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We construct a broad class of frustration-free quantum vertex models in 3+1D whose ground states
are weighted superpositions of classical 3D vertex model configurations. Our results are illustrated
for diamond, cubic, and BCC lattices, but hold in general for 3D lattices with even coordination
number. The corresponding classical vertex models have a Z2 gauge constraint enriched with a Z2

global symmetry. We study the interplay between these symmetries by exploiting exact wavefunction
dualities and effective field theories. We find an exact gapless point which by duality is related to
the Rokhsar-Kivelson (RK) point of U(1) spin liquids. At this point, both the symmetry breaking
and deconfinement order parameters exhibit long range order. The gapless point is additionally a
self-dual point of a second duality that maps the Z2 deconfined and Z2 symmetry-broken phases
to one another. For the BCC lattice vertex model, we find that gapless point is proximate to an
unusual intermediate phase where symmetry breaking and deconfinement coexist.

Introduction— Quantum spin liquids represent zero tem-
perature phases of matter whose essential characteris-
tics lie beyond the Landau order parameter paradigm
[1]. Quantum dimer models represent a family of sim-
plified models [2–6] where novel properties of quantum
spin liquids such as fractionalized excitations, emergent
gauge bosons and ground state degeneracy can be readily
accessed. Analytic progress is aided by the fact that at
specially tuned Rokhsar-Kivelson (RK) points [3], corre-
lation functions in the ground state of quantum dimer
models match correlation functions in classical dimer
models [3, 7–10], which can be exactly computed in two
dimensions [11, 12]. Due to the dearth of exactly solvable
statistical mechanics models in three dimensions, less is
understood about the general phase structure of 3+1D
quantum dimer models, although exotic phases such as
U(1) spin liquids are known to exist [13–15].

In this paper, we study a family of 3+1D quantum
dimer models enriched with a global Z2 dimer flip sym-
metry. At suitably defined RK points, these models have
ground states that are weighted superpositions of config-
urations in a 3D classical vertex model, a statistical me-
chanics model of interacting loops. We call these quan-
tum vertex models; prior work on such models has fo-
cused on the 2D square lattice [16, 17], with recent work
generalizing to other 2D lattices [18]. The 3+1D quan-
tum vertex models exhibit a quantum phase transition
between a deconfined phase and a phase which sponta-
neously breaks the Z2 symmetry – this transition can be
mapped to a thermodynamic phase transition in the 3D
classical vertex models. The exact location of the transi-
tion point can be determined with the help of two differ-
ent dimension-independent self dualities found in classi-
cal vertex models. In 3+1D, the gapless transition point
has the unusual property that local dimer order and de-
confinement coexist. We also construct a quantum ver-

tex model where the gapless point is proximate to a phase
where dimer and deconfinement order parameters acquire
nonzero expectation values. This proximate phase bears
resemblance to fragmented Coulomb phases [19–23] but
is found in a qualitatively different setting. We use ef-
fective field theory methods to study the phase structure
near this multicritical point and to analyze deformations
of the quantum vertex model away from the RK mani-
fold.
Quantum vertex models— We construct a Hamiltonian
defined on a regular bipartite lattice in 3D with even co-
ordination number. We will focus on three cases, where
the bipartite lattice is (i) a diamond lattice, dual to the
pyrochlore lattice of corner sharing tetrahedra, (ii) a cu-
bic lattice, dual to a lattice of corner sharing octahedra,
and (iii) a BCC lattice, dual to a lattice of corner shar-
ing cubes. However, our results generically hold for any
even-coordinated lattice in 3D.
We start by briefly defining a classical vertex model,

whose degrees of freedom are dimers on the links of the
lattice. The classical Boltzmann weight W(C) of a con-
figuration C of dimers is the product of vertex weights
WVp

(nC) at each site p, where nC is the number of dimers
touching p in configuration C and Vp is the coordination
number: W(C) =

∏
p WVp

(nC). The partition function
is then Z =

∑
C W(C). Motivated by this construction,

we define an (unnormalized) RK ground state wavefunc-
tion |GS⟩ =

∑
C

√
W(C) |C⟩, whose norm is the parti-

tion function of the classical vertex model.
We now discuss the choice of vertex weights. We ex-

plicitly impose a Z2 symmetry of exchanging dimers and
empty links in the vertex weights: for the 8-vertex model
on a diamond lattice

W4(0) = W4(4) = u, W4(2) = 1, (1)
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for the 32-vertex model on a cubic lattice

W6(0) = W6(6) = u, W6(2) = W6(4) = 1, (2)

and for the 128-vertex model on the BCC lattice

W8(0) = W8(8) = u, W8(2) = W8(6) = v, W8(4) = 1.
(3)

For the diamond and BCC lattices, u = v = 0 corre-
sponds to an ice rule constraint where the number of
dimers equals the number of empty links at each site. On
the cubic lattice, the ice rule constraint requires three
dimers per site [15]. These points have an emergent
U(1) gauge structure, and in the diamond and cubic lat-
tices correspond to RK points of known U(1) spin liquid
phases [14, 15]. Using an exact duality, we show that
these points are mapped to u = 3 on the diamond lat-
tice, u = 5 on the cubic lattice, and u = 35/3, v = 5/3
on the BCC lattice. These gapless points will be a large
focus of this paper.

We may also construct a frustration-free Hamiltonian
whose ground state is the RK wavefunction |GS⟩ =∑

C

√
W(C) |C⟩, and therefore shares the same RK

phase diagram as the classical vertex model. This con-
struction is standard and covered in the Supplementary
Material (see [24] and Refs. [18, 25, 26] therein). Define
an operator P that projects onto an even dimer con-
straint at each site. Schematically, the Hamiltonian may
be written as H = P +HA + rHB , where

HA =
∑
Cℓ,ℓ

1

ωu,v(Cℓ)
|Cℓ⟩⟨Cℓ|+ ωu,v(Cℓ)

∣∣Cℓ

〉〈
Cℓ

∣∣ (4)

HB = −
∑
Cℓ,ℓ

∣∣Cℓ

〉〈
Cℓ

∣∣+ ∣∣Cℓ

〉〈
Cℓ

∣∣ (5)

with ωu,v a certain scalar function of u and v, ℓ corre-
sponding to a minimal length loop on the lattice (squares
on the cubic and BCC lattices, and hexagons in the di-
amond lattice), Cℓ a configuration of spins on ℓ, and Cℓ

the opposite configuration of spins. The RK wavefunc-
tion is a ground state for r = 1. As in the classical
vertex model, this Hamiltonian has a global Z2 spin-flip
symmetry

∏
i Xi interchanging dimers and empty links.

Dualities and phase diagrams— Classical statistical me-
chanics in 3D is known to admit very few exact solu-
tions [27–29]; however, conveniently, vertex models pos-
sess a self-duality which is a special case of Wegner’s
duality [18, 30–32] and holds in all dimensions. This
duality exactly relates the partition functions of classi-
cal vertex models for vertex weights (u, v) and (u∗, v∗).
One can show that for an 8-vertex model on a diamond
lattice, Wegner’s duality gives u∗ = (3 + u)/(u − 1),
which indicates that u = 3 is a self dual point [33–
36]. For the 32-vertex model on a cubic lattice, Weg-
ner’s duality gives u∗ = (15 + u)/(u − 1), so that u = 5
is the self dual point. These coincide with the gapless

a                                             b

c

FIG. 1. The dual lattice of the octahedral lattice is a cu-
bic lattice, where the vertex model is defined (a). The spin
model derived in the Appendix is shown in (b), with gauge
symmetries indicated by the blue dots and the 5-spin interac-
tion indicated by the red pyramids. Monte Carlo simulations
of the dimer susceptibility suggest a transition at u = 5.

points previously discussed. For the BCC lattice, Weg-
ner’s duality gives u∗ = (35 + u + 28v)/(3 + u − 4v)
and v∗ = (−5 + u + 4v)/(3 + u − 4v), yielding the self-
dual line u − 4v = 5 which contains the gapless point
u = 35/3, v = 5/3.
On the diamond and BCC lattices, there is a second

self-duality, which we call the decorated Wegner dual-
ity. It can be shown that the partition function for-
mally obeys Z(u) = Z(−u) on the diamond lattice and
Z(u, v) = Z(u,−v) on the BCC lattice. Composing
this identity with Wegner’s duality gives Z(u∗, v∗) =
Z(u, v) where u∗ = (3 − u)/(u + 1) for the diamond
lattice, and u∗ = (35 + u − 28v)/(3 + u + 4v) and
v∗ = (5 − u + 4v)/(3 + u + 4v) for the BCC lattice.
For these lattices, this duality maps the ice rule point
u = v = 0 to the gapless point.
The quantum vertex models feature additional special

points. At the point u = v = 1, the parent Hamilto-
nian becomes the 3D toric code on the respective dual
lattice [37], and thus the phase diagram must include a
gapped phase with Z2 topological order. At u = ∞, one
finds a phase that breaks the global Z2 symmetry. The
gapless point indicates a phase transition between the de-
confined and symmetry broken phases; for all three lat-
tices we performed Monte Carlo simulations to verify this
(see Figures 1[c], 2[d], and 3). Other ground state transi-
tions out of the toric code phase were numerically studied
in Refs. [38–40] and thermal transitions were studied in
Refs. [41, 42].
Effective field theories— We now proceed to character-
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FIG. 2. The pyrochlore lattice is shown in (a), with dimers on
the diamond lattice labelled. Panels (b) and (c) are relevant
for the mapping to a classical spin model, which is derived
in the Appendix. The spins si are placed on the centers of
the hexagons (b) forming a dual pyrochlore lattice shown in
(c). On the dual pyrochlore lattice, the gauge symmetry is on
the tetrahedra and the 7-spin interaction is labelled. Monte
Carlo simulations of the dimer susceptibility show a phase
transition around u = 3 in (d) and N denotes the number of
sites in the simulation.

