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In this paper we present an overview on recent progress in studies of QCD at finite temperature
and densities within the functional renormalization group (fRG) approach. The fRG is a nonpertur-
bative continuum field approach, in which quantum, thermal and density fluctuations are integrated
in successively with the evolution of the renormalization group (RG) scale. The fRG results for the
QCD phase structure and the location of the critical end point (CEP), the QCD equation of state
(EoS), the magnetic EoS, baryon number fluctuations confronted with recent experimental mea-
surements, various critical exponents, spectral functions in the critical region, the dynamical critical
exponent, etc., are presented. Recent estimates of the location of the CEP from first-principle QCD
calculations within fRG and Dyson-Schwinger Equations, which passes through lattice benchmark
tests at small baryon chemical potentials, converge in a rather small region at baryon chemical
potentials of about 600 MeV. A region of inhomogeneous instability indicated by a negative wave
function renormalization is found with µB & 420 MeV. It is found that the non-monotonic depen-
dence of the kurtosis of the net-proton number distributions on the beam collision energy observed in
experiments, could arise from the increasingly sharp crossover in the regime of low collision energy.
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I. INTRODUCTION

One of the most challenging questions in heavy-ion
physics arises from the attempt to understand how
the deconfined quarks and gluons, i.e., the quark-gluon
plasma (QGP), evolve into the confined hadrons. This
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evolution involves apparently two different phase transi-
tions: One is the confinement-deconfinement phase tran-
sition and the other is the chiral phase transition related
to the breaking and restoration of the chiral symmetry
of QCD. When the strange quark is in its physical mass
and the u and d quarks are massless, i.e., in the chiral
limit, the chiral phase transition in the regime of small
chemical potential in the QCD phase diagram, see e.g.,
Figure 14, might be of second order, and belongs to the
O(4) symmetry universality class [1, 2]. With the in-
crease of the baryon chemical potential, the second-order
phase transition might be changed into a first-order one
at the tricritical point. When the u and d quarks are
in their small, but nonvanishing physical masses, due to
the explicit breaking of the chiral symmetry, the O(4)
second-order chiral phase transition turns into a contin-
uous crossover [3], which is also consistent with experi-
mental measurements, cf. e.g., [4]. The tricritical point
in the phase diagram evolves into a critical end point
(CEP), which is the end point of the first-order phase
transition line at high baryon chemical potential or den-
sities.

Although the phase transition at the CEP is of sec-
ond order and belongs to the Z(2) symmetry universal-
ity class, the location of CEP and the size of the criti-
cal region around the CEP are non-universal. From the
paradigm of the QCD phase diagram described above,
one can easily find that the CEP plays a pivotal role in
understanding the whole QCD phase structure in terms
of the temperature and the baryon chemical potential.
As a consequence, it becomes an very important task
to search for and pin down the location of the CEP in
the QCD phase diagram. Lattice simulations provide us
with a wealth of knowledge of QCD phase transitions at
vanishing and small baryon chemical potential, cf. e.g.,
[5–16], but due to the sign problem at finite chemical po-
tentials, lattice calculations are usually restricted in the
region of µB/T . 2 ∼ 3, where no signal of CEP is ob-
served [17]. Notably, recent estimates of the location of
CEP from first-principle functional approaches, such as
the functional renormalization group (fRG) and Dyson-
Schwinger Equations (DSE), which passes through lat-
tice benchmark tests at small baryon chemical potentials,
converge in a rather small region at baryon chemical po-
tentials of about 600 MeV [18–20], and see also, e.g., [21]
for related discussions.

Search for the CEP is currently under way or planned
at many facilities, see, e.g., [4, 22–33]. Since the CEP
is of second order, the correlation length increases sig-
nificantly in the critical region in the vicinity of a CEP.
Moreover, it is well known that fluctuation observables,
e.g., the fluctuations of conserved charges, are very sen-
sitive to the critical dynamics, and the increased corre-
lation length would result in the increase of the fluctu-
ations as well. Therefore, it has been proposed that a
non-monotonic dependence of the conserved charge fluc-
tuations on the beam collision energy can be used to
search for the CEP in experimental measurements [34–

36], cf. also [22]. In the first phase of the Beam Energy
Scan (BES-I) program at the Relativistic Heavy Ion Col-
lider (RHIC) in the last decade, cumulants of net-proton,
net-charge and net-kaon multiplicity distributions of dif-
ferent orders, and their correlations have been measured
[37–44]. Notably, recently a non-monotonic dependence
of the kurtosis of the net-proton multiplicity distribution
on the collision energy is observed with 3.1σ significance
for central gold-on-gold (Au+Au) collisions [42].

In this work we would like to present an overview on re-
cent progress in studies of QCD at finite temperature and
densities within the fRG approach. The fRG is a nonper-
turbative continuum field approach, in which quantum,
thermal and density fluctuations are integrated in suc-
cessively with the evolution of the renormalization group
(RG) scale [45], cf. also [46, 47]. For QCD-related re-
views, see, e.g., [48–55]. Remarkably, recent years have
seen significant progress in first-principle fRG calcula-
tions, for example, the state-of-the-art quantitative fRG
results for Yang-Mills theory in the vacuum [56] and
at finite temperature [57], vacuum QCD results in the
quenched approximation [58], unquenched QCD in the
vacuum [59–61] and at finite temperature and densities
[18, 62].

In this paper we try to present a self-contained
overview, which include some fundamental derivations.
Although new researchers in this field, e.g., students, may
find these derivations useful, familiar readers could just
skip over them. Furthermore, in this paper we focus on
studies of fRG at finite temperature and densities, so
we have to give up some topics, which in fact are very
important for the developments and applications of the
fRG approach, such as the quantitative fRG calculations
to QCD in the vacuum [56, 58, 61].

This paper is organized as follows: In Section II we
introduce the formalism of the fRG approach, includ-
ing the Wetterich equation, the flow equations of corre-
lation functions, the technique of dynamical hadroniza-
tion, etc. Moreover, we also give a brief discussion about
the Wilson’s recursion formula and the Polchinski equa-
tion, which are closely related to the fRG approach.
In Section III we discuss the application of fRG in the
low energy effective field theories (LEFTs), including the
Nambu–Jona-Lasinio model and the quark-meson model.
The relevant results in LEFTs, e.g., the phase structure,
the equation of state, baryon number fluctuations, crit-
ical exponents, are presented. In Section IV we turn
to the application of fRG to QCD at finite temperature
and densities. After a discussion about the flows of the
propagators, strong couplings, four-quark couplings and
the Yukawa couplings, we present and discuss the rele-
vant results, e.g., the natural emergence of LEFTs from
QCD, several different chiral condensates, QCD phase
diagram and QCD phase structure, the inhomogeneous
instability at large baryon chemical potentials, the mag-
netic equation of state, etc. In Section V we discuss
the real-time fRG. After the derivation of the fRG flows
on the Schwinger-Keldysh closed time path, one formu-
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lates the real-time effective action in terms of the “clas-
sical” and “quantum” fields in the physical representa-
tion. The spectral functions and the dynamical critical
exponent of the O(N) scalar theory are discussed. In
Section VI a summary with conclusions is given. More-
over, an example for the flow equations of the gluon and
ghost self-energies in Yang-Mills theory at finite temper-
ature is given in Appendix A. The Fierz-complete basis
of four-quark interactions of Nf = 2 flavors is listed in
Appendix B, and some useful flow functions are collected
in Appendix C.

II. FORMALISM OF THE FRG APPROACH

We begin the section with a derivation of the Wet-
terich equation, i.e., the flow equation of the effective
action, which is followed by a brief introduction about
the Wilson’s recursion formula and the Polchinski equa-
tion, since they are closely related to the fRG approach.
Then, the fRG approach is applied to QCD. A simple
method to obtain the flow equations of correlation func-
tions, i.e., Equation (61), is presented. An example for
the flow equations of the gluon and ghost self-energies in
Yang-Mills theory at finite temperature is given in Ap-
pendix A. Finally, the technique of dynamical hadroniza-
tion is discussed in Section II E.

A. Flow equation of the effective action

We begin with a generating functional for a classical
action S[Φ̂] with an infrared (IR) regulator as follows

Zk[J ] =

∫
(DΦ̂) exp

{
− S[Φ̂]−∆Sk[Φ̂] + JaΦ̂a

}
, (1)

where the field Φ̂ is a collective symbol for all fields rel-
evant in a specific physical problem, and the hat on the
field is used to distinguish from its expected value in the
following. It can even include fields which do not appear
in the original classical action, and we will come back
to this topic in what follows. The suffix of Φ̂, a, denotes
not only the discrete degrees of freedom, e.g., the species,
inner components of fields, etc., but also the continuous
spacetime coordinates or the energy and momenta. The
external source Ja is conjugated to Φ̂a. A summation
or/and integral is assumed for a repeated index as shown

in Equation (1). The k-dependent regulator ∆Sk[Φ̂] in
Equation (1) is used to suppress quantum fluctuations of
momenta q . k, while leave those of q > k untouched.
Usually, a bilinear term, convenient in actual computa-
tions, is adopted for the regulator, which reads

∆Sk[Φ̂] =
1

2
Φ̂aR

ab
k Φ̂b , (2)

with Rabk = Rbak for bosonic indices and Rabk = −Rbak
for fermionic ones. See e.g., [49] for discussions about

generic regulators. We will see in the following that the
IR cutoff k here is essentially the renormalization group
(RG) scale.

We proceed to taking a single scalar field ϕ for exam-
ple, and the relevant regulator reads

∆Sk[ϕ] =
1

2

∫
d4xd4yϕ(x)Rk(x, y)ϕ(y) . (3)

It is more convenient to work in the momentum space.
Employing the Fourier transformation as follows

ϕ(x) =

∫
d4q

(2π)4
ϕ(q)eiqx , (4)

Rk(x, y) =

∫
d4q

(2π)4
Rk(q)eiq(x−y) , (5)

one is led to

∆Sk[ϕ] =
1

2

∫
d4q

(2π)4
ϕ(−q)Rk(q)ϕ(q) . (6)

Here, the regulator has the following asymptotic proper-
ties which read

Rk→∞(q)→∞, and Rk→0(q)→ 0 , (7)

with a fixed q. In order to fulfill the aforementioned
requirement, viz., only suppressing quantum fluctuations
of momenta q . k selectively, one could make the choice
as follows

Rk(q)
∣∣
q<k
∼ k2, Rk(q)

∣∣
q>k
∼ 0 . (8)

One may have already noticed that there are infinite
regulators fulfilling Equation (8). Here, we present two
classes of regulators that are frequently used in litera-
tures: One is the exponential-like regulator as follows

Rexp,n
k (q) = q2rexp,n(q2/k2) , (9)

with

rexp,n(x) =
xn−1

exn − 1
. (10)

The sharpness of regulator in the vicinity of q = k is
determined by the parameter n, as shown in Figure 1,
where the exponential regulators with n = 1 and 2 are
depicted as functions of q with a fixed k. In Figure 1 we
also plot another commonly used regulator, i.e., the flat
or optimized one [63, 64], which reads

Ropt
k (q) = q2ropt(q

2/k2) , (11)

with

ropt(x) =
( 1

x
− 1
)

Θ(1− x) , (12)
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FIG. 1. Comparison of several different regulators and their
derivative with respect to the RG scale k as functions of the
momentum q with a fixed k.

where Θ(x) is the Heaviside step function. Moreover, the
derivative of regulator with respect to the RG scale k, to
wit,

∂tRk(q) ≡ k∂kRk(q) , (13)

is also shown in Figure 1, where t is usually called as
the RG time. For more discussions about regulators, see,
e.g., [65].

It is more convenient to use the generating functional
for connected correlation functions, viz.,

Wk[J ] = lnZk[J ] , (14)

which is also known as the Schwinger function. Then,
the expected value of a field is readily obtained as

Φa ≡ 〈Φ̂a〉 =
δWk[J ]

δJa
, (15)

and the propagator reads

Gk,ab ≡ 〈Φ̂aΦ̂b〉c = 〈Φ̂aΦ̂b〉 − 〈Φ̂a〉〈Φ̂b〉

=
δ2Wk[J ]

δJaJb
, (16)

where the subscript c stands for “connected”. Moreover,
Legendre transformation to the Schwinger function leaves
us immediately with the one particle irreducible (1PI)
effective action, which reads

Γk[Φ] = −Wk[J ] + JaΦa −∆Sk[Φ] . (17)

In order to take both bosonic and fermionic fields into
account all together, we adopt the notation introduced
in [49], to wit,

JaΦa = γabΦaJ
b , (18)

with

γab =

{
−δab, a and b are fermionic,
δab, others.

(19)

Inserting Equation (18) into Equation (17) and differen-
tiating both sides of Equation (17) with respect to Φa,
one is led to

δ(Γk[Φ] + ∆Sk[Φ])

δΦa
= γabJ

b , (20)

whereby, the propagator in Equation (16) is readily writ-
ten as the inverse of the second-order derivative of Γk[Φ]
w.r.t. Φ, i.e.,

Gk,ab = γca

(
Γ

(2)
k [Φ] + ∆S

(2)
k [Φ]

)−1

cb
, (21)

with

(
Γ

(2)
k [Φ] + ∆S

(2)
k [Φ]

)ab
≡ δ2(Γk[Φ] + ∆Sk[Φ])

δΦaδΦb
. (22)

We proceed to considering the evolution of Schwinger
function with the RG scale, i.e., the flow equation of
Wk[J ], which is straightforwardly obtained from Eqs. (1)
and (14). The resulting flow reads

∂tWk[J ] = −1

2
STr

[(
∂tRk

)
Gk

]
− 1

2
Φa∂tR

ab
k Φb , (23)

where we have introduced a notation super trace for com-
pactness, which can also be expressed as

STr
[(
∂tRk

)
Gk

]
=
(
∂tR

ab
k

)
γcbGk,ca . (24)

The factor γ in the equation above indicates that the su-
per trace provides an additional minus sign for fermionic
degrees of freedom. Note that in deriving Equation (23)
we have used the relation in Equation (16). Applying
Legendre transformation in Equation (17) to the flow
equation of Schwinger function in Equation (23) once
more, one immediately arrives at the flow equation of
the effective action, as follows

∂tΓk[Φ] = −∂tWk[J ]− ∂t∆Sk[Φ]

=
1

2
STr

[(
∂tRk

)
Gk

]
, (25)

which is the Wetterich equation [45]. Note that the flow
equation of effective action in Equation (25) would be
modified when the dynamical hadronization is encoded,
see Equation (80). In Section II C we would like to give
an example for the application of fRG, and postpone dis-
cussions of the dynamical hadronization in Section II E.

B. From Wilson’s RG to Polchinski equation

The idea encoded in the Wetterich equation in Equa-
tion (25) is that, integrating out high momentum modes
leaves us with a RG rescaled theory, and this theory is
invariant at a second-order phase transition. This idea
is also reflected in the Wilson’s RG and Polchinski equa-
tion, to be discussed in this subsection.
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1. Wilson’s RG and recursion formula

Here we follow [66] and begin with the Ginzburg-
Landau Hamiltonian K ≡ H[σ]/T , which reads

K =

∫
ddx
[1

2
c
(
∇σ
)2

+ U(σ)
]
. (26)

Then one separates the field into two parts as follows

σ =σ′ + σ̃ , (27)

with

σ̃(x) =L−d/2
∑

Λ/2<q<Λ

σqe
iq·x , (28)

where L denotes the size of the system, Λ is a UV cutoff
scale and Λ−1 can be regarded as the lattice spacing.
The plane-wave expansion in Equation (28) can also be
replaced by that in terms of localized wave packets Wz(x)
, i.e., the Wannier functions for the band of plane waves
Λ/2 < q < Λ, that is,

σ̃(x) =
∑

z

σ̃zWz(x) . (29)

Obviously, the wave packets have the property Wz(x) ∼
0, if |x− z| � 2Λ−1, and one also has

∫
ddxWz(x)Wz′(x) =δzz′ , (30)

i.e., they are orthonormal. Substituting Equation (27)
into Equation (26) and performing a functional integral
over σ̃(x) or σ̃z, one arrives at

∫
(Dσ̃)e−K = exp

[
−
∫
ddx

1

2
c
(
∇σ′

)2]∏

z

I(σ′)

= exp

{
−
∫
ddx
[1

2
c
(
∇σ′

)2
+ Ū ′(σ′)

]
−ALd

}
, (31)

with

I(σ′) ≡Ω
1
2

∫
dy exp

{
− c

2
q̄2Ωy2 − Ω

2

[
U(σ′ + y)

+ U(σ′ − y)
]}

≡ exp
[
− ΩŪ ′(σ′)− ΩA

]
, (32)

where Ω is the volume of a block, or the wave packet;
the constant A is determined by the condition Ū ′(0) = 0;
The mean square wave vector of the packet reads

q̄2 =

∫
ddx
(
∇Wz(x)

)2

. (33)

In deriving Equation (31), one has neglected the overlap
between wave packets, the variation of σ′(x) and the ab-
solute value of Wz(x) within a block, and see [66–68] for
details. Note that Equation (31) is just the first step of
the Kadanoff transformation.

The second step of Kadanoff transformation is to make
replacement for the remaining field σ′ and the coordinate
in Equation (31) as follows

σ′(x)→21− d2−
η
2 σ(x′) , x′ =

x

2
, (34)

and thus one is left with

K′ =

∫
ddx′

[1

2
c′
(
∇σ
)2

+ U ′(σ)
]
, (35)

with

c′ =2−ηc , (36)

and

U ′(σ) =− 2dΩ−1 ln
I(21− d2−

η
2 σ)

I(0)
. (37)

In order to make c′ = c satisfied, one adopts η = 0.
Choosing an appropriate value of c, such that

c

2
q̄2Ω =1 , (38)

and defining

Q(σ) ≡ΩU(σ) , (39)

one arrives at

Q′(σ) =− 2d ln
I(21− d2 σ)

I(0)
. (40)

with

I(σ) =

∫
dy exp

{
− y2 − 1

2

[
Q(σ + y) +Q(σ − y)

]}
,

(41)

which is the Wilson’s recursion formula [67, 68]. Note
that the constant prefactor Ω1/2 in Equation (32) is ir-
relevant.

2. Polchinski equation

In Section II B 1 we have discussed the viewpoint of
Wilson’s RG, that is, integrating out modes of high
scales successively leaves us with a low energy theory
that evolves with the RG scale. This idea is also applied
to a generic quantum field theory within the formalism of
the functional integral, due to Polchinski [69]. We begin
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with a generating functional for a scalar field theory in
four Euclidean dimensions with a momentum cutoff, i.e.,

Z[J ] =

∫
(Dφ) exp

{∫
d4p

(2π)4

[
− 1

2
φ(p)φ(−p)(p2 +m2)

×K−1
( p2

Λ2
0

)
+ J(p)φ(−p)

]
+ Lint(φ)

}
, (42)

with a cutoff function given by

K(p2/Λ2
0) =

{
1, p2 < Λ2

0,
0, p2 � Λ2

0.
(43)

Evidently, here Λ0 plays a role as a UV cutoff scale, and
Lint in Equation (42) is the interaction Lagrangian at the
scale Λ0, that for example reads

Lint(φ) =

∫
d4x
[
− 1

2
ρ0

1φ
2(x)− 1

2
ρ0

2

(
∂µφ(x)

)2

− 1

4!
ρ0

3φ
4(x)

]
, (44)

where we have used the notation in [69], and ρ0
a’s stand

for bare quantities.
One would like to integrate out the high momentum

modes of φ and reduce the UV cutoff Λ0 to a lower
value, say Λ. In the meantime, one chooses |m2| < Λ
and J(p) = 0 for p2 > Λ2. As we have discussed in Sec-
tion II B 1, when high momentum modes are integrated
out, new effective interactions, included in the potential
U ′ in Equation (35) or the interaction Lagrangian Lint

in Equation (42), are generated. Thus, one is led to the
following functional integral

Z[J, L,Λ] =

∫
(Dφ) exp

{∫
d4p

(2π)4

[
− 1

2
φ(p)φ(−p)(p2

+m2)K−1
( p2

Λ2

)
+ J(p)φ(−p)

]
+ L(φ,Λ)

}
.

(45)

If one wishes to take the generating functional Z[J, L,Λ]
on the l.h.s. of the equation above to be independent of
the scale Λ, i.e.,

Λ
dZ[J, L,Λ]

dΛ
=0 , (46)

the following evolution equation for the interaction La-
grangian in Equation (45) has to be satisfied, to wit,

Λ
∂L(φ,Λ)

∂Λ
=−

∫
d4p

(2π)4

1

2

1

p2 +m2
Λ
∂K
(
p2

Λ2

)

∂Λ

×
[

δ2L

δφ(p)δφ(−p) +
δL

δφ(p)

δL

δφ(−p)

]
, (47)

which is the Polchinski equation [69].

∂tΓk[Φ] =
1

2
− − +

1

2

FIG. 2. Diagrammatic representation of the flow equation for
QCD effective action. The lines denote full propagators for
the gluon, ghost, quark, and meson, respectively. The crossed
circles stand for the infrared regulators.

C. Application to QCD

In this section we would like to apply the formalism of
fRG discussed above to an effective action of rebosonized
QCD in [18]. The truncation for the Euclidean effective
action reads

Γk[Φ]

=

∫

x

{
1

4
F aµνF

a
µν + Zc,k

(
∂µc̄

a
)
Dab
µ c

b +
1

2ξ

(
∂µA

a
µ

)2

+ Zq,kq̄
(
γµDµ − γ0µ̂

)
q +ms(σs)q̄sqs − λq,k

[(
q̄l T

0ql
)2

+
(
q̄l iγ5T ql

)2]
+ hkq̄l

(
T 0σ + iγ5T · π

)
ql

+
1

2
Zφ,k(∂µφ)2 + Vk(ρ,A0)− cσ σ −

1√
2
cσs σs

}

+ ∆Γglue , (48)

with
∫
x

=
∫ 1/T

0
dx0

∫
d3x, T being the temperature.

One can see that field contents in Equation (48) include
not only the fundamental fields in QCD, i.e., the gluon,
Faddeev-Popov ghost, and the quark, but also the com-
posite fields φ = (σ,π), the scalar and pseudo-scalar
mesons respectively. Note that here the mesonic fields
are not added by hands, but rather dynamically gen-
erated and transferred from the fundamental degrees of
freedom via the dynamical hadronization technique, de-
scribed in detail in Section II E. Consequently, there is
no double counting for the degrees of freedom. In short,
one is left with Φ = (A, c, c̄, q, q̄, σ, π). The hk and λq,k
in Equation (48) denote the Yukawa coupling and the
four-quark coupling, respectively,

The first line on the r.h.s. of Equation (48) denotes the
classical action for the glue sector, while its non-classical
contributions are collected in ∆Γglue. The gauge param-
eter ξ = 0, i.e., the Landau gauge, is commonly adopted
in the computation of functional approaches. The wave
function renormalization ZΦ,k of field Φ is defined as

Φ̄ = Z
1/2
Φ,kΦ , (49)

with the renormalized field Φ̄. The gluonic field strength



7

tensor reads

F aµν = Z
1/2
A,k

(
∂µA

a
ν − ∂νAaµ + Z

1/2
A,kḡglue,kf

abcAbµA
c
ν

)
.

(50)

Note that although different strong couplings are iden-
tical in the perturbative region, they can deviate from
each other in the nonperturbative or even semiperturba-
tive regime [56–58, 61], and see also relevant discussions
in Section IV B. Therefore, it is necessary to distinguish
different strong couplings. The renormalized strong cou-
plings in the glue sector read

ḡA3,k =
λA3,k

Z
3/2
A,k

, ḡA4,k =
λ

1/2
A4,k

ZA,k
, ḡc̄cA,k =

λc̄cA,k

Z
1/2
A,k Zc,k

,

(51)

where λA3,k, λA4,k and λc̄cA,k stand for the three-gluon,
four-gluon, ghost-gluon dressing functions, respectively,
as shown in Equation (A42), Equation (A48), Equa-
tion (A36). In Equation (50) the gluonic strong couplings
are denoted collectively as ḡglue,k. In the same way, the
quark-gluon coupling reads

ḡq̄qA,k =
λq̄qA,k

Z
1/2
A,k Zq,k

, (52)

with the quark-gluon dressing function λq̄qA,k. The co-
variant derivative in the fundamental and adjoint repre-
sentations of the color SU(Nc) group reads

Dµ = ∂µ − iZ1/2
A,kḡq̄qA,kA

a
µt
a , (53)

Dab
µ = ∂µδ

ab − Z1/2
A,kḡc̄cA,kf

abcAcµ , (54)

respectively. Here fabc is the antisymmetric structure
constant of the SU(Nc) group, determined from its Lie
algebra [ta, tb] = ifabctc, where the generators have the
normalization Tr tatb = (1/2)δab.

In Equation (48) the formalism of Nf = 3 flavor quark
is built upon that of Nf = 2 by means of addition of
a dynamical strange quark qs, whose constituent quark
mass ms(σs) is determined self-consistently from a ex-
tended effective potential of SU(Nf = 2), and see [18]
for more details. Therefore, we have the quark field
q = (ql, qs), where the u and d light quarks are denoted
by ql = (qu, qd). The light quarks interact with themself
through the four-quark coupling in the σ − π channel,
and they are also coupled with the σ and π mesons via
the Yukawa coupling. Here T i (i = 1, 2, 3) are the gen-
erators of the group SU(Nf = 2) in the flavor space with

TrT iT j = (1/2)δij and T 0 = (1/
√

2Nf )1Nf×Nf with
Nf = 2. In Equation (48) µ̂ = diag(µu, µd, µs) stands for
the matrix of quark chemical potentials.

The effective potential in Equation (48) can be decom-
posed into two parts as follows

Vk(ρ,A0) = Vglue,k(A0) + Vmat,k(ρ,A0) . (55)

The first term on the r.h.s. of equation above is the glue
potential, or the Polyakov loop potential. The temporal
gluon field A0 is intimately related to the Polyakov loop
L[A0], see e.g., [70]; the second term is the mesonic effec-
tive potential of Nf = 2 flavors, which is O(4)-invariant
with ρ = φ2/2. Moreover, in the effective action in Equa-
tion (48) cσ and cσs are the parameters of explicit chiral
symmetry breaking for the light and strange scalars σ,
σs, respectively.

Applying the fRG flow equation in Equation (25) to
the QCD effective action in Equation (48), one immedi-
ately arrives at the QCD flow equation, which is depicted
in Figure 2. One can see that the flow of effective poten-
tial receives contributions from the gluon, ghost, quark,
and composite fields separately, each of which is one-loop
structure. It should be emphasized that, although it is a
one-loop structure, the flow is composed of full propaga-
tors which are in turn dependent on the second deriva-
tive of the effective action, see Equation (21). Thus, the
flow equation in Figure 2 a functional self-consistent dif-
ferential equation, which will be explored further in the
following.

