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Ground-state moments of inertia (MoI) are investigated for about 1700 even-even nuclei from the
proton drip line to the neutron drip line up to Z = 120 and N = 184. The cranked Skyrme–Hartree–
Fock–Bogoliubov equation is solved in the coordinate space. This model describes well the available
experimental data of more than 300 nuclides possessing an appreciable deformation. I find that the
MoI greatly increase near the drip line whereas the deformation is not as strong as estimated by the
empirical relation. Systematic measurements of the excitation energy and the transition probability
to the first Iπ = 2+ state in neutron-rich nuclei not only reveal the evolution of deformation but
can also constrain an effective pair interaction.

I. INTRODUCTION

Nuclear rotational motion emerges due to the sponta-
neous breaking of the rotational symmetry [1]. As step-
ping away from the magic number, the first Iπ = 2+

state becomes lower in energy: The collective mode of
excitation changes its character from the vibration to the
rotation as the deformation develops. A näıve question
arises here: How strong should the deformation be for
the picture of the rotation to be well-drawn?

Recently, various spectroscopic studies have been car-
ried out to explore unique structures in neutron-rich nu-
clei. The excitation energy of the 2+1 state, E(2+1 ), is of-
ten among the first quantities accessible in experiments
and systematic measurements have revealed the evolu-
tion of the shell structure [2–4]. Besides the change of
the shell structure associated with the onset of deforma-
tion, the E(2+1 ) value may provide rich information on
exotic nuclei. A significant lowering of E(2+1 ) observed
in a near-drip-line nucleus 40Mg could be a signal of new
physics in drip-line nuclei [5], as the theoretical calcula-
tions have predicted that the magnitude of deformation
is not enhanced in 40Mg comparing with the Mg isotopes
with less neutrons [6–13].

The pair correlation is present in the ground state
and plays a decisive role in describing various phenom-
ena such as the energy gap in spectra of even-even nu-
clei, the odd-even staggering in binding energies and so
on [14, 15]. Furthermore, the pairing is indispensable for
a strong collectivity of the low-frequency quadrupole vi-
bration [16] and a reduced value of moments of inertia
(MoI) for rotation from the rigid-body estimation [14].
Therefore, the E(2+1 ) value should be scrutinized by tak-
ing not only the deformation but the superfluidity into
account.

Another critical issue in exploring the drip-line nuclei
is a need of the careful treatment of the asymptotic part
of the nucleonic density. An appropriate framework is
Hartree–Fock–Bogoliubov (HFB) theory, solved in the
coordinate-space representation [17, 18]. This method
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has been used extensively in the description of spher-
ical systems but is much more difficult to implement
for systems with deformed equilibrium shapes. There-
fore, calculations have been mostly restricted to axially
symmetric nuclei [19–24]. A standard technique to de-
scribe the non-axial shapes is to employ a truncated
single-particle basis, which consists of localized states and
discretized-continuum oscillating states, for solutions of
the HFB equation [25]. Such a method should not be able
to describe adequately the spatial profile of densities at
large distances. Recently, the HFB equation has been
solved by employing the contour integral technique and
the shifted Krylov subspace method for the Green’s func-
tion [26, 27] to circumvent the successive diagonalization
of the matrix with huge dimension.

In this work, I investigate the rotational motion in
neutron-rich nuclei near the drip line with emphasizing
the pairing. At high spins where the pairing vanishes,
proposed is a novel mechanism of a nucleus being bound
beyond the neutron drip line [28]. Here, I study the low-
est spin state, namely the 2+1 state, in even-even non-
spherical nuclei. A key quantity is the MoI for rotation:
E(2+1 ) = 6/2J .

II. MODEL AND METHOD

The MoI is evaluated microscopically by the Thouless–
Valatin procedure or the self-consistent cranking model
as J = limωrot→0

Jx
ωrot

with Jx = 〈Ĵx〉 and ωrot being the

rotational frequency about the x-axis [14]. I solve the
cranked HFB (CHFB) equation to obtain the MoI and
take the natural units: ~ = c = 1.