izing the gapless points (u = 5 for cubic, u = 3 for di-
amond, and (u, v) = (35/3, 5/3) for BCC) by deriving
an effective field theory. To do so, we observe that it
is possible to introduce a new formulation of the vertex
model in terms of height variables via the following exact
rewriting of the partition function at the self dual point:

Z0 =

∫ 2π

0

dnθ
∏
⟨p,q⟩

cos (θp − θq) , (6)

where p and q are sites on the diamond, cubic, or BCC
lattices. Interpreting θp as height fields, in the long wave-
length limit, we assume that fluctuations of this field are
small and can postulate a Euclidean field theory

Z0 =

∫
Dθ(x) exp

(
−K

2

∫
d3x (∇θ)2 + · · ·

)
, (7)

which has an global U(1) symmetry due to the shift
invariance of θ. A different height field representation
was previously proposed for the 2D 8-vertex model on
a square lattice [43, 44]. To understand this emergent
U(1) symmetry, recall that the decorated Wegner dual-
ity maps an ice rule constrained model to the gapless
point. In the ice rule limit, one can construct a vector
potential and formulate an effective action equivalent to
U(1) gauge theory in 2 + 1D [13]. This action has a hid-
den U(1)top symmetry corresponding to the monopole
charge (where the operator that creates a monopole in
the U(1) gauge theory is Mx = eiθ(x)). The deco-
rated Wegner duality thus maps a U(1) gauge theory

in 2+1D to a “dual photon”, where the U(1)top symme-
try is manifested as a global shift symmetry; this duality
both extends over a large parameter regime and is exact
on the lattice. Electric field correlations are equivalent to
dimer correlations, which are dipolar in the ice rule limit:
⟨si(x)sj(y)⟩ ∼ 1

r5 (3rirj − r2δij), where r = y − x. This
is consistent with the effective field theory as under the
decorated Wegner duality, the correlation function maps
to ⟨si(x)sj(y)⟩ = ⟨tan (θx − θx+ei

) tan
(
θy − θy+ej

)
⟩ ≈

⟨∂iθ(x)∂jθ(y)⟩, which also has a dipolar form.
Next, we compute the spontaneous dimer density

near the gapless point, ⟨di(x)dj(y)⟩, which can be

shown to be

〈
cos(θx+θx+ei)
cos(θx−θx+ei)

cos(θy+θy+ei)
cos(θy−θy+ei)

〉
and maps

onto ⟨cos(2θ(x)) cos(2θ(y))⟩ in the long-wavelength limit.
For a compact boson in three dimensions, this operator
exhibits long range order. We may also consider the op-
erator ⟨sin(2θ(x)) sin(2θ(y))⟩, which on the lattice corre-
sponds to applying two test charges at x and y and com-
puting the ratio of partition functions with and without
the charges, thus serving as a diagnostic for deconfine-
ment (see Supplemental Material [24]). This operator
also exhibits long range order, so at the gapless point
local order and deconfinement coexist.
Next, we discuss what occurs when one perturbs about

the gapless point, but still within (u, v) space. We utilize
the following exact rewriting of the partition function

Zα =

∫ 2π

0

dnθ
∏
⟨p,q⟩

(f(θp)f(θq) + g(θp)g(θq)) , (8)

where f(θ) = cos θ + α cos(3θ) + β cos(7θ) and g(θ) =
sin θ−α sin(3θ)−β sin(7θ). An explicit relation between
(u, v) and (α, β) is presented in the Supplemental Ma-
terial [24]. For the diamond and cubic lattices, β = 0,
and is only nonzero for the BCC lattice. Conveniently,
under Wegner’s duality, (α, β) → (−α, β), which as an
operation on the fields is equivalent to θ → θ+π/4. Set-
ting β = 0 for simplicity, and using the explicit forms for
f and g, the partition function becomes a sine-Gordon
model in the long wavelength limit, to leading order in
α:

Zα =

∫
Dθ(x) exp

(
−K

2

∫
d3x (∇θ)2 − 4α

K
cos(4θ) + · · ·

)
(9)

At α = 0 the U(1) symmetry implies that all symmetry
breaking cosine terms vanish. The U(1) symmetry break-
ing terms are relevant, consistent with the gapless point
indicating a transition. For small positive α, |⟨cos(2θ)⟩| is
pinned to 1, indicating a Z2 broken phase, and for small
negative α, ⟨cos(2θ)⟩ is pinned to 0, indicating a Z2 un-
broken phase. The deconfinement operator |⟨sin(2θ)⟩| is
0 when α is positive and 1 when α is negative, consistent
with it being a diagnostic of topological order. Under
Wegner’s duality, cos(2θ) and sin(2θ) are exchanged at
the gapless point.
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FIG. 3. Monte Carlo results for average value of the squared
magnetization of an L×L×L BCC lattice vertex model. The
bottom panel (L = 8) this presents evidence of the existence
of the intermediate phase, proximate to the gapless point at
(α, β) = (0, 0). Vertical cuts are shown in the two top panels
(simulations here are for L = 12) – in the left plot, two sharp
transitions are seen and the duality maps these transition
points to one another, while in the right plot, a single sharp
transition occurs.

For nonzero β on the BCC lattice, the effective action
becomes

S[α, β] = K

2

∫
d3x (∇θ)2− 4α

K
cos(4θ)− 4β

K
cos(8θ)+ · · ·

(10)
consistent with β coupling to a duality-even operator.
Since cos(4θ) and cos(8θ) are both relevant, we naively
mean field theory to the effective potential V (θ) =
α cos(4θ) + β cos(8θ), which yields a first order line α =
0, β > 0 between a Z2 broken and deconfined phase, and
two second order lines in the 3D Ising universality class
α ∝ ±β for β < 0. The region between these critical lines
is a phase where both the dimer order parameter and the
deconfinement parameter have nonzero and continuously
varying expectation values; evidence for this exotic coex-
istence phase is seen in Monte Carlo simulations of the
dimer density in the (α, β) plane, see Fig. 3.
On general grounds, one could phenomenologically

arrive at the effective field theory by writing down
terms consistent with invariance under the Z2 symme-
try cos(2θ) → − cos(2θ):

S =

∫
d3x

(
K

2
(∇θ)2 + · · ·+

∑
n

cn cos(4nθ)

)
. (11)

Since the local dimer density at each vertex is bounded
between −Vp and +Vp and the operator cos(4nθ) corre-

FIG. 4. Panel (a) u-axis (where u is the vertex weight) and
panel (b) show the phase diagram of the frustration free mod-
els on the diamond and cubic lattices respectively. The δ-axis
in panel (a) corresponds to perturbing the diamond lattice
model away from the RK manifold.

sponds to changing the relative weight of vertex config-
urations with k and k ± 4n dimers at a fixed site, we
require 4n ≤ Vp, consistent with the proposed action for
Vp = 4, 6, 8. The fact that cos(4nθ) is duality even for
n ∈ 8Z and duality odd for n ∈ 8Z + 4 remains true on
the lattice. Analogously to the BCC lattice, we anticipate
the possibility of more interesting coexistence phases for
vertex models where Vp > 8.
Finally, we discuss the effective field theory descrip-

tion away from the RK manifold. Consider extending
the microscopic Hamiltonian in Eqns. 95 and 96 beyond
the RK point, via some generic isotropic perturbation of
strength δ (as an example, we may call δ ∼ r−1). As the
effective field theory describing the RK wavefunction at
the gapless point is a free boson, the effective field the-
ory description for the Hamiltonian is a quantum Lifshitz
model [2, 16, 45–47], with the imaginary time action

S =

∫
d3x dτ

(
1

2
(∂τθ)

2 +
κ

2
(∇2θ)2 + δ(∇θ)2

)
+ Smon,

(12)
where Smon accounts for monopole events: Smon =∫
d3x dτ (g4 cos(4θ) + g8 cos(8θ)) [2] (we expect g4 and

g8 to play the roles of α and β). The RK manifold corre-
sponds to δ = 0, and the (∇2θ)2 term becomes irrelevant
at δ > 0, resulting in a gapless line with dynamical criti-
cal exponent zdyn = 1 between the Z2 deconfined and Z2

broken phases. On the pyrochlore and BCC lattices the
spin ice point u = v = 0 is expected to broaden into a
U(1) spin liquid phase away from the RK manifold and
will always be separated from the Z2 broken phase by a
Z2 deconfined phase. This follows because for the choice
δ ∼ r− 1 the Hamiltonian at u = 1 always exhibits toric
code topological order regardless of the value of r.
Furthermore, as we move along the zdyn = 1 line

(where g4 = g8 = 0), the equal-time correlators
⟨cos(2θ(x)) cos(2θ(y))⟩ and ⟨sin(2θ(x)) sin(2θ(y))⟩ ex-
hibit long range order, indicating that coexistence still
occurs. Studying the phase structure for δ > 0 when the
monopole terms are turned on, especially the stability
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of the coexistence phase on the BCC lattice, warrants
further analytical and numerical investigations.