D. Flow equations of correlation functions

Combining Equation (21) one can reformulate Wet-
terich equation in Equation (25) slightly such that

∂tΓk[Φ] =
1

2
STr

[
∂̃t ln

(
Γ

(2)
k [Φ] +Rk

)]
, (56)

where the differential operator with a tilde, ∂̃t, hits the
RG-scale dependence only through the regulator. Note

that Γ
(2)
k [Φ] in Equation (56) is a bit different from that

in Equation (22), and here the factor γab is absorbed in

Γ
(2)
k [Φ]. A convenient way to take this into account is to

use the definition as follows

(
Γ

(2)
k [Φ]

)ab ≡
−→
δ

δΦa
Γk[Φ]

←−
δ

δΦb
, (57)

where the left and right derivatives have been adopted.
In order to derive the flow equations for various corre-

lation functions of different orders, it is useful to express

Γ
(2)
k in Equation (57) in terms of a matrix, and the in-

dices of matrix correspond to different fields involved in
the theory concerned, e.g., Φ = (A, c, c̄, q, q̄, σ, π) in Sec-
tion II C. This matrix is also called as the fluctuation
matrix [71]. Then, one can make the division as follows

Γ
(2)
k +Rk = P + F , (58)

where P is the matrix of two-point correlation functions
including the regulators, and its inverse gives rise to prop-
agators; F is the matrix of interaction which includes n-
point correlation functions with n > 2, and thus terms in
F have the field dependence. Substituting Equation (58)
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∂t = ∂̃t


 1

2 + 1
2 − −




FIG. 3. Diagrammatic representation of the flow equation for
the gluon self-energy in Yang-Mills theory, where the last di-
agram arises from the non-classical two-ghost–two-gluon ver-
tex.

into Equation (56) and making the Taylor expansion in
order of F/P, one arrives at

∂tΓk =
1

2
STr

[
∂̃t ln(P + F)

]

=
1

2
STr∂̃t lnP +

1

2
STr∂̃t

( 1

PF
)
− 1

4
STr∂̃t

( 1

PF
)2

+
1

6
STr∂̃t

( 1

PF
)3

− 1

8
STr∂̃t

( 1

PF
)4

+ · · · ,
(59)

from which it is straightforward to obtain the flow equa-
tions for various inverse propagators and vertices at some
appropriate orders.

Moreover, one can also employ some well-developed
Mathematica packages, e.g., DoFun [72, 73], QMeS-
Derivation [74], to derive the flow equations for corre-
lation functions. We refrain from elaborating on details
about usage of these Mathematica packages in this re-
view, which interested readers can find in the references
above, but rather would like to introduce another easy-
to-use approach to derive the flow equations described in
detail in Section II D 1.

1. A simple approach to derivation of flow equations of
correlation functions

We proceed with defining a generic 1PI n-point corre-
lation function or vertex, as follows

V
(n)
k,Φa1 ···Φan

≡ −Γ
(n)
k,Φa1 ···Φan

= −
(

δnΓk[Φ]

δΦa1 · · · δΦan

)∣∣∣∣
Φ=〈Φ〉

,

(60)

where 〈Φ〉 denotes the value of Φ on its equation of mo-

tion (EoM). The flow equation of vertex V
(n)
k in Equa-

tion (60) can be represented schematically as the equa-
tion as follows

∂tV
(n)
k,Φa1 ···Φan

= ∂̃t

(
all one−loop correction

diagrams of V
(n)
k,Φa1 ···Φan

)
. (61)

Note that the one-loop diagrams on the r.h.s. are com-
prised of full propagators and vertices. As we have men-
tioned above, the partial derivative with a tilde ∂̃t hits
the RG-scale dependence only through the regulator, and
thus its implementation on diagrams would give rise to
the insertion of a regulator for each inner propagator.

As an example, we present the flow equation of the
gluon self-energy in Yang-Mills theory in Figure 3. One
can see that it receives contributions from the gluon loop,
the tadpole of the gluon, the ghost loop, and the tadpole
of the ghost. Note that the last diagram on the r.h.s.
of equation in Figure 3 arises from the non-classical two-
ghost–two-gluon vertex. Remarkably, the factors in front
of each diagram are in agreement with those in the per-
turbation theory. It, however, should be emphasized once
more that although these diagrams are very similar with
the formalism of perturbation theory, they are essentially
nonperturbative, since both propagators and vertices in
these diagrams are the full ones.

In order to let readers be familiar with the computation
in fRG, we present some details about the flow equations
of the gluon and ghost self-energies in Yang-Mills theory
at finite temperature in Appendix A.

E. Dynamical hadronization

In Section II C we have mentioned that the mesonic
fields in Equation (48) are not added by hands. On the
contrary, these composite degrees of freedom are dynami-
cally generated from fundamental ones with the evolution
of the RG scale from the ultraviolet (UV) toward infrared
(IR) limit. This is done via a technique called the dy-
namical hadronization, which was proposed in [71, 75],
and subsequently the formalism was further developed
in [49]. Notably, recently the explicit chiral symmetry
breaking and its role within the dynamical hadroniza-
tion have been investigated in detail in [18], and a flow of
dynamical hadronization with manifest chiral symmetry
is put forward therein. In this section, we follow [18] and
present the derivation of flow equation of the dynamical
hadronization.

We denote the original or fundamental degrees of free-
dom in QCD as ϕ̂ = (Â, ĉ, ˆ̄c, q̂, ˆ̄q) with the expected value
ϕ = 〈ϕ̂〉, whereas composite degrees of freedom are intro-

duced via a RG scale k-dependent composite field φ̂k(ϕ̂)
[49, 71, 75], which is a function of the fundamental field
ϕ̂. Then the superfield reads

Φ = (ϕ, φk) = (A, c, c̄, q, q̄, φk) , (62)

with

φk = 〈φ̂k(ϕ̂)〉 . (63)

The generating functional in Equation (1) is modified a
bit such that

Zk[J ] = exp
(
Wk[J ]

)

=

∫
(Dϕ̂) exp

{
− SQCD[ϕ̂]−∆Sk[ϕ̂, φ̂k] + Jϕ · ϕ̂

+ Jφ · φ̂k
}
, (64)
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where the external source J = (Jϕ, Jφ) with Jϕ =
(JA, Jc, Jc̄, Jq, Jq̄) is conjugated to the field Φ = (ϕ, φk),
distinguished with different labels of indices, i.e.,

J · Φ̂ = JaΦ̂a, Jϕ · ϕ̂ = Jαϕ ϕ̂α, Jφ · φ̂k = J iφφ̂k,i .

(65)

The regulator of bilinear fields in Equation (64) reads

∆Sk[ϕ̂, φ̂k] = ∆Sk[Φ̂] =
1

2
Φ̂aR

ab
k Φ̂b . (66)

The effective action is obtained via a Legendre trans-
formation to the Schwinger function as shown in Equa-
tion (17). Note that the term of explicit chiral symmetry

breaking in the effective action, e.g., −cσσ or −cσsσs/
√

2
in Equation (48), does not contribute to the flow of effec-
tive action, and thus the effective action can always be
decomposed into that in the case of chiral limit plus an
explicit chiral symmetry breaking term. We follow [18]
and separate the explicit breaking out, such that

Γk[Φ] = Γ̄k[Φ]− cσσ , (67)

where we have concentrated on the case of Nf = 2, that
can be easily extended to include the strange quark. Γ̄k in
Equation (67) stands for the effective action without the
explicit chiral symmetry breaking. From Equation (67),
one arrives at

Γk[Φ]− J · Φ = Γ̄k[Φ]− cσσ − J · Φ

= Γ̄k[Φ]− J̄ · Φ , (68)

with

J̄ = (Jϕ, Jσ + cσ, Jπ) , (69)

i.e.,

J̄σ = Jσ + cσ , J̄ϕ = Jϕ , J̄π = Jπ . (70)

Equation (68) combined with Equation (17) leaves us
with the relation for Schwinger functions as follows

Wk[J ] = W̄k[J̄ ] , (71)

where one has

W̄k[J ] = Wk[J ]
∣∣∣
cσ→0

, (72)

that is, W̄k denotes the Schwinger function in the absence
of the explicit chiral symmetry breaking. Similar with
Equation (25), one arrives at

∂tΓ̄k[Φ] = −∂tW̄k[J̄ ]− ∂t∆Sk[Φ] , (73)

where W̄k[J̄ ] = ln Z̄k[J̄ ] can be obtained in Equation (64)
with J̄ in lieu of J and a chiral symmetric SQCD[ϕ̂]. Sub-

sequently, one arrives at

∂tW̄k[J̄ ]

=
1

Z̄k[J̄ ]

∫
(Dϕ̂)

(
− ∂t∆Sk[Φ̂] + J̄φ · ∂tφ̂k

)

× exp
{
− SQCD[ϕ̂]−∆Sk[Φ̂] + J̄ϕ · ϕ̂+ J̄φ · φ̂k

}
.

(74)

It is straightforward to obtain

∂t∆Sk[Φ̂] =
1

2
Φ̂a
(
∂tR

ab
k

)
Φ̂b + φ̂k,iR

ij
k,φ

(
∂tφ̂k,j

)
. (75)

Inserting Equation (75) into Equation (74) and then to
Equation (73), one is led to

∂tΓ̄k[Φ] =
1

2
Gk,ab∂tR

ab
k + 〈φ̂k,iRijk,φ

(
∂tφ̂k,j

)
〉

− J̄ iφ〈∂tφ̂k,i〉 , (76)

where Equation (16) has been used. Employing

〈φ̂k,iRijk,φ
(
∂tφ̂k,j

)
〉 =

(
Gk,ia

δ

δΦa
+ φk,i

)
Rijk,φ〈∂tφ̂k,j〉 ,

(77)

and

J̄ iφ =
δ
(
Γ̄k[Φ] + ∆Sk[Φ]

)

δφk,i
, (78)

one arrives at

∂tΓ̄k[Φ] =
1

2
Gk,ab∂tR

ab
k +Gk,ia

( δ

δΦa
〈∂tφ̂k,j〉

)
Rijk,φ

− 〈∂tφ̂k,i〉
δΓ̄k[Φ]

δφk,i
. (79)

Given the relation in Equation (68) and the fact that cσ is
independent of the RG scale k, we finally obtain the flow
equation of effective action with dynamical hadroniza-
tion, to wit,

∂tΓk[Φ]

=
1

2
STr

(
Gk[Φ] ∂tRk

)
+ Tr

(
GφΦa [Φ]

δ〈∂tφ̂k〉
δΦa

Rφ

)

−
∫
〈∂tφ̂k,i〉

(
δΓk[Φ]

δφi
+ cσδi σ

)
, (80)

where some summations for the indices {a} and {i} as
shown in Equation (65) have been replaced with the su-
per trace and trace, respectively; the integral over the
spacetime coordinate is recovered for the last term on
the r.h.s. of Equation (80). The propagator Gk,ia in
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∂t = ∂̃t


 + +




FIG. 4. Schematic representation of the flow equation for the
four-quark coupling. Those on the r.h.s. of equation stand
for three classes of diagrams contributing to the flow of four-
quark interaction, that is, the two-gluon exchange, purely self-
interacting four-quark coupling, and mixture of the quark-
gluon and four-quark interactions, respectively. Here, dia-
grams of different channels of momenta are not distinguished
and prefactors for each diagram are not shown.

Equation (79) is relabeled with Gk,φiΦa that has a clearer
physical meaning. One can see that in comparison to
Equation (25), there are two additional terms, i.e., the
last two on the r.h.s. of Equation (80), in the flow equa-
tion of the effective action. These additional terms arise
from the RG scale dependent composite field in Equa-
tion (63), and they can be employed to implement the
Hubbard-Stratonovich transformation for every value of
the RG scale, which eventually transfers the degrees of
freedom from quarks to bound states.

III. LOW ENERGY EFFECTIVE FIELD
THEORIES

Prior to discussing properties of the QCD matter at
finite temperature and densities in Section IV, in this
section we would like to apply the formalism of fRG in
Section II to low energy effective field theories (LEFTs)
firstly. We adopt two commonly used formalisms of
LEFTs, i.e., the purely fermionic Nambu–Jona-Lasinio
(NJL) model in Section III A and the quark-meson (QM)
model in Section III B, respectively.

A. Nambu–Jona-Lasinio model

One prominent feature characteristic to the nonpertur-
bative QCD is the dynamical chiral symmetry breaking,
which is regarded as being responsible for the origin of the
∼ 98% mass of visible matter in the universe [78–81], in
contradistinction to the ∼ 2% electroweak mass. Within
the fRG approach, the dynamical breaking or restoration
of the chiral symmetry is well encoded in the four-fermion
flows, that is illustrated briefly in what follows. For more
details, see, e.g., [77, 82–90] and a related review [53].

Using the method to derive the flow equation for a
generic vertex as shown in Equation (61), one is able to
obtain the flow equation of four-quark coupling, depicted
schematically in Figure 4. Here we refrain from going
into the details of a realistic calculation, but rather try
to infer behaviors of the four-quark flow connected to
breaking or restoration of the chiral symmetry. It follows
from Figure 4 that the β function for the dimensionless

four-quark coupling λ̄ ≡ k2λ reads

β ≡∂tλ̄ = (d− 2)λ̄− aλ̄2 − bλ̄g2 − cg4 , (81)

with the dimension of spacetime d = 4 and the strong
coupling g. Note that apart from the first term on the
r.h.s. of Equation (81) arising from the dimension of
λ, the remaining three terms corresponds to the three
classes of diagrams in Figure 5 one by one, and their
coefficients are denoted by a, b, c, respectively. Further
computation indicates one has a > 0 and c > 0 [76].

In the left panel of Figure 5, a typical β function is
plotted as a function of the dimensionless four-quark cou-
pling schematically in different cases. When the gauge
coupling g is vanishing and at zero temperature, there
are two fixed points: One is the Gaussian IR fixed point
λ̄ = 0, the other the UV attractive fixed point at a non-
vanishing λ̄, and they are shown in the plot by red and
purple dots, respectively. The position of the UV fixed
point determines a critical value λ̄c, which is necessitated
in order to break the chiral symmetry, since only when
λ̄ > λ̄c, the four-quark coupling grows large and even-
tually diverges with the decreasing RG scale. When the
temperature is turned on, the IR fixed point remains at
the origin while the UV fixed point move towards right, as
shown by the red dashed line. As a consequence, the bro-
ken chiral symmetry in the vacuum is restored at a finite
T , if one has a value of λ̄ with λ̄c(T = 0) < λ̄ < λ̄c(T ).
When the strong coupling is nonzero, the parabola of β
function moves downwards globally as shown by the blue
curve in the left panel of Figure 5. There is a critical
value of the strong coupling, say gc, once one has g > gc,
the whole curve of the beta function is below the line
β = 0, which implies that the chiral symmetry breaking
is bound to occur, no matter how large the initial value
of λ̄ is.

The four-fermion flow is also well suited for an analysis
of the chiral symmetry breaking in an external magnetic
field. The inclusion of a magnetic field would modify the
four-quark flows as well as the fixed-point structure [77,
84]. The plot in the right panel of Figure 5 is obtained in
[77], which demonstrates that in the case with a magnetic
field the flow pattern of the four-quark coupling has been
changed and the chiral symmetry is always broken. This
is in fact due to the dimensional reduction under a finite
external magnetic field. Moreover, it is found that once
the in-medium effects of temperature and densities are
implemented, long-range correlations are screened and
the vanishing critical coupling shown by the red line in
the right panel of Figure 5 is not zero anymore [77].

Recently, a Fierz-complete four-fermion model is em-
ployed to investigate the phase structure at finite temper-
ature and quark chemical potential, and it is found that
the inclusion of four-quark channels other than the con-
ventionally used scalar-pseudoscalar ones not only plays
an important role in the phase diagram at large chemical
potential, but also affects the dynamics at small chemical
potential [86]. The related fixed-point structure is ana-
lyzed at finite chemical potential in the Fierz-complete
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g=0, T>0

λ

∂t λ ∂t λ

λ, B=0

λ, B≠0
Dimensional

Reduction

FIG. 5. Left panel: Sketch of a typical β function for the dimensionless four-quark coupling λ̄ ≡ k2λ in different cases, where
g is the gauge coupling and T is the temperature. The plot is adopted from [76]. Right panel: Comparison between the β
functions of λ̄ with and without an external magnetic field. The inclusion of a magnetic field results in that the chiral symmetry
is always broken due to the dimensional reduction. The plot is adopted from [77].

NJL model, and it is found the dynamics is dominated
by diquarks at large chemical potential [87]. Resort-
ing to the fRG flows of four-quark interactions, one is
able to observe the natural emergence of the NJL model
at intermediate and low energy scales from fundamental
quark-gluon interactions [88]. Equation of state of nu-
clear matter at supranuclear densities is also studied in
the Fierz-complete setting [89], and a maximal speed of
sound is found at supranuclear densities, that is related
to the emergence of color superconductivity in the regime
of high densities, i.e., the formation of a diquark gap, see
also [90] for details. Moreover, the UA(1) symmetry and
its effect on the chiral phase transition are investigated
in the Fierz-complete basis [91].

Up to now, we have only discussed the chiral symmetry
and its breaking by means of the four-fermion flows. As
mentioned in the beginning of Section III A, a direct con-
sequence of the dynamical chiral symmetry breaking is
the production of mass, that is our central concern in the
following. Here, we discuss a recent progress in under-
standing the quark mass generation and the emergence
of bound states in terms of RG flows [92]. Considering
only the quark degrees of freedom in Equation (48) and
extending the scalar-pseudoscalar four-quark interaction
to a Fierz-complete set of Nf = 2 flavors, denoted by
B in the following, one arrives at a RG-scale dependent
effective action, given by

Γk[Φ]

=

∫

x,y

[
Zq,k(x, y)q̄(x)γµ∂µq(y) +mq,k(x, y)q̄(x)q(y)

]

−
∫

x,y,w,z

∑

α∈B
λα,k(x, y, w, z)Oαijlmq̄i(x)qj(y)q̄l(w)qm(z) ,

(82)

with Φ = (q, q̄) and
∫
x,··· ≡

∫
d4x

∫
· · · . Here Oαijlm

stands for the four-quark operator of channel α, where

the indices i, j, l, m run over the Dirac, flavor and
color (Nc = 3) spaces, and the related coupling strength
is given by λα,k. In the same way, summation is as-
sumed for repeated indices. In Appendix B ten indepen-
dent Fierz-complete channels of four-quark interactions
of Nf = 2 flavors are presented.

The two-quark correlation function reads

i j

pp
≡ −Γ

(2)q̄q
k,ij (p′, p) , (83)

with

Γ
(2)q̄q
k,ij (p′, p) ≡ − δ2Γk

δq̄i(p′)δqj(p)

∣∣∣∣
Φ=0

=
[
Zq,k(p)i(γ · p)ij +mq,k(p)δij

]
(2π)4δ4(p′ + p) . (84)

Then one arrives at the quark propagator with an IR
regulator, viz.,

Gqq̄k (p, p′) =
[
Γ

(2)q̄q
k +Rq̄qk

]−1

= Gqk(p)(2π)4δ4(p′ + p) , (85)

with a fermionic regulator given by

Rq̄qk = Zq,krF (p2/k2)iγ · p , (86)

and

Gqk(p) =
1

Zq,k(p)iγ · p+ Zq,krF (p2/k2)iγ · p+mq,k(p)
.

(87)

Note that the fermionic regulator in Equation (86), in
comparison to the bosonic one in Eqs. (9) and (11), is
implemented in the vector channel rather than the scalar
one, which guarantees that the chiral symmetry is not
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broken by the regulator. In the same way, one is al-
lowed to make a choice for the specific formalism of the
fermionic regulator, e.g., the optimized one,

rF,opt(x) =

(
1√
x
− 1

)
Θ(1− x) , (88)

or the exponential one in Equation (10),

rF (x) = rexp,n(x) =
xn−1

exn − 1
, (89)

and even the simplest exponential regulator as follows

rF,exp(x) =
1

x
e−x . (90)

The four-quark correlation function reads

m

li

jq s

p r

≡ −Γ
(4)q̄qq̄q
k,ijlm (p, q, r, s) . (91)

with

Γ
(4)q̄qq̄q
k,ijlm (p, q, r, s) ≡ δ4Γk

δq̄i(p)δqj(q)δq̄l(r)δqm(s)

∣∣∣∣
Φ=0

=2
∑

α∈B

(
λSα,k(p, q, r, s)(Oαijlm −Oαljim)

+ λAα,k(p, q, r, s)(Oαijlm +Oαljim)
)

× (2π)4δ4(p+ q + r + s) , (92)

where the symmetric and antisymmetric four-quark cou-
plings read

λSα,k(p, q, r, s) ≡
(
λα,k(p, q, r, s) + λα,k(r, q, p, s)

)
/2 ,

(93)

λAα,k(p, q, r, s) ≡
(
λα,k(p, q, r, s)− λα,k(r, q, p, s)

)
/2 .

(94)

Neglecting the diagrams including the quark-gluon in-
teraction in Figure 4 and showing explicitly different
channels of momenta, one is able to obtain the flow equa-
tion of four-quark coupling within the purely fermionic
effective action in Equation (82), shown diagrammati-
cally in the second line of Figure 6. We also depict the
flow equation of the two-quark correlation function, i.e.,
the quark self-energy, in Figure 6.

1. Quark mass production

Following [92] we assume that the antisymmetric four-
quark couplings λAα,k’s in Equation (94) are vanishing in

∂t

( )
= ∂̃t

(
−

)

∂t

( )
= ∂̃t


 − + +

1

2




FIG. 6. Diagrammatic representation of the flow equations
for the two- and four-quark correlation functions, where pref-
actors and signs for each diagram are also included. The three
diagrams on the r.h.s. of the flow equation of four-quark cou-
pling stand for the t-, u-, and s-channels, respectively.

①
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FIG. 7. RG flows in the plane spanned by the dimension-
less quark mass m̄q and the four-quark coupling of σ-π chan-
nel λ̄σ−π, where logarithmic values of these two variables are
used. Several evolutional trajectories with different initial
conditions are labeled with numbers in circles, and arrows on
trajectories point towards the IR direction. Plot is adopted
from [92].

order to simplify calculations. Then, Eqs. (93) and (94)
leaves us with

λSα,k(p, q, r, s) = λα,k(p, q, r, s) = λα,k(r, q, p, s) , (95)

and its flow equation reads

∂tλα,k(p1, p2, p3, p4)

=
∑

α′,α′′∈B

∫
d4q

(2π)4

[
λα′,k(p1, p2, q + p2 − p1, q)

× λα′′,k(p3, p4, q, q + p2 − p1)F tα′α′′,α

+ λα′,k(p3, p2, q + p2 − p3, q)

× λα′′,k(p1, p4, q, q + p2 − p3)Fuα′α′′,α

+ λα′,k(p1, q, p3,−q + p1 + p3)
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FIG. 8. Four-quark couplings λα,k and their dimensionless counterparts λ̄α,k = λα,kk
2 for the ten Fierz-complete channels

as functions of the RG scale k. Initial values of couplings are chosen as follows, λ̄π,k=Λ = λ̄σ,k=Λ = 24.2 and λ̄α,k=Λ = 0
(α /∈ {σ, π}) for other channels. m̄q,k=Λ = 5× 10−3 (top panels) and 1× 10−2 (bottom panels) are adopted for the initial value
of quark mass. Plot is adopted from [92].

× λα′′,k(q, p2,−q + p1 + p3, p4)Fsα′α′′,α
]
, (96)

where the superscripts t, u, and s of coefficient F ’s indi-
cate that the relevant terms in Equation (96) arise from
the corresponding loop diagrams in the flow of four-quark
coupling in Figure 6. The coefficient F ’s depend on the
quark propagators and regulators, and see [92] for their
explicit expressions. The flow of quark mass is readily
obtained by projecting the flow equation of the quark
self-energy in the first line in Figure 6 onto the scalar
channel, which reads

∂tmq,k(p)

=

∫
d4q

(2π)4

(
∂̃tḠ

q
k(q)

)
mq,k(q)

[3

2
λπ,k(p, p, q, q)

+
23

2
λσ,k(p, p, q, q)− 3

2
λa,k(p, p, q, q)

+
1

2
λη,k(p, p, q, q) +

8

3
λ(S+P )adj− ,k(p, p, q, q)

− 16

3
λ(S+P )adj+ ,k(p, p, q, q)− 4λ(V+A),k(p, p, q, q)

]
,

(97)

with

∂̃tḠ
q
k(q) = −2

(
Ḡqk(q)

)2
ZRq,k(q)q2∂tRF,k(q) . (98)

Here one has ZRq,k(q) = Zq,k(q) +RF,k(q) with RF,k(q) =

Zq,krF (q2/k2), and

Ḡqk(q) =
1

(
ZRq,k(q)

)2
q2 +m2

q,k(q)
. (99)

For the moment, we assume Zq,k = 1 and use the trun-
cation as follows

λα,k = λα,k(pi = 0) , (i = 1, · · · , 4) , (100)

mq,k = mq,k(p = 0) , (101)
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FIG. 9. Evolution of the quark mass with the RG scale ob-
tained within the Fierz-complete basis of four-quark inter-
actions. Initial values of couplings are chosen as follows,
λ̄π,k=Λ = λ̄σ,k=Λ = 24.2 and λ̄α,k=Λ = 0 (α /∈ {σ, π}) for
other channels. Results obtained from several different initial
values of m̄q,k=Λ are compared. Plot is adopted from [92].

that is, neglecting the momentum dependence of the four-
quark coupling and quark mass. The dimensionless four-
quark coupling λ̄α,k = λα,kk

2 and quark mass m̄q,k =
mq,k/k are also very useful in the following.

In order to focus on the mechanism of quark mass pro-
duction, we make a further approximation as follows

λα,k = 0 , (α /∈ {σ, π}) , (102)

λσ−π,k ≡ λσ,k = λπ,k , (103)

i.e., only keeping the scalar-pseudoscalar σ and π chan-
nel. Then the flow equations in Eqs. (96) and (97) are
simplified as

∂tλ̄σ−π =2λ̄σ−π +
λ̄2
σ−π
2π2

∫ ∞

0

dxx3rF
′(x)

×
[
− 4m̄2

q + 7x
(
1 + rF (x)

)2]

× 1 + rF (x)
[(

1 + rF (x)
)2
x+ m̄2

q

]3 , (104)

and

∂tm̄q =− m̄q + m̄qλ̄σ−π
13

4π2

∫ ∞

0

dxx3rF
′(x)

× 1 + rF (x)
[(

1 + rF (x)
)2
x+ m̄2

q

]2 , (105)

respectively. Here we have used the dimensionless vari-
ables, which entails that the RG scale k-dependence for

these equations is removed. RG flows of λ̄σ−π and m̄q in
Eqs. (104) and (105) are depicted in Figure 7.

The plane in Figure 7 is segmented into two parts by
the red solid line. In the chiral limit the red line crosses
the x-axis at the UV fixed point, as shown in Figure 5,
and the critical value here is λ̄cσ−π = 23.08. Interestingly,
the UV critical point is extended to being an approxi-
mate critical line in the flow diagram in Figure 7, where
the word “approximate” is used because the exact chiral
symmetry is lost once the quark mass is nonzero. On
the l.h.s. of the critical line, there is little dynamical chi-
ral symmetry breaking and the quark mass is dominated
by the current mass, while on the r.h.s. the dynamical
chiral symmetry breaking plays a dominant role. Fur-
thermore, it is observed that in the regime of dynamical
chiral symmetry breaking, that is, on the r.h.s. of the
red line, the dimensionless four-quark coupling increases
firstly and then decreases. This is due to the competi-
tion between the flow equations of the quark self-energy
and the four-quark coupling shown in Figure 6, where
the fish diagrams drive the dynamical breaking of chiral
symmetry and result in the increase of the quark mass
via the flow of quark self-energy, and in turn the increase
of quark mass suppresses fluctuations of the four-quark
flow. Finally, a balance is obtained with the decrease of
RG scale, where the dimensional mq,k and λσ−π,k are not
dependent on k any more.