The numerical procedure to solve the CHFB equation
is described in Ref. [29]: I impose the reflection symme-
try about the (x, y)-, (y, z)- and (z, x)-planes. Thus, the
parity pk (= ±1) and x-signature rk (= ±i) are a good
quantum number. I solve the CHFB equation by diago-
nalizing the HFB Hamiltonian in the three-dimensional
(3D) Cartesian-mesh representation with the box bound-
ary condition. Thanks to the reflection symmetries, I
have only to consider the octant region explicitly in space
with x ≥ 0, y ≥ 0, and z ≥ 0; see Refs. [30, 31] for
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details. I use a 3D lattice mesh xi = ih − h/2, yj =
jh − h/2, zk = kh − h/2 (i, j, k = 1, 2, · · ·M) with a
mesh size h = 1.0 fm and M = 12 for each direction.
A reasonable convergence with respect to the mesh size
h and the box size M is obtained for not only drip-line
nuclei but medium-mass nuclei [29]. For diagonalizing
the HFB matrix, I use the ScaLAPACK pdsyev subrou-
tine [32]. A modified Broyden’s method [33] is utilized
to calculate new densities during the self-consistent iter-
ation. The quasiparticle energy is cut off at 60 MeV. For
each iteration, it takes about 10 core hours at the SQUID
computer facility (composed of 1520 nodes of Intel Xeon
Platinum 8368 processor) of Osaka University. To obtain
the convergence, typically, 50–100 iterations are needed.
Therefore, the total cost for a systematic calculation of
1700 nuclei is about 17000 node hours.

III. RESULTS AND DISCUSSION

A. Validity of the present model

The MoI of the ground state is evaluated at ωrot = 0.05
MeV. I employed the SkM* [34] and SLy4 [35] function-
als augmented by the Yamagami–Shimizu–Nakatsukasa
(YSN) pairing-density functional [36], which is given as

Epair(r) =
V0
4

∑
τ=n,p

gτ [ρ, ρ1]|ρ̃τ (r)|2 (1)

with

gτ [ρ, ρ1] = 1− η0
ρ(r)

ρ0
− η1

τ3ρ1(r)

ρ0
− η2

[
ρ1(r)

ρ0

]2
. (2)

Here, ρ(r) and ρ1(r) are the isoscalar and isovector densi-
ties, τ = n (neutron) or p (proton), and ρ0 = 0.16 fm−3 is
the saturation density of symmetric nuclear matter. The
parameters V0, η0, η1, η2 were optimized to reproduce the
experimental pairing gaps globally and are summarized
in Table III of Ref. [36]. Note that the parameters for
the ρ1 dependence η1, η2 are positive. The YSN pairing
functional was constructed based on the finding that the
inclusion of the isospin dependence in the pairing func-
tional gives a good reproduction of the pairing gaps in
both stable and neutron-rich nuclei and in both symmet-
ric nuclear matter and in neutron matter [37, 38].

There are 657 even-even nuclei with known E(2+1 ) [39].
In the present study here I limit the scope by excluding
the very light nuclei (Z < 10), for which mean-field the-
ory is least justified. This eliminates 22 nuclei. The
experimental data evaluated as 3/E(2+1 ) for 635 nuclei
are displayed in Fig. 1(e). There is no collective rota-
tion in spherical nuclei where the MoI is zero. Actually,
I defined the spherical nuclei if the calculated MoI is less
than 0.1 MeV−1. An additional 273 (260) nuclei have
been eliminated for that reason, leaving 362 (375) nuclei
in the present analysis.

Figures 2(a) and 2(b) show the calculated MoI ob-
tained by using SkM* and SLy4 versus experimental
ones. The points follow the diagonal line reasonably well
with some scatters that vary in extent over the different
regimes. For transitional nuclei, one may wonder about
the validity of the present model. The filled symbols
in Figs. 2(a) and 2(b) denote the weakly deformed nu-
clei having β < 0.1. These nuclei give a small value for
the MoI, corresponding to higher E(2+1 ) than measure-
ment. Furthermore, one sees a distinct deviation from
the straight line for the highest region around J = 60
MeV−1: 238,240Cm and 244Cf.