Acknowledgements – A.V. and V. G. were supported
by the Simons Collaboration on Ultra Quantum Mat-
ter, a grant from the Simons Foundation (651440, A.V.).
S.B. was supported by the National Science Foundation
Graduate Research Fellowship under Grant No. 1745302.
V.G. was also supported by NSF DMR-2037158 and
US-ARO Contract No.W911NF1310172. D.B. was sup-
ported by JQI-PFC-UMD.
Appendix on equivalent spin models— In this Appendix
we provide a different perspective on the phase struc-
ture of the 3D classical vertex models by a mapping to a
classical spin model. We first illustrate this mapping for
the cubic lattice vertex model, where the vertex weights
are W6(0) = W6(6) = u and W6(2) = W6(4) = 1. We
first construct a dual cubic lattice, whose sites are lo-
cated in the cube centers of the direct lattice. Dimers
on the direct lattice therefore pierce faces of the dual
lattice. We place new spins on the edges of this dual
lattice so that each dimer on the direct lattice is sur-
rounded by four spins s1, · · · , s4 on the dual lattice. The
dimer variable is mapped to spins as d = s1s2s3s4; this
automatically respects the even dimer constraint due to∏

□∈� sisjsksℓ =
∏

−∈� s2i = 1. The Boltzmann weight
enforcing the even dimer constraint at a given vertex with
vertex weights W6(n) is therefore

W�(s⃗) = cosh

J
∑
□∈�

sisjsksℓ

 , (13)

where cosh 6J
cosh 2J = u. The full partition function is therefore

Zspin =
∑
s⃗

∏
�

W�(s⃗) =
∑
s⃗,τ⃗

exp

(
J
∑
p

sisjsksℓτm

)
,

(14)
where in the second equality we converted the cosh to an
exponential by adding a new ‘ghost’ spin τ at the center
of each cube on the dual lattice; the subscript p denotes a
pyramid formed from four spins identifying a dimer and
a ghost spin (see Figure 1[b]).

First, the standard Z2 gauge symmetry P =∏
i∈v Xi = X1X2X3X4X5X6 is easily seen, where Xi is

the spin flip operator acting on si, and i ∈ v denotes
spins si on the edges connected to site v, see Fig. 1[b]
(shown as blue dots). Moreover, the gauge theory is en-
riched with a global Z2 symmetry corresponding to the
operator mapping di → −di and τi → −τi (the global
transformation di → −di requires flipping some subset
of the s spins, see Supplementary Material [24]). As a
result, an unusual aspect of this gauge theory is that the
scaling of the Wilson loopWC =

〈∏
i∈C si

〉
exhibits what

we call an ‘even-odd’ behavior. At large J the Wilson
loops obey a perimeter law behavior, a consequence of
simultaneous deconfinement and breaking of the global

Z2 symmetry. When J is small, Wilson loops enclosing
an even number of plaquettes obeys an area law, while
Wilson loops enclosing an odd number of plaquettes are
zero. This follows because odd Wilson loops are charged
under the global symmetry while even Wilson loops are
not.
On the diamond lattice, one can construct an analo-

gous spin model. The dimers live on the sites of a py-
rochlore lattice, and we assign a spin si to the center of
each hexagon of the pyrochlore lattice. The spins form a
dual pyrochlore lattice as illustrated in Figure 2[b], with
dimers on the direct lattice piercing hexagons on the dual
lattice. The dimer variables are di =

∏
j∈ ˜

i
sj where ˜ i

denotes the hexagon on the dual lattice pierced by dimer
i on the direct lattice. A gauge transformation corre-
sponds to flipping the 4 spins on tetrahedra of the dual
pyrochlore lattice via P =

∏
i∈ ˜ Xi.

We introduce a ghost spin τ at the locations indicated
in Fig. 1[c], so that the partition function is

Zspin =
∑
s⃗,τ⃗

exp

(
J
∑
p

sisjsksℓsmsnτr

)
, (15)

with the 7-spin interaction on pyramid p labelled in Fig-
ure 2[c] and cosh 4J = u. The Wilson loops of this clas-
sical gauge theory also exhibit an even-odd effect.
On the BCC lattice, two different effective spin models

are provided in the Supplementary Material [24]: along
with a global Z2 symmetry, one of the models has a Z2

gauge structure, while the other model curiously has a
subsystem symmetry. The coexistence phase in the BCC
lattice vertex model will also correspond to a coexistence
phase in these spin models.
In the original quantum vertex model, an odd Wilson

loop enclosing a single plaquette corresponds to a dimer
variable, which probes the Z2 symmetry breaking tran-
sition. An even Wilson loop of spins corresponds to a ’t
Hooft loop of dimers W∂S =

〈∏
i∈S di

〉
, where ∂S is the

boundary of open surface S. In addition, one has a dual
Wilson loop order parameter which is a product of Xi

around a loop of links [16]: W̃C =
〈∏

i∈C Xi

〉
.
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WEGNER’S DUALITY AND DECORATED WEGNER’S DUALITY

In this section, we review some known results and provide some new results regarding duality mappings for vertex
models, with an emphasis that these results are independent of the spatial dimension. Part of this appendix serves as
a summary of [18]. We first will derive Wegner’s duality for vertex models on a generic lattice. To start, consider a
vertex model on the dual lattice G. We define spin variables spq located on the edges of G, and we will assume that
the vertex weights are only a function of the total number of bonds b coming out of a site and are labelled as W (b).
If spq = 1, then ⟨p, q⟩ forms an occupied bond on the vertex model. Then, the partition function of the vertex model
can be written as

Z =
∑

s⃗∈{−1,1}N

∏
p∈G

Vp∑
b=0

δ (Stot(p) = 2b− Vp)Wp(b), (16)

where Stot(p) =
∑

(p,q)∈G spq. We perform a Fourier transform of the δ-functions using the relation

δ

∑
i∈p

si = c

 =
1

2π

∫ 2π

0

dθp e
iθp(

∑
i∈p si−c), (17)

and we may rearrange the partition function upon inserting this identity to obtain

Z =
1

(2π)n

∫ 2π

0

dnθ
∑

s⃗∈{−1,1}N

∏
(q,ℓ)∈GD

eisqℓ(θq+θℓ)
∏

p∈GD

Vp∑
b=0

e−iθp(2b−Vp)Wp(b). (18)

Performing the sum over spins, we find

Z =
2N

(2π)n

∫ 2π

0

dnθ
∏

(q,ℓ)∈GD

cos(θq + θℓ)
∏

p∈GD

Vp∑
b=0

e−iθp(2b−Vp)Wp(b). (19)

Next, expand the cosine using cos(θq + θℓ) = cos θq cos θℓ − sin θq sin θℓ, and associate no bond with a factor of
cos θq cos θℓ and a bond with a factor of − sin θq sin θℓ. Performing this expansion and regrouping terms maps the
partition function to

Z =
∑

k1,k2,··· ,kn

2N

(2π)n

∫ 2π

0

dnθ
∏

p∈GD

Vp∑
b=0

iVp−kp coskp θp sin
Vp−kp θpe

−iθp(2b−Vp)Wp(b), (20)

which can be written in the compact form

Z =
∑

k1,k2,··· ,kn

∏
p

W ′
p(kp), (21)

https://doi.org/10.1103/PhysRevB.69.224416
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where

W ′
p(kp) =

Vp∑
b=0

iVp−kp

〈
coskp θp sin

Vp−kp θpe
−iθp(2b−Vp)

〉
Wp(b). (22)

Here, the notation ⟨f(θ)⟩ = 1
2π

∫ 2π

0
f(θ) dθ. This defines a new vertex model precisely with weights W ′. The new

weights are related to the old weights by the linear map M : Wp → W ′
p, which is defined on the space of vertex

weights. The matrix M has elements

Mab = iVp−a
〈
cosa θp sin

Vp−a θpe
−iθp(2b−Vp)

〉
. (23)

M can be divided into disjoint eigenspaces corresponding to each of its distinct eigenvalues. Any configuration of
vertex weights which lives entirely in a given eigenspace will remain in the eigenspace under the application of M.
Therefore, these eigenspaces define a self-dual manifold; if a parameterization of a vertex model pierces the self-dual
manifold and exhibits a single phase transition, then the transition point occurs at the intersection with the self-dual
manifold. An example of Mab for Vp = 6 is

Mab =



1
8 − 3

4
15
8 − 5

2
15
8 − 3

4
1
8

− 1
8

1
2 − 5

8 0 5
8 − 1

2
1
8

1
8 − 1

4 − 1
8

1
2 − 1

8 − 1
4

1
8

− 1
8 0 3

8 0 − 3
8 0 1

8
1
8

1
4 − 1

8 − 1
2 − 1

8
1
4

1
8

− 1
8 − 1

2 − 5
8 0 5

8
1
2

1
8

1
8

3
4

15
8

5
2

15
8

3
4

1
8


, (24)

and explicitly, it can be seen that the eigenvalues of Mab are ±1. The eigenspaces corresponding to these eigenvalues
are

V−1 = span





−4
0
1
−1
0
0
1


,



−12
1
4
−3
0
1
0


,



−15
0
4
−3
1
0
0




(25)

and

V1 = span





4
−2
1
0
0
0
1


,



0
−1
0
0
0
1
0


,



−15
10
−4
0
1
0
0


,



−20
10
−4
1
0
0
0




. (26)

The vector Wp(k) = ⟨cosk θ sinVp−k θ⟩, or ⟨5, 0, 1, 0, 1, 0, 5⟩ explicitly, lies in the V1 eigenspace, which we have argued
in the text corresponds to a self-dual point. However, what we point out here is that this is a self-dual point on any
32-vertex model defined on a 6-coordinated lattice in any dimension. In a previous paper [18], we showed in general
that the vertex weights

Wp(k) = ⟨cosk θ sinVp−k θ⟩ (27)

are a self-dual point for a vertex model defined on a Vp-coordinated lattice in any dimension.
The decorated Wegner duality can be seen by composing the Wegner duality with a more innocent duality. Suppose

we modify the partition function to have a dimer fugacity of −1; i.e. by adding an extra contribution to the Boltzmann
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weight equalling (−1)
∑

i di with di = 1 for a dimer on edge i and di = 0 otherwise. Consider the set of dimer
configurations where two configurations are connected by sequence of loop moves (these states define a topological
sector). Each loop move conserves the parity of the number of dimers, and therefore the partition function within
the topological sector is the same regardless of the extra factor (−1)

∑
i di . To see what this implies about the vertex

weights, notice that since each dimer touches two vertices, a dimer contributes a factor of i to each vertex weight.
Therefore, the vertex weights W̃p(k) = (i)kWp(k). For the diamond, cubic, and BCC lattices, the dual weights are

W̃4(0) = W̃4(4) = u, W̃4(2) = −1 (28)

W̃6(0) = −W̃6(6) = u, W̃6(4) = −W̃6(2) = 1 (29)

W̃8(0) = W̃8(8) = u, W̃8(2) = W̃8(6) = −v W̃8(4) = 1. (30)

Applying Wegner’s duality to these modified weights yields the decorated Wegner duality. Note that the decorated
Wegner duality is only a self duality for the diamond and BCC lattices. For the cubic lattice, it yields the fact that
the gapless point (u = 5) maps onto an ice rule-constrained model with 3 dimers at a site.