In Figure 8 the evolution of four-quark couplings λα,k
and their dimensionless counterparts λ̄α,k = λα,kk

2 with
the RG scale for ten Fierz-complete channels is shown.
The results are obtained from calculations, in which the
initial values of couplings are chosen to be λ̄π,k=Λ =
λ̄σ,k=Λ = 24.2 and λ̄α,k=Λ = 0 (α /∈ {σ, π}) for other
channels, i.e., the coupling strength of channels except
the σ and π ones is assumed to be vanishing at the UV
cutoff. In the meantime, results obtained from two initial
values of quark mass, viz., m̄q,k=Λ = 5× 10−3 (top pan-
els) and 1×10−2 (bottom panels), are compared. In both
cases one finds that the π and σ channels play a domi-
nant role in the whole range of RG scale, and they are no
longer degenerate with the scale evolving towards the IR
limit. The strength of the π channel is larger than that
of the σ channel. Moreover, one observes that the inter-
action strength of channels (V −A)adj in Equation (B4)

and (S+P )adj
− in Equation (B6) are also excited to some

values, though they are significantly smaller than those
of the π and σ channels. On the contrary, magnitudes
of the remaining channels are very small, and they could
be neglected in the whole range of RG scale. In Figure 9
dependence of the quark mass on the RG scale is shown,
and in the same way calculations are done with the Fierz-
complete basis of four-quark interactions. Same initial
values of the four-quark couplings as those in Figure 8
are employed, and results obtained from different initial
values of the quark mass are compared.
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FIG. 10. Schematic diagram showing emergence of a res-
onance at the pole of relevant meson mass from the four-
quark vertex, where the square and half-circles stand for the
full four-quark and quark-meson vertices, respectively. The
dashed line denotes the meson propagator.

2. Natural emergence of bound states

Properties of bound states of quarks or antiquarks,
e.g., the pions and nucleons, in principle can be in-
ferred from the relevant four-point and six-point vertices
of quarks, in some specific channels and regimes of mo-
menta [93]. In Figure 10 a sketch map shows how this
happens at the example of mesons. The square denotes
a four-point vertex of quark and antiquark. If the total
momentum of a quark and an antiquark, denoted by P
here, is in the Minkowski spacetime and in the vicinity of
the on-shell pole mass of a meson in some channel, i.e.,
P 2 ∼ −m2

meson, the full four-quark vertex can be well
described by a resonance of the meson, as shown on the
r.h.s. of Figure 10, where two quark-meson vertices are
connected with the propagator of meson. Therefore, one
has to calculate the full four-quark vertex or quark-meson
vertex in some specific regime of momentum, which is
usually realized by resuming a four-quark kernel to the
order of infinity in the formalism of Bethe-Salpeter equa-
tions [94, 95]. Note that the necessary resummation for
the four-quark vertex is well included in the flow equa-
tion of four-quark couplings in Equation (96), and it is,
therefore, natural to expect that the RG flows are also
well-suited for the description of bound states as same
as the quark mass production in Section III A 1. More-
over, the advantage of RG flows is evident, that is, the
self-consistency between the bound states encoded in the
flow of four-quark vertices in Equation (96) and that of
quark mass gap in Equation (97) can be well guaranteed,
once a truncation is made on the level of the effective
action, such as that in Equation (82).

In order to investigate the resonance behavior of four-
quark vertices in Equation (96), one has to go beyond
the truncation in Equation (100) and include appropri-
ate momentum dependence for the four-quark vertices.
The external momenta of couplings in Equation (96) are
parameterized as follows

p1 =p+
P

2
, p2 = p− P

2
, (106)

p3 =p′ − P

2
, p4 = p′ +

P

2
. (107)

Then, one is left with the relevant Mandelstam variables

given by

s =(p1 + p3)2 = (p+ p′)2 , (108)

t =(p1 − p2)2 = P 2 , (109)

u =(p1 − p4)2 = (p− p′)2 . (110)

In the following, we focus on the π meson and assume,
that the total momentum of quark and antiquark in the t-
channel is near the regime of on-shell pion mass, viz., one
has the t-variable P 2 ∼ −m2

π in Equation (109). Con-
sequently, the four-quark coupling of the pion channel
would be significantly larger than those of other chan-
nels, and its dependence on external momenta would be
dominated by the t-variable. Thus, one is allowed to
make the approximation as follows

λπ,k(p1, p2, p3, p4) ' λπ,k(P 2) , (111)

λα,k(p1, p2, p3, p4) ' λα,k(0) , α 6= π. (112)

Furthermore, insofar as the four-quark vertices on the
r.h.s. of the flow of coupling in the second line of Figure 6,
a simple analysis of relevant momenta for each vertex
indicates, that the t-variable dependence is only required
to be kept for the vertices in the diagram of t channel,
i.e., the first diagram. One is thus allowed to simplify
the flow equation of λπ,k in Equation (96) as

∂tλπ,k(P 2) = Ck(P 2)λ2
π,k(P 2) +Ak(t, u, s) , (113)

with two coefficients given by

Ck(P 2) =

∫
d4q

(2π)4
F tππ,π , (114)

and

Ak(t, u, s) =

∫
d4q

(2π)4

{ ∑

α′,α′′∈B

[
λα′,kλα′′,k

(
F tα′α′′,π

+ Fuα′α′′,π + Fsα′α′′,π
)]
− λ2

π,kF tππ,π
}
. (115)

Note that all the four-quark couplings in Equation (115)
are momentum independent. If one adopts further p =
p′ = 0 in Eqs. (106) and (107), two Mandelstam variables
are vanishing, i.e., s = u = 0, and one arrives at

Ak(t, u, s)→ Ak(P 2) . (116)

One is able to observe the natural emergence of a
bound state arising from resummation of the four-quark
vertex from Equation (113), whose solution is readily ob-
tained once the last term on the r.h.s. is ignored. One
has

λπ,k=0(P 2) =
λπ,k=Λ

1− λπ,k=Λ

∫ 0

Λ
Ck(P 2)dkk

, (117)
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FIG. 11. Left panel: Dependence of 1/λπ,k=0, i.e., the inverse four-quark coupling of the pion channel, on the Mandelstam

variable t = P 2 = P 2
0 + ~P 2 with ~P = 0, where a 3d regulator is used. Data points stand for results computed directly from

the analytic flow equation in Equation (113) both in the Euclidean (P 2
0 > 0) and Minkowski (P 2

0 < 0) regimes. The solid and
dashed lines show results of analytic continuation from P 2

0 > 0 to P 2
0 < 0 based on the Padé approximation and the fitting

function in Equation (120), respectively. Several different values of the quark mass at the UV cutoff m̄q,k=Λ are adopted,
while the initial values of four-quark couplings are fixed with λ̄π,k=Λ = λ̄σ,k=Λ = 16.92 and λ̄α,k=Λ = 0 (α /∈ {σ, π}). Right
panel: Pion mass as a function of the quark mass at the UV cutoff m̄q,k=Λ, where the flow equation of four-quark coupling
in Equation (113) is solved directly in the Minkowski spacetime with a 3d regulator. Here same initial values of four-quark
couplings as those in the left panel are used. The several values of the pion mass extracted in the left panel are also shown on
the curve in scattering points. Plots are adopted from [92].

with λπ,k=Λ the four-quark coupling strength of the pion
channel at the UV cutoff, that is independent of external
momenta. Evidently, when a value of P 2 is chosen ap-
propriately, such that the denominator in Equation (117)
is vanishing, the four-quark coupling in the IR λπ,k=0 is
divergent. As a consequence, one can employ this condi-
tion to determine the pole mass of the bound state, i.e.,
the pion mass, which reads

1− λπ,k=Λ

∫ 0

Λ

Ck(P 2 = −m2
π)
dk

k
= 0 . (118)

When the coefficient Ak(P 2) in Equation (113) is taken
into account, there is no analytic solution anymore. How-
ever, as would be shown in the following, direct numerical
calculation of Equation (113) indicates that the qualita-
tive behavior of pole displayed by Equation (117) is not
changed.

In the left panel of Figure 11 the inverse four-quark
coupling of the pion channel in the IR limit, i.e.,
1/λπ,k=0, is shown as a function of the Mandelstam vari-

able t = P 2 = P 2
0 + ~P 2 with ~P = 0. In order to solve the

flow equation of four-quark coupling in Equation (113)
directly in the Minkowski spacetime with P 2 < 0, one
has employed the 3d regulator as follows

Rq̄qk = Zq,krF (~p2/k2)i~γ · ~p , (119)

in lieu of the 4d one in Equation (86). Relevant results
are shown in the plot by scattering points, where dif-
ferent symbols correspond to several different values of

the quark mass at the UV cutoff scale m̄q,k=Λ. The 3d
regulator allows one to compute the flow equation of the
four-quark coupling not only in the Euclidean (P 2 > 0)
but also Minkowski (P 2 < 0) regimes, viz., the part on
the r.h.s. of the dashed vertical line in the plot and that
on the l.h.s., respectively. As shown in Eqs. (117) and
(118), the pole mass of pion is determined from position
of the zero point of 1/λπ,k=0, that is, the crossing point
between the horizontal dashed line and those of 1/λπ,k=0

in the left panel of Figure 11. Besides the direct calcula-
tions, results of analytic continuation from the Euclidean
to Minkowski regimes are also presented in the left panel
of Figure 11. Two methods of analytic continuation are
employed. One is to fit a simple function which reads

λπ,k=0(P 2) ≈ a0 + a2P
2 + a4P

4

c0 + P 2 + c4P 4
. (120)

Here the coefficients a0, a2, a4, c0, and c4 are deter-
mined by fitting the numerical results of P 2

0 > 0 from
Equation (113), and then results of P 2

0 < 0 are predicted
by Equation (120). The other is the Padé approximation,
where the simple function on the r.h.s. of Equation (120)
is replaced by a Padé fraction, to wit,

λπ,k=0[n, n](P 2) ≈ λπ,k=0(P 2) , P 2 > 0 . (121)

Here, a diagonal fraction with the same order of the poly-
nomials n in the numerator and denominator is used.
Note that the simple function in Equation (120) is in
fact a Padé fraction of order n = 2. The order of Padé
fraction is varied with n = 25 ∼ 100 in the calculations.
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FIG. 12. Dependence of 1/λπ,k=0, i.e., the inverse four-
quark coupling of the π channel, on the Mandelstam variable
t = P 2 = P 2

0 + ~P 2 with ~P = 0, obtained with the 4d regula-
tor. Data points stand for the results calculated in the flow
equation in the Euclidean (P 2

0 > 0) region. The solid and
dashed lines show analytically continued results from P 2

0 > 0
to P 2

0 < 0 based on the Padé approximation and the fitting
function in Equation (120), respectively. Several different val-
ues of the quark mass at the UV cutoff m̄q,k=Λ are adopted,
while the initial values of four-quark couplings are fixed with
λ̄π,k=Λ = λ̄σ,k=Λ = 22.55 and λ̄α,k=Λ = 0 (α /∈ {σ, π}). The
plot is adopted from [92].

mq,k=Λ[Λ] 10−4 10−3 5× 10−3 2× 10−2

Fit 0.0597(15) 0.1107(17) 0.1971(23) 0.330(4)

Padé 0.0607(10) 0.1140(22) 0.2021(26) 0.3242(33)

TABLE I. Analytically continued results of the pole mass of
pion (in unit of Λ) for different values of the quark mass at
the UV cutoff k = Λ, where a 4d regulator is used. “Fit” and
“Padé” stand for the method used to do the analytic con-
tinuation, i.e., the fit of a simple rational function in Equa-
tion (120) and the Padé approximation in Equation (121), re-
spectively. The initial values of four-quark couplings are fixed
with λ̄π,k=Λ = λ̄σ,k=Λ = 22.55 and λ̄α,k=Λ = 0 (α /∈ {σ, π}).
The table is adopted from [92].

In the left panel of Figure 11 the analytically continued
results based on the two methods are in comparison to
those of direct computation in the Minkowski region with
P 2 < 0. Remarkably, it is found that both the analyt-
ically continued results are in excellent agreement with
the data points obtained from Equation (113). Moreover,
in order to verify Goldstone theorem and the nature of
Goldstone boson of the pion in the RG flow, one shows
the extracted pion mass as a function of the quark mass
at the UV cutoff in the right panel of Figure 11. Evi-
dently, the pion mass is found to decrease with the de-
creasing current quark mass, and it is exactly massless in
the chiral limit.

In Figure 12 one shows the same physical quantities as
the left panel of Figure 11, but obtained with the 4d reg-

ulator. Quite apparently, in the 4d case direct calculation
of the flow equation in Equation (113) is only accessible
in the Euclidean region, as shown in the scattering points
in Figure 12. Thus one has to rely on the analytic con-
tinuation to infer the pole mass of pion, and the relevant
results are also presented in the plot, where the same
two methods of analytic continuation as the case of 3d
regulator is used. It is found that, in comparison to the
analytically continued results of the 3d regulator, those of
the 4d case have significant larger errors, as shown by the
bands in Figure 12. The errors are inferred from varying
the range of P0, i.e., (0, 0.1Λ), (0, 0.2Λ), (0, 0.3Λ), that is
used to fix the analytically continued functions in Equa-
tion (120) or Equation (121). In Table I one shows the
analytically continued values of the pole mass of pion.

B. Quark-meson model

In this section we discuss another formalism of the
low energy effective field theories, i.e., the quark-meson
model, which in principle can be obtained from the
NJL model via the bosonization with the Hubbard-
Stratonovich transformation. The effective interactions
between quarks and mesons in the rebosonized QCD ef-
fective action in Equation (48), and their natural emer-
gence resulting from the RG evolution of fundamental
degrees of freedom will be discussed in detail in Sec-
tion IV D. There is a wealth of studies in the literature
relevant to the QM model within the fRG approach, see,
e.g., [50, 96–151].

For the moment, we only consider the degrees of free-
dom of quarks and mesons and their interactions via the
Yukawa coupling in Equation (48). The Nf = 2 flavor
QM effective action reads

Γk =

∫

x

{
Zq,kq̄

[
γµ∂µ − γ0(µ̂+ igA0)

]
q +

1

2
Zφ,k(∂µφ)2

+ hkq̄
(
T 0σ + iγ5T · π

)
q + Vk(ρ,A0)− cσ

}
,

(122)

Note that explanations for most notations in Equa-
tion (122) can be found in Section II C below Equa-
tion (48). The effective potential in Equation (122) can
be decomposed into a sum of the contribution from the
glue sector and that from the matter sector, which cor-
responds to the first and last two loops of the flow in
Figure 2, respectively. Thus, one is led to

Vk(ρ,A0) =Vglue,k(A0) + Vmat,k(ρ,A0) , (123)

where the first term on the r.h.s. is the glue potential or
the Polyakov loop potential, since it is usually reformu-
lated by means of the Polyakov loop L(A0), and the latter
can be calculated through the flow equation within the
QM model. In the following, we still use Vk(ρ) to stand
for Vmat,k for simplicity in a slight abuse of notation.
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1. Flow of the effective potential

The flow equation of the effective potential reads

∂tVk(ρ) =
k4

4π2

[(
N2
f − 1

)
l
(B,4)
0 (m̃2

π,k, ηφ,k;T )

+ l
(B,4)
0 (m̃2

σ,k, ηφ,k;T )

− 4NcNf l
(F,4)
0 (m̃2

q,k, ηq,k;T, µ)

]
, (124)

with the threshold functions given by

l
(B,4)
0 (m̃2

φ,k, ηφ,k;T )

=
2

3

(
1− ηφ,k

5

) 1√
1 + m̃2

φ,k

(
1

2
+ nB(m̃2

φ,k;T )

)
, (125)

and

l
(F,4)
0 (m̃2

q,k, ηq,k;T, µ)

=
2

3

(
1− ηq,k

4

) 1

2
√

1 + m̃2
q,k

×
(

1− nF (m̃2
q,k;T, µ, L, L̄)− nF (m̃2

q,k;T,−µ, L̄, L)
)
,

(126)

where the bosonic distribution function reads

nB(m̃2
φ,k;T ) =

1

exp

{
k
T

√
1 + m̃2

φ,k

}
− 1

, (127)

and the fermionic one

nF (m̃2
q,k;T, µ, L, L̄) =

1 + 2L̄ex/T + Le2x/T

1 + 3L̄ex/T + 3Le2x/T + e3x/T
,

(128)

with x = k
√

1 + m̃2
q,k − µ. Here, L and L̄ are the

Polyakov loop and its conjugate. The dimensionless,
renormalized meson and quark masses squared in Equa-
tion (124) read

m̃2
π,k =

V ′k(ρ)

k2Zφ,k
, m̃2

σ,k =
V ′k(ρ) + 2ρV ′′k (ρ)

k2Zφ,k
, (129)

m̃2
q,k =

h2
kρ

2k2Z2
q,k

. (130)

The quark and meson anomalous dimensions in Equa-
tion (124) are given by

ηq,k = −∂tZq,k
Zq,k

, ηφ,k = −∂tZφ,k
Zφ,k

, (131)

computation of which can be found in Section IV A.
There are two classes of methods to solve the flow equa-

tion of the effective potential in Equation (124). The
methods of the first class capture local properties of the
potential and are very convenient for numerical calcula-
tions, but fail to obtain global properties of the potential.
A typical method in this class is the Taylor expansion of
the effective potential. On the contrary, the methods in
the other class are able to provide us with the global
properties of the potential, but usually their numerical
implements are relatively more difficult. The second class
includes the discretization of the potential on a grid [97],
the pseudo-spectral methods [152–155], e.g., the Cheby-
shev expansion of the potential [151], the discontinuous
Galerkin method [156, 157], etc. In what follows we give
a brief discussion about the Taylor expansion and the
Chebyshev expansion of the potential.

The Taylor expansion of the effective potential reads

Vk(ρ) =

Nv∑

n=0

λn,k
n!

(ρ− κk)n , (132)

with the expansion coefficients λn,k and the expansion
point κk that might be k-dependent, where Nv is the
maximal expanding order in the calculations. Reformu-
lating Equation (132) in terms of the renormalized vari-
ables, one is led to

V̄k(ρ̄) =

Nv∑

n=0

λ̄n,k
n!

(ρ̄− κ̄k)n , (133)

with

V̄k(ρ̄) = Vmat,k(ρ) , ρ̄ = Zφ,kρ , (134)

κ̄k = Zφ,kκk , λ̄n,k =
λn,k

(Zφ,k)n
, (135)

Substituting Equation (133) into the left hand side of
Equation (124), one arrives at

∂nρ̄

(
∂t
∣∣
ρ
V̄k(ρ̄)

) ∣∣∣
ρ̄=κ̄k

=(∂t − nηφ,k)λ̄n,k − (∂tκ̄k + ηφ,kκ̄k)λ̄n+1,k . (136)

If the expansion point κk is independent of k, i.e., ∂tκk =
0, which is usually called as the fixed point expansion, the
expression in the second bracket on the r.h.s. of Equa-
tion (136) is vanishing. One can see that in this case
the expansion coefficients of different orders in Equa-
tion (133) decouples from each other in the flow equa-
tions, which results in an improved convergence for the
Taylor expansion and a better numerical stability [116].
Another commonly used choice is the running expansion,
whereof one expands the potential around the field on the
EoS for every value of k, that is,

∂

∂ρ̄

(
V̄k(ρ̄)− c̄kσ̄

)∣∣∣∣
ρ̄=κ̄k

= 0 , (137)
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with

σ̄ = Z
1/2
φ,k σ , c̄k = Z

−1/2
φ,k c . (138)

Here c is independent of k. Then one arrives at the flow
of the expansion point, as follows

∂tκ̄k = − c̄2k
λ̄3

1,k + c̄2kλ̄2,k

[
∂ρ̄

(
∂t
∣∣
ρ
V̄k(ρ̄)

) ∣∣∣
ρ̄=κ̄k

+ ηφ,k

(
λ̄1,k

2
+ κ̄kλ̄2,k

)]
. (139)

For more discussions about the fixed and running expan-
sions, see, e.g., [59, 116, 118, 128, 148, 158]. In the same
way, the field dependence of the Yukawa coupling, i.e.,
hk(ρ) can also be studied within a similar Taylor expan-
sion [116, 148], which encodes higher-order quark-meson
interactions. Moreover, effects of the thermal splitting
for the mesonic wave function renormalization in the heat
bath are also investigated in [148].

As for the Chebyshev expansion, the effective potential
reads

V̄k(ρ̄) =

Nv∑

n=1

cn,kTn(ρ̄) +
1

2
c0,k , (140)

with the Chebyshev polynomials Tn(ρ̄) and the respective
expansion coefficients cn,k. Then, one arrives at the flow
of the effective potential as follows

∂t
∣∣
ρ
V̄k(ρ̄) =

Nv∑

n=1

(
∂tcn,k − dn,kηφ,k(ρ̄)ρ̄

)
Tn(ρ̄)

+
1

2

(
∂tc0,k − d0,kηφ,k(ρ̄)ρ̄

)
, (141)

where the field dependence of the meson wave function
renormalization Zφ,k(ρ) as well as the meson anomalous
dimension ηφ,k(ρ̄) is taken into account. Note that the
coefficients dn,k are related to cn,k through a recursion
relation as shown in [151]. The flow equations of the
coefficients in Equation (140) are given by

∂tcm,k =
2

N + 1

N∑

i=0

(
∂t
∣∣
ρ
V̄k(ρ̄i)

)
Tm(ρ̄i)

+
2

N + 1

Nv∑

n=1

N∑

i=0

dn,kTm(ρ̄i)Tn(ρ̄i)ηφ,k(ρ̄i)ρ̄i

+
1

N + 1
d0,k

N∑

i=0

Tm(ρ̄i)ηφ,k(ρ̄i)ρ̄i , (142)

where the summation for i is performed on N + 1 zeros
of the polynomial TN+1(ρ̄).

2. Quark-meson model of Nf = 2 + 1 flavors

The effective action for the Nf = 2 + 1 flavor QM
model, see, e.g., [109, 110, 128, 140, 143, 147], reads

Γk =

∫

x

{
Zq,kq̄

[
γµ∂µ − γ0(µ̂+ igA0)

]
q + hk q̄Σ5q

+ Zφ,ktr(D̄µΣ · D̄µΣ†) + Vglue(L, L̄) + Vk(ρ1, ρ2)

− cAξ − clσl −
1√
2
csσs

}
, (143)

where the scalar and pseudoscalar mesonic fields of
nonets are in the adjoint representation of the U(Nf = 3)
group, i.e.,

Σ = T a(σa + iπa) , a = 0, 1, ..., 8 . (144)

with T 0 = 1/
√

2Nf1Nf×Nf and T a = λa/2 for a =
1, ..., 8. Here λa are the Gell-Mann matrices. The co-
variant derivative on the mesonic fields is given by

D̄µΣ = ∂µ + δµ0

[
µ̂,Σ

]
. (145)

where
[
µ̂,Σ

]
denotes the commutator between the ma-

trix of chemical potentials and the meson matrix in Equa-
tion (144). Note that although mesons do not carry the
baryon chemical potential, they might have chemical po-
tentials for the electric charge and the strangeness. The
quark chemical potentials are related to those of con-
served charges through the relations as follows

µu =
1

3
µB +

2

3
µQ , (146)

µd =
1

3
µB −

1

3
µQ , (147)

µs =
1

3
µB −

1

3
µQ − µS . (148)

For the Yukawa coupling, one has

Σ5 =T a(σa + iγ5π
a) . (149)

In contradistinction to the two-flavor case, the effective
potential in Equation (143) is a function of two chiral
invariants, to wit,

ρ1 = tr(Σ · Σ†) , (150)

ρ2 = tr
(

Σ · Σ† − 1

3
ρ1 13×3

)2

. (151)

which are both invariant not only under SUA(3) but also
UA(1). On the EoM these two invariants read

ρ1

∣∣
EoM

=
1

2
(σ2
l + σ2

s) , (152)

ρ2

∣∣
EoM

=
1

24
(σ2
l − 2σ2

s)2 , (153)
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FIG. 13. Phase diagram of the Nf = 2 flavor QM model in the
chiral limit in the plane of the temperature and quark chem-
ical potential obtained with discretization of the potential on
a grid in [97]. The plot is adopted from [97].

where the light and strange fields are related to the zeroth
and eighth components in Equation (144) through the
relation as follows

(
φl
φs

)
=

1√
3

(
1
√

2

−
√

2 1

)(
φ8

φ0

)
. (154)

The term of Kobayashi-Maskawa-’t Hooft determinant
in Equation (143) preserves SUA(3) while breaks UA(1)
with

ξ = det(Σ) + det(Σ†) , (155)

and the breaking strength is described by the coefficient
cA. The light and strange quark masses read

ml,k =
hk
2
σl, ms,k =

hk√
2
σs , (156)

and the pion and kaon decay constants are given by

fπ = σl, fK =
σl +

√
2σs

2
, (157)

where σl and σs are on their respective equations of mo-
tion. For more discussions about the flow equations in
the Nf = 2 + 1 flavor QM model, see the aforementioned
references in this section.

3. Phase structure

In Figure 13 the phase diagram of the Nf = 2 flavor
QM model in the chiral limit obtained in [97] is shown. In
order to investigate the phase structure, especially in the
regime of large chemical potential, the global information
of the effective potential in Equation (124) is indispens-
able. Thus, the potential is discretized on a grid to re-
solve the flow equation, and see [97] for more details. One
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FIG. 15. Phase diagram of the Nf = 2 flavor QM model
in the T − µq plane obtained with a discontinuous Galerkin
method in [157], where the color stands for the value of the
order parameter. The plot is adopted from [157].

can see that in the region of small chemical potentials,
there is a second-order chiral phase transition denoted
by the blue dashed line. With the decrease of the tem-
perature, the second-order phase transition is changed
into the first-order one at the tricritical point denoted
by a green asterisk. The red solid lines stand for the
first-order phase transition. Moreover, with the further
decrease of the temperature, one observes that the first-
order phase transition splits into two phase transition
lines, one of which even evolves again into the second-
order phase transition at high chemical potentials. Note
that the first-order phase transition line backbends at
high chemical potentials [135].

In Figure 14 the phase diagram of the Nf = 2 flavor
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QM model obtained with the Chebyshev expansion in
[151] is shown. The black dashed line denotes the O(4)
second-order phase transition in the chiral limit, and the
black dot stands for the tricritical point. The back solid
line is the first-order phase transition in the chiral limit,
where the splitting at large baryon chemical potential as
shown in Figure 13 is not shown explicitly here, and only
the left branch is depicted. The solid lines of different
colors in Figure 14 correspond to different strengths of
the explicit chiral symmetry breaking, i.e., different pion
masses, and their end points, that is, the critical end
points (CEP) comprise a Z(2) second-order phase tran-

sition line, which is denoted by the red dashed line.

As we have mentioned above, the first-order phase
transition line backbends at large chemical potential. It
is conjectured that this artifact might arise from the
defect that the discontinuity for the potential at high
baryon chemical potential is not well dealt with within
the grid or pseudo-spectral methods. Recently, a discon-
tinuous Galerkin method has been developed to resolve
the flow equation of the effective potential [156, 157],
and the relevant result for the two-flavor phase diagram
is shown in Figure 15 [157]. Within this approach, the
formation and propagation of shocks are allowed, and see
[156, 157] for a detailed discussion.

However, very recently another research in [159] finds
that the back-bending behavior of the chiral phase
boundary at large chemical potential has another dif-
ferent origin. It is found that the appearance of the
back-bending behavior depends on the employed regula-
tor [159]. In Figure 16 results of the chiral phase bound-
ary and the entropy density obtained with two different
regulators are compared. The left panel corresponds to
the usually used 3d flat or optimized regulator, cf. Equa-
tion (12) and Equation (88), and the right is obtained
with a 3d mass-like regulator, see [159] for more details.
The same truncation, i.e., the LPA approximation, is
used in both calculations. It is observed that the usu-
ally used flat (Litim) regulator results in a back-bending
of the chiral phase line at large chemical potential, which
is also accompanied by a region of negative entropy den-
sity in the chirally symmetric phase, as shown by the blue
area in the left panel of Figure 16. On the contrary, in
the right panel one finds that the chiral phase line shows
no back-bending behavior and the entropy density stays
positive if a mass-like regulator is used. See [159] for a
more detailed discussion.

