function value with probability 0.5. To compare the mix strategy with our
sampling strategy, i.e. sampling from CMA-ES related posterior, we replace our strategy with the mix
strategy in VS-BO, creating a variant method called VSBO mix. All the other parts in VSBO mix are
the same as those in VS-BO. We compare VS-BO with VSBO mix on these three synthetic functions,
and Figure 10 show that in general our sampling strategy is clearly better than the mix strategy.

For real-world problems, the rover trajectory problem is a high-dimensional optimization problem
with input domain [0, 1]60. The problem setting in our experiment is the same as that in Wang
et al. [2017], and the source code of this problem can be found in https://github.com/zi-w/Ensemble-
Bayesian-Optimization. MOPTA08 is another high-dimensional optimization problem with input
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Figure 6: The wall clock time or CPU time comparison between VS-BO and vanilla BO for each
iteration. The Branin test function with de = [2, 2, 2] and D = 50 is run here. (a) Wall clock time
comparison at the GP fitting step (b) CPU time comparison at the GP fitting step (c) Wall clock time
comparison at the acquisition function optimization step (d) CPU time comparison at the acquisition
function optimization step

domain [0, 1]124. It has one objective function fmopta(x) that needs to be minimized and 68 con-
straints ci(x), i ∈ {1, 2, . . . 68}. Similar to Eriksson and Jankowiak [2021], we convert these
constraints to soft penalties and convert the minimization problem to the maximization problem by
adding a minus at the front of the objective function, i.e., we construct the following new function
Fmopta:

Fmopta(x) = −

fmopta(x) + 10

68∑
i=1

max(0, ci(x))


The Fortran codes of MOPTA can be found in https://www.miguelanjos.com/jones-benchmark and
we further use codes in https://gist.github.com/denis-bz/c951e3e59fb4d70fd1a52c41c3675187 to
wrap up it in python. All experiments for these two real-world problems are run on the same Linux
cluster that has 80 2.40 GHz 20-Core Intel Xeon 6148 CPUs.

Figure 3 and 8 show performances of different BO methods on these two real-world problems. Note
that Dragonfly performs quite well if the wall clock or CPU time used for BO is fixed, but not as
good as VS-BO under the fixed iteration budget. Similar to Figure 5, the left column of Figure 9
shows the frequency of being chosen as important for each variable in steps of the variable selection
of VS-BO. As described in section 6.2, we design a sampling experiment to test the accuracy of
the variable selection. The indices of the first 5 variables that have been chosen most frequently
are {1, 2, 3, 59, 60} on the rover trajectory problem and {30, 37, 42, 79, 112} on MOPTA08, and the
indices of the first 5 variables that have been chosen least frequently are {15, 18, 29, 38, 51} and
{59, 77, 91, 105, 114} respectively. The total number of samples in each set is 800000. The right
column of Figure 9 shows the empirical distributions of function values from two sets of samples.
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Figure 7: Performance of BO methods on the rotational Hartmann6 function. We do 20 independent
runs for each method. We plot the mean and 1/8 standard deviation of the best maximum value found
by iterations.

The significant difference between two distributions in each panel tells us that changing the values
of variables that have been chosen more frequently can alter the function value more significantly,
indicating that these variables are more important.

Eriksson and Jankowiak [2021] shows an impressive performance of their method, SAASBO, on
MOPTA08 problem. According to their results, SAASBO outperforms VS-BO in this case. We don’t
compare VS-BO with SAASBO in our work since the source code of SAASBO has not been released.
One potential drawback of SAASBO is that it is very time consuming. For each iteration, SAASBO
needs significantly more runtime than ALEBO (section C of Eriksson and Jankowiak [2021]), while
our experiments show that ALEBO is a method that is significantly more time-consuming than
VS-BO, sometimes even more time-consuming than vanilla BO, especially when d is large (for
example when d ≥ 10). Therefore, SAASBO might not be a good choice for the case when the
runtime of BO needs to be considered.
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Figure 8: Performance of BO methods on the rover trajectory and MOPTA08 problems. We do 20
independent runs on the rover trajectory problem and 15 on the MOPTA08 problem. We plot the
mean and 1/4 standard deviation of the best maximum value found by wall clock time (first row) and
CPU time (second row).
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Figure 9: (left column) The total frequency of being chosen as important for each variable on the
rover trajectory and MOPTA08 problems. (right column)The distribution of function values when
sampling the first 5 variables that have been chosen most frequently (important) or the first 5 variables
that have been chosen least frequently (unimportant) with all the other variables fixed.

Figure 10: Performance of VS-BO and VSBO mix on Branin, Hartmann6 and Styblinski-Tang4 test
functions. For each test function, we do 20 independent runs for each method. We plot the mean and
1/8 standard deviation of the best maximum value found by iterations.
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