To make a quantitative measure of the theoretical ac-
curacy, I compare theory and experiment, and examine
the statistical properties of the quantity R = Jth/Jexp.
Here Jth and Jexp are the theoretical and experimental
MoI. A histogram of the distribution of R is shown in
Figs. 2(c) and 2(d). For SkM* (SLy4), the average is
R̄ = 1.02 (1.16). When excluding the weakly deformed
nuclei with β < 0.1, R̄ = 1.07 (1.15) for 332 (350) data.
Therefore, the present model overestimates the MoI by
about 10%.

The width of the distribution is an important quan-
tity to determine the accuracy and reliability of the the-
ory. One sees that the error is systematic, and the over-
all distribution is strongly peaked when excluding the
weakly deformed nuclei that cause a tail in small R. The
root-mean-square deviation, the dispersion, of R about
its mean is σ = 0.09 (0.12). Thus, a typical error is about
10%.

It is interesting to compare the present calculation
with the beyond-mean-field type calculations [40, 41].
The excited 2+ states were obtained by the minimiza-
tion after projection (MAP) and the generator coordi-
nate method (GCM) using the SLy4 functional [40] or
the 5-dimensional collective Hamiltonian (5DCH) based
on the GCM together with the Gaussian overlap approx-
imation using the Gogny D1S functional [41]. The au-
thors in Refs. [40, 41] introduced the measure RE =
ln(Eth(2+)/Eexp(2+)) to evaluate the validity of the the-
oretical framework. Then, I evaluate E(2+) as 3/J in
the present model.

Table I summarizes the statistics for the performance.
The present model gives a compatible description for the
average of the energy to the 5DCH approach for deformed
nuclei. The dispersion is better than in other models.
This comparison indicates that the 2+1 state is mostly
governed by the rotational MoI of the ground state, and
the self-consistent cranking model describes the 2+1 state
surprisingly well for deformed nuclei with β > 0.1. How-
ever, it does not mean the rotational band with the ex-
citation energy ∝ I(I + 1) always appears in deformed
nuclei with β > 0.1 because the MoI in the cranking
model depends on spins.

I briefly mention the performance for the intrinsic
quadrupole deformation. For selected nuclei of the Nd
and Sm isotopes, it was demonstrated that the mean-
field approximation describes well the evolution of de-
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FIG. 1. Calculated moments of inertia J for the SkM* and SLy4 functionals. The experimental data are taken from Ref. [39],
which is evaluated as 3/E(2+

1 ).

formation; see Fig.1 of Ref. [42]. There are 396 even-
even nuclei with known β [39], where the deformation pa-
rameter is evaluated from the E2 transition probability:
β = (4π/3ZR2

0)
√
B(E2)/e2 [14]. I exclude 10 very light

nuclei (Z < 10). An additional 156 (146) spherical nu-
clei have been eliminated as in the above analysis, leaving
230 (240) nuclei. I define the measure Rβ = ln(βcal/βexp)
similarly to E(2+1 ). I then find R̄β = −0.12(−0.11) with
the dispersion σ = 0.12(0.09) for SkM* (SLy4), and
R̄β = −0.08(−0.09), σ = 0.07(0.05) for 219 (233) nu-
clei with β > 0.1. The performance is as good as for the
MoI.

B. Moments of inertia of drip-line nuclei

Then, I investigate the MoI of neutron-rich nuclei, and
discuss unique features near the drip line. Figures 1(a)
and 1(c) show the calculated MoI. I include the even-
even nuclei up to Z = 120 and below the magic number
of N = 184. A striking feature observed in the result
shown in Fig. 1 is that the deformation is strong in the
neutron-rich lanthanide nuclei around N = 100 and that
the MoI are large accordingly. Furthermore, the MoI of
the rare-earth nuclei near the drip line are comparable
to those of the heavy actinide nuclei, although the mass
number is different by about 40.