In heavy-ion collisions since the incident nuclei do not
carry the strangeness, the produced QCD matter af-
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ter collisions is of strangeness neutrality, that is, the
strangeness density nS is vanishing. Usually, the condi-
tion of strangeness neutrality requires that the chemical
potential of strangeness µS in Equation (148) is nonva-
nishing with µB 6= 0 [140, 141]. The influence of the
strangeness neutrality on the phase boundary is investi-
gated in [140], which is presented in Figure 17. One can
see in comparison to the case of µS = 0, the phase bound-
ary moves up slightly due to the strangeness neutrality.
In another words, the curvature of the phase boundary is
decreased a bit by the condition of strangeness neutral-
ity, and see Section IV F for more discussions about the
curvature of phase boundary.

4. Equation of state

From the effective action in Equation (122) or Equa-
tion (143), one is able to obtain the thermodynamic po-
tential density, as follows

Ω[T, µ] =
T

V

(
Γk=0[ΦEoM]

∣∣∣
T,µ
− Γk=0[ΦEoM]

∣∣∣
T=µ=0

)
,

(158)

where ΦEoM denotes the fields on the equations of mo-
tion. Then the pressure and the entropy density read

p = −Ω[T, µ] , (159)

and

s =
∂p

∂T
. (160)

Moreover, the trace anomaly that is also called as the
interaction measure is given by

∆ = ε− 3p , (161)

where the energy density reads

ε = −p+ Ts+
∑

f=u,d,s

µfnf , (162)

with the number density for quark of flavor f

nf =
∂p

∂µf
. (163)

In Figure 18 the reduced condensate, cf. Equa-
tion (232) and the relevant discussions in Section IV E,
is shown as a function of the reduced temperature t =
(T − Tpc)/Tpc obtained in [110], where Tpc denotes the
pseudocritical temperature for the chiral crossover. The
fRG calculations are in agreement with the lattice sim-
ulations [160]. Furthermore, the mean-field results are
also presented for comparison, where those labelled with
“eMF” and “MF” are obtained by taking into account or
not the fermionic vacuum loop contribution in the calcu-
lations, respectively, and see, e.g., [104] for more discus-
sions. In Figure 19 the pressure and the trace anomaly
in the Nf = 2 + 1 flavor QM model obtained in [110] are
shown as functions of the reduced temperature. The fRG
results are compared with the lattice results [161, 162],
and it is observed that the fRG results are consistent with
the lattice results from the Wuppertal-Budapest collabo-
ration (WB), except that the trace anomaly from fRG is
a bit larger than that from WB in the regime of high tem-
perature with t & 0.3. Moreover, the mean-field results
as well as those including a contribution of the thermal
pion gas, are also presented for comparison.

The equations of state in Figure 19 are obtained in fRG
within the local potential approximation (LPA), where
the RG-scale dependence only enters the effective poten-
tial in Equation (122). The equations of state are also
calculated beyond the LPA approximation in [118]. The
relevant results are presented in Figure 20. In the calcu-
lations the wave function renormalizations for the mesons
and quarks, and the RG scale dependence of the Yukawa
coupling are taken into account. In Figure 20 the re-
sults beyond LPA are in comparison to the lattice and
LPA results. One can see that the trace anomaly is de-
creased a bit beyond LPA in the regime of T & 1.1Tc. In
Figure 21 the influence of the strangeness neutrality on
the isentropes is presented obtained in [140]. It is found
that, in comparison to the case of µS = 0, the isentropes
with nS = 0 move towards the r.h.s. a bit, and their
turning around in the regime of crossover becomes more
abruptly. Moreover, isentropes obtained from the Taylor
expansion and the grid method for the effective potential
are compared, and consistent results are found [163].

Note that calculations of the equations of state at high
baryon densities within the fRG approach have also made
progress recently, see, e.g., [89, 164, 165], and the ob-
tained EoS has been employed to study the phenomenol-
ogy of compact stars [164, 165].
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the RG scale dependence of the Yukawa coupling are taken into account. Right panel: Trace anomaly of the Nf = 2 + 1 QM
model obtained beyond LPA (labelled with“LPA after rescale”) as a function of the temperature, in comparison to the LPA
result [110] and the lattice result from Wuppertal-Budapest collaboration [162]. Plots are adopted from [118].

5. Baryon number fluctuations

Differentiating the pressure in Equation (159) with re-
spect to the baryon chemical potential n times, one is led
to the n-th order generalized susceptibility of the baryon
number, i.e.,

χBn =
∂n

∂(µB/T )n
p

T 4
, (164)

which is also related to the n-th order cumulant of the
net baryon number distributions, that is,

〈(δNB)n〉 =

∞∑

NB=−∞
(δNB)nP (NB) . (165)

with δNB = NB − 〈NB〉. Here P (NB) denotes the prob-
ability distribution of the net baryon number, which can

be calculated theoretically from the canonical ensem-
ble with an imaginary chemical potential, and see, e.g.,
[115, 142] for a detailed discussion. In experimental mea-
surements, since neutrons are difficult to detect, the net
proton number distribution is measured, as a proxy for
the net baryon number distribution, and see, e.g., [22] for
more details. Evidently, 〈NB〉 is the ensemble average of
the net baryon number.

The relations between the generalized susceptibilities
in Equation (164) and the cumulants in Equation (165)
for the lowest four orders read

χB1 =
1

V T 3
〈NB〉 , (166)

χB2 =
1

V T 3
〈(δNB)2〉 , (167)
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FIG. 21. Isentropes for different ratios of s/nB in the phase
diagram in the Nf = 2+1 flavor QM model obtained in [140].
Two cases with µS = 0 and the strangeness neutrality nS = 0
are compared. The black and gray lines stand for the chiral
and deconfinement crossover lines, respectively. The plot is
adopted from [140].
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FIG. 22. Kurtosis of the baryon number distributions as
a function of the temperature obtained within the fRG ap-
proach to LEFTs [127]. In the calculations the frequency
dependence for the quark wave function renormalization is
taken into account, and the relevant results (black solid line)
are compared with those without the frequency dependence
(pink dashed line) in [119]. The continuum-extrapolated lat-
tice results from the Wuppertal-Budapest collaboration [6]
are also presented for comparison. The plot is adopted from
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χB3 =
1

V T 3
〈(δNB)3〉 , (168)

χB4 =
1

V T 3

(
〈(δNB)4〉 − 3 〈(δNB)2〉2

)
, (169)

which leaves us with the experimental observables as

q q

p

p+q

⇡ �
ZZ

p,q

@tV
q
k = �

Z

q

FIG. 23. Schematic diagram of the frequency dependence of
the quark anomalous dimension to the flow equation of the
effective potential. The gray area stands for the contribution
of the quark anomalous dimension, where a summation for the
quark external frequency has been done. The plot is adopted
from [127].

follows

M =V T 3χB
1 , σ2 = V T 3χB

2 ,

S =
χB

3

χB
2 σ

, κ =
χB

4

χB
2 σ

2
. (170)

Here M , σ2, S, κ stand for the mean value, the vari-
ance, the skewness, and the kurtosis of the net baryon
or proton number distributions. In the same way, calcu-
lations can also be extended to the hyper-order baryon
number fluctuations, i.e., χBn>4 [104, 150, 166–168]. The
relations between the hyper-order susceptibilities and the
cumulants are given by [150]

χB5 =
1

V T 3

(
〈(δNB)5〉 − 10 〈(δNB)2〉 〈(δNB)3〉

)
, (171)

χB6 =
1

V T 3

(
〈(δNB)6〉 − 15 〈(δNB)4〉 〈(δNB)2〉

− 10 〈(δNB)3〉2 + 30 〈(δNB)2〉3
)
, (172)

χB7 =
1

V T 3

(
〈(δNB)7〉 − 21 〈(δNB)5〉 〈(δNB)2〉

− 35 〈(δNB)4〉 〈(δNB)3〉

+ 210 〈(δNB)3〉 〈(δNB)2〉2
)
, (173)

χB8 =
1

V T 3

(
〈(δNB)8〉 − 28 〈(δNB)6〉 〈(δNB)2〉

− 56 〈(δNB)5〉 〈(δNB)3〉 − 35 〈(δNB)4〉2

+ 420 〈(δNB)4〉 〈(δNB)2〉2

+ 560 〈(δNB)3〉2 〈(δNB)2〉 − 630 〈(δNB)2〉4
)
.

(174)

It is more convenient to adopt the ratio between two
susceptibilities of different orders, say

RBnm =
χBn
χBm

, (175)
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and RB82 (bottom-right) as functions of the temperature with several different values of the baryon chemical potential, obtained
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where the explicit volume dependence is removed. The
baryon number fluctuations as well as fluctuations of
other conserved charges, e.g., the electric charge and
the strangeness, and correlations among these conserved
charges, have been widely studied in literatures. For lat-
tice simulations, see, e.g., [5–7, 9–11, 15]. Investigations
of fluctuations and correlations within the fRG approach
to LEFTs can be found in, e.g., [99, 101, 118, 119, 127,
138, 140, 141, 143, 147, 150, 168, 169], and within the
mean-field approximations in, e.g., [104, 167, 170–172].
For the relevant studies from Dyson-Schwinger Equa-
tions, see, e.g., [173, 174]. Remarkably, recently QCD-
assisted LEFTs with the fRG approach have been devel-
oped and used to study the skewness and kurtosis of the

baryon number distributions [118, 119, 127], the baryon-
strangeness correlations [140, 141], and the hyper-order
baryon number fluctuations [150].

In Figure 22 the kurtosis of the baryon number dis-
tributions is shown as a function of the temperature at
vanishing chemical potential. In the calculations the fre-
quency dependence of the quark wave function renormal-
ization is taken into account [127], whose contribution to
the flow of the effective potential is shown schematically
in Figure 23. It is found that a summation for the quark
external frequency is indispensable to the Silver Blaze
property at finite chemical potential, see [127] for a more
detailed discussion. From Figure 22, one can see that
the summation for the external frequency of the quark
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FIG. 27. Baryon number fluctuations RB42 (top-left), RB62 (middle-left), RB82 (bottom-left), RB31 (top-right), RB51 (middle-right),
RB71 (bottom-right) as functions of the collision energy, obtained within the fRG approach to a QCD-assisted LEFT in [150].
Experimental data of the kurtosis of the net-proton number distributions Rp42 with centrality 0-5% [42], and the sixth-order
cumulant Rp62 with centrality 0-10% [43] are presented for comparison. The plots are adopted from [150].

wave function renormalization improves the agreement
between the fRG results and the lattice ones.

In Figure 24 the fourth-, sixth-, and eighth-order
baryon number fluctuations divided by the quadratic one
are shown as functions of the temperature at vanishing
baryon chemical potential. The fRG results [150] are
compared with lattice results from the HotQCD collab-
oration [9, 10, 15] and the Wuppertal-Budapest collabo-

ration (WB) [11]. It is observed that the fRG results are
in quantitative, qualitative agreement with the WB and
HotQCD results, respectively. In Figure 25 the baryon
number fluctuations of different orders, RB31, RB42, RB51,
RB62, RB71 and RB82, are shown as functions of the temper-
ature with several different values of the baryon chem-
ical potential from 0 to 400 MeV. One finds that the
dependence of fluctuations on the temperature oscillates
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FIG. 28. Full results of the baryon number fluctuations RB42 (upper panels) and RB62 (lower panels) as functions of µB/T with
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more pronouncedly with the increasing order of cumu-
lants. Moreover, with the increase of the baryon chemical
potential the chiral crossover grows sharper, which leads
to the increase of the magnitude of fluctuations signifi-
cantly.

In the left panel of Figure 26 the kurtosis of the baryon
number distributions is depicted in the phase diagram
[150]. The black dashed line denotes the chiral phase
boundary in the crossover regime. The green dotted line
stands for the chemical freeze-out curve obtained from
the STAR freeze-out data [175], see [150] for a more de-
tailed discussion. One can see that there is narrow blue
area near the phase boundary with µB & 300 MeV, which
indicates that the kurtosis becomes negative in this area.
Moreover, it is found that with the increase of the baryon
chemical potential, the freeze-out curve moves towards
the blue area firstly, and then deviates from it a bit at
large baryon chemical potential. The skewness of the
baryon number distributions as a function of the collision
energy calculated in the fRG approach is presented in the
right panel of Figure 26 [150], which is in comparison to
the STAR data of the skewness of the net-proton number
distributions Rp32 with centrality 0-5% [176]. It is found
that the fRG results are in good agreement with the

experimental data except the two lowest energy points,
which is attributed to the fact that other effects, e.g.,
volume fluctuations [177–179], the global baryon num-
ber conservation [180–182], become important when the
beam collision energy is low.

In Figure 27 baryon number fluctuations RB42, RB62,
RB82, RB31, RB51, and RB71 are shown as functions of the
collision energy obtained within the fRG approach [150],
where the chemical freeze-out curve obtained from STAR
data as shown in the left panel of Figure 26 is used. The
fRG results are compared with experimental data of the
kurtosis of the net-proton number distributions Rp42 with
centrality 0-5% [42], and the sixth-order cumulant Rp62

with centrality 0-10% [43]. A non-monotonic dependence
of the kurtosis RB42 on the collision energy is also observed
in the fRG calculations, which is consistent with the ex-
perimental measurements of Rp42. Moreover, it is found
that this non-monotonicity arises from the increasingly
sharp crossover with the decrease of the collision energy,
which is also reflected in the heat map of the kurtosis in
the phase diagram in the left panel of Figure 26. The
fRG results of RB62 are also qualitatively consistent with
the experimental data of Rp62.

In Figure 28 the full results of the baryon number fluc-
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FIG. 29. Correlation between the baryon number and the
strangeness CBS as a function of the temperature with several
different values of the baryon chemical potential, obtained
within the fRG approach in [141]. Two cases with µS = 0
(dashed lines) and the strangeness neutrality nS = 0 (solid
lines) are compared. The plot is adopted from [141].

tuations RB42 and RB62 are compared with those of Taylor
expansion for the baryon chemical potential up to the
eighth and tenth orders, which can be used to investi-
gate the convergence properties of the Taylor expansion
for the baryon chemical potential. For the two values of
the temperature, T = 155 MeV and 160 MeV, it is found
that the full results deviate from those of Taylor expan-
sion significantly with µB/T & 1.2 ∼ 1.5. The oscillat-
ing behavior of the full results at large baryon chemical
potential is not captured by the Taylor expansion, which
hints that the convergence radius of the Taylor expansion
for the baryon chemical potential might be restricted by
some singularity, e.g., the Yang–Lee edge singularity, and
see, e.g., [183–186] for more discussions.

We close this subsection with a discussion about
the correlation between the baryon number and the
strangeness, i.e.,

CBS =− 3
χBS11

χS2
, (176)

which is calculated within the fRG approach in [141].
There, the influence of the strangeness neutrality on CBS
is investigated, and the relevant results are presented in
Figure 29. One can see that the correlation between the
baryon number and the strangeness is suppressed by the
condition of the strangeness neutrality.

6. Critical exponents

According the scaling argument, when a system is in
the critical regime, its thermodynamic potential density
can be decomposed into a sum of a singular and a regular

10-4 10-3 10-2 10-1 100 101

(Tc − T) [MeV]

0.20

0.25

0.30

0.35

0.40

0.45

0.50

β

O(4)-conformal bootstrap

Z(2)-conformal bootstrap

FIG. 30. Critical exponent β for the 3d O(4) (green lines)
and Z(2) (red lines) symmetry universality classes extracted
from different ranges of the temperature, obtained within the
fRG approach in [151]. The conformal bootstrap results (gray
dashed lines) [195, 196] are also presented for comparison.
The plot is adopted from [151].

part [66], viz.,

Ω
(
t, h
)

= fs(t, h) + freg(t, h) , (177)

whereof, the singular part satisfies the scaling relation to
the leading order as follows

fs(t, h) = `−dfs(t `
yt , h `yh) , (178)

with a dimensionless rescaling factor ` and the spacial
dimension d. In Eqs. (177) and (178) t and h stand for
the reduced temperature and magnetic field, respectively.
They are given by

t =
T − Tc
T0

, h =
c

c0
, (179)

where Tc is the critical temperature in the chiral limit,
and T0 and c0 are some normalization values for the tem-
perature T and the strength of the explicit chiral symme-
try breaking c as shown in Equation (122), respectively.
In the following, the order parameter will be denoted as
the magnetization density, and c as the magnetic field
strength, i.e.,

M ≡ σ , H ≡ c . (180)

The scaling relation in Equation (178) leaves us with a set
of scaling relations for various critical exponents, cf.[66,
190], such as,

yt =
1

ν
, yh =

βδ

ν
, β =

ν

2
(d− 2 + η) , γ = β(δ − 1) ,

γ = (2− η)ν , δ =
d+ 2− η
d− 2 + η

, νd = β(1 + δ) .

(181)
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Method β δ γ ν νc η

O(4) QM LPA [151] fRG Chebyshev 0.3989(41) 4.975(57) 1.5458(68) 0.7878(25) 0.3982(17) 0

O(4) QM LPA′ [151] fRG Chebyshev 0.3832(31) 4.859(37) 1.4765(76) 0.7475(27) 0.4056(19) 0.0252(91)*

Z(2) QM LPA [151] fRG Chebyshev 0.3352(12) 4.941(22) 1.3313(96) 0.6635(17) 0.4007(45) 0

Z(2) QM LPA′ [151] fRG Chebyshev 0.3259(01) 4.808(14) 1.2362(77) 0.6305(23) 0.4021(43) 0.0337(38)*

O(4) scalar theories [187] fRG Taylor 0.409 4.80* 1.556 0.791 0.034

O(4) KT phase transition [188] fRG Taylor 0.387* 4.73* 0.739 0.047

Z(2) KT phase transition [188] fRG Taylor 0.6307 0.0467

O(4) scalar theories [189] fRG Taylor 0.4022* 5.00* 0.8043

O(4) scalar theories LPA[190] fRG Taylor 0.4030(30) 4.973(30) 0.8053(60)

O(4) QM LPA [191] fRG Taylor 0.402 4.818 1.575 0.787 0.396

O(4) scalar theories [192] fRG Grid 0.40 4.79 0.78 0.037

Z(2) scalar theories [192] fRG Grid 0.32 4.75 0.64 0.044

O(4) scalar theories [193] fRG DE O(∂4) 0.7478(9) 0.0360(12)

Z(2) scalar theories [193, 194] fRG DE O(∂6) 0.63012(5) 0.0361(3)

O(4) CFTs [195] conformal bootstrap 0.7472(87) 0.0378(32)

Z(2) CFTs [196] conformal bootstrap 0.629971(4) 0.0362978(20)

O(4) spin model [197] Monte Carlo 0.3836(46) 4.851(22) 1.477(18) 0.7479(90) 0.4019(71)* 0.025(24)*

Z(2) d = 3 expansion [198] summed perturbation 0.3258(14) 4.805(17)* 1.2396(13) 0.6304(13) 0.4027(23) 0.0335(25)

Mean Field 1/2 3 1 1/2 1/3 0

TABLE II. Comparison of the critical exponents for the 3d O(4) and Z(2) symmetry universality classes from different ap-
proaches. The values with an asterisk are derived from the scaling relations in Equation (181). The table is adopted from
[151].

The critical behavior of the order parameter is described
by the critical exponents β and δ, which read

M(t, h = 0) ∼ (−t)β , (182)

with t < 0, and

M(t = 0, h) ∼ h1/δ . (183)

Moreover, one has the susceptibility of the order param-
eter χ and the correlation length ξ, which scale as

χ ∼ |t|−γ , and ξ ∼ |t|−ν . (184)

Recently, the pseudo-spectral method of the Cheby-
shev expansion for the effective potential has been used to
calculate the critical exponents [151]. In the Nf = 2 QM
model within the fRG approach, the critical exponents
for the 3d O(4) and Z(2) symmetry universality classes,
which correspond to the black dashed O(4) phase tran-
sition line and the red dashed Z(2) phase transition line
as shown in Figure 14 respectively, are calculated with
the Chebyshev expansion of the effective potential. Both
the LPA and LPA′ approximations are used in the cal-
culations. In the LPA′ approximation a field-dependent
mesonic wave function renormalization is taken into ac-
count. The relevant results are show in Table II, which
are also compared with results of critical exponents from

other approaches, e.g., Taylor expansion of the effective
potential [187–191] and the grid method [192] within
the fRG approach, the derivative expansions (DE) up
to orders of O(∂4) and O(∂6) with the fRG approach
[193, 194], the conformal bootstrap for the 3d conformal
field theories (CFTs) [195, 196], Monte Carlo simulations
[197], and the d = 3 perturbation expansion [198]. In the
mean time, the mean-field values of the critical exponents
are also shown in the last line of Table II.

In Figure 30 the critical exponent β for the 3d O(4)
and Z(2) symmetry universality classes extracted from
different ranges of the temperature is shown, which is
obtained with the Chebyshev expansion for the effective
potential in the fRG [151]. It is found that only when the
temperature is very close to the critical temperature, say
|T−Tc| . 0.01 MeV, the fRG results of both the O(4) and
Z(2) symmetry universality classes are consistent with
the conformal bootstrap results. This indicates that the
size of the critical region is extremely small, far smaller
than ∼ 1 MeV. Similar estimates for the size of the crit-
ical region are also found in, e.g., [98, 190, 199, 200].
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FIG. 31. Diagrammatic representation of the flow equations
for the inverse quark, gluon and meson propagators, respec-
tively, where the dashed lines stand for the mesons and the
dotted lines denote the ghost.

IV. QCD AT FINITE TEMPERATURE AND
DENSITY

In this section we would like to present a brief review
on recent progresses in studies of QCD at finite tem-
perature and densities within the fRG approach to the
first-principle QCD, which are mainly based on the work
in [18, 62]. The relevant fRG flows at finite temperature
and densities there have been developed from the coun-
terparts in the vacuum in [59, 60]. Furthermore, these
flows are also built upon the state-of-the-art quantitative
fRG results for Yang-Mills theory in the vacuum [56] and
at finite temperature [57], QCD in the vacuum [58, 61].

In the following we focus on the chiral phase transition.
As mentioned above, the QCD phase transitions involve
both the chiral phase transition and the confinement-
deconfinement phase transition. In fact, related subjects
of the deconfinement phase transition, such as the Wilson
loop, the Polyakov loop, the flows of the effective action
of a background gauge field, the relation between the
confinement and correlation functions, etc., have been
widely studied within the fRG approach to Yang-Mills
theory and QCD. Significant progresses have been made
in relevant studies, see [55] for a recent overview, and
also e.g. [70, 108, 201–216].

A. Propagators and anomalous dimensions

The flow equations of inverse propagators are obtained
by taking the second derivative of the Wetterich equation
in Equation (80) with respect to respective fields. The
resulting flow equations of the inverse quark, gluon and
meson propagators are shown diagrammatically in Fig-
ure 31. Making appropriate projections for these flow
equations, one is able to arrive at the flow of the wave
function renormalization ZΦ,k as shown in Equation (49)
for a given field Φ, which includes nontrivial dispersion
relation for the field, and is more conveniently reformu-
lated as the anomalous dimension as follows

ηΦ,k = −∂tZΦ,k

ZΦ,k
. (185)

The quark two-point correlation function defined in
Equation (84), see also Equation (A24), reads

Γ
(2)q̄q
k (p) =− δ2Γk[Φ]

δq̄(−p)δq(p)

∣∣∣∣
Φ=ΦEoM

=Zq,k(p)iγ · p+mq,k(p) , (186)

where ΦEoM denotes the fields in Equation (62) on their
respective equations of motion, that are vanishing except
the σ field and the temporal gluon field A0. Note that
the minus sign on the r.h.s. of Equation (186), while
not appearing in Equation (A24), is due to the fact that
the right derivative is used in Equation (A24). Moreover,
the quark chemical potentials in Equation (48) have been
assumed to be vanishing in Equation (186). Apparently,
the quark wave function renormalization and mass are
readily obtained by projecting Equation (186) onto the
vector and scalar channels, respectively, which read

Zq,k(p) =
1

4i

1

p2
tr
(
γ · pΓ

(2)q̄q
k (p)

)

mq,k(p) =
1

4
tr
(

Γ
(2)q̄q
k (p)

)
, (187)

where the trace runs only in the Dirac space. Neglecting
the dependence of the quark wave function renormaliza-
tion on the spacial momentum p, one arrives at the quark
anomalous dimension as follows

ηq,k(p0) =
1

4Zq,k(p0)

× Re

[
∂

∂(|p|2)
tr
(
iγ · p

(
∂tΓ

(2)q̄q
k (p)

))]

p=0

,

(188)

where the computation is done at p = 0, and p0 is a small,
but nonvanishing frequency. The nontrivial choice of p0

and the fact that the expression in the square bracket
in Equation (188) is complex-valued at nonzero chemical
potentials, are both related to constraints from the Silver-
Blaze property for the correlation functions at finite
chemical potentials, and see, e.g., [18, 119, 120, 127, 222]
for more details. In Equation (188) Re denotes that
the real part of the expression in the square bracket is
adopted. Note that in Equation (188) the difference be-
tween the parts of the quark wave function renormal-
ization longitudinal and transversal to the heat bath is
ignored, where the projection is done on the spacial com-
ponent, and thus the transversal anomalous dimension is
used. The explicit expression of ηq,k is given in Equa-
tion (C1). In the left panel of Figure 32, the quark wave
function renormalization Zq,k=0(p0,p = 0) is depicted as
a function of the temperature with different values of the
baryon chemical potential.

The mesonic two-point correlation functions, i.e., those
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FIG. 32. Quark (left panel, Zq) and mesonic (right panel, Z̄φ) wave function renormalizations of Nf = 2+1 flavor QCD obtained
in the fRG with RG scale k = 0, as functions of the temperature with different values of the baryon chemical potential. The
plot is adopted from [18].
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FIG. 33. Gluon dressing functions 1/ZA(p) of Nf = 2 and
Nf = 2 + 1 flavor QCD in the vacuum as functions of the
momentum, where the fRG results are in comparison to lattice
calculations of Nf = 2 flavors [217] and Nf = 2 + 1 flavors
[218, 219].The plot is adopted from [18].

of the π and σ fields, are given by

Γ
(2)ππ
k (p) =

δ2Γk[Φ]

δπi(−p)δπj(p)

∣∣∣∣
Φ=ΦEoM

=
(
Zπ,k(p)p2 +m2

π,k

)
δij , (189)
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FIG. 34. Gluon dressing function 1/ZA(p) and the gluon prop-
agator GA = 1/[ZA(p) p2] (inlay) as functions of momenta
for QCD of Nf = 2 + 1 flavors in the vacuum, where the
fRG results denoted by the black lines are compared with the
continuum extrapolated lattice results by the RBC/UKQCD
collaboration, see e.g., [218–220]. For the fRG results the mo-
mentum dependence is given by p2 = k2. The plot is adopted
from [18].

and

Γ
(2)σσ
k (p) =

δ2Γk[Φ]

δσ(−p)δσ(p)

∣∣∣∣
Φ=ΦEoM

=Zσ,k(p)p2 +m2
σ,k , (190)

respectively, where the curvature masses of the mesons



32

101 102 103 104

|p| [MeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1
/Z

A

µB = 0

T= 0

T= 150MeV

T= 200MeV

T= 300MeV

101 102 103 104

|p| [MeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1
/Z

A

T= 150MeV

µB = 0

µB = 400MeV

µB = 500MeV

µB = 600MeV
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be vanishing. The identification p2 = k2 is used. The plot is adopted from [18].
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read

m2
π,k =V ′k(ρ) , m2

σ,k = V ′k(ρ) + 2ρV
(2)
k (ρ) . (191)

As same as the quark wave function renormalization, the
thermal splitting of the mesonic wave function renormal-
ization in parts longitudinal and transversal to the heat
bath is neglected. Moreover, one has assumed a unique
renormalization for both the pion and sigma fields, viz.,
Zφ,k = Zπ,k = Zσ,k. The validity of these approxima-
tions have been verified seriously in [148]. The anoma-
lous dimension of mesons at vanishing frequency p0 = 0

and a finite spacial momentum p is given by

ηφ(0,p) =− δij
3Zφ(0,p)

∂tΓ
(2)
πiπj (0,p)− ∂tΓ(2)

πiπj (0, 0)

p2
,

(192)

Two cases are of special interest: One is the choice
p2 = k2, i.e., ηφ(0, k), which captures the most mo-
mentum dependence of the mesonic two-point correlation
functions, and thus is usually used in the r.h.s. of flow
equations involving mesonic degrees of freedom, for more
detailed discussions see [18]. The anomalous dimension
ηφ(0, k) leaves us with the renormalization constant de-
fined as follows

1

Z̄φ,k
∂tZ̄φ,k ≡ −ηφ(0, k) , with Z̄φ,k=Λ = 1 . (193)

In the right panel of Figure 32, Z̄φ,k=0 is depicted as a
function of the temperature with different values of the
baryon chemical potentials. The other is the case p = 0,
and Equation (192) is reduced the equation as follows

ηφ(0) = − 1

3Zφ(0)
δij

[
∂

∂p2
∂tΓ

(2)
πiπj

]

p=0

. (194)

The related wave function renormalization Zφ,k(0) is
used to extract the renormalized meson mass as

m̄π =
mπ,k=0√
Zφ,k=0(0)

, m̄σ =
mσ,k=0√
Zφ,k=0(0)

, (195)

where m̄π and m̄σ are approximately equal to their pole
masses, respectively. The explicit expressions for Equa-
tion (194) and Equation (192) are presented in Equa-
tion (C2) and Equation (C3), respectively.
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For the ghost anomalous dimension, one extracts it
from the relation as follows

ηc =−
p∂pZ

QCD
c,k=0(p)

ZQCD
c,k=0(p)

∣∣∣∣∣
p=k

, (196)

where ZQCD
c,k=0(p) denotes the momentum-dependent ghost

wave function renormalization in QCD with Nf = 2 fla-
vors in the vacuum obtained in [61]. Note that the ghost
propagator is found to be very insensitive to the effects
of finite temperature as well as the quark contributions
for Nf = 2 and Nf = 2 + 1 flavors, see e.g. [57].