FURTHER DETAILS OF HEIGHT FIELD THEORY FOR VERTEX MODELS

With the representation from Eqn. 27 in mind, it is possible to verify the claim that the partition function at the
self-dual point can be written as

Z ∝
∫ 2π

0

dnθ
∏
⟨p,q⟩

cos (θp − θq) =

∫ 2π

0

dnθ
∏
⟨p,q⟩

(cos θp cos θq + sin θp sin θq) (31)

by expanding the cosine term and regrouping. In particular, we identify cos θp cos θq as a dimer at edge (p, q) and
sin θp sin θq as an empty link at at edge (p, q), yielding a vertex model with weights

Wp(k) = ⟨cosk θ sinVp−k θ⟩. (32)

With nonzero α, the vertex weights are

Wp(k) = ⟨(cos θ + α cos 3θ)k(sin θ − α sin 3θ)Vp−k⟩ (33)

which gives a relation between u and α for the diamond lattice Vp = 4:

u(α) = 3 +
16α

α4 + 4α2 − 4α+ 1
(34)

For the cubic lattice with Vp = 6, we find

u(α) = 5 +
40α(1 + 2α2)

α6 + 9α4 − 10α3 + 9α2 − 5α+ 1
. (35)

For lattices with Vp > 6, other perturbations can be achieved via the deformation

Wp(k) = ⟨(cos θ + αn cosnθ)
k(sin θ − αn sinnθ)

Vp−k⟩ (36)

for n ∈ 4Z− 1. For example, on the BCC lattice we have nontrivial weights for n = 3, 7, where α3 = α and α7 = β.
The functions u(α, β) and v(α, β), are ratios of complicated polynomials in α and β and for brevity, we will not write
down these functions.

There is an alternative way to understand what perturbing around the ice rule point does near the dual gapless
point. We start with the previously derived form of the partition function:

Z =
2N

(2π)n

∫ 2π

0

dnθ
∏

(q,ℓ)∈GD

cos(θq + θℓ)
∏

p∈GD

Vp∑
b=0

e−iθp(2b−Vp)Wp(b). (37)
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At the ice rule point, 2b − Vp = 0, and perturbing about the ice rule point by selecting Wp(b) = αb ≪ 1 for b even
and 0 otherwise, we find

Z =
2N

(2π)n

∫ 2π

0

dnθ
∏

(q,ℓ)∈GD

cos(θq + θℓ)
∏

p∈GD

1 +

Vp/2−1∑
b=0,b∈2Z

2αb cos((2b− Vp)θp)

 . (38)

And performing the sublattice symmetry θA → −θA, we obtain

Z =
2N

(2π)n

∫ 2π

0

dnθ
∏

(q,ℓ)∈GD

cos(θq − θℓ)
∏

p∈GD

1 +

Vp/2−1∑
b=0,b∈2Z

2αb cos((2b− Vp)θp)

 . (39)

As before, we may perform a gradient expansion writing cos(θq − θℓ) ≈ 1 − K
2 (∇θ)2. Furthermore, the cosine terms

can also be treated perturbatively, giving

Z ≈ 2N

(2π)n

∫ 2π

0

dnθ
∏

(q,ℓ)∈GD

exp

(
−K

2

∫
d3x

(
(∇θ)2 +

4α0

K
cos(Vpθp) +

4α2

K
cos((Vp − 4)θp) + · · ·

))
, (40)

which gives the right effective field theory for Vp = 4, 8. Notably, for Vp = 4, adding a small weight for W (0) and
W (4) perturbs into the ferromagnetic side of the gapless point.

OPERATORS AT AND AWAY FROM THE GAPLESS POINT

In this section, we discuss the various field theoretic operators in the vertex model that were discussed in the main
text, and how one might compute them in the microscopic vertex model. We first start with the effective partition
function:

Z ∝
∫ 2π

0

dnθ
∏
⟨p,q⟩

cos (θp − θq) (41)

where, as previously discussed, cos θp cos θq corresponds to a dimer on edge (p, q) and sin θp sin θq corresponds to an
empty link. Consider the quantity〈

cos (θx + θx+ei
)

cos (θx − θx+ei
)

cos
(
θy + θy+ej

)
cos
(
θy − θy+ej

)〉 =

∫ 2π

0
dnθ cos (θx + θx+ei

) cos
(
θy + θy+ej

)∏
⟨p,q⟩ cos (θp − θq)∫ 2π

0
dnθ

∏
⟨p,q⟩ cos (θp − θq)

(42)

where the notation
∏

⟨p,q⟩ takes a product over all edges, omitting the two edges at locations x and y with orientations

ei and ej . Note that cos (θx + θx+ei
) provides a weight of −1 to an empty link relative to a dimer. Thus, this is

simply a correlation function between dimer operators ⟨dxdy⟩. Next, we consider the deconfinement order parameter
presented in the main text:〈

sin (θx + θx+ei
)

cos (θx − θx+ei
)

sin
(
θy + θy+ej

)
cos
(
θy − θy+ej

)〉 =

∫ 2π

0
dnθ sin (θx + θx+ei

) sin
(
θy + θy+ej

)∏
⟨p,q⟩ cos (θp − θq)∫ 2π

0
dnθ

∏
⟨p,q⟩ cos (θp − θq)

(43)

The numerator can be mapped onto a vertex model with two charge defects. First expand sin (θx + θx+ei
) =

sin θx cos θx+ei
+ cos θx sin θx+ei

. We arbitrarily choose a dimer to correspond to sin θx cos θx+ei
and an empty

link to correspond to cos θx sin θx+ei
. This means that the vertex weights at x and y need to be modified. Call ℓ the

link where this defect is located. Call v a vertex configuration at x and v the vertex configuration where the value
of the dimer at ℓ has been flipped. The number of dimers in configuration v will be denoted by |v|. The new vertex
weights, denoted by W ′

Vp
are therefore

W ′
Vp
(|v|) = WVp

(|v|) (44)

where WVp
(n) = ⟨cosn θ sinVp−n θ⟩. Notice that the vertex weights W ′

Vp
at sites x and y only allow an odd number

of dimers. As this explicitly breaks the even dimer constraint, one can view the numerator as a partition function
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with two defects inserted at x and y. Calling Z(x,y) the partition function with two defects located at x and y, the
desired correlation function is Z(x,y)/Z.
We may write the correlation function as the expectation value of a certain defect operator. To do so, note that

each term in the partition function in the numerator can be turned into an even dimer constrained configuration in
the denominator by performing dimer flips along a path from x to y. Label the path from x to y with P where P(i)
gives the ith site along the path. For some defected configuration of dimers C, flipping dimers along P constructs an
even dimer configuration in the denominator whose Boltzmann weight is W2(C) (the bar denotes flipping of dimers
along the defect line in C). The relation between the original weight W1(C) and W2(C) is

W1(C)

W2(C)
=
∏

i̸=x,y

ηi, (45)

where ηi = Wi(Ci)/Wi(Ci), Ci being the vertex configuration at i and Wi denoting the vertex weight at site i. More
specifically, this quantity is 1 when di−1,idi,i+1 = −1, i.e. one of the two edges along the path that touch P(i) have a
dimer. When di−1,idi,i+1 = 1, ηi is a ratio of Wi(|Ci|)/Wi(|Ci|), where |Ci| denotes the number of dimers touching i.
Let Di be the total number of dimers at i that do not belong to the path P. Therefore, we may write〈

sin (θx + θx+ei
)

cos (θx − θx+ei
)

sin
(
θy + θy+ej

)
cos
(
θy − θy+ej

)〉 =

〈 ∏
i ̸=x,y

ηi

〉
=

〈
exp

(∑
i

log
W (Di − di−1,i − di,i+1)

W (Di + di−1,i + di,i+1)

)〉
(46)

where in second equality, the expression in the summand can be written as a polynomial in the di,i+1 variables. This
quantity can be computed via Monte Carlo simulations to check the predicted theoretical behavior.