The gluon anomalous dimension is decomposed into a
sum of three parts, as follows

ηA =ηQCD
A,vac + ∆ηglue

A + ∆ηqA , (197)

where the first term on the r.h.s. denotes the gluon
anomalous dimension in the vacuum, and the other two
terms stand for the medium contributions to the gluon
anomalous dimension from the glue (gluons and ghosts)
and quark loops, respectively. The vacuum contribution
in Equation (197) is further expressed as

ηQCD
A,vac = ηQCD

A,vac

∣∣∣
Nf=2

+ ηsA,vac , (198)

where the two terms on the r.h.s. denote the contribu-
tions from the light quarks of Nf = 2 flavors and the
strange quark. The former one is inferred from the gluon

dressing function ZQCD
A,k=0(p) for the Nf = 2 flavor QCD

in [61], which reads

ηQCD
A,vac

∣∣∣
Nf=2

=−
p∂pZ

QCD
A,k=0(p)

ZQCD
A,k=0(p)

∣∣∣∣∣
p=k

. (199)

The explicit expressions of ∆ηqA in Equation (197) and
ηsA,vac in Equation (198) can be found in Equation (C4),

Equation (C5), Equation (C6). Moreover, the in-medium
contribution to the gluon anomalous dimension resulting
from the glue sector, i.e., the second term on the r.h.s. of
Equation (197), is taken into account in Equation (C7).

In Figure 33 the gluon dressing functions 1/ZA(p) of
Nf = 2 and Nf = 2 + 1 flavor QCD in the vacuum
are shown. The fRG and lattice results are presented.
Here the fRG gluon dressing of Nf = 2 flavors is in-
putted from [61], as shown in Equation (199), which is
also in quantitative agreement with the lattice result in
[217]. Note that the gluon dressing of Nf = 2 + 1 flavors
here is a genuine prediction, which is in good agreement
with the respective lattice results [218, 219]. In Figure 34
both the gluon dressing function and the gluon propaga-
tor of Nf = 2 + 1 flavors are presented. The calculated
gluon dressing functions at finite temperature and baryon
chemical potential in fRG are shown in Figure 35. In the
left panel of Figure 35 several different values of temper-
ature are chosen with µB = 0, and it is found that the
gluon dressing function 1/ZA decreases with the increase
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FIG. 37. Diagrammatic representation of the flow equations
for the quark-gluon, three-gluon, and the quark-meson ver-
tices, respectively.
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FIG. 38. Quark-gluon couplings for light quarks (αl̄lA) and
strange quarks (αs̄sA), and the three-gluon coupling (αA3)
of Nf = 2 + 1 flavor QCD as functions of the RG scale k
at several values of the temperature and vanishing baryon
chemical potential. The plot is adopted from [18].

of temperature. In the right panel, several different val-
ues of µB are adopted while with T = 150 MeV fixed.
It is observed that the dependence of the gluon dressing
function on the baryon chemical potential is very small.
The gluon dressing functions at finite temperature ob-
tained in fRG are compared with the relevant lattice
results from [221] in Figure 36, where several different
values of temperature are chosen. One can see that the
gluon dressing at finite temperature in fRG is comparable
to that of lattice QCD.

B. Strong couplings

The quark-gluon coupling in Equation (53), the ghost-
gluon coupling in Equation (54), and the three-gluon or
four-gluon coupling in Equation (50), etc., are consistent
with one another in the perturbative regime of high en-
ergy, due to the Slavnov-Taylor identities (STIs) resulting
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from the gauge symmetry. However, when the momenta
or the RG scale are decreased to k . 1 ∼ 3 GeV, the
gluon mass gap begins to affect the running of strong
couplings, and also the transversal strong couplings can
not be identified with the longitudinal ones via the mod-
ified STIs, see, e.g., [56, 216, 223, 224] for more details.
Consequently, different strong couplings deviate from one
another in the low energy regime of k . 1 ∼ 3 GeV [56–
58, 61], and thus it is necessary to distinguish them by
adding appropriate suffixes. The couplings of the purely
gluonic sector read

αA3,k =
1

4π

λ2
A3,k

Z3
A,k

, αA4,k =
1

4π

λA4,k

Z2
A,k

, (200)

αc̄cA,k =
1

4π

λ2
c̄cA,k

ZA,k Z2
c,k

, (201)

where λA3,k, λA4,k and λc̄cA,k denote the three-gluon,
four-gluon, ghost-gluon dressing functions, respectively,
as shown in Equation (A42), Equation (A48), Equa-
tion (A36). The couplings of the matter sector read

αl̄lA,k =
1

4π

λ2
l̄lA,k

ZA,k Z2
q,k

, αs̄sA,k =
1

4π

λ2
s̄sA,k

ZA,k Z2
q,k

,

(202)

where the light-quark-gluon coupling and the strange-
quark-gluon coupling have been distinguished. From the
calculated results in, e.g., [59, 61], it is reasonable to
adopt the approximation as follows

αA4,k = αA3,k , αc̄cA,k ' αl̄lA,k . (203)

The flow equation of the quark-gluon vertex is pre-
sented in the first line of Figure 37. Projecting onto the
classical tensor structure of the quark-gluon vertex, de-
noted by

(
S

(3)
q̄qA

)a
µ
≡ −iγµta , (204)

one is led to the flow of the quark-gluon coupling as fol-
lows

∂tḡq̄qA,k =

(
1

2
ηA + ηq

)
ḡq̄qA,k +

1

8(N2
c − 1)

× tr

[(
Flow

(3)

q̄qA

)a
µ

(
S

(3)
q̄qA

)a
µ

] (
{p}) , (205)

where the trace sums over the Dirac and color spaces,
and {p} stands for the set of external momenta for the
vertex. Here gq̄qA,k ≡ λq̄qA,k is used. In Equation (205)
the flow of quark-gluon vertex, i.e., the r.h.s. of the first
line in Figure 37, is denoted by

(
Flow

(3)

q̄qA

)a
µ

=− 1

Z
1/2
A,kZq,k

(
∂tΓ

(3)q̄qA
k

)a
µ
, (206)

with

(
Γ

(3)q̄qA
k

)a
µ
≡ δ

δAcµ

−→
δ

δq̄
Γk

←−
δ

δq
. (207)

Note that besides the classical tensor structure of the
quark-gluon vertex in Equation (204), some nonclassical
tensor structures also play a sizable role in the dynamical
breaking of the chiral symmetry [58, 61, 225], see, e.g.,
[18] for more detailed discussions. From Equation (205)
one formulates the flow of the light-quark–gluon coupling
as

∂tḡl̄lA,k =

(
1

2
ηA + ηq

)
ḡl̄lA,k + Flow

(3),A

(l̄lA) + Flow
(3),φ

(l̄lA) ,

(208)

where the second term on the r.h.s. corresponds to the
two diagrams on the r.h.s. of the flow equation for the
quark-gluon vertex as shown in the first line of Figure 37,
and the last term to the last diagram, which arise from
the quark-gluon, quark-meson fluctuations, respectively.
For the strange-quark–gluon coupling, one has

∂tḡs̄sA,k =

(
1

2
ηA + ηq

)
ḡs̄sA,k + Flow

(3),A

(s̄sA) , (209)

where the contribution from the strange-quark–meson in-
teractions are neglected, that is reasonable due to rel-
atively larger masses of the strange quark and strange
mesons. The explicit expressions in Eqs. (208) and (209)
can be found in Equation (C9) and Equation (C10).

In the same way, the flow equation of the three-gluon
coupling, gA3,k ≡ λA3,k, is readily obtained from the flow
of the three-gluon vertex in the second line of Figure 37.
The flow of the three-gluon coupling is decomposed into a
sum of the vacuum part and the in-medium contribution,
as follows

∂tḡA3,k =∂tḡ
vac
A3,k + ∂t∆ḡA3,k , (210)

where the vacuum part, i.e., the first term on the r.h.s. is
computed in [59], and the second term is identified with
the in-medium contribution of the quark-gluon coupling,
to wit,

∂t∆ḡA3,k =∂t∆ḡl̄lA,k . (211)

In Figure 38 the light-quark–gluon coupling, the
strange-quark–gluon coupling, and the three-gluon cou-
pling are depicted as functions of the RG scale for several
different values of the temperature. It is observed that
different couplings are consistent with one another in the
regime of k & 3 GeV, while deviations develop in the
nonperturbative or even semiperturbative scale. More-
over, one can see that the strong couplings decrease with
the increasing temperature.
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FIG. 39. Diagrammatic representation of the flow equation
for the four-quark vertex. The first line on the r.h.s. denotes
the contributions from two gluon exchanges and the second
line those from two meson exchanges. The last line stands for
the contributions from the mixed diagrams with one gluon
exchange and one meson exchange.

C. Dynamical hadronization, four-quark couplings
and Yukawa couplings

Following Section II E, one performs the dynamical
hadronization for the σ − π channel, and use

〈∂tφ̂k〉 =Ȧk q̄τq , (212)

with τ = (T 0, iγ5T ) as shown in Equation (48), where

Ȧk is called as the hadronization function. It is more
convenient to adopt the dimensionless, renormalized
hadronization function and four-quark coupling

˙̃A =
Z

1/2
φ,k

Zq,k
k2Ȧk , λ̃q,k =

k2λq,k
Z2
q,k

, (213)

and the renormalized Yukawa coupling,

h̄k =
hk

Z
1/2
φ,kZq,k

. (214)

Inserting the effective action in Equation (48) into
Equation (80) and performing a projection on the four-
quark interaction in the σ − π channel, one is left with

∂tλ̃q,k =2(1 + ηq,k)λ̃q,k + Flow
(4)

(q̄τq)2 + ˙̃A h̄k , (215)

where

Flow
(4)

(q̄τq)2 ≡−
k2

Z2
q,k

(
∂tΓ

(4)
k,(q̄τq)2

)
Ȧk=0

, (216)

is the flow of the four-quark coupling in the σ − π chan-
nel, whose contributions have been depicted in Figure 39.
One can see that the contributed diagrams can be clas-
sified into three sets, which correspond to the three lines
on the r.h.s. of the flow equation in Figure 39. The first
line is comprised of diagrams with two gluon exchanges,
and the second line with two meson exchanges. The last

line denotes the contributions from the mixed diagrams
with one gluon exchange and one meson exchange. The
mixed diagrams are negligible, since the dynamics of glu-
ons and mesons dominate in different regimes of the RG
scale, as shown in Figure 40. Therefore, the four-quark
flow in Equation (216) can be further written as

Flow
(4)

(q̄τq)2 =Flow
(4),A

(q̄τq)2 + Flow
(4),φ

(q̄τq)2 , (217)

where the two terms on the r.h.s. correspond to the con-
tributions from the two gluon exchanges and two meson
exchanges, respectivley. Their explicit expressions are
presented in Equation (C11) and Equation (C12). In
Figure 40 the two terms on the r.h.s. of Equation (217)
and their ratios with respect to the total flow of the four-
quark coupling are depicted as functions of the RG scale
with T = 0 and µB = 0. It is observed that the flow
resulting from the gluon exchange is dominant in the re-
gion of high energy, while that from the meson exchange
plays a significant role in lower energy.

The dynamical hadronization is done by demanding

λ̃q,k =0 , (218)

for every value of the RG scale k, which is equivalent to
the fact that the Hubbard-Stratonovich transformation is
performed for every value of k. Thus from Equation (215)
one arrives at the hadronization function as follows

˙̃A =− 1

h̄k
Flow

(4)

(q̄τq)2 . (219)

Inserting the effective action in Equation (48) into
Equation (80) and performing a projection on the
Yukawa interactions between quarks and σ-π mesons, i.e.,
q̄τ · φq, one is led to

∂th̄k =

(
1

2
ηφ,k + ηq,k

)
h̄k + Flow

(3)

(q̄τq)π − m̃2
π,k

˙̃A ,

(220)

with the dimensionless and renormalized pion mass as
follows

m̃2
π,k =

m2
π,k

Zφ,kk2
. (221)

Here in Equation (220)

Flow
(3)

(q̄τq)π ≡
1

Z
1/2
φ,kZq,k

(
∂tΓ

(3)
k,(q̄τq)π

)
Ȧk=0

, (222)

is the flow of the Yukawa coupling between the pion
and quarks, which is shown in the third line of Fig-
ure 37. Its explicit expression is presented in Equa-
tion (C13). Therefore, substituting the hadronization
function in Equation (219) into Equation (220), one ob-
tains the total flow of the Yukawa coupling finally. Evi-
dently, the dynamics of resonance of quarks are stored in
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Flow
(4),A
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temperature with several different values of µB obtained in fRG. Right panel: Renormalized Yukawa coupling of Nf = 2 + 1
flavor QCD as a function of the RG scale with several different values of T and µB = 0. The plots are adopted from [18].

the interactions between quarks and mesons through the
dynamic hadronization.

In the left panel of Figure 41 the renormalized Yukawa
coupling with k = 0 is shown as a function of the tem-
perature with several different values of baryon chemi-
cal potential. It is observed that with the increase of T
or µB , the Yukawa coupling decays rapidly due to the
restoration of the chiral symmetry. In the right panel
of Figure 41 the dependence of the renormalized Yukawa
coupling on the RG scale for different values of temper-
ature is investigated. One can see that the Yukawa cou-

pling is stable in the region of k & 1 GeV, and the effects
of temperature play a role approximately in k . 2πT .
The effective four-quark coupling in the σ-π channel can
be described by the ratio h̄2

k/(2m̄
2
π,k) [18, 59], which is

shown as a function of the RG scale with several differ-
ent values of temperature and µB = 0 in Figure 42. It
is observed that with the decrease of k and entering the
regime of the chiral symmetry breaking, a resonance oc-
curs in the scalar-pseudoscalar channel, which results in a
rapid increase of the effective four-quark coupling. More-
over, the dependence of the effective four-quark coupling
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on the baryon chemical potential is shown in Figure 43.
One finds that the effective four-quark coupling decrease
with the increasing temperature or baryon chemical po-
tential.

D. Natural emergence of LEFTs from QCD

The fRG approach to QCD with the dynamical
hadronization discussed above, provide us with a method
to study the transition of degrees of freedom from fun-
damental to composite ones. One is also able to observe
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quark single meson exchange coupling h̄2
k/(1 + m̃2

π,k) and

h̄2
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σ,k) as functions of the RG scale, obtained in fRG
for the Nf = 2 + 1 flavor QCD in the vacuum. The plot is
adopted from [18].
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)
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dressing function 1/ZA,k is also shown for comparison, which

is normalized by its peak value 1/Zpeak
A at k = kpeak. The
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a natural emergence of LEFTs from original QCD. To
that end, in Figure 44 one shows the four-quark sin-
gle gluon exchange coupling for light quarks ḡ2

l̄lA,k
and

strange quarks ḡ2
s̄sA,k, dimensionless four-quark single

meson exchange coupling h̄2
k/(1+m̃2

π,k) and h̄2
k/(1+m̃2

σ,k)
as functions of the RG scale in the vacuum. Evidently,
it is found that the gluonic exchange couplings are dom-
inant in the perturbative regime of k & 1 GeV. However,
with the decrease of the RG scale the active dynamic
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is taken over gradually by the mesonic degrees of free-
dom, and one can see that the gluonic couplings and
the Yukawa couplings are comparable to each other at
k ≈ 600. In Figure 45 dimensionless propagator gappings
1/(1 + m̃2

Φi,k
) for Φi = l, s, σ, π are shown as functions of

the RG scale. The gluon dressing function is also show
there for comparison. In Figure 45 one observes the same
information on decouplings as in Figure 44, that is, as the
RG scale evolves from the UV towards IR, the gluons de-
couple from the matter at first, then the quarks, and the
mesons finally. For more related discussions see [18] .

E. Chiral condensate

The chiral condensate of quark qi = u, d, s reads

∆qi =−m0
qiT

∑

n∈Z

∫
d3q

(2π)3
tr Gqiq̄i(q) , (223)

up to a renormalization term, where no summation for
the index i is assumed, and m0

qi is the current quark
mass. Obviously, the light quark condensate is given by
∆l = ∆u = ∆d with m0

l = m0
u = m0

d. The renormalized
condensate as follows

∆qi,R =
1

NR
[∆qi(T, µq)−∆qi(0, 0)] , (224)

renders the vacuum part of the chiral condensate in Equa-
tion (223) to be subtracted, where the dimensionless
∆qi,R is normalized by a constant NR, e.g., NR ∼ f4

π .
In the present fRG approach to QCD, the light quark
condensate is given by

∆l =
1

2
m0
l

∂Ω[ΦEoM;T, µq]

∂m0
l

=
1

2
cσ
∂Ω[ΦEoM;T, µq]

∂cσ
,

(225)

where Ω is the thermodynamic potential with the field
ΦEoM being on is equation of motion. From Equa-
tion (48), one is led to

∆l(T, µq) =− 1

2
cσ σEoM(T, µq) , (226)

and

∆l,R(T, µq) =− cσ
2NR

[
σEoM(T, µq)− σEoM(0, 0)

]
.

(227)

The reduced condensate ∆l,s is defined as the weighted
difference between the light and strange quark conden-
sates as follows,

∆l,s(T, µq) =
1

Nl,s

[
∆l(T, µq)−

(
m0
l

m0
s

)2

∆s(T, µq)

]
,

(228)

which is usually normalized with its value in the vacuum,
i.e.,

∆l,s(T, µq) =
∆l(T, µq)−

(
m0
l

m0
s

)2

∆s(T, µq)

∆l(0, 0)−
(
m0
l

m0
s

)2

∆s(0, 0)
. (229)

Similar with Equation (225), one arrives at

∆s =m0
s

∂Ω[ΦEoM;T, µq]

∂m0
s

= cσs
∂Ω[ΦEoM;T, µq]

∂cσs
, (230)

and thus

∆s(T, µq) =− 1√
2
cσs σs,EoM(T, µq) . (231)

Finally, one is led to

∆l,s(T, µq) =

(
σ −
√

2 cσ
cσs

σs

)
T,µq(

σ −
√

2 cσ
cσs

σs

)
0,0

, (232)

where one has used

m0
l

m0
s

=
cσ
cσs

, (233)

In the left panel Figure 46, the renormalized light
quark condensate is shown as a function of the tem-
perature with several different values of baryon chemi-
cal potential. In the case of vanishing baryon chemical
potential, the fRG result is compared with the contin-
uum extrapolated result of lattice QCD [160], and excel-
lent agreement is found. In the right panel of Figure 46,
the derivative of ∆l,R with respect to the temperature,
i.e., the thermal susceptibility of the renormalized light
quark condensate, are shown. The peak position of the
thermal susceptibility can be used to define the pseud-
ocritcal temperature, which is found to be Tc = 156 MeV
for µB = 0, in good agreement with the lattice result. In
Figure 47 one shows the reduced condensate as a function
of the temperature with µB = 0, in comparison to the
lattice simulations. One finds that for the physical cur-
rent quark mass ratio, i.e., m0

s/m
0
l = cσs/cσ ≈ 27 [226],

the fRG results are in quantitative agreement with the
lattice ones.

F. Phase structure

The QCD phase diagram in the plane of T and µB
is shown in Figure 48. The first-principle fRG results
in [18] are in comparison to state-of-the-art calculations
of other functional approach, e.g., the Dyson-Schwinger
Equations (DSE) [19, 20], and lattice QCD [8, 12]. The
phase boundary in the regime of continuous crossover at
small or medium µB shows the dependence of the pseudo-
critical temperature on the value of the baryon chemical
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FIG. 46. Left panel: Renormalized light quark chiral condensate ∆l,R of Nf = 2+1 flavor QCD as a function of the temperature
with several different values of baryon chemical potential obtained in fRG, in comparison to the lattice results at vanishing µB
[160]. Right panel: Derivative of ∆l,R with respect to the temperature, i.e., the thermal susceptibility of the renormalized light
quark condensate, as a function of the temperature with several different values of baryon chemical potential. The plots are
adopted from [18].

fRG: [18] DSE: [19] DSE: [20] Lattice (HotQCD): [12] Lattice (WB): [8] Lattice (WB): [16] Lattice: [227]

κ 0.0142(2) 0.0147(5) 0.0173 0.015(4) 0.0149(21) 0.0153(18) 0.0144(26)

(T, µB)CEP [MeV] (107, 635) (109, 610) (112, 636)

TABLE III. Curvature κ of the phase boundary (second line) and location of CEP (third line) for Nf = 2 + 1 flavor QCD,
obtained from different approaches. fRG: [18] (Fu et al.); DSE: [19] (Gao et al.), [20] (Gunkel et al.); Lattice QCD: [12]
(HotQCD), [8, 16] (WB), [227] (Bonati et al.); .

potential. In the calculations of fRG, this pseudocriti-
cal temperature is determined by the thermal suscepti-
bility of the renormalized light quark chiral condensate,
∂∆l,R/∂T , as discussed in Section IV E. Expanding the
pseudocritical temperature around µB = 0, one arrives
at

Tc(µB)

Tc
= 1− κ

(
µB
Tc

)2

+ λ

(
µB
Tc

)4

+ · · · , (234)

with Tc = Tc(µB = 0), where the quadratic expansion co-
efficient κ is usually called as the curvature of the phase
boundary. It is a sensitive measure for the QCD dy-
namics at finite temperature and densities. Therefore,
it provides a benchmark test for functional approaches
to make a comparison of the curvature at small baryon
chemical potential with lattice simulations. The curva-
ture values of the phase boundary obtained from fRG,
DSE, and lattice QCD are summarized in the second
line of Table III. It is found recent results of the cur-
vature from state-of-the-art functional approaches, e.g.,
fRG [18], DSE [19, 20], have already been comparable
to the lattice results. By contrast, those obtained from
relatively former calculations of functional methods, e.g.,
[21, 232, 233], are significantly larger than the values of

the curvature obtained from lattice simulations.

Besides the curvature of the phase boundary, another
key ingredient of the QCD phase structure is the criti-
cal end point (CEP) of the first-order phase transition
line at large baryon chemical potential, which is cur-
rently searched for with lots of efforts in experiments
[22, 37–41, 43, 176]. Lattice simulations, however, are
restricted in the region of µB/T . 2 ∼ 3 because of
the sign problem at finite chemical potentials, and in
this region no signal of CEP is observed [17]. Passing
lattice benchmark tests at small baryon chemical poten-
tials, functional approaches are able to provide relatively
reliable estimates for the location of the CEP. The recent
results of CEP after benchmark testing are presented in
the third line of Table III, and also depicted in the phase
diagram in Figure 48. Remarkably, estimates of CEP
from fRG and DSE converge in a rather small region at
baryon chemical potentials of about 600 MeV. Note that
results of [20] in Table III are obtained without the dy-
namics of sigma and pion, and the relevant results are
κ = 0.0167 and (T, µB)

CEP
= (117, 600) MeV when they

are included, and see also, e.g., [21, 232, 234] for related
discussions. It should be reminded that errors of func-
tional approaches increase significantly when µB/T & 4,
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The fRG results are compared with the lattice ones in [160].
The plot is adopted from [18].

for a detailed discussion see [18, 235], and thus one ar-
rives at a more reasonable estimation for the location of
CEP as 450 MeV . µBCEP . 650 MeV.

1. Region of inhomogeneous instability at large baryon
chemical potential

At large baryon chemical potentials, it is found within
the fRG approach to QCD, that the mesonic wave
function renormalization in Equation (189) and Equa-
tion (190) develops negative values at small momenta
[18]. As shown in Figure 49 the mesonic wave func-
tion renormalization at vanishing external momenta
Zφ,k=0(0) is depicted as a function of the temperature
with several different values of µB . One can see a nega-
tive Zφ,k=0(0) begins to appear for a temperature region
when µB & 420 MeV. The negative regime is clearly
shown in the right plot of

∣∣1/Zφ,k=0(0)
∣∣ between the two

spikes, and it widens with the increase of the baryon
chemical potential. From the two-point correlation func-
tions of mesons as shown in Eqs. (189) and (190), the
negative Zφ,k=0(0) implies that, for the dispersion rela-
tions of mesons, there is a minimum at a finite p2 6= 0.
This nontrivial behavior that the minimum of disper-
sion is located at a finite momentum is indicative of
an inhomogeneous instability, for instance, the forma-
tion of a spatially modulated chiral condensate. How-
ever, it should be reminded that a negative Zφ,k=0(0) is
not bound to the formation of an inhomogeneous phase,
it can also serve as an precursor for the inhomogeneous
phase. See, e.g., [135, 137, 236–245] for more related
discussions. Most notably, very recently consequence of
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FIG. 48. Phase diagram of Nf = 2 + 1 flavor QCD in the
plane of the temperature and the baryon chemical poten-
tial. The fRG results [18] are compared with those from
Dyson-Schwinger Equations [19, 20], lattice QCD [8, 12]. The
hatched red area denotes the region of inhomogeneous insta-
bility for the chiral condensate found in the calculations of
fRG. Some freeze-out data are also shown in the phase dia-
gram: [175] (STAR), [228] (Alba et al.), [4] (Andronic et al.),
[229] (Becattini et al.), [230] (Vovchenko et al.), and [231]
(Sagun et al.).

the inhomogeneous instability indicated by the negative
wave function renormalization on the phenomenology of
heavy-ion collisions has been studied. It is found that this
inhomogeneous instability would result in a moat regime
in both the particle pT spectrum and the two-particle cor-
relation, where the peaks are located at nonzero momenta
[244, 245]. The region of negative Zφ,k=0(0) is shown in
Figure 50 by the blue area, while the red hatched area
shows where this region overlaps with a sizable chiral
condensate.

G. Magnetic equation of state

From Equation (225), Equation (227), and Equa-
tion (228), it is convenient to define the corresponding
susceptibilities for the light quark condensate, the renor-
malized light quark condensate, and the reduced conden-
sate, i.e.,

χ
(i)
M (T ) = − ∂

∂m0
l

(
∆i(T )

m0
l

)
, (235)

with (i) = (l), (l, R), (l, s) [62]. Similar with the differ-
ence between the light quark condensate and the renor-
malized light quark condensate, the susceptibilities for
them differ by the vacuum contribution. Among these
three susceptibilities, the reduce susceptibility for the re-
duced condensate defined in fRG and lattice QCD, e.g.,
[13], matches better.
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FIG. 50. Phase diagram of Nf = 2+1 flavor QCD obtained in
the fRG approach to QCD in comparison to freeze-out data.
See also the caption of Figure 48. The blue area denotes the
region of negative mesonic wave function renormalization at
vanishing external momenta Zφ,k=0(0), which is an indica-
tor for the inhomogeneous instability. The red hatched area
stands for the regime with negative Zφ,k=0(0) and also sizable
chiral condensate. The plot is adopted from [18].

In Figure 51 the susceptibility obtained from the re-
duced condensate as a function of the temperature for
different pion masses in the fRG approach [62], is com-
pared with the lattice results [13]. One can see that the
fRG results are in good agreement with the lattice ones
for pion masses mπ & 100 MeV. There are some slight de-
viations from the two approaches for small pion masses.
From the dependence of the reduced susceptibility on the
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FIG. 51. Susceptibility for the reduced condensate obtained
in the fRG approach to Nf = 2 + 1 flavor QCD (fQCD) as
a function of the temperature, in comparison to the lattice
results in [13, 246]. The plot is adopted from [62].

temperature for a fixed pion mass in Figure 51, one is
able to define the pseudocritical temperature for the chi-
ral crossover at such value of pion mass, via the peak
position of the curves, denoted by Tpc.

In Figure 52 one shows the dependence of the pseu-
docritical temperature on the pion mass, obtained both
from the fRG approach and the lattice QCD. The values
of pseudocritical temperature at finite pion masses are
also extrapolated to the chiral limit, i.e., mπ → 0, which
leaves us with the critical temperature Tc in the chiral
limit. One obtains T fRG

c ≈ 142 MeV from the fRG ap-
proach [62], and T lattice

c = 132+3
−6 MeV from the lattice

QCD [13], that is, the critical temperature obtained in
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fRG is a bit larger than the lattice result. Recently, the
critical temperature in the chiral limit from DSE is found
to be TDSE

c ≈ 141 MeV [247].
From the general scaling hypothesis, see e.g., [66], in

the critical regime the pseudocritical temperature scales
with the pion mass as

Tpc(mπ) ≈ Tc + cmp
π , (236)

where c is a non-universal coefficient, while the exponent
p is related to the critical exponents β and δ through
p = 2/(βδ) [62]. Inputting the values of β and δ for the
3-d O(4) universality class [197, 248, 249], one arrives at
p ≈ 1.08. On the contrary, fitting of the fRG data in
Figure 52 leads to p ≈ 0.91+0.03

−0.03 [62]. This discrepancy
indicates that the pion masses under investigation in [62],
i.e., mπ & 30 MeV are beyond the critical regime. In
fact, the critical regime is found to be extremely small,
mπ . 1 MeV, in fRG studies of LEFTs, and see, e.g.,
[98, 151, 190, 199] for a more detailed discussion.

V. REAL-TIME FRG

In this section we would like to give a brief introduction
about the real-time fRG, based on a combination of the
fRG approach and the formalism of Schwinger-Keldysh
path integral, where the flow equations are formulated
on the closed time path. The Schwinger-Keldysh path
integral is devised to study real-time quantum dynamics
[250, 251], which has been proved be very powerful to
cope with problems of both equilibrium and nonequilib-
rium many-body systems, see, e.g., [252–255] for relevant
reviews.

Within the fRG approach on the closed time path,
nonthermal fixed points of the O(N) scalar theory are
investigated [256, 257]. The transition from unitary to

dissipative dynamics is studied [258]. Spectral functions
in a scalar field theory with d=0+1 dimensions are com-
puted within the real-time fRG approach [259]. More-
over, it has also been employed to study the nonequilib-
rium transport, dynamical critical behavior, etc. in open
quantum systems [260, 261], see also [55, 255] for related
reviews. Recently, the real-time fRG is compared with
other real-time methods [262].

Furthermore, it should be mentioned that another con-
ceptually new fRG with the Keldysh functional integral
is put forward in [263–266], and the regulation of the RG
scale there is replaced with that of the time, which is
also called as the temporal renormalization group. Note-
worthily, recently the Källén-Lehmann spectral represen-
tation of correlation functions has been used in the ap-
proach of DSE, to study the spectral functions in the
φ4-theory and Yang-Mills theory [267–269]. The spectral
functions provide important informations on the time-
like properties of correlation functions, see, e.g., [270–
273]. Besides the real-time fRG, another commonly
adopted approach is the analytically continued func-
tional renormalization group, where the Euclidean flow
equations are analytically continued into the Minkowski
spacetime on the level of analytic expressions with some
specific truncations, and see, e.g., [112, 129, 274–276] for
more details.

In this section we would like to discuss the fRG formu-
lated on the Keldysh path at the example of the O(N)
scalar theory [277].

A. fRG with the Keldysh functional integral

On the closed time path the classical action in Equa-
tion (1) for a closed system reads

S[Φ̂] =

∫

x

(
L[Φ̂+]− L[Φ̂−]

)
, (237)

with
∫
x
≡
∫∞
−∞ dt

∫
d3x, where the subscripts ± denote

variables on the forward and backward time branches, re-
spectively [252]. Now the Keldysh generating functional
reads

Z[J+, J−]

=

∫ (
DΦ̂+DΦ̂−

)
exp

{
i
(
S[Φ̂] +

(
J i+Φ̂i,+ − J i−Φ̂i,−

))}
.

(238)

It is more convenient to adopt the physical representa-
tion in terms of the “classical” and “quantum” variables,
denoted by subscripts c and q, respectively, which are re-
lated to variables on the two time branches by a Keldysh
rotation, that is,





Φ̂i,+ = 1√
2
(Φ̂i,c + Φ̂i,q),

Φ̂i,− = 1√
2
(Φ̂i,c − Φ̂i,q),

(239)
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and




J i+ = 1√
2
(J ic + J iq),

J i− = 1√
2
(J ic − J iq),

(240)

Then, Equation (238) reads

Z[Jc, Jq]

=

∫ (
DΦ̂cDΦ̂q

)
exp

{
i
(
S[Φ̂] +

(
J iqΦ̂i,c + J icΦ̂i,q

))}
.

(241)

The bilinear regulator term in Equation (2) can be chosen
as

∆Sk[Φ̂] =
1

2
(Φ̂i,c, Φ̂i,q)

(
0 Rijk

(Rijk )∗ 0

)(
Φ̂j,c
Φ̂j,q

)

=
1

2

(
Φ̂i,cR

ij
k Φ̂j,q + Φ̂i,q(R

ij
k )∗Φ̂j,c

)
. (242)

Then the RG scale k-dependent generating function
Equation (1) with the Keldysh functional integral reads

Zk[Jc, Jq] =

∫ (
DΦ̂cDΦ̂q

)
exp

{
i
(
S[Φ̂] + ∆Sk[Φ̂]

+ (J iqΦ̂i,c + J icΦ̂i,q)
)}

. (243)

The Schwinger functional in Equation (14) reads

Wk[Jc, Jq] = −i lnZk[Jc, Jq] . (244)

Combining the indices c, q and i for other degrees of free-
dom into one single label, say a, i.e.,

{Φ̂a} =
{
{Φ̂i,c}, {Φ̂i,q}

}
, (245)

{Ja} =
{
{J iq}, {J ic}

}
. (246)

one is able to simplify notations significantly, for in-
stance, the regulator term in Equation (242) now reading

∆Sk[ϕ] =
1

2
Φ̂aR

ab
k Φ̂b , (247)

with

Rabk ≡
(

0 Rijk
(Rijk )∗ 0

)
. (248)

In the same way, the expectation value of the field reads

Φa ≡ 〈Φ̂a〉 =
δWk[J ]

δJa
, (249)

and the propagator is given by

Gk,ab ≡− i〈Φ̂aΦ̂b〉c = −i
[
〈Φ̂aΦ̂b〉 − 〈Φ̂a〉〈Φ̂b〉

]

=− δ2Wk[J ]

δJaJb
. (250)

iG
R
σ,k =

c q
, iG

A
σ,k =

q c
, iG

K
σ,k =

qc cq
,

i
(
G
R
π,k

)
ij

=
i j

c q
, i

(
G
A
π,k

)
ij

=
i j

q c
, i

(
G
K
π,k

)
ij

=
i j

qc cq

FIG. 53. Diagrammatic representation of the three different
propagators for the sigma and pion mesons. A line associated
with two end points labelled with “c, q” denotes the retarded
propagator, while that with “q, c” denotes the advanced prop-
agator. A line with an empty circle inserted in the middle is
used to denote the Keldysh propagator, which results from
Equation (280). The plot is adopted from [277].

The effective action is obtained from the Schwinger
functional upon a Legendre transformation, viz.,

Γk[Φ] = Wk[J ]−∆Sk[Φ]− JaΦa . (251)

Similar with Equation (20) and Equation (21), one has

δ(Γk[Φ] + ∆Sk[Φ])

δΦa
= −γabJb , (252)

and

Gk,ab = γca

[(
Γ

(2)
k [Φ] + ∆S

(2)
k [Φ]

)−1
]
cb
. (253)

with

(
Γ

(2)
k [Φ] + ∆S

(2)
k [Φ]

)ab
≡ δ2(Γk[Φ] + ∆Sk[Φ])

δΦaδΦb
. (254)

Then it is left to specify the flow equation of Schwinger
functional with the Keldysh functional integral, that
reads

∂τWk[J ] =
1

2
iGk,ab∂τR

ab
k +

1

2
Φa
(
∂τR

ab
k

)
Φb

=
i

2
STr

[(
∂τR

T
k

)
Gk

]
+

1

2
Φa
(
∂τR

ab
k

)
Φb , (255)

where the RG time is denoted by τ ≡ ln(k/Λ), and RT
k

stands for the transpose of the regulator only in the c-
q space as shown in Equation (248). Finally, the flow
equation of the effective action reads

∂τΓk[Φ] = ∂τWk[J ]− ∂τ∆Sk[Φ]

=
i

2
STr

[(
∂τR

T
k

)
Gk

]
. (256)

B. Real-time O(N) scalar theory

The Keldysh effective action in Equation (251) for the
O(N) scalar theory reads

Γk[φc, φq] =

∫

x

[
Zφ,k(∂µφq) · (∂µφc)− Uk(φc, φq)

]
,

(257)
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where the potential is given by

Uk(φc, φq) =Vk(ρ+)− Vk(ρ−) , (258)

with ρ± = φ2
±/2. Here φi,± and φi,c/q (i = 0, 1, ...N − 1)

denote the fields of N components on the closed time
branches or in the physical representation, respectively,
and their relations are given in Equation (239). Note
that in Equation (257) a local potential approximation
with a k-dependent wave function renormalization Zφ,k
has been adopted, which is usually called the LPA’ ap-
proximation.

When the O(N) symmetry is broken into the O(N−1)
one in the direction of component i = 0, the expectation
values of the fields read

φ̄i,c =φ̄cδi0 , φ̄i,q = 0 . (259)

Then, the sigma and pion fields are give by

σc =φ0,c − φ̄c , σq = φ0,q , (260)

and

πi,c =φi,c , πi,q = φi,q , (i 6= 0) . (261)

The sigma and pion masses read

m2
σ,k ≡V ′k(ρ̄c) + 2ρ̄cV

(2)
k (ρ̄c) , (262)

m2
π,k ≡V ′k(ρ̄c) , (263)

with ρ̄c ≡ φ̄2
c/4.

The regulator in Equation (248) in the case of the
O(N) scalar theory reads

Rk(q) =

(
0 RAk (q)

RRk (q) 0

)
, (264)

with

RRk (q) = RAk (q) =

(
Rσ,k(q) 0

0 Rπ,k(q)

)
. (265)

where one has

Rσ,k(q) =Rφ,k(q) ,
(
Rπ,k

)
ij

(q) = Rφ,k(q)δij , (266)

with

Rφ,k(q) =Zφ,k

(
− q2rB

(q2

k2

))
. (267)

Here, the 3d flat regulator is used.
The flow equation of effective action in Equation (256)

with the regulator in Equation (264) can be reformulated
as

∂τΓk[Φ] =
i

2
STr

[
∂̃τ ln

(
Γ

(2)
k [Φ] +Rk

)]
, (268)

with

(
Γ

(2)
k [Φ]

)
ab
≡ δ2Γk[Φ]

δΦaδΦb
, (269)

where the fluctuation matrix can be decomposed into a
sum of the inverse propagator Pk and the interaction Fk
as shown in Equation (58). In thermal equilibrium at a
temperature T , the Pk matrix reads

Pk =

(
0 PAk
PRk PKk

)
, (270)

where the inverse retarded propagator is given by

PRk =

(PRσ,k 0

0 PRπ,k

)
, (271)

with

PRσ,k =Zφ,k

[
q2
0 − q2

(
1 + rB

(q2

k2

))]
−m2

σ,k

+ sgn(q0)iε , (272)

(
PRπ,k

)
ij

=

{
Zφ,k

[
q2
0 − q2

(
1 + rB

(q2

k2

))]
−m2

π,k

+ sgn(q0)iε

}
δij . (273)

The inverse advanced propagator is related to the re-
tarded one through a complex conjugate, to wit,

PAk =(PRk )∗ . (274)

The qq component of the inverse propagator in Equa-
tion (270), i.e., PKk , reads

PKk =

(PKσ,k 0

0 PKπ,k

)
, (275)

with

PKσ,k =2iε sgn(q0) coth
( q0

2T

)
, (276)

(
PKπ,k

)
ij

=

[
2iε sgn(q0) coth

( q0

2T

)]
δij . (277)

Then, one can obtain the propagator matrix as follows

Gk =
(
Pk
)−1

=

(
GKk GRk

GAk 0

)
, (278)

with the retarded and advanced propagator being

GRk =(PRk )−1 , GAk = (PAk )−1 , (279)
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FIG. 54. Diagrammatic representation of the flow equation
of the effective potential in the real-time O(N) scalar theory.
The vertices are denoted by gray blobs, and their legs are
distinguished for the “q” and “c” fields. the crossed circles
stand for the regulator insertion. The plot is adopted from
[277].

and the correlation function or Keldysh propagator being

GKk =− (PRk )−1PKk (PAk )−1 = −GRk PKk GAk . (280)

Finally, one can verify the fluctuation-dissipation relation
in thermal equilibrium, as follows

GKk =
(
GRk −GAk

)
coth

( q0

2T

)
. (281)

From Equation (278) one arrives at the three different
propagators which read

iGRφ,k =〈Tpφc(x)φq(y)〉 , iGAφ,k = 〈Tpφq(x)φc(y)〉 ,
(282)

iGKφ,k =〈Tpφc(x)φc(y)〉 =
(
iGRφ,k

)(
iPKφ,k

)(
iGAφ,k

)
,

(283)

where Tp denotes the time ordering from the positive
to negative time branch in the Keldysh closed time
path, and Equation (283) follows directly from Equa-
tion (280). Diagrammatic representation of these propa-
gators is shown in Figure 53.

Projecting the flow equation of the effective action
in Equation (268) onto a derivative with respect to the
quantum sigma field σq, i.e.,

∂τ

(
iδΓk[Φ]

δσq

)∣∣∣∣
Φ=0

, (284)

with Φ = (σc, {πi,c}, σq, {πi,q}), one is led to

∂τV
′
k(ρ̄c)

=
i

4

∫
d4q

(2π)4
∂̃τ

[∂m2
σ,k

∂ρ̄c
GKσ,k(q) +

∂m2
π,k

∂ρ̄c

(
GKπ,k

)
ii

(q)
]

=
∂

∂ρ̄c

{
− i

4

∫
d4q

(2π)4

(
∂τRφ,k(q)

)[
GKσ,k(q)

+
(
GKπ,k

)
ii

(q)
]}

, (285)
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FIG. 55. Diagrammatic representation of the flow equation
of the four-point vertex in the symmetric phase. The plot is
adopted from [277].

which is diagrammatically shown in Figure 54. Integrat-
ing both sides of Equation (285) over ρ̄c, one arrives at

∂τVk(ρ̄c)

=− i

4

∫
d4q

(2π)4

(
∂τRφ,k(q)

)[
GKσ,k(q) +

(
GKπ,k

)
ii

(q)
]
,

(286)

up to a term independent of ρ̄c. Inserting Equation (272)
and Equation (273), one has

∂τVk(ρ̄c) =
k4

4π2

[
l
(B,4)
0 (m̃2

σ,k, ηφ,k;T )

+
(
N − 1

)
l
(B,4)
0 (m̃2

π,k, ηφ,k;T )

]
, (287)

with the threshold function given by

l
(B,4)
0 (m̃2

φ,k, ηφ,k;T )

=
2

3

(
1− ηφ,k

5

) 1√
1 + m̃2

φ,k

(
1

2
+ nB(m̃2

φ,k;T )

)
, (288)

and the renormalized dimensionless meson masses read-
ing

m̃2
σ,k =

m2
σ,k

k2Zφ,k
, m̃2

π,k =
m2
π,k

k2Zφ,k
, (289)

where the bosonic distribution function reads

nB(m̃2
φ,k;T ) =

1

exp

{
k
T

√
1 + m̃2

φ,k

}
− 1

. (290)

Note that Equation (287) is just the flow equation of the
effective potential in the LPA’ approximation obtained
in the conventional Euclidean formalism of fRG.

C. Flows of the two- and four-point correlation
functions

The 1PI n-point correlation function or vertex in the
Euclidean field theory is given in Equation (60), and the
counterpart in the Keldysh field theory reads

iΓ
(n)
k,Φa1 ···Φan

=

(
iδnΓk[Φ]

δΦa1 · · · δΦan

)∣∣∣∣
Φ=〈Φ〉

. (291)
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Note that a label “c” or “q” is associated with an external
leg of the vertex to distinguish the classical or quantum
field, as shown in Figure 54. In the following we consider
the symmetric phase with φ̄c = 0 in Equation (259). In
this case the pion and sigma fields are degenerate, and
they are collectively denoted by φi (i = 0, 1, ...N − 1).
The diagrammatic representation of the four-point vertex

iΓ
(4)
φqφcφcφc

reads

iΓ
(4)
k,φi,qφj,cφk,cφl,c

(pi, pj , pk, pl) ≡
c

cc

pi

pl

pj

pk

i

l

j

k

q

,

(292)

whose flow equation is given in Figure 55. According to
the generic interchange symmetry of the external legs,
the four-point vertex can be parameterized as

iΓ
(4)
k,φi,qφj,cφk,cφl,c

(pi, pj , pk, pl)

=− i

3

[
λeff

4π,k(pi, pj , pk, pl)δilδjk + λeff
4π,k(pi, pk, pl, pj)δijδkl

+ λeff
4π,k(pi, pl, pj , pk)δikδjl

]
, (293)

where an effective four-point coupling λeff
4π,k is introduced.

In the following, one adopts the truncation that the mo-
mentum dependence of the four-point vertex on the r.h.s.
of the flow equation in Figure 55 is neglected, and the
four-point vertex there is identified as

λ4π,k = λeff
4π,k(0) . (294)

Then, from the flow of the four-point vertex in Figure 55,
one arrives at

∂τλ
eff
4π,k(pi, pj , pk, pl)

=
λ2

4π,k

3

[
(N + 4)∂̃τIk(−pi − pl) + 2 ∂̃τIk(−pi − pk)

+ 2 ∂̃τIk(−pi − pj)
]
, (295)

with

Ik(p) ≡ i
∫

d4q

(2π)4
GKπ,k(q)GAπ,k(q − p) . (296)

Note that the wave function renormalization Zφ,k = 1 is

adopted to simplify the calculation of ∂̃τIk(p) in Equa-
tion (295). The explicit expression of Ik(p) can be found
in [277].

With the four-point vertex in Equation (293) one is
able to obtain the self-energy as follows

−iΣk,ij(p) ≡
1

2

q

k, c

i, q j, c

← q

p←− ←− p

q

l, c

, (297)

which reads

−iΣk,ij(p) = δij(−
i

6
)(N + 2)

×
∫

d4q

(2π)4
iGKπ,k(q)λ̄eff

4π,k(p0, |p|, q0, |q|, cos θ) .

(298)

Here, the function λ̄eff
4π,k is given by

λ̄eff
4π,k(p0, |p|, q0, |q|, cos θ)

=
1

N + 2

[
Nλeff

4π,k(−p,−q, q, p) + λeff
4π,k(−p, p,−q, q)

+ λeff
4π,k(−p, q, p,−q)

]
, (299)

with θ being the angle between the two momenta p and
q. The inverse retarded propagator, i.e., the two-point
correlation function with one q field and one c field, is
given by

iΓ
(2)
k,φi,qφj,c

(p) ≡i δ2Γk[φ]

δφi,q(p)δφj,c(−p)

=iδij

(
Zφ,k(p2)p2 −m2

π,k

)
, (300)

and its flow equation reads

∂τΓ
(2)
k,φqφc

(p) = −∂̃τΣk(p)

=(− i
6

)(N + 2)

∫
d4q

(2π)4
∂̃τ

(
GKπ,k(q)

)

× λ̄eff
4π,k(p0, |p|, q0, |q|, cos θ) . (301)

Substituting the Keldysh propagator in Equation (280),
one arrives at

∂τΓ
(2)
k,φqφc

(p0, |p|)

=∂τΓ
(2)I
k,φqφc

(p0, |p|) + ∂τΓ
(2)II
k,φqφc

(p0, |p|) . (302)

The first part on the r.h.s. of Equation (302) reads

∂τΓ
(2)I
k,φqφc

(p0, |p|))

=− 1

24

(N + 2)

(2π)2

[
−

coth
(
Eπ,k(k)

2T

)

(
Eπ,k(k)

)3 −
csch2

(
Eπ,k(k)

2T

)

2T
(
Eπ,k(k)

)2
]

× (2k2)

∫ k

0

d|q||q|2
∫ 1

−1

d cos θ
[
λ̄eff

4π,k

∣∣
q0=Eπ,k(k)

+ λ̄eff
4π,k

∣∣
q0=−Eπ,k(k)

]
, (303)
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and the second part is given by

∂τΓ
(2)II
k,φqφc

(p0, |p|)

=− 1

24

(N + 2)

(2π)2

coth
(
Eπ,k(k)

2T

)

(
Eπ,k(k)

)2 (2k2)

∫ k

0

d|q||q|2

×
∫ 1

−1

d cos θ
[ ∂

∂q0
λ̄eff

4π,k

∣∣
q0=Eπ,k(k)

− ∂

∂q0
λ̄eff

4π,k

∣∣
q0=−Eπ,k(k)

]
. (304)

with

Eπ,k(k) =
(
k2 +m2

π,k

)1/2

, (305)

where m2
π,k can be extracted from the two-point correla-

tion function at vanishing momentum, viz.,

m2
π,k =− Γ

(2)
k,φqφc

(0) . (306)

Note that the second part in Equation (304) is negligible
if the momentum dependence of the vertex is mild.

D. Spectral functions and dynamical critical
exponent

The retarded propagator in the Källén-Lehmann spec-
tral representation is related to the spectral function ρ
via a relation as follows

GR(p0, |p|) =−
∫ ∞

−∞

dp′0
2π

ρ(p′0, |p|)
p′0 − (p0 + iε)

. (307)

Thus, the spectral function is proportional to the imagi-
nary part of the retarded propagator, i.e.,

ρ(p0, |p|) =− 2=GR(p0, |p|) . (308)

Notice that here the IR limit k → 0 is tacitly assumed.
The retarded propagator is just the inverse of the two-
point correlation function, to wit,

GR(p0, |p|) =
[
Γ

(2)
φqφc

(p0, |p|)
]−1

. (309)

Consequently, the spectral function can be expressed in
terms of the real and imaginary parts of the two-point
correlation function, that is,

ρ(p0, |p|) =
2=Γ

(2)
φqφc

(p0, |p|)
[
<Γ

(2)
φqφc

(p0, |p|)
]2

+
[
=Γ

(2)
φqφc

(p0, |p|)
]2 .

(310)

Evidently, one has

ρ(−p0, |p|) =− ρ(p0, |p|) . (311)

In Figure 56, the spectral function ρ(p0, |p| = 0) is
shown as a function of p0 with different values of the tem-
perature. In the left panel, the temperatures are above
but close to the critical temperature Tc = 20.4 MeV for
the phase transition, where the symmetry is broken from
O(N) to O(N−1) when T < Tc, while in the right panel,
the temperatures are far larger than Tc. One can see that
when temperature is large, one has a negative spectral
function in the regime of small p0, and there is a minus
peak structure around the pole mass. It is found that
the negative spectral function results from the contribu-
tions of the Landau damping, and see [277] for a more
detailed discussion. Nonetheless, when the temperature
is decreased below about 60 MeV, the Landau damping
is dominated by the process of creation and annihilation
of particles, and the spectral function is positive. More-
over, when the temperature is more and more close to the
critical temperature, the peak structure on the spectral
function becomes more and more wider, and finally dis-
appears at the critical temperature. The 3D plots of the
spectral function as a function of p0 and |p| are shown in
Figure 57 with two different values of the temperature.

We proceed to the discussion of the dynamical critical
exponent, and begin with the kinetic coefficient Γ(|p|)
that is defined as

1

Γ(|p|) =− i
∂Γ

(2)
φqφc

(p0, |p|)
∂p0

∣∣∣∣
p0=0

=
∂=Γ

(2)
φqφc

(p0, |p|)
∂p0

∣∣∣∣
p0=0

, (312)

where the parity properties of the real and imaginary
parts of the two-point correlation function have been
used, i.e.,

<Γ
(2)
φqφc

(−p0, |p|) =<Γ
(2)
φqφc

(p0, |p|) , (313)

=Γ
(2)
φqφc

(−p0, |p|) =−=Γ
(2)
φqφc

(p0, |p|) . (314)

The relaxation rate, or dissipative characteristic fre-
quency, is given by

ω(|p|) =Γ(|p|)
(
−Γ

(2)
φqφc

(p0 = 0, |p|)
)

=− Γ(|p|)<Γ
(2)
φqφc

(p0 = 0, |p|) . (315)

When the momentum is larger than the correlation
length |p| > ξ−1, with ξ ∼ m−1

φ , the relaxation rate
scales as

ω(|p|) ∝|p|z , (316)

through which one can extract the dynamical critical ex-
ponent z [278]. From Figure 58 the value of the dy-
namical critical exponent in the real-time 3d O(4) scalar
theory is extracted, and one arrives at z = 2.02284(6),
where the numerical error is shown in the bracket.
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FIG. 56. Spectral function ρ(p0, |p| = 0) as a function of p0 with several small (left panel, close to the critical temperature
Tc = 20.4 MeV) and large (right panel) values of temperature obtained in the real-time O(4) scalar theory within the fRG
approach. The plots are adopted from [277].

FIG. 57. 3D plots of the spectral function as a function of p0 and |p| at temperature T = 54 MeV (left panel) and 145 MeV
(right panel), obtained in the real-time O(4) scalar theory within the fRG approach. The plots are adopted from [277].

According to the standard classification for universal-
ities of the critical dynamics [278], it is argued that the
critical dynamics of the relativistic O(4) scalar theory
belongs to the universality of Model G [279], see also
[280], which leaves us with z = 3/2 in three dimensions.
The dynamic critical exponent for the O(4) model is also
calculated in real-time classical-statistical lattice simula-
tions, and it is found that z is in favor of 2, but there is
still a sizable numerical error [280]. The dynamic criti-
cal exponent in a relativistic O(N) vector model is also
found to be close to 2 [258]. Similar result is found in
a O(3) model in [281]. Moreover, z = 1.92(11) is found
for Model A in three spatial dimensions from real-time
classical-statistical lattice simulations [282]. In short, the
dynamic critical exponent is far from clear and conclu-
sive in comparison to the static critical exponent, and
more studies of the critical dynamics from different ap-

proaches, including the real-time fRG, are necessary and
desirable in the future.