Finally, there is a dressed Wilson line-like operator which we expect to decay algebraically and not exhibit long range
order. This operator can be constructed by applying duality to the spin-spin correlators at the ice rule constrained
point. We compute:

⟨dp1q1dp2q2⟩ =
1

Z
∑

s⃗∈{−1,1}N

sp1q1sp2q2

∏
p∈G

Vp∑
b=0

δ (Stot(p) = 2b− Vp)Wp(b). (47)

Expanding the δ-functions as before gives the expression

⟨dp1q1dp2q2⟩ ∝
1

Z

∫ 2π

0

dnθ sin(θp1
+ θq1) sin(θp2

+ θq2)
∏

(q,ℓ)∈GD

cos(θq + θℓ)
∏

p∈GD

Vp∑
b=0

e−iθp(2b−Vp)Wp(b). (48)

Setting 2b− Vp = 0 to impose the ice rule constraint, we find

⟨dp1q1dp2q2⟩ ∝
1

Z

∫ 2π

0

dnθ sin(θp1 + θq1) sin(θp2 + θq2)
∏

(q,ℓ)∈GD

cos(θq + θℓ), (49)

and a sublattice transformation θp → −θp on one of the sublattices gives the identity

⟨dx,x+ei
dy,y+ej

⟩ =

〈
sin (θx − θx+ei

)

cos (θx − θx+ei
)

sin
(
θy − θy+ej

)
cos
(
θy − θy+ej

)〉 . (50)

As before, we expand sin (θx + θx+ei
) = sin θx cos θx+ei

− cos θx sin θx+ei
, which adds a dimer fugacity of −1

for a dimer relative to no dimer. Therefore, this object is just the dressed Wilson line corresponding to
⟨sin(2θ(x)) sin(2θ(y))⟩ decorated on its ends with a dimer operator charged under the global Z2 symmetry:〈

sin (θx − θx+ei
)

cos (θx − θx+ei
)

sin
(
θy − θy+ej

)
cos
(
θy − θy+ej

)〉 =

〈
(−1)dx,x+ei exp

(∑
i

log
W (Di − di−1,i − di,i+1)

W (Di + di−1,i + di,i+1)

)
(−1)dy,y+ej

〉
(51)

Our expectation is that this quantity has power law decay in |x − y|. Notice that in addition to these operators,
there are other kinds of operators of the form cosmθ and sinnθ; the former corresponds to a local operator, while the
latter corresponds to a certain kind of Wilson line. The effective field theory provided in the main text gives simple
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and sharp predictions for expectation values of these operators; in particular, they all exhibit long range order at the
gapless point and may result in unusual coexistence phases away from the gapless point.

Next, we discuss how these operators get perturbed away from the gapless point. We utilize the following identity,
presented in the main text:

Zα =

∫ 2π

0

dnθ
∏
⟨p,q⟩

(f(θp)f(θq) + g(θp)g(θq)) , (52)

where f(θ) = cos θ + α cos(3θ) and g(θ) = sin θ − α sin(3θ), where we have turned off the β term. Since f(θp)f(θq) is
now associated with a dimer and g(θp)g(θq) an empty link, the modified dimer order parameter is

dx(α) =
f(θx)f(θx+ei

)− g(θx)g(θx+ei
)

f(θx)f(θx+ei
) + g(θx)g(θx+ei

)
. (53)

We may define a deconfinement parameter in an analogous way as was done at the gapless point:

Ox(α) =
f(θx)g(θx+ei

) + g(θx)f(θx+ei
)

f(θx)f(θx+ei
) + g(θx)g(θx+ei

)
. (54)

Under Wegner’s duality, Ox(α) maps to the dual value of the dimer density dx(−α). These operators can be expressed
on the lattice in an analogous way to the above derivation at the gapless point. When nonzero β is added, the dimer
and deconfinement operators become d(α, β) and O(α, β) and under duality, O(α, β) is mapped to d(−α, β). All of
these results generalize in a straightforward manner when Vp > 8.

Similarly, one can construct an order parameter that generalizes the deconfinement parameter decorated by Z2

charges by defining

Qx(α) =
f(θx)g(θx+ei

)− g(θx)f(θx+ei
)

f(θx)f(θx+ei
) + g(θx)g(θx+ei

)
. (55)

using the explicit forms of f and g, one can verify that even away from the gapless point, the leading order behavior
is ⟨Qx(α)Qy(α)⟩ ∝ ⟨∇θ(x)∇θ(y)⟩ which decays exponentially in all gapped phases. Thus, this order parameter only
serves as a diagnostic for critical behavior, and does not distinguish confined and deconfined phases of the gauge
theory. This conclusion still holds at nonzero β.
Finally, a more traditional operator that one computes is a Wilson loop operator of the dimer variables WC ∼〈∏
i∈C di

〉
. At the gapless point, we expect a universal scaling law first predicted by Peskin: if the Wilson loop has

width w and length L, and L is taken to be sufficiently larger than w, then WC ∼ e−kL/w for some constant k [25].

FIELD THEORY DUALITIES FOR WEGNER AND DECORATED WEGNER DUALITY

Here, we note that the lattice dualities that we have studied are related to standard field theoretic dualities. From
the field theory perspective, the mapping from an ice rule model onto the self dual point (u = 0 to u = 3 in the case
of the diamond lattice) is a consequence of the well-known mapping from a pure gauge theory to a compact boson
(called the “dual photon” in standard field theory literature). In particular, in 3+0D, the ice rule constraint enforces
a divergence-free constraint on the electric field lines. In the path integral representation, this can be written as

Z =

∫
DE exp

(
−K

2

∫
d3xE2

)
δ(∇ ·E = 0). (56)

For simplicity, we set K = 1 for the remainder of this appendix. Writing the δ-function in terms of a Lagrange
multiplier, we find that

Z =

∫
DEDθ exp

(
−1

2

∫
d3xE2 − iθ(∇ ·E)

)
, (57)

and integrating over E maps us precisely onto the proposed action for the height fields θ. A similar analysis can be
done in 2+1D by defining E in terms of electric and magnetic fields so that the divergence-free constraint is equivalent
to Faraday’s law.



13

Notice that the θ field is responsible for creating defects in the ice rule limit. In particular, M(x0) = e−iθ(x0) creates
a monopole at x0, as this corresponds to changing the Gauss law constraint to ∇·E = δ3(x−x0) (on the lattice, this
corresponds to enforcing an odd dimer constraint at x0). Similarly, M†(x0) = eiθ(x0) creates an anti-monopole at x0.
As derived in the main text, the relevant perturbation driving the system away from the gapless point is α cos(4θ),
will results in the following effective field theory when perturbed away from the spin ice point:

Z =

∫
DEDθ exp

(
−1

2

∫
d3xE2 − iθ(∇ ·E)− α cos(4θ)

)
. (58)

Therefore, the transition out of the spin ice point corresponds to condensing a charge conjugation-symmetric monopole
operator 1

2 (M(x)M(x) +M†(x)M†(x)). When θ is pinned to the vacuum expectation value, fluctuations give rise
to a mass term:

Z =

∫
DED(δθ) exp

(
−1

2

∫
d3xE2 − i

π

4
(∇ ·E)− i(δθ)(∇ ·E) + 8α(δθ)2

)
. (59)

The second term is a boundary term corresponding to the enclosed electric flux, while the integral over δθ can be
done explicitly to give

Z =

∫
DE exp

(
−1

2

∫
d3x

(
E2 +

(∇ ·E)2

32α

))
, (60)

which therefore gaps out the theory.
To understand the Wegner duality, we noted in the main text that implementing duality on the lattice is equivalent

to mapping α → −α in the partition function. This can be verified by direct calculation. Therefore, the operator
cos 4θ is duality odd. For the BCC lattice, one can show that the choice of weights

W8(k) = ⟨(cos θ + β cos 7θ)k(sin θ − β sin 7θ)Vp−k⟩ (61)

resides in the self dual boundary and is therefore duality even. In the effective field theory, this corresponds to adding
the operator cos 8θ. Similarly, one can show that the choice of weights

W12(k) = ⟨(cos θ + γ cos 11θ)k(sin θ − γ sin 11θ)Vp−k⟩ (62)

maps as γ → −γ under duality and is thus duality odd. The corresponding operator in the field theory is cos 12θ
This pattern can be verified analytically (with the aid of a computer algebra system) to large values of Vp indicating
that cosnθ for n ∈ 8Z+ 4 is duality odd and cosnθ for n ∈ 8Z is duality even. This is consistent with the fact that
duality maps θ → θ + π/4.

Finally, we may compose the decorated Wegner duality and the Wegner duality to get a third duality. For example,
on the pyrochlore lattice, the decorated Wegner duality maps the interval [0, 1] to [1, 3] and the Wegner duality maps
the interval [1, 3] to [3,∞). Composing the two dualities maps [0, 1] to [3,∞).

DETAILED ANALYSIS OF BCC LATTICE PHASE DIAGRAM

In this section, we provide an in-depth analysis of the BCC lattice vertex model, whose pertinent features were
discussed in the main text. The BCC lattice is dual to a lattice of corner-sharing cubes, and the spins are located
on the sites of this lattice (corresponding to dimer variables on the edges of the BCC lattice). The vertex model on
the corresponding lattice has Vp = 8. Here, the phase diagram is parameterized by two variables, u = W8(8)/W8(4)
and v = W8(6)/W8(4) (we will ignore the subscript 8 for the remainder of the section), and possesses the same Z2

symmetry as before.
This lattice admits both a Wegner and decorated Wegner duality. Wegner’s duality gives

u∗ =
35 + u+ 28v

3 + u− 4v
, v∗ =

−5 + u+ 4v

3 + u− 4v
. (63)

In particular, the gapless point W (n) = ⟨cos8−n θ sinn θ⟩ has the weights

W (0) = W (8) =
35

3
, W (2) = W (6) =

5

3
, W (4) = 1. (64)
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FIG. 5. Mean field phase diagram for the BCC lattice vertex model. Solid lines indicate first order transitions and dashed lines
indicate second order transitions in the 3D Ising universality class.

as discussed in the main text. Wegner’s duality gives a line of self-dual points which is a solution to u − 4v = 5. A
significant portion of this self-dual line can be achieved by selecting the one-parameter family of vertex weights

W (n, β) = ⟨(cos θ + β cos 7θ)n(sin θ − β sin 7θ)8−n⟩. (65)

corresponding to the duality even operator cos 8θ in the effective field theory. We may also access weights off of this
self dual line through

W (n, α) = ⟨(cos θ + α cos 3θ)n(sin θ − α sin 3θ)8−n⟩. (66)

corresponding to the duality odd operator cos 4θ in the effective field theory. Upon perturbing about the gapless point
where u = 35/3 and v = 5/3, the effective action for the model can be written as

Z =

∫
Dθ(x) exp

(
−K

2

∫
ddx (∇θ)2 − 4α

K
cos(4θ)− 4β

K
cos(8θ)

)
, (67)

as evinced in the main text. The behavior of this field theory for d = 2 and d = 3 are markedly different. In 2+0D,
the term cos(nθ) can be irrelevant or relevant depending on K and n, so the phase diagram might depend on more
microscopic details. Secondly, there is no regular 2D lattice with 8-fold rotation symmetry; there can be “mixed”
lattices where some of the sites are 8-valent and some are not, but for these lattices the field theory example may no
longer be accurate.

However, in 3+0D, all terms of the form cos(nθ) are RG relevant and we expect that they might compete in an
interesting way. To simplify the analysis, we search for mean field solutions to the above action, corresponding to
maximizing the potential

V (θ) = 4α cos(4θ) + 4β cos(8θ) = 8β

(
cos(4θ) +

α

4β

)2

− c(α, β) (68)

where c(α, β) is an overall constant that we ignore. To optimize this potential, we discuss the following cases:

• β > 0: when β > 0, we maximize
∣∣∣cos(4θ) + α

4β

∣∣∣. This splits into two cases: when α > 0 then cos(4θ) is pinned

to 1 (i.e. the dimer order is 1 and the deconfinement parameter is 0). When α < 0, then cos(4θ) is pinned to
−1 (i.e. the dimer order is 0 and the deconfinement parameter is 1).

• β < 0, |α/(4β)| > 1: when β < 0, we minimize
∣∣∣cos(4θ) + α

4β

∣∣∣. For |α/(4β)| > 1 and α > 0, then cos(4θ) is

pinned to 1. For |α/(4β)| > 1 and α < 0, then cos(4θ) is pinned to −1.

• β < 0, |α/(4β)| < 1: we still minimize
∣∣∣cos(4θ) + α

4β

∣∣∣, but now the minimum value satisfies is cos(4θ) = −α/(4β).
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FIG. 6. In panel (a), the dimers are shown, which connect cube centers. In panel (b), the locations of the spins are shown
which form a lattice corresponding to staggered layers of a square-octagon lattice. In panel (c), a bird’s eye view of two layers
of the lattice are shown, and the assignment between a dimer (black dot) and four spins is indicated.

A diagram of the mean field solution is illustrated in Figure 5. In particular, for β < 0, |α/(4β)| < 1, this corresponds
to a phase where both the dimer order parameter and the deconfinement parameter have nonzero vacuum expectation
values (at least for sufficiently small values of α and β). If we were to include fluctuations, this would give a mass
term to lowest order, indicating that all three phases are gapped.

Next, we analyze the nature of the three critical lines in this model: β > 0 and α = 0, β < 0 and α/(4β) = 1, and
β < 0 and α/(4β) = −1. First, note that the first transition line is self dual, while the second and third transition
lines map onto each other under Wegner’s duality. The line β > 0 and α = 0 is a first order transition. The other
two lines are more interesting: in the vicinity of these critical lines, expanding θ ≈ θ0 + δθ where θ0 is the mean field
solution, we find

S =

∫
d3x

(
−K

2
(∇θ)2 + 2β(cos(4θ)± 1)2

)
≈
∫

d3x

(
−K

2
(∇(δθ))2 + 16β(δθ)4

)
(69)

and deviations away from this critical line turns on a small mass term m(δθ)2. This is simply the effective action
near the Wilson-Fisher fixed point, which has critical exponents in the 3D Ising universality class. We note that the
slopes of the critical lines as predicted by mean field theory are not accurate, especially when compared to numerical
simulations (see main text).

We now consider the decorated Wegner duality, whose action on the vertex weights is

u∗ =
35 + u− 28v

3 + u+ 4v
, v∗ = −5− u+ 4v

3 + u+ 4v
. (70)

It is clear that the gapless point (35/3, 5/3) maps onto the ice rule point (0, 0). The region β < 0 maps onto u < 0
which is unphysical. Therefore, the unusual critical line near the gapless point does not occur proximate to the spin
ice point. Under this duality, the first order transition line β > 0 and α = 0 line maps onto v = 0 and u < 1. This
suggests that in the vicinity of the ice rule point, we expect there to be a Z2 deconfined phase and no other phases.

We make one more observation about the gapless multicritical point. Note that this point is the result of the
first order transition line meeting a second order transition line, and thus one might conclude that it is a tricritical
point. However, because the gapless point is dual to the RK point of a quantum spin ice model, we expect correlation
functions to be equal to those of a free boson in 3D. If the gapless point were tricritical, there would necessarily be
additional logarithmic corrections in 3D. Thus, there is apparently enough fine-tuning in this model to prevent the
gapless point from being tricritical.

Spin model mappings for BCC lattice

In this subsection, we will discuss the construction of a classical spin model equivalent to the classical BCC lattice
vertex model to better understand the interplay of global and gauge symmetries. On the dual lattice of corner-sharing
cubes, the dimers are located at the corners of the cubes, as shown in Fig. 6[a]. As in the main text, we want to
represent the dimer variables in terms of effective spins which immediately satisfy the even dimer constraint by design.
One way to do so is to choose spins to be the red dots as shown in Fig. 6[b]. One can assign each dimer to the four
spins it is nearest to. More precisely, the lattice of the spins is equivalent to staggered layers of a square-octagon
lattice: a bird’s eye view is shown in Fig. 6[c]; in particular one layer of spins is shown using solid lines and the layer
above is shown using dashed lines. This staggering is repeated to form the lattice of spins. In the bird’s eye view, the
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FIG. 7. In panel (a), the locations of the spins in the A and B sublattice cubes are shown, and further the dimer-spin relation
is also shown. In panel (b), a “tube”-like object is shown: the subsystem symmetry action corresponds to a product of X along
all spins lying on this tube.

dimers stick out of the page and are represented by black dots; the identification of a dimer with its four neighboring

spins is shown. Therefore, for each corner c shared between two cubes, define the dimer variables dc =
∏

i∈S s
(c)
i ,

where S denotes the set of four nearby spins assigned to the dimer. As before, dc = 1 indicates an occupied dimer
while dc = −1 indicates an empty dimer. We have the relation∏

c∈�

dc =
∏

−∈�

s2i = 1, (71)

around each cube, which faithfully reproduces the even dimer constraint. The partition function is Zspin =∑
s⃗ exp

(∑
� H�

)
, and the Hamiltonian is given by

H� = J1

∑
c∈�

dc

2

+ J2

∑
c∈�

dc

4

. (72)

We first note that there is a global Z2 symmetry corresponding to dc → −dc, as well as a gauge symmetry corresponding
to the classical Hamiltonian commuting with

∏
i∈⋄ Xi, where ⋄ indicates a square on the square octagon lattice. Note

that in this case, a ghost spin cannot be added because the vertex model is tuned by two parameters, not one. For 4
dimers,

∑
c∈� dc = 0 and the Boltzmann weight exp

(
H�

)
= 1. For 2 and 6 dimers,

∑
c∈� dc = ±4 and for 0 and 8

dimers,
∑

c∈� dc = ±8. Therefore, we solve for the vertex weights in terms of J1 and J2:

u = W (0) = W (8) = exp (64J1 + 4096J2) ,

v = W (2) = W (6) = exp (16J1 + 256J2) , (73)

and W (4) = 1. At the self dual point, we find

eJ1 =

(
5

3

)5/64(
1

7

)1/192

eJ2 =

(
189

125

)1/3072

. (74)

Surprisingly, there are alternative schemes corresponding to different assignments of the dimer variables to spins.
These result in new spin models with a similar phase diagram, but where the symmetries appear to be different.
One example of an alternative scheme is to associate a dimer with three spins: the lattice of spins is shown in the
Figure 7[a], along with the assignment of the dimer and spin variables. As before, the constraint

∏
c∈� dc = 1 is

immediately satisfied, and the global symmetry is
∏

i Xi where i ranges over all of the classical spins. However, there
is no longer a gauge constraint; instead one can construct subsystem symmetry operators given by a product of Xi

along the ‘tubes’ depicted in Figure 7[b]. The phase diagram for this model is expected to coincide with that of the
spin model with the gauge constraint with the precise identification of phases being relegated to future work. Given
that the gauge constraint spin model supports a phase where symmetry breaking and deconfinement coexist, it seems
that the subsystem symmetry spin model supports a phase where global and subsystem symmetry breaking coexist
and are mixed in a nontrivial way.
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FIG. 8. The configuration of spins that must be flipped to implement the global symmetry transformation. The bond spins
live on the links of the lattice.