VI. CONCLUSIONS

In this paper we present an overview on recent progress
in studies of QCD at finite temperature and densities
within the fRG approach. After a brief introduction of
the formalism, the fRG approach is applied in low energy
effective field theories (LEFTs) and the first-principle
QCD. The mechanism of quark mass production and
natural emergence of bound states is well illustrated
within the fRG approach, and a set of self-consistent
flow equations of different correlation functions provide
the necessary resummations, and plays the same role as
the quark gap equation and Bethe-Salpeter equation of
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FIG. 58. Double logarithm plot of the relaxation rate ω(|p|)
in Equation (316) as a function of the spacial momentum with
p0 = 0 at the critical temperature Tc = 20.4 MeV, obtained in
the real-time 3d O(4) scalar theory within the fRG approach.
The plot is adopted from [277].

bound states.

We present results for the QCD phase structure and
the location of the critical end point (CEP), the QCD
equation of state (EoS), the magnetic EoS, baryon num-
ber fluctuations confronted with recent experimental
measurements, various critical exponents, etc. It is
found that the non-monotonic dependence of the kur-
tosis of the net-baryon or net-proton (proxy for net-
baryon in experiments) number distributions could arise
from the increasingly sharp crossover with the decrease
of the beam collision energy, which in turn indicates
that the non-monotonicity observed in experiments is
highly non-trivial. Furthermore, recent estimates of the
location of the CEP from first-principle QCD calcula-
tions within fRG and Dyson-Schwinger Equations, which
passes through lattice benchmark tests at small baryon
chemical potentials, converge in a rather small region at
baryon chemical potentials of about 600 MeV. But it
should be reminded that errors of functional approaches
increase significantly in the regime of µB/T & 4, and thus
one arrives at a more reasonable estimation for the loca-
tion of CEP as 450 MeV . µBCEP . 650 MeV. More-
over, a region of inhomogeneous instability indicated by
a negative wave function renormalization is found with
µB & 420 MeV, and its consequence on the phenomenol-
ogy of heavy-ion collisions has been investigated very re-
cently [244, 245]. It is found that this inhomogeneous
instability would result in a moat regime in both the par-
ticle pT spectrum and the two-particle correlation. By
investigating the critical behavior and extracting critical
exponents in the vicinity of the CEP, it is found that the
size of the critical region is extremely small, quite smaller
than ∼ 1 MeV.

In this review we also discuss the real-time fRG,

in which the flow equations are formulated on the
Schwinger-Keldysh closed time path. By organizing the
effective action and the flow equations in terms of the
“classical” and “quantum” fields, one is able to give a
concise diagrammatic representation for the flow equa-
tions of propagators and vertices in the real-time fRG.
The spectral functions of the O(N) scalar theory in the
critical regime in the proximity of the critical tempera-
ture are obtained. The dynamical critical exponent in
the O(4) scalar theory in 3 + 1 dimensions is found to be
z ' 2.023.
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Appendix A: Flow equations of the gluon and ghost
self-energies in Yang-Mills theory at finite

temperature

1. Feynman rules

First of all, we present the Feynman rules for relevant
propagators and vertices at finite temperature and den-
sities.
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a. Gluon propagator

The kinetic term for the gluon field in Equation (48)
in momentum space is given by

Γk,2A ≡
1

2

∫
d4q

(2π)4
Aaµ(−q)q2

[(
ZM
A,k(q)ΠM

µν(q)

+ ZE
A,k(q)ΠE

µν(q)
)

+
1

ξ
Π‖µν(q)

]
Aaν(q) , (A1)

where the magnetic projection operator reads

ΠM
µν(q) =(1− δµ0)(1− δν0)

(
δµν −

qµqν
q2

)
, (A2)

and the electric projection operator

ΠE
µν(q) =Π⊥µν(q)−ΠM

µν(q) , (A3)

with the transverse and longitudinal tensors given by

Π⊥µν(q) =δµν −
qµqν
q2

, and Π‖µν(q) =
qµqν
q2

, (A4)

respectively. Note that in Equation (A1) different
magnetic and electric gluonic dressing functions, i.e.,
ZM
A,k(q) 6= ZE

A,k(q), are assumed at finite temperature.

Differentiating Equation (A1) w.r.t. the gluon field twice,
one obtains

(
Γ

(2)AA
k,2A

)ab
µν

(q′, q) ≡ δ2Γk,2A
δAaµ(q′)δAbν(q)

=q2
[(
ZM
A,k(q)ΠM

µν(q) + ZE
A,k(q)ΠE

µν(q)
)

+
1

ξ
Π‖µν(q)

]

× δab(2π)4δ4(q′ + q) . (A5)

Moreover, the regulator for the gluon reads

(
RAAk

)ab
µν

(q′, q)

=
[(
ZM
A,kq

2rB(q2/k2)ΠM
µν(q) + ZE

A,kq
2rB(q2/k2)ΠE

µν(q)
)

+
1

ξ
q2rB(q2/k2)Π‖µν(q)

]
δab(2π)4δ4(q′ + q) , (A6)

where ZM
A,k and ZE

A,k are independent of momentum q

by contrast to those in Equation (A5). The threshold
function rB(x) can be chosen to be that in Equation (10)
or Equation (12). Therefore, the gluon propagator is
readily obtained from Equation (21), as follows

(
GAAk

)ab
µν

(q, q′) = (2π)4δ4(q′ + q)
(
GAAk

)ab
µν

(q) , (A7)

with

(
GAAk

)ab
µν

(q) =
(
GM
A,k(q)ΠM

µν(q) +GE
A,k(q)ΠE

µν(q)
)
δab ,

(A8)

where one has

GM
A,k(q) =

1

q2
[
ZM
A,k(q) + ZM

A,krB(q2/k2)
] , (A9)

GE
A,k(q) =

1

q2
[
ZE
A,k(q) + ZE

A,krB(q2/k2)
] . (A10)

Here the gauge parameter is chosen to be ξ = 0.

b. Ghost propagator

In the same way the kinetic term for the ghost field in
Equation (48) reads

Γk,2c ≡
∫

d4q

(2π)4
Zc,k(q)c̄a(−q)q2ca(q) , (A11)

where we have used the convention of Fourier transfor-
mation for the Grassmann fields as follows

c̄a(x) =

∫
d4q

(2π)4
c̄a(q)eiqx , (A12)

ca(x) =

∫
d4q

(2π)4
ca(q)eiqx . (A13)

Then, it follows that

(
Γ

(2)c̄c
k,2c

)ab
(q′, q) ≡

−→
δ

δc̄a(q′)
Γk,2c

←−
δ

δcb(q)

=Zc,k(q)q2δab(2π)4δ4(q′ + q) , (A14)

and

(
Γ

(2)cc̄
k,2c

)ab
(q′, q) ≡

−→
δ

δca(q′)
Γk,2c

←−
δ

δc̄b(q)

=− Zc,k(q′)q′
2
δab(2π)4δ4(q′ + q)

=−
(
Γ

(2)c̄c
k,2c

)ba
(q, q′) = −

[(
Γ

(2)c̄c
k,2c

)T ]ab
(q′, q) , (A15)

Note that, for a Grassmann field, the relation such as

Γ
(2)cc̄
k,2c = −

(
Γ

(2)c̄c
k,2c

)T
, (A16)

always holds. The regulator for the ghost field reads

(
Rc̄ck
)ab

(q′, q) = Zc,kq
2rB(q2/k2)δab(2π)4δ4(q′ + q) ,

(A17)

and Rcc̄k = −
(
Rc̄ck
)T

. As a consequence, the P matrix in
Equation (58) for the ghost field reads

Pc =

(
0 −(Γ

(2)c̄c
k,2c +Rc̄ck )T

Γ
(2)c̄c
k,2c +Rc̄ck 0

)
, (A18)
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whose inverse matrix is just the ghost propagator which
is given by

(
1

P

)

c

=

(
0 Gcc̄k

−(Gcc̄k )T 0

)
, (A19)

with

Gcc̄k =
1

Γ
(2)c̄c
k,2c +Rc̄ck

. (A20)

Recovering the indices, one obtains the ghost propagator
as follows

(
Gcc̄k
)ab

(q, q′) =
(
Gcc̄k
)ab

(q)(2π)4δ4(q + q′)

= Gck(q)δab(2π)4δ4(q + q′) , (A21)

with

Gck(q) =
1

q2
[
Zc,k(q) + Zc,krB(q2/k2)

] . (A22)

c. Quark propagator

The kinetic term for the quark field in Equation (48)
reads

Γk,2q ≡
∫

d4q

(2π)4
q̄(−q)

[
Zq,k(q)iγ · q +mq,k(q)

]
q(q) .

(A23)

It follows that

(
Γ

(2)q̄q
k,2q

)
ij

(q′, q) =

−→
δ

δq̄i(q′)
Γk,2q

←−
δ

δqj(q)

=
[
Zq,k(q)iqµ(γµ)ij +mq,k(q)δij

]
(2π)4δ4(q′ + q) ,

(A24)

and

(
Γ

(2)qq̄
k,2q

)
ij

(q′, q) =

−→
δ

δqi(q′)
Γk,2q

←−
δ

δq̄j(q)

=−
[
Zq,k(q′)iq′µ(γµ)ji +mq,k(q′)δji

]
(2π)4δ4(q + q′)

= −
[(
Zq,k(q′)iq′µγµ +mq,k(q′)

)T ]
ij

(2π)4δ4(q + q′)

= −
[(

Γ
(2)q̄q
k,2q

)T ]
ij

(q′, q) . (A25)

The regulator reads

(
Rq̄qk

)
ij

(q′, q) = Zq,kiq · γijrF (q2/k2)(2π)4δ4(q′ + q) .

(A26)

The P matrix for the quark field reads

Pq =

(
0 −(Γ

(2)q̄q
k,2q +Rq̄qk )T

Γ
(2)q̄q
k,2q +Rq̄qk 0

)
, (A27)

and the relevant propagator is given by

(
1

P

)

q

=

(
0 Gqq̄k

−(Gqq̄k )T 0

)
, (A28)

with

Gqq̄k =
1

Γ
(2)q̄q
k,2q +Rq̄qk

. (A29)

Displaying the momentum explicitly, one arrives at the
quark propagator as follows

Gqq̄k (q, q′) = Gqq̄k (q)(2π)4δ4(q + q′)

= Gqk(q)(2π)4δ4(q + q′) , (A30)

with

Gqk(q) =
1

Zq,k(q)iγ · q + Zq,krF (q2/k2)iγ · q +mq,k(q)
.

(A31)

d. Ghost-gluon vertex

First of all, we consider the case in the vacuum. The
action relevant to the ghost-gluon interaction in Equa-
tion (48) reads

Γk,2cA ≡
∫

x

(−g)fabc∂µc̄
a(x)cb(x)Acµ(x)

=

∫
d4p

(2π)4

d4q

(2π)4
(−g)fabcipµc̄

a(p)cb(q)Acµ(−p− q) ,
(A32)

which yields

(
Γ

(3)c̄cA
k,2cA

)abc
µ

(p, q, k) ≡ δ

δAcµ(k)

−→
δ

δc̄a(p)
Γk,2cA

←−
δ

δcb(q)

=− gfabcipµ(2π)4δ4(p+ q + k) . (A33)

Thus, the Feynman rule for the ghost-gluon vertex in the
vacuum is given as follows

q ր

ց p

←− k

b

a

c,µ ≡ −
(
Γ

(3)c̄cA
k,2cA

)abc
µ

(p, q, k)

=− g
(
S

(3)
c̄cA

)abc
µ

(p, q, k) . (A34)
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with the classical tensor of the ghost-gluon vertex defined
by

(
S

(3)
c̄cA

)abc
µ

(p, q, k) ≡ −ipµfabc , (A35)

At finite temperature, the external leg of gluon would be
split into the magnetic and electric sectors, and thus the
general form for the ghost-gluon vertex at finite temper-
ature reads

q ր

ց p

←− k

b

a

c,µ = −
(
S

(3)
c̄cA

)abc
µ′

(p, q, k)
(
λc̄cA

)
µ′µ

(k) .

(A36)

with

(
λc̄cA

)
µ′µ

(k) ≡ λM
c̄cAΠM

µ′µ(k) + λE
c̄cAΠE

µ′µ(k) , (A37)

where λM
c̄cA and λE

c̄cA are the dressing couplings of the
ghost-gluon vertex for the magnetic and electric compo-
nents, respectively. Note that the couplings are depen-
dent on the RG scale, and their subscript k has been
suppressed.

e. Three- and four-gluon vertices

From the effective action in Equation (48), one is able
to obtain the three-gluon vertex in the vacuum, as follows

(
Γ

(3)A3

k

)a1a2a3
µ1µ2µ3

(q1, q2, q3)

≡ δ3Γk
δAa1µ1(q1)δAa2µ2(q2)δAa3µ3(q3)

∣∣∣∣
A=0

=(2π)4δ4(q1 + q2 + q3)g
(
S

(3)
A3

)a1a2a3
µ1µ2µ3

(q1, q2, q3) , (A38)

with the classical three-gluon tensor

(
S

(3)
A3

)a1a2a3
µ1µ2µ3

(q1, q2, q3)

≡− ifa1a2a3
[
δµ1µ2

(q1 − q2)µ3
+ δµ2µ3

(q2 − q3)µ1

+ δµ3µ1
(q3 − q1)µ2

]
. (A39)

In the same way, the four-gluon vertex reads

(
Γ

(4)A4

k

)a1a2a3a4
µ1µ2µ3µ4

(q1, q2, q3, q4)

≡ δ4Γk,A
δAa1µ1(q1)δAa2µ2(q2)δAa3µ3(q3)δAa4µ4(q4)

∣∣∣∣
A=0

=(2π)4δ4(q1 + q2 + q3 + q4)g2
(
S

(4)
A4

)a1a2a3a4
µ1µ2µ3µ4

, (A40)

with the classical four-gluon tensor

(
S

(4)
A4

)a1a2a3a4
µ1µ2µ3µ4

≡ fea1a2fea3a4(δµ1µ3
δµ2µ4

− δµ1µ4
δµ2µ3

)

+ fea1a3fea2a4(δµ1µ2
δµ3µ4

− δµ1µ4
δµ2µ3

)

+ fea1a4fea2a3(δµ1µ2δµ4µ3 − δµ1µ3δµ4µ2) .
(A41)

Similar with the case of ghost-gluon vertex, each ex-
ternal leg of the three- and four-gluon vertices should be
split into a sum of the magnetic and electric components
at finite temperature, and see, e.g., [57] for more details.
Consequently, the three-gluon vertex at finite tempera-
ture reads

q2 ր

ց q1

←− q3

a2,µ2

a1,µ1

a3,µ3 ≡ −
(
Γ

(3)A3

k

)a1a2a3
µ1µ2µ3

(q1, q2, q3)

= −
(
S

(3)
A3

)a1a2a3
µ′1µ

′
2µ
′
3
(q1, q2, q3)

(
λA3

)µ′1µ′2µ′3
µ1µ2µ3

(q1, q2, q3) ,

(A42)

with

(
λA3

)µ′1µ′2µ′3
µ1µ2µ3

(q1, q2, q3)

≡λMMM
A3

(
ΠMMM

)µ′1µ′2µ′3
µ1µ2µ3

(q1, q2, q3)

+ λEMM
A3

(
ΠEMM

)µ′1µ′2µ′3
µ1µ2µ3

(q1, q2, q3)

+ λEEM
A3

(
ΠEEM

)µ′1µ′2µ′3
µ1µ2µ3

(q1, q2, q3)

+ λEEE
A3

(
ΠEEE

)µ′1µ′2µ′3
µ1µ2µ3

(q1, q2, q3) , (A43)

where λMMM
A3 , λEMM

A3 , λEEM
A3 , λEEE

A3 are the dressing three-
gluon couplings for different components, and the rele-
vant projectors reads

(
ΠMMM

)µ′1µ′2µ′3
µ1µ2µ3

(q1, q2, q3) ≡ ΠM
µ′1µ1

(q1)ΠM
µ′2µ2

(q2)ΠM
µ′3µ3

(q3) ,

(A44)

(
ΠEEE

)µ′1µ′2µ′3
µ1µ2µ3

(q1, q2, q3) ≡ ΠE
µ′1µ1

(q1)ΠE
µ′2µ2

(q2)ΠE
µ′3µ3

(q3) ,

(A45)

the projector with one electric gluon and two magnetic
gluons

(
ΠEMM

)µ′1µ′2µ′3
µ1µ2µ3

(q1, q2, q3)

≡ΠE
µ′1µ1

(q1)ΠM
µ′2µ2

(q2)ΠM
µ′3µ3

(q3) + ΠM
µ′1µ1

(q1)ΠE
µ′2µ2

(q2)

×ΠM
µ′3µ3

(q3) + ΠM
µ′1µ1

(q1)ΠM
µ′2µ2

(q2)ΠE
µ′3µ3

(q3) , (A46)
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the projector with two electric gluons and one magnetic
gluon

(
ΠEEM

)µ′1µ′2µ′3
µ1µ2µ3

(q1, q2, q3)

≡ΠE
µ′1µ1

(q1)ΠE
µ′2µ2

(q2)ΠM
µ′3µ3

(q3) + ΠE
µ′1µ1

(q1)ΠM
µ′2µ2

(q2)

×ΠE
µ′3µ3

(q3) + ΠM
µ′1µ1

(q1)ΠE
µ′2µ2

(q2)ΠE
µ′3µ3

(q3) . (A47)

The four-gluon vertex at finite temperature reads

q2 ր
q3 տ

ց q1

ւ q4

a2,µ2

a1,µ1

a3,µ3

a4,µ4

≡ −
(
Γ

(4)A4

k

)a1a2a3a4
µ1µ2µ3µ4

(q1, q2, q3, q4)

= −
(
S

(4)
A4

)a1a2a3a4
µ′1µ

′
2µ
′
3µ
′
4

(
λA4

)µ′1µ′2µ′3µ′4
µ1µ2µ3µ4

(q1, q2, q3, q4) , (A48)

with

(
λA4

)µ′1µ′2µ′3µ′4
µ1µ2µ3µ4

(q1, q2, q3, q4)

≡λMMMM
A4

(
ΠMMMM

)µ′1µ′2µ′3µ′4
µ1µ2µ3µ4

(q1, q2, q3, q4)

+ λEMMM
A4

(
ΠEMMM

)µ′1µ′2µ′3µ′4
µ1µ2µ3µ4

(q1, q2, q3, q4)

+ λEEMM
A4

(
ΠEEMM

)µ′1µ′2µ′3µ′4
µ1µ2µ3µ4

(q1, q2, q3, q4)

+ λEEEM
A4

(
ΠEEEM

)µ′1µ′2µ′3µ′4
µ1µ2µ3µ4

(q1, q2, q3, q4)

+ λEEEE
A4

(
ΠEEEE

)µ′1µ′2µ′3µ′4
µ1µ2µ3µ4

(q1, q2, q3, q4) , (A49)

where λMMMM
A4 , λEMMM

A4 , λEEMM
A4 , λEEEM

A4 , and λEEEE
A4 are

the dressing four-gluon couplings for different compo-
nents, and the relevant projectors reads

(
ΠMMMM

)µ′1µ′2µ′3µ′4
µ1µ2µ3µ4

(q1, q2, q3, q4)

≡ΠM
µ′1µ1

(q1)ΠM
µ′2µ2

(q2)ΠM
µ′3µ3

(q3)ΠM
µ′4µ4

(q4) , (A50)

and

(
ΠEEEE

)µ′1µ′2µ′3µ′4
µ1µ2µ3µ4

(q1, q2, q3, q4)

≡ΠE
µ′1µ1

(q1)ΠE
µ′2µ2

(q2)ΠE
µ′3µ3

(q3)ΠE
µ′4µ4

(q4) , (A51)

the projector with one electric gluon and three magnetic

gluons

(
ΠEMMM

)µ′1µ′2µ′3µ′4
µ1µ2µ3µ4

(q1, q2, q3, q4)

≡ΠE
µ′1µ1

(q1)ΠM
µ′2µ2

(q2)ΠM
µ′3µ3

(q3)ΠM
µ′4µ4

(q4)

+ ΠM
µ′1µ1

(q1)ΠE
µ′2µ2

(q2)ΠM
µ′3µ3

(q3)ΠM
µ′4µ4

(q4)

+ ΠM
µ′1µ1

(q1)ΠM
µ′2µ2

(q2)ΠE
µ′3µ3

(q3)ΠM
µ′4µ4

(q4)

+ ΠM
µ′1µ1

(q1)ΠM
µ′2µ2

(q2)ΠM
µ′3µ3

(q3)ΠE
µ′4µ4

(q4) , (A52)

the projector with three electric gluon and one magnetic
gluons

(
ΠEEEM

)µ′1µ′2µ′3µ′4
µ1µ2µ3µ4

(q1, q2, q3, q4)

≡ΠE
µ′1µ1

(q1)ΠE
µ′2µ2

(q2)ΠE
µ′3µ3

(q3)ΠM
µ′4µ4

(q4)

+ ΠE
µ′1µ1

(q1)ΠE
µ′2µ2

(q2)ΠM
µ′3µ3

(q3)ΠE
µ′4µ4

(q4)

+ ΠE
µ′1µ1

(q1)ΠM
µ′2µ2

(q2)ΠE
µ′3µ3

(q3)ΠE
µ′4µ4

(q4)

+ ΠM
µ′1µ1

(q1)ΠE
µ′2µ2

(q2)ΠE
µ′3µ3

(q3)ΠE
µ′4µ4

(q4) , (A53)

the projector with two electric gluons and two magnetic
gluons

(
ΠEEMM

)µ′1µ′2µ′3µ′4
µ1µ2µ3µ4

(q1, q2, q3, q4)

≡ΠE
µ′1µ1

(q1)ΠE
µ′2µ2

(q2)ΠM
µ′3µ3

(q3)ΠM
µ′4µ4

(q4)

+ ΠE
µ′1µ1

(q1)ΠM
µ′2µ2

(q2)ΠE
µ′3µ3

(q3)ΠM
µ′4µ4

(q4)

+ ΠE
µ′1µ1

(q1)ΠM
µ′2µ2

(q2)ΠM
µ′3µ3

(q3)ΠE
µ′4µ4

(q4)

+ ΠM
µ′1µ1

(q1)ΠE
µ′2µ2

(q2)ΠE
µ′3µ3

(q3)ΠM
µ′4µ4

(q4)

+ ΠM
µ′1µ1

(q1)ΠE
µ′2µ2

(q2)ΠM
µ′3µ3

(q3)ΠE
µ′4µ4

(q4)

+ ΠM
µ′1µ1

(q1)ΠM
µ′2µ2

(q2)ΠE
µ′3µ3

(q3)ΠE
µ′4µ4

(q4) . (A54)

2. Gluon self-energy

With the Feynman rules discussed in Appendix A 1, it
is straightforward to write down expressions for the loop
diagrams of the gluon self-energy as shown on the r.h.s.
of flow equation in Figure 3. The first gluon loop reads

p←

a1, µ1 → (q − p) b1, ν1

a2, µ2 ← q b2, ν2

a,µ b,ν

≡
(
ΣAAa

)ab
µν

(p) . (A55)
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with

(
ΣAAa

)ab
µν

(p)

=

∫
d4q

(2π)4
(−)
(
S

(3)
A3

)aa1a2
µ′µ′1µ

′
2
(−p,−q + p, q)

×
(
λA3

)µ′µ′1µ′2
µµ1µ2

(−p,−q + p, q)
[
GM
A (q)ΠM

µ2ν2(q)

+GE
A(q)ΠE

µ2ν2(q)
]
δa2b2(−)

(
S

(3)
A3

)bb1b2
ν′ν′1ν

′
2
(p, q − p,−q)

×
(
λA3

)ν′ν′1ν′2
νν1ν2

(p, q − p,−q)
[
GM
A (q − p)ΠM

ν1µ1
(q − p)

+GE
A(q − p)ΠE

ν1µ1
(q − p)

]
δb1a1 . (A56)

Projecting Equation (A56) onto the magnetic compo-
nent, one arrives at

(
ΣAAa

)ab
µν

(p)
(
δabΠM

µν(p)
)

=Nc(N
2
c − 1)

∫
d4q

(2π)4

[
λMMM
A3

2
GM
A (q)GM

A (q − p)CMMM

+ λEEM
A3

2
GE
A(q)GE

A(q − p)CMEE + λEMM
A3

2

×
(
GM
A (q)GE

A(q − p)CMME +GE
A(q)GM

A (q − p)CMEM
)]
.

(A57)

Here we have defined several coefficients, which reads

CMMM =
2 sin2 θ

p2
s + q2

s − 2psqs cos θ

{
11p2

sq
2
s + 4p4

s + 4q4
s

+ psqs
[
psqs cos 2θ − 8

(
p2
s + q2

s

)
cos θ

]}
,

(A58)

where the two 4-momenta are p = (p0,p) and q = (q0, q),
with ps = |p|, qs = |q| and cos θ = p · q/(psqs). In the
same way, we have

CMME =
2(cos 2θ + 3)

p2
s + q2

s − 2psqs cos θ

×

[
q0p

2
s + p0q

2
s − psqs (p0 + q0) cos θ

]2

(p0 − q0)
2

+ p2
s + q2

s − 2psqs cos θ
. (A59)

The coefficient CMEM could be deduced from CMME
through the replacement as follows

CMEM = CMME

∣∣∣
q→−q+p

=
2 (psq0 cos θ − p0qs)

2

(q2
0 + q2

s) (p2
s − 2psqs cos θ + q2

s)

×
[
4p2
s − 8psqs cos θ + (3 + cos 2θ)q2

s

]
. (A60)

Finally, the last one is given by

CMEE =
4 sin2 θ

(q2
0 + q2

s) (p2
s − 2psqs cos θ + q2

s)

× 1

p2
s + (p0 − q0)

2 − 2psqs cos θ + q2
s

×
{
q4
s + p2

sq
2
0 +

(
p2

0 + p2
s − p0q0 + q2

0

)
q2
s

− psqs
[
q0 (p0 + q0) + 2q2

s

]
cos θ

}2

. (A61)

Projection of Equation (A56) onto the electric compo-
nent yields

(
ΣAAa

)ab
µν

(p)
(
δabΠE

µν(p)
)

=Nc(N
2
c − 1)

∫
d4q

(2π)4

[
λEEE
A3

2
GE
A(q)GE

A(q − p)CEEE

+ λEMM
A3

2
GM
A (q)GM

A (q − p)CEMM + λEEM
A3

2

×
(
GM
A (q)GE

A(q − p)CEME +GE
A(q)GM

A (q − p)CEEM
)]
.