MATCHING DEGREES OF FREEDOM IN SPIN AND VERTEX MODELS

We show explicitly the correctness of the dimer model to spin model mapping presented in the main text by arguing
that each dimer configuration is uniquely mapped to a spin configuration. This can be shown by matching dimer and
spin degrees of freedom through a counting argument.

We first work with the cubic lattice spin model, where

Zspin =
∑

s⃗∈{−1,1}N

∏
�

W�(s⃗). (75)

First note the standard Z2 gauge symmetry P =
∏

i∈v Xi = X1X2X3X4X5X6 where Xi is the spin flip operator, and
i ∈ v denotes spins on the edges connected to vertex v. Therefore, the number of gauge equivalent spin configurations
is 2N , where N is the number of lattice sites in the lattice. The number of valid 32-vertex configurations D is 22N

for any lattice with coordination number 6. If each dimer configuration corresponds to 2N spin configurations, then
there must be a total of D ·2N = 23N spin configurations, which coincides with the number of spin degrees of freedom
in the dual spin model (as spins are defined on the edges of the cubic lattice). Therefore, the dimer model and spin
model partition functions are related by Zspin(J) = 2NZdimer(J).

Next, we show that the partition function for the 7-spin model maps to the partition function of the vertex model
for the diamond lattice model. The number of valid vertex model configurations on the diamond lattice is D = 2NT ,
where NT is the number of tetrahedra in the dual pyrochlore lattice. The number of objects O (see main text) is NT

and each object O is associated with a local gauge transformation. The total number of spin degrees of freedom is
therefore D · 2NT = 22NT = 2NH where NH is the number of hexagons; this coincides with the number of degrees of
freedom in the above spin model. Therefore Zspin(J) = 2NTZdimer(J).

Furthermore, in the main text, we noted that the equivalent spin model possesses a global symmetry corresponding
to τ → −τ and d → −d. It is not immediately obvious if there exists a transformation on the bond spins s such that
d → −d. We show this transformation in Figure 8. The red bonds indicate that the associated spins are flipped, and
the structure of red bonds is repeated over the entire lattice.

EVEN-ODD EFFECT FOR CUBIC LATTICE MODEL

(In this section we will change variables from J to β for clarity). We will discuss the phases of the gauge theory and
the even-odd effect. We start with the Hamiltonian for the 5-spin classical Hamiltonian describing the cubic lattice
spin model. Consider the Wilson loop operator

WC =

〈∏
i∈C

si

〉
, (76)

where C is a closed loop containing the gauge spins. Let us first analyze this quantity at low temperatures, in the
deconfined phase. Here, the standard analysis holds, which we review for convenience [26]. We gauge fix so that
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the ground state spin configuration is the ferromagnetic configuration. We then proceed with a low temperature
expansion: flipping a gauge spin will negate 8 plaquette terms, while flipping a ghost spin will negate 6 plaquette
terms. Therefore, the first order correction to the Wilson surface is〈 ∏

i∈∂V

si

〉
=

∑
s⃗

(∏
i∈∂V si

)
e−βH(s⃗)∑

s⃗ e
−βH(s⃗)

=
1 + (N − 2L)e−16β +Ne−12β + · · ·

1 +Ne−16β +Ne−12β + · · ·
(77)

where L is the length of the loop. For n spin flips, we make the assumption that they are independent. Then, the
contribution F (n) to the numerator is

F (n) =
∑

a+b=n

(N − 2L)a

a !

N b

b !
e−β(16a+12b) (78)

and the contribution to the denominator G(n) is

G(n) =
∑

a+b=n

Na

a !

N b

b !
e−β(16a+12b). (79)

Then, the Wilson surface roughly has the expectation value〈 ∏
i∈∂V

si

〉
≈ 1 + F (1) + F (2) + · · ·

1 +G(1) +G(2) + · · ·

=
exp

(
(N − 2L)e−16β +Ne−12β

)
exp (Ne−16β +Ne−12β)

= exp
(
−2L · e−16β

)
, (80)

which is representative of the deconfined phase.
Next, we understand what happens in the confined phase. For this, we need to perform a high temperature

expansion of the partition function:

Z = (coshβ)
N
∑
s⃗

∏
p

(1 + tanhβ (sisjsksℓτm)). (81)

and the Wilson loop looks like〈∏
i∈C

si

〉
=

∑
s⃗

(∏
i∈∂V si

)∏
p(1 + tanhβ (sisjsksℓτm))∑

s⃗

∏
p(1 + tanhβ (sisjsksℓτm))

. (82)

Naively, in analogy to the Ising gauge theory, one may fill the interior of C with plaquettes. Doing this results in A
dangling ghost spins, where A is the area of the loop. These ghost spins are sites on a 2D square lattice with boundary
C. Next, we may rewrite a correlation function of two ghost spins as

τiτj =

j∏
k=i

τk

 ∏
α∈□k

sα

2

τk+1 (83)

where the first product
∏j

k=i is over a string connecting i and j and the second product
∏

α∈□k
sα is over bond

spins on the plaquette adjacent to ghost spin τk and pointing out of the plane of ghost spins. This identity may
be written as a product of a string of pyramidal operators connecting τi and τj . To satisfy each ghost spin in the
2D substructure, we need to connect pairs of them together via strings of pyramidal operators while minimizing the
total number of pyramidal operators. The way to do this is for the string operators to mimic dimer configurations
on the square lattice. There are 2 pyramids involved per dimer, and therefore A pyramids involved in a given dimer
configuration. Then, the leading order contribution to the Wilson operator looks like〈∏

i∈C

si

〉
∼ (tanhβ)

A ·DS (tanhβ)
A
+ · · · , (84)
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FIG. 9. The Monte Carlo results show that as the number of samples increases, the transition point converges to the self dual
point at u = 5. The magnetization per spin is plotted. Similar plots were generated for the heat capacity, which indicates that
there is a single unique transition.

where DS is the number of dimer configurations on the square lattice with A sites,

lim
A→∞

1

A
logDS =

2G

π
, (85)

and G is Catalan’s constant. Therefore, the Wilson surface obeys an area law in the confined phase for large enough
temperatures.

If the Wilson loop encloses an odd number of plaquettes, then filling the interior or any extrusion of the loop with
plaquettes will result in an odd number of dangling ghost spins. These cannot be paired together without excluding
a single ghost spin. This single ghost spin can only be resolved by a string of pyramids connecting the ghost spin to
the boundary of the lattice. The Wilson loop then behaves like〈∏

i∈C

si

〉
≲ DS

(
tanh2 β

)A · (6 tanhβ)
3√
N + · · · , (86)

which for small enough β vanishes in the thermodynamic limit N → ∞.

SIMULATION DETAILS

The Monte Carlo simulation consists of loop moves implemented as Metropolis updates. While the plot shown in
the main text provides convincing evidence for a transition at u = 5 for the octahedral lattice, here we provide further
plots to corroborate this. In particular, we plot the magnetization as a function of the number of samples (which is
proportional to the total number of updates). We see that the transition point indeed robustly converges to u = 5.
The results are shown in Fig. 9. Similar results were seen for the diamond and BCC lattices upon finite size scaling.

SIMPLE PROOF OF SPONTANEOUSLY MAGNETIZED PHASE

We present a short and rigorous proof that the symmetry enriched Z2 gauge theory for the cubic lattice model
exhibits a phase transition in the local order parameter, and will thus arrive at a bound on the transition temperature
(even though in the main text, the transition temperature is computed exactly). To do this, we will rely on the
Griffiths-Kelly-Sherman inequalities, which state that for a classical spin model with purely ferromagnetic multispin
interactions with coupling constants J1, J2, · · · , the expectation value of a product of spin operators, O =

∏
i∈S si

where S is some set, satisfies

∂⟨O(J1, J2, · · · )⟩
∂Ji

≥ 0. (87)
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Note that the current 5-spin interaction model has an antiferromagnetic coupling. However, we can make the trans-
formation τ → −τ to the ghost spins without changing the partition function, rendering the interaction ferromagnetic
and applicable to the inequality. In particular, for the 5-spin interaction model, we remove pyramidal interactions
everywhere except for a two-dimensional layer of cubes. We then remove the pyramids on the top and the bottom
of each cube, and as a result, we know that the magnetization can only decrease as a result of removing all of these
interactions. The corresponding classical spin Hamiltonian will then take the form

H = J
∑
p′

s1s2s3s4τ5 (88)

where the ′ symbol indicates the sum is only over the remaining pyramids. Among the 4 bond spins s1, s2, s3, and s4,
two spins are shared by two pyramids, while the other two spins are shared by four pyramids. If we call the former
spins s, then

∑
s

exp

J
∑
p′

s1s2s3s4τ5

 ∝
∏
⟨p,q⟩

cosh (Js3s4(τp + τq)) (89)

where ⟨p, q⟩ correspond to edges in the square lattice formed by the sites of the ghost spins. Through the standard
trick ∑

s3,s4

cosh (Js3s4(τp + τq)) = 2 cosh (J(τp + τq)) (90)

and the identity

2 cosh (J(τp + τq)) = 1− τpτq + (1 + τpτq) cosh 2J (91)

The partition function becomes

Z ∝
∑
τ

exp

J ′
∑
⟨p,q⟩

τpτq

 , (92)

where

tanh J ′ =
cosh 2J − 1

cosh 2J + 1
. (93)

In 2D, we know that the Ising model spontaneously magnetizes, and since the magnetization in the 5-spin model has
a strictly greater magnetization, it must magnetize as well. This proves the existence of a symmetry broken phase.
The critical temperature of the 2D Ising model on a square lattice satisfies tanh Jising =

√
2−1, and thus we find that

u =
cosh(6J)

cosh(2J)
= 9 + 8

√
2 > 5 (94)

is an upper bound on the value of u for a phase transition, since for greater values of u we have proven that the 5-spin
interaction Hamiltonian must spontaneously magnetize. The true phase transition occurs (of course) at u = 5.