(A62)

There are four coefficients as well, and their explicit ex-
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pressions are given as follows,

CEEE =
1

(p2
0 + p2

s) (q2
0 + q2

s)

1

p2
s − 2psqs cos θ + q2

s

× 1

p2
s + (p0 − q0)

2 − 2psqs cos θ + q2
s

×
{
psqs

[(
2p2
sq0 + p0q0 (p0 + q0) + 2p0q

2
s

)
cos 2θ

+ (p0 + q0)
(

2p2
0 − 3p0q0 + 2

(
p2
s + q2

0 + q2
s

) )]

− 2

[
p2
sq0

(
p2

0 + p2
s − p0q0 + q2

0

)
+
(
p3

0 − p2
0q0

+ 2p2
sq0 + p0

(
2p2
s + q2

0

) )
q2
s + p0q

4
s

]
cos θ

}2

,

(A63)

coefficient CEME

CEME =
4 sin2 θ

(p2
0 + p2

s) (p2
s − 2psqs cos θ + q2

s)

× 1

p2
s + (p0 − q0)

2 − 2psqs cos θ + q2
s

×
[
p2
s

(
p2

0 + p2
s − p0q0 + q2

0

)

− psqs
(

2p2
s + p0 (p0 + q0)

)
cos θ +

(
p2

0 + p2
s

)
q2
s

]2

,

(A64)

coefficient CEEM

CEEM = CEME

∣∣∣
q→−q+p

=
4 sin2 θ

(p2
0 + p2

s) (q2
0 + q2

s)

1

p2
s − 2psqs cos θ + q2

s

×
[
p2
s

(
q2
0 + q2

s

)
+ p2

0q
2
s − p0psq0qs cos θ

]2

, (A65)

and coefficient CEMM

CEMM =
2 (psq0 − p0qs cos θ)

2

(p2
0 + p2

s) (p2
s − 2psqs cos θ + q2

s)

×
(
3p2
s + p2

s cos 2θ − 8psqs cos θ + 4q2
s

)
. (A66)

The ghost loop of the gluon self-energy, i.e., the second

diagram on the r.h.s. of flow equation in Figure 3, reads

p←

a1 (q − p) b1

a2 q b2

a,µ b,ν

≡
(
ΣAAb

)ab
µν

(p) . (A67)

with
(
ΣAAb

)ab
µν

(p)

=

∫
d4q

(2π)4
(−)
(
S

(3)
c̄cA

)a1a2a
µ′

(−q + p, q,−p)
(
λc̄cA

)
µ′µ

(−p)

×Gc(q)δa2b2(−)
(
S

(3)
c̄cA

)b2b1b
ν′

(−q, q − p, p)
(
λc̄cA

)
ν′ν

(p)

×Gc(q − p)δb1a1 . (A68)

Projecting Equation (A68) onto the magnetic component
leads us to

(
ΣAAb

)ab
µν

(p)
(
δabΠM

µν(p)
)

=

∫
d4q

(2π)4
Nc(N

2
c − 1)(λM

c̄cA)2Gc(q)Gc(q − p)CgM ,

(A69)

with

CgM = q2
s sin2 θ . (A70)

And the electric component is given by

(
ΣAAb

)ab
µν

(p)
(
δabΠE

µν(p)
)

=

∫
d4q

(2π)4
Nc(N

2
c − 1)(λE

c̄cA)2Gc(q)Gc(q − p)CgE ,
(A71)

with

CgE =

(
psq0 − p0qs cos θ

)2

p2
0 + p2

s

. (A72)

The tadpole diagram of the gluon self-energy due to the
four-gluon vertex, i.e., the third diagram on the r.h.s. of
flow equation in Figure 3, reads

p←

a1, µ1 → q b1, ν1

a,µ b,ν

≡
(
ΣAAc

)ab
µν

(p) . (A73)

with
(
ΣAAc

)ab
µν

(p)

=

∫
d4q

(2π)4
(−)
(
S

(4)
A4

)aa1b1b
µ′µ′1ν

′
1ν
′

(
λA4

)µ′µ′1ν′1ν′
µµ1ν1ν

(−p,−q, q, p)

×
(
GM
A (q)ΠM

µ1ν1(q) +GE
A(q)ΠE

µ1ν1(q)
)
δa1b1 . (A74)
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Projecting Equation (A74) onto the magnetic component
leaves us with

(
ΣAAc

)ab
µν

(p)
(
δabΠM

µν(p)
)

=

∫
d4q

(2π)4
Nc(N

2
c − 1)

[
λMMMM
A4 GM

A (q)CtMM

+ λEEMM
A4 GE

A(q)CtME

]
, (A75)

with

CtMM = cos(2θ)− 5 , (A76)

CtME = −2
(
q2
0 + q2

0 cos2 θ + 2q2
s

)

q2
0 + q2

s

. (A77)

The electric component reads

(
ΣAAc

)ab
µν

(p)
(
δabΠE

µν(p)
)

=

∫
d4q

(2π)4
Nc(N

2
c − 1)

[
λEEMM
A4 GM

A (q)CtEM

+ λEEEE
A4 GE

A(q)CtEE

]
, (A78)

with

CtEM = −2
(
p2

0 + p2
0 cos2 θ + 2p2

s

)

p2
0 + p2

s

, (A79)

CtEE = −2
[
p2
sq

2
0 − 2p0psq0qs cos θ + p2

0

(
q2
0 sin2 θ + q2

s

)]

(p2
0 + p2

s) (q2
0 + q2

s)
,

(A80)

Substituting Eqs. (A57), (A62), (A69), (A71), (A75),
(A78) into the flow equation in Figure 3, one obtains the
flow equation of the magnetic gluon dressing function

∂tZ
M
A,k(p)

=− Nc
2p2

∫
d4q

(2π)4

{[
λMMM
A3

2
(∂̃tG

M
A (q))GM

A (q − p)CMMM

+ λEEM
A3

2
(∂̃tG

E
A(q))GE

A(q − p)CMEE + λEMM
A3

2
(

(∂̃tG
M
A (q))

×GE
A(q − p)CMME + (∂̃tG

E
A(q))GM

A (q − p)CMEM
)]

− 2(λM
c̄cA)2(∂̃tGc(q))Gc(q − p)CgM +

1

2

[
λMMMM
A4

× (∂̃tG
M
A (q))CtMM + λEEMM

A4 (∂̃tG
E
A(q))CtME

]}
,

(A81)

∂t

( )
= ∂̃t

( )

FIG. 59. Diagrammatic representation of the flow equation
for the ghost self-energy in Yang-Mills theory.

and the flow equation of the electric gluon dressing func-
tion

∂tZ
E
A,k(p)

=− Nc
p2

∫
d4q

(2π)4

{[
λEEE
A3

2
(∂̃tG

E
A(q))GE

A(q − p)CEEE

+ λEMM
A3

2
(∂̃tG

M
A (q))GM

A (q − p)CEMM + λEEM
A3

2
(

(∂̃tG
M
A (q))

×GE
A(q − p)CEME + (∂̃tG

E
A(q))GM

A (q − p)CEEM
)]

− 2(λE
c̄cA)2(∂̃tGc(q))Gc(q − p)CgE +

1

2

[
λEEMM
A4

× (∂̃tG
M
A (q))CtEM + λEEEE

A4 (∂̃tG
E
A(q))CtEE

]}
, (A82)

3. Ghost self-energy

The flow equation of the ghost self-energy in Yang-
Mills theory is depicted in Figure 59. The one-loop dia-
gram on the r.h.s. reads

qp

a2, µ2 → (q − p) b2, ν2

a bb1
a1

≡
(
Σc̄c
)ab

(p) . (A83)

with

(
Σc̄c
)ab

(p)

=

∫
d4q

(2π)4
(−)
(
S

(3)
c̄cA

)aa1a2
µ′2

(−p, q,−q + p)

×
(
λc̄cA

)
µ′2µ2

(−q + p)Gc(q)δ
a1b1

× (−)
(
S

(3)
c̄cA

)b1bb2
ν′2

(−q, p, q − p)

×
(
λc̄cA

)
ν′2ν2

(q − p)
[
GM
A (q − p)ΠM

µ2ν2(q − p)

+GE
A(q − p)ΠE

µ2ν2(q − p)
]
δa2b2 . (A84)
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Tracing the color indices, one arrives at

(
Σc̄c
)ab

(p)δab

=

∫
d4q

(2π)4
Nc(N

2
c − 1)

[
(λM
c̄cA)2GM

A (q − p)Gc(q)C c̄cM

+ (λE
c̄cA)2GE

A(q − p)Gc(q)C c̄cE
]
, (A85)

with

C c̄cM =
p2
sq

2
s sin2 θ

p2
s − 2psqs cos θ + q2

s

, (A86)

C c̄cE =
1(

p2
s − 2psqs cos θ + q2

s

)

×

[
p2
sq0 − psqs (p0 + q0) cos θ + p0q

2
s

]2

p2
s + (p0 − q0)

2 − 2psqs cos θ + q2
s

. (A87)

In the following we also need the expression in Equa-
tion (A85) with the replacement of the internal momen-
tum q → −q + p, which reads

(
Σc̄c
)ab

(p)δab

=

∫
d4q

(2π)4
Nc(N

2
c − 1)

[
(λM
c̄cA)2GM

A (q)Gc(q − p)C ′c̄cM

+ (λE
c̄cA)2GE

A(q)Gc(q − p)C ′c̄cE
]
, (A88)

with

C ′c̄cM = C c̄cM

∣∣∣
q→−q+p

, C ′c̄cE = C c̄cE

∣∣∣
q→−q+p

. (A89)

Finally, inserting Eqs. (A85) and (A88) into the flow
equation in Figure 59, one is led to the flow equation of
the ghost dressing function, as follows

∂tZc,k(p)

=− Nc
p2

∫
d4q

(2π)4

{[
(λM
c̄cA)2GM

A (q − p)(∂̃tGc(q))C c̄cM

+ (λE
c̄cA)2GE

A(q − p)(∂̃tGc(q))C c̄cE
]

+
[
(λM
c̄cA)2(∂̃tG

M
A (q))Gc(q − p)C ′c̄cM

+ (λE
c̄cA)2(∂̃tG

E
A(q))Gc(q − p)C ′c̄cE

]}
. (A90)

Appendix B: Fierz-complete basis of four-quark
interactions of Nf = 2 flavors

Here we list the Fierz-complete basis of four-quark in-
teractions of Nf = 2 flavors Equation (82), see also e.g.,
[58, 61, 92]. The ten different channels can be classified
into four different subsets according to their invariance
or not, under the global transformations of the groups
SUV(Nf ), UV(1), SUA(Nf ), and UA(1). Of the ten chan-
nels, several are invariant under all the transformations
mentioned above, which read

O(V−A)
ijlm q̄iqj q̄lqm =(q̄γµT

0q)2 − (q̄iγµγ5T
0q)2 , (B1)

O(V+A)
ijlm q̄iqj q̄lqm =(q̄γµT

0q)2 + (q̄iγµγ5T
0q)2 , (B2)

O(S−P )+
ijlm q̄iqj q̄lqm =(q̄ T 0q)2 − (q̄ γ5T

0q)2

+ (q̄ T aq)2 − (q̄ γ5T
aq)2 , (B3)

O(V−A)adj

ijlm q̄iqj q̄lqm =(q̄γµT
0taq)2 − (q̄iγµγ5T

0taq)2 ,

(B4)

where generators of the flavor SU(Nf ) group and the
color SU(Nc) group are denoted by T a’s and ta’s, re-
spectively, and summation for the indices is assumed.
Furthermore, one has T 0 = 1/

√
2Nf1Nf×Nf . Another

two channels, given by

O(S+P )−
ijlm q̄iqj q̄lqm =(q̄ T 0q)2 + (q̄ γ5T

0q)2

− (q̄ T aq)2 − (q̄ γ5T
aq)2 , (B5)

O(S+P )adj−
ijlm q̄iqj q̄lqm =(q̄ T 0taq)2 + (q̄ γ5T

0taq)2

− (q̄ T atbq)2 − (q̄ γ5T
atbq)2 , (B6)

break the symmetry of UA(1) while preserve SUV(Nf )⊗
UV(1)⊗ SUA(Nf ). The two channels that read

O(S−P )−
ijlm q̄iqj q̄lqm =(q̄ T 0q)2 − (q̄ γ5T

0q)2

− (q̄ T aq)2 + (q̄ γ5T
aq)2 , (B7)

O(S−P )adj−
ijlm q̄iqj q̄lqm =(q̄ T 0taq)2 − (q̄ γ5T

0taq)2

− (q̄ T atbq)2 + (q̄ γ5T
atbq)2 , (B8)
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break SUA(Nf ) while preserve SUV(Nf )⊗UV(1)⊗UA(1).
The last two independent channels, viz.,

O(S+P )+
ijlm q̄iqj q̄lqm =(q̄ T 0q)2 + (q̄ γ5T

0q)2

+ (q̄ T aq)2 + (q̄ γ5T
aq)2 , (B9)

O(S+P )adj
+

ijlm q̄iqj q̄lqm =(q̄ T 0taq)2 + (q̄ γ5T
0taq)2

+ (q̄ T atbq)2 + (q̄ γ5T
atbq)2 .

(B10)

break both UA(1) and SUA(Nf ), while preserve
SUV(Nf )⊗ UV(1).

Moreover, it is also useful to combine linearly several
different channels of the four-quark couplings to form new
independent elements of basis. For instance, the four
scalar-pseudoscalar channels as follows

Oσijlmq̄iqj q̄lqm =(q̄ T 0q)2 , (B11)

Oπijlmq̄iqj q̄lqm =− (q̄ γ5T
aq)2 , (B12)

Oaijlmq̄iqj q̄lqm =(q̄ T aq)2 , (B13)

Oηijlmq̄iqj q̄lqm =− (q̄ γ5T
0q)2 , (B14)

are obtained from linear combinations of O(S−P )+ in
Equation (B3), O(S+P )− in Equation (B5), O(S−P )− in
Equation (B7), and O(S+P )+ in Equation (B9).

Appendix C: Some flow functions

In this appendix we present explicit expressions for
some flow equations. The threshold functions involved
in this appendix can be found in, e.g., [18, 148].

The anomalous dimension of quarks ηq,k in Equa-
tion (188) reads

ηq,k =
1

24π2Nf
(4− ηφ,k)h̄2

k

×
{

(N2
f − 1)FB(1,2)(m̃

2
q,k, m̃

2
π,k;T, µq, p0,ex)

+ FB(1,2)(m̃
2
q,k, m̃

2
σ,k;T, µq, p0,ex)

}

+
1

24π2

N2
c − 1

2Nc
g2
q̄Aq,k

×
{

2(4− ηA,k)FB(1,2)(m̃
2
q,k, 0;T, µq, p0,ex)

+ 3(3− ηq,k)
(
FB(1,1)(m̃

2
q,k, 0;T, µq, p0,ex)

− 2FB(2,1)(m̃
2
q,k, 0;T, µq, p0,ex)

)}
, (C1)

with Nf = 2 and Nc = 3. The anomalous dimension of
mesons at p = 0 in Equation (194) reads

ηφ,k(0) =
Z̄φ,k
Zφ,k(0)

× 1

6π2

{
4

k2
κ̄k(V̄

′′

k (κ̄k))2BB(2,2)(m̃
2
π,k, m̃

2
σ,k;T )

+Nch̄
2
k

[
(2ηq,k − 3)F(2)(m̃

2
q,k;T, µq)

− 4(ηq,k − 2)F(3)(m̃
2
q,k;T, µq)

]}
, (C2)

and that at p0 = 0 and p2 = k2 in Equation (192) reads

ηφ,k(0, k)

=
2

3π2

1

k2
κ̄k(V̄

′′

k (κ̄k))2BB(2,2)(m̃
2
π,k, m̃

2
σ,k;T )

− Nc
π2
h̄2
k

∫ 1

0

dx

[
(1− ηq,k)

√
x+ ηq,kx

]

×
∫ 1

−1

d cos θ

{[(
FF (1,1)(m̃

2
q,k, m̃

2
q,k)−F(2)(m̃

2
q,k)
)

−
(
FF (2,1)(m̃

2
q,k, m̃

2
q,k)−F(3)(m̃

2
q,k)
)]

+

[(√
x− cos θ

)(
1 + rF (x′)

)
FF (2,1)(m̃

2
q,k, m̃

2
q,k)

−F(3)(m̃
2
q,k)

]
− 1

2

[(√
x− cos θ

)(
1 + rF (x′)

)

×FF (1,1)(m̃
2
q,k, m̃

2
q,k)−F(2)(m̃

2
q,k)

]}
, (C3)

with x = q2/k2 and x′ = (q − p)2/k2, where q and p
stand for the loop and external 3-momenta, respectively,
and θ is the angle between them. The external momen-
tum is chosen to be |p| = k.

The contribution to the gluon anomalous dimension
from the quark loop reads

ηqA = −Nf
π2

g2
q̄Aq,k

∫ 1

0

dx

[
(1− ηq,k)

√
x+ ηq,kx

]

×
∫ 1

−1

d cos θ

[(
FF (1,1)(m̃

2
q,k, m̃

2
q,k)

−FF (2,1)(m̃
2
q,k, m̃

2
q,k)
)

+
(√

x cos2θ − cos θ
)

×
(

1 + rF (x′)
)(
FF (2,1)(m̃

2
q,k, m̃

2
q,k)

− 1

2
FF (1,1)(m̃

2
q,k, m̃

2
q,k)
)]
. (C4)

As same as in Equation (C3), the external momentum in
Equation (C4) is chosen to be |p| = k. The in-medium
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contribution from the light quarks, included in Equa-
tion (197), is given by

∆ηqA = ηqA − ηqA
∣∣
T,µ=0

, (C5)

with m̄q = m̄l, Nf = 2 and the light-quark–gluon cou-
pling, gl̄Al in Equation (C4). For the strange quark,
since the vacuum contribution is also presented in Equa-
tion (198), one needs

ηsA = ηsA,vac + ∆ηsA , (C6)

which is obtained from Equation (C4) with m̄q = m̄s,
Nf = 1 and the strange-quark–gluon coupling gs̄As.

The second term on the r.h.s. of Equation (197),

∆ηglue
A , denotes the contribution to the gluon anomalous

dimension from the thermal part of glue sector, which is
taken into account through the thermal screening mass of
gluons. The modified gluon anomalous dimension reads

η̄A =ηA +
∆m2

scr(k, T )

Z̄Ak2
(2− ηA)

− 1

Z̄Ak2
∂t
(
∆m2

scr(k, T )
)
. (C7)

with η̄A = −∂tZ̄A/Z̄A, where ηA is the gluon anomalous
dimension without the thermal screening mass, and see
[18] for a more detailed discussion. The screening mass
reads

∆m2
scr(k, T ) = (c T )2 exp

[
−
( k

πT

)n]
. (C8)

where c = 2 is adopted for Nf = 2+1, which is consistent
with the result in [57]. Furthermore, n = 2 is chosen in
Equation (C8).

The flow of the quark-gluon couplings in Equa-
tion (208) and Equation (209) are given by

Flow
(3),A

(q̄qA) =
3

8π2Nc
ḡ3
q̄qA,km̃

2
q,k

{
2

15
(5− ηA,k)FB(2,2)(m̃

2
q,k, 0)

+
1

3
(4− ηq,k)FB(3,1)(m̃

2
q,k, 0)

}

+
3Nc
8π2

ḡ2
q̄qA,kḡA3,k

{
1

20
(5− ηq,k)FB(1,2)(m̃

2
q,k, 0)

− 1

6
(4− ηq,k)FB(2,1)(m̃

2
q,k, 0) +

1

30
(5− 2ηq,k)

×FB(2,2)(m̃
2
q,k, 0)− 4

15
(5− ηA,k)

×FB(1,2)(m̃
2
q,k, 0) +

1

30
(10− 3ηA,k)

×FB(1,3)(m̃
2
q,k, 0)

}
. (C9)

and

Flow
(3),φ

(q̄qA) =− 1

8π2Nf
ḡq̄qA,kh̄

2
k

{
1

6
(4− ηq,k)

×
[
FB(2,1)(m̃

2
q,k, m̃

2
σ,k)

+ 2m̃2
q,kFB(3,1)(m̃

2
q,k, m̃

2
σ,k)
]

+
2

15
(5− ηφ,k)

×
[
FB(1,2)(m̃

2
q,k, m̃

2
σ,k)

+ m̃2
q,kFB(2,2)(m̃

2
q,k, m̃

2
σ,k)
]}

−
N2
f − 1

8π2Nf
ḡq̄qA,kh̄

2
k

{
1

6
(4− ηq,k)

×
[
FB(2,1)(m̃

2
q,k, m̃

2
π,k)

+ 2m̃2
q,kFB(3,1)(m̃

2
q,k, m̃

2
π,k)

]
+

2

15
(5− ηφ,k)

×
[
FB(1,2)(m̃

2
q,k, m̃

2
π,k)

+ m̃2
q,kFB(2,2)(m̃

2
q,k, m̃

2
π,k)

]}
. (C10)

Here for the light-quark–gluon coupling in Equa-
tion (208) we use the light quark mass and Nf = 2, and
for the strange-quark–gluon coupling in Equation (209)
we use the strange quark mass and Nf = 1.

The flow of the four-quark coupling in the σ−π channel
from two gluon exchanges in Equation (217), as diagram-
matically shown in the first line of Figure 39, reads

Flow
(4),A

(q̄τq)2 = − 3

2π2

N2
c − 1

2Nc

(3

4
− 1

N2
c

)
ḡ4
q̄Aq,k

×
{

2

15
(5− ηA,k)

[
FB(1,3)(m̃

2
q,k, 0)

− m̃2
q,kFB(2,3)(m̃

2
q,k, 0)

]

+
1

12
(4− ηq,k)

[
FB(2,2)(m̃

2
q,k, 0)

− 2m̃2
q,kFB(3,2)(m̃

2
q,k, 0)

]}
. (C11)

The contributions to the flow of four-quark coupling from
two meson exchanges, as shown in the second line of Fig-
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ure 39, reads

Flow
(4),φ

(q̄τq)2 =
1

32π2

N2
f − 2

NfNc
h̄4
k

{
2

15
(5− ηφ,k)

×
[(
FBB(1,1,2)(m̃

2
q,k, m̃

2
π,k, m̃

2
σ,k)

+ FBB(1,1,2)(m̃
2
q,k, m̃

2
σ,k, m̃

2
π,k)

− 2FB(1,3)(m̃
2
q,k, m̃

2
π,k)

)

− m̃2
q,k

(
FBB(2,1,2)(m̃

2
q,k, m̃

2
π,k, m̃

2
σ,k)

+ FBB(2,2,1)(m̃
2
q,k, m̃

2
π,k, m̃

2
σ,k)

− 2FB(2,3)(m̃
2
q,k, m̃

2
π,k)

)]
+

1

6
(4− ηq,k)

×
[(
FBB(2,1,1)(m̃

2
q,k, m̃

2
π,k, m̃

2
σ,k)

−FB(2,2)(m̃
2
q,k, m̃

2
π,k)

)

− 2m̃2
q,k

(
FBB(3,1,1)(m̃

2
q,k, m̃

2
π,k, m̃

2
σ,k)

−FB(3,2)(m̃
2
q,k, m̃

2
π,k)

)]}
. (C12)

The flow of the Yukawa coupling in Equation (222)
reads

Flow
(3)

(q̄τq)π

=
1

4π2Nf
h̄3
k

[
− (N2

f − 1)

× L(4)
(1,1)(m̃

2
q,k, m̃

2
π,k, ηq,k, ηφ,k;T, µq, p0,ex)

+ L
(4)
(1,1)(m̃

2
q,k, m̃

2
σ,k, ηq,k, ηφ,k;T, µq, p0,ex)

]

− 3

2π2

N2
c − 1

2Nc
ḡ2
q̄qA,kh̄k

× L(4)
(1,1)(m̃

2
q,k, 0, ηq,k, ηA,k;T, µq, p0,ex) . (C13)
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J. Wessely, N. Wink, and S. Yin, (2022).

https://doi.org/10.1016/j.nuclphysbps.2012.06.003
https://doi.org/10.1016/j.nuclphysbps.2012.06.003
https://arxiv.org/abs/1204.1489
https://arxiv.org/abs/1204.1489
https://doi.org/10.1103/PhysRevD.92.076001
https://arxiv.org/abs/1504.07268
https://doi.org/10.1103/PhysRevD.102.096004
https://arxiv.org/abs/2009.04194
https://doi.org/10.1103/PhysRevLett.99.150603
https://doi.org/10.1103/PhysRevLett.110.195301
https://arxiv.org/abs/2112.12568
https://doi.org/10.1016/j.physletb.2008.10.049
https://doi.org/10.1016/j.physletb.2008.10.049
https://arxiv.org/abs/0710.4627
https://doi.org/10.1140/epjc/s10052-010-1430-3
https://doi.org/10.1140/epjc/s10052-010-1430-3
https://arxiv.org/abs/1003.4163
https://arxiv.org/abs/1003.4163
https://arxiv.org/abs/1910.09369
https://arxiv.org/abs/2112.12652
https://doi.org/10.1103/PhysRevD.102.125016
https://doi.org/10.1103/PhysRevD.102.125016
https://arxiv.org/abs/2006.09778
https://arxiv.org/abs/2103.16175
https://arxiv.org/abs/2103.16175
https://arxiv.org/abs/2202.09333
https://doi.org/10.1103/PhysRevD.90.091501
https://arxiv.org/abs/1308.4960
https://arxiv.org/abs/1308.4960
https://doi.org/10.1103/PhysRevLett.115.112002
https://arxiv.org/abs/1411.7986
https://doi.org/10.21468/SciPostPhys.5.6.065
https://doi.org/10.21468/SciPostPhys.5.6.065
https://arxiv.org/abs/1804.00945
https://doi.org/10.1016/j.physletb.2019.135171
https://arxiv.org/abs/1904.08172
https://doi.org/10.1103/PhysRevD.90.074031
https://arxiv.org/abs/1408.3512
https://doi.org/10.1103/PhysRevD.92.094009
https://arxiv.org/abs/1508.01160
https://arxiv.org/abs/1508.01160
https://doi.org/10.1103/PhysRevD.104.094011
https://arxiv.org/abs/2107.10748
https://doi.org/10.21468/SciPostPhys.12.1.026
https://doi.org/10.21468/SciPostPhys.12.1.026
https://arxiv.org/abs/2107.06482
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1016/0550-3213(93)90502-G
https://arxiv.org/abs/hep-ph/9210253
https://doi.org/10.1016/j.nuclphysb.2019.114868
https://doi.org/10.1016/j.nuclphysb.2019.114868
https://arxiv.org/abs/1908.00912
https://doi.org/10.1103/PhysRevE.95.012107
https://doi.org/10.1103/PhysRevE.95.012107
https://arxiv.org/abs/1611.07301
https://arxiv.org/abs/1611.07301
https://doi.org/10.1016/j.nuclphysb.2020.115165
https://arxiv.org/abs/2007.03374

	QCD at finite temperature and density within the fRG approach: An overview
	Abstract
	 Contents
	I Introduction
	II Formalism of the fRG approach
	A Flow equation of the effective action
	B From Wilson's RG to Polchinski equation
	1  Wilson's RG and recursion formula
	2  Polchinski equation

	C Application to QCD
	D Flow equations of correlation functions
	1 A simple approach to derivation of flow equations of correlation functions

	E Dynamical hadronization

	III Low energy effective field theories
	A Nambu–Jona-Lasinio model
	1  Quark mass production
	2  Natural emergence of bound states

	B Quark-meson model
	1  Flow of the effective potential
	2 Quark-meson model of Nf=2+1 flavors
	3  Phase structure
	4  Equation of state
	5 Baryon number fluctuations
	6  Critical exponents


	IV QCD at finite temperature and density
	A Propagators and anomalous dimensions
	B Strong couplings
	C Dynamical hadronization, four-quark couplings and Yukawa couplings
	D Natural emergence of LEFTs from QCD
	E Chiral condensate
	F Phase structure
	1  Region of inhomogeneous instability at large baryon chemical potential

	G Magnetic equation of state

	V Real-time fRG
	A fRG with the Keldysh functional integral
	B Real-time O(N) scalar theory
	C Flows of the two- and four-point correlation functions
	D Spectral functions and dynamical critical exponent

	VI Conclusions
	 Acknowledgments
	A Flow equations of the gluon and ghost self-energies in Yang-Mills theory at finite temperature
	1 Feynman rules
	a Gluon propagator
	b Ghost propagator
	c Quark propagator
	d Ghost-gluon vertex
	e Three- and four-gluon vertices

	2 Gluon self-energy
	3 Ghost self-energy

	B Fierz-complete basis of four-quark interactions of Nf=2 flavors
	C Some flow functions
	 References