EXPLICIT CONSTRUCTION OF HAMILTONIAN IN TERMS OF SPIN OPERATORS

In this appendix, we provide an explicit form for the parent Hamiltonian in the main text.
To construct a parent Hamiltonian whose ground state is the RK vertex model wavefunction, place spins on the

edges of the diamond/cubic/BCC lattices (alternatively on the sites of the dual lattices) with the interpretation that
spin up corresponds to the presence of a dimer and spin down the absence of a dimer. Define P = −

∑
v

∏
i∈v Zi where

v is a site on the lattice and i ∈ v is the set of edges touching v; this operator projects onto the set of configurations
obeying an even dimer constraint. Call ℓ a loop of minimal length (squares on the cubic and BCC lattices and
hexagons on the diamond lattice) and for a configuration C of dimers, define Wℓ(Cℓ) =

∏
i∈ℓ Wi(Cℓ), where i are

sites along ℓ and Wi denotes the vertex weight of the dimer configuration on i. Furthermore, define Wℓ(Cℓ) to be
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FIG. 10. The location of the spins denoted by Z
(i)
w

the product of vertex weights if all the spins on ℓ are flipped. Define ω(Cℓ, Cℓ) =
√
Wℓ(Cℓ)/Wℓ(Cℓ). Then, the local

frustration-free Hamiltonian H = P +HA + rHB , where

HA =
∑
Cℓ,ℓ

1

ω(Cℓ, Cℓ)
|Cℓ⟩⟨Cℓ|+ ω(Cℓ, Cℓ)

∣∣Cℓ

〉〈
Cℓ

∣∣ (95)

HB = −
∑
Cℓ,ℓ

∣∣Cℓ

〉〈
Cℓ

∣∣+ ∣∣Cℓ

〉〈
Cℓ

∣∣ (96)

has the desired ground state at r = 1. This follows because at r = 1, the Hamiltonian HA +HB gives

HA +HB =
∑
Cℓ,ℓ

 1√
ω(Cℓ, Cℓ)

|Cℓ⟩ −
√

ω(Cℓ, Cℓ)
∣∣Cℓ

〉 1√
ω(Cℓ, Cℓ)

⟨Cℓ| −
√
ω(Cℓ, Cℓ)

〈
Cℓ

∣∣ . (97)

The RK wavefunction is annihilated by each of these projectors, and is thus a ground state. We now will write down
explicit expressions for the weights ω(Cℓ, Cℓ). Restricting to the cubic and diamond lattices, given a configuration of
dimers surrounding a vertex, the Boltzmann weight is

W (Z1, Z2, · · · , ZV ) = eJV (Z1+Z2+···+ZV )2 (98)

where V = 4, 6, while e16J4 = u and e32J6 = v. For the BCC lattice,

W (Z1, Z2, · · · , Z8) = eJ1,8(Z1+Z2+···+Z8)
2+J2,8(Z1+Z2+···+Z8)

4

(99)

and J1,8 and J2,8 are given in Eqn. 73. As a consequence, we may write the weights ω(Cℓ, Cℓ) for the diamond and
cubic lattices as

ω(Cℓ, Cℓ) = exp

(
JV
2

∑
w∈ℓ

(Z(1)
w + Z(2)

w + · · ·+ Z(V )
w )2 − (−Z(1)

w − Z(2)
w + · · ·+ Z(V )

w )2

)
(100)

= exp

(
2JV

∑
w∈ℓ

(Z(1)
w + Z(2)

w )(Z(3)
w + · · ·+ Z(V )

w )

)
. (101)

where w indicates a site along loop ℓ and Z
(1)
w , Z

(2)
w are the two spins on links that touch site u but are on the loop

ℓ. The remaining Z
(3)
w , Z

(4)
w , · · · are spins on links that touch u but do not reside on ℓ. A visual for the location of

these spins is shown in Figure 10 (for simplicity ℓ is shown as a square plaquette). For the BCC lattice, there is an
additional term and the weights are given by

ω(Cℓ, Cℓ) = exp

(∑
w∈ℓ

2J1,8(Z
(1)
w + Z(2)

w )(Z(3)
w + · · ·+ Z(V )

w ) + 4J2,8(Z
(1)
w + Z(2)

w )3(Z(3)
w + · · ·+ Z(V )

w )

+4J2,8(Z
(1)
w + Z(2)

w )(Z(3)
w + · · ·+ Z(V )

w )3
)
. (102)
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As such, we may write the Hamiltonian (for the diamond and cubic lattices)

HA =
∑
Cℓ,ℓ

1

ω(Cℓ, Cℓ)
|Cℓ⟩⟨Cℓ|+ ω(Cℓ, Cℓ)

∣∣Cℓ

〉〈
Cℓ

∣∣ =∑
ℓ

exp

(
−2JV

∑
w∈ℓ

(Z(1)
w + Z(2)

w )(Z(3)
w + · · ·+ Z(V )

w )

)
(103)

and a similar Hamiltonian can be written for the BCC lattice. Next, we note that the kinetic term responsible for
ring exchanges is given by

HB = −
∑
Cℓ,ℓ

∣∣Cℓ

〉〈
Cℓ

∣∣+ ∣∣Cℓ

〉〈
Cℓ

∣∣ = −
∑
ℓ

∏
α∈ℓ

Xα, (104)

where α ∈ ℓ label links on loop ℓ. In this appendix, lower case Latin letters denote sites, and lower case Greek letters
denote links (on which the dimers live). Therefore, the full Hamiltonian (for the cubic and diamond lattice vertex
models) is given by

H =
∑
ℓ

exp

(
−2JV

∑
w∈ℓ

(Z(1)
w + Z(2)

w )(Z(3)
w + · · ·+ Z(V )

w )

)
−
∑
w

∏
α∈w

Zα −
∑
ℓ

∏
α∈ℓ

Xα. (105)

where α ∈ w label the set of links touching site w. We note that this Hamiltonian commutes with the Z2 gauge
constraint

∏
α∈w Zα as well as the global Z2 symmetry

∏
α Xα. Therefore, one should think of this theory as a

Z2 gauge theory with an additional global symmetry, and not as a gauge theory coupled to matter fields. We also
recognize that when u = 1, JV = 0, and the theory reduces to the 3D toric code. Expanding out the exponential,
one can see that the effect of the first term is to add additional multi-spin interactions to the traditional toric code
Hamiltonian, whilst preserving the global Z2 symmetry. A similar Hamiltonian can be written down for the BCC
lattice quantum vertex model using Eqn. 102.

ARROWED QUANTUM VERTEX MODELS

In this appendix, we derive an alternative formulation of the quantum vertex model where the dimer variables
are replaced with arrow variables. Because both the cubic and diamond lattices are bipartite and the vertex weights
possess a Z2 symmetry, any configuration of dimers can be mapped onto a configuration of arrows, where a dimer
corresponds to an arrow pointing out of the A sublattice and pointing into the B sublattice. While for bipartite
lattices arrow and dimer variables are equivalent, on nonbipartite lattices, these constraints yield vastly different
phase diagrams. For a bond vertex model on a non-bipartite lattice, we expect to find a rather generic gapless point,
while for an arrowed vertex model on the same lattice, we expect the phase diagram to host a single Z2 topologically
ordered phase. This has been established numerically for a couple of examples in Ref. [18] in 2D, and we expect it to
hold true in higher dimensions. For this reason, it is worth discussing the construction of arrowed vertex models.

The construction of the arrowed vertex models requires a small modification: on each edge of the dual lattice
(for example, a cubic or diamond lattice) we place two spins rather than one, and we project onto configurations
where the spins are antiparallel to each other by adding the term ZiZj for each pair of spins ⟨i, j⟩ on an edge.
Antiparallel configurations of these spins are in one-to-one correspondence with arrows (as the up spin corresponds to
the arrow head and the down spin corresponds to the tail). The Hamiltonian is then equivalent to the constructions
in the previous appendix with some minor changes. First, one adds the antiferromagnetic term

∑
⟨i,j⟩ ZiZj to the

Hamiltonian. Second, the exchange term
∏

α∈ℓ Xα is changed to
∏

⟨α,β⟩∈ℓ XαXβ . Finally, when constructing the

Boltzmann weight ω(Cℓ, Cℓ), the spins which are used are indicated in Figure 11
For bipartite lattices, such as the diamond or cubic lattices, the phase diagram and transitions are identical to

that of the quantum vertex model with dimer variables as opposed to arrow variables. On non-bipartite lattices, the
story is different, and the topologically ordered phase is more robust. This follows from that fact that the u = ∞
point no longer exhibits spontaneous symmetry breaking and can have extensive ground state degeneracy. In two
dimensions, for a lattice of corner sharing triangles, we have previously shown that the arrowed vertex model with
W4(0) = W4(4) = u and W4(2) = 1 has ground state configurations which are in one-to-one correspondence with three
coloring configurations on that lattice when u → ∞. The quantum vertex model becomes a quantum three-coloring
model in this limit, which is gapless. A similar mapping to a three coloring model occurs for the hyperkagome lattice
in 3D. For all other values of u, we expect this model to be in a topologically ordered phase. This is evidenced by the
fact that u = 1 corresponds to a toric code-like wavefunction exhibiting Z2 topological order, even for the arrowed
vertex model.
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FIG. 11. The location of the spins denoted by Z
(i)
w for the arrowed vertex model. An antiferromagnetic interaction occurs for

each pair of spins on a bond
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