I take neutron-rich Dy isotopes as an example of rare-
earth nuclei, and investigate in detail the mechanism of
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FIG. 2. Calculated MoI for 362 nuclei for the SkM* func-
tional (a) and 375 nuclei for the SLy4 functional (b), plotted
versus experimental ones. Filled symbols indicate 30 (25) nu-
clei possessing a weak deformation with β < 0.1 with SkM*
(SLy4). Histogram of the quantity R = Jth/Jexp for the
SkM* (c) and SLy4 (d) data set. The area in dark indicates
nuclei possessing a weak deformation with β < 0.1.

TABLE I. Statistics for the performance of the CHFB cal-
culations. Averages R̄E and standard deviations σE for mea-
sured E(2+) are summarized. The values for MAP and GCM
are taken from Ref. [40], while 5DCH from Ref. [41].

model # of nuclei R̄E σE
CHFB (SkM*+YSN) 332 −0.021 0.11
CHFB (SkM*+mixed) 325 0.029 0.12
CHFB (SLy4+YSN) 350 −0.095 0.09
CHFB (SLy4+mixed) 356 −0.053 0.14
MAP (SLy4) 359 0.28 0.49
MAP (SLy4, deformed) 135 0.20 0.30
GCM (SLy4) 359 0.51 0.38
GCM (SLy4, deformed) 135 0.27 0.33
5DCH (D1S) 519 0.12 0.33
5DCH (D1S, deformed) 146 −0.05 0.19

the enhanced MoI near the drip line. Figure 3 shows the
calculated MoI together with the deformation parameters
for N = 90–120 and N = 140–160. These isotopes are
well deformed β & 0.2 and the estimation of E(2+1 ) is
reliable. The experimental data for β are available up to
N = 98, and the present calculation well reproduces the
isotopic dependence. The E(2+1 ) value is measured up
to N = 106 [43]. Despite the largest deformation being
expected at N = 100, the MoI is the largest at N =
98 and 104. The calculation also produces the largest
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FIG. 3. (Upper) MoI for the Dy isotopes with N = 90–120
and N = 140–160. (Middle) Deformation parameters β of
protons. (Lower) Deformation parameters γ (in degree) of
protons. Calculated values are compared with available ex-
perimental data [39]. The experimental data for N = 106 are
taken from Ref. [43].

MoI at N = 104. This is due to the weakening of the
pairing of neutrons: The pairing gap energy of neutrons
is the lowest at N = 104 among the isotopes with N =
90–112. The increase at N = 120 is due to the vanishing
pairing gap of neutrons. The value of MoI is sensitively
determined by the shell effect and the pairing rather than
the magnitude of deformation.

An exotic behavior shows up when approaching the
drip line. The MoI in the isotopes with N ∼ 150 is about
twice as large as that in the N ∼ 100 region, although
the deformation of protons is almost the same. Since
the neutrons are spatially extended, β of neutrons and
of matter are both smaller than those in the N ∼ 100
region, which is against a näıve perspective for large MoI.
The pairing is a possible origin of this unique feature near
the drip line.

In asymmetric systems, the isovector densities appear
to play a role. To see the effects of the isovector densities
in the pairing density functional, I perform the calcu-
lation without the ρ1 terms in Eq. (2); the parameters
η1, η2 are set to zero while keeping η0 = 1/2. This corre-
sponds to the mixed volume and surface. The strength
V0 in Eq. (1) was fixed to the pairing gaps of 156Dy for
the YSN functional [36]. I found the strength V0 = −289
(−326) MeV fm3 and −324 (−343) MeV fm3 for neutrons
and protons with SkM* (SLy4) produces the same pair-
ing gaps to the ones obtained using the YSN functional.
The performance for describing E(2+) is as good as the
YSN functional, as listed in Table I. The calculated MoI
are displayed in Figs. 1(b) and 1(d).
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The results for the neutron-rich Dy isotopes are shown
in Fig. 3. The magnitude of deformation is similar to
that calculated with the YSN functional for both in the
N ∼ 100 and N ∼ 150 regions. The calculated MoI are
slightly smaller around N = 100, and a 16% reduction
is found at N = 104. A deformed-shell effect sensitively
affects the MoI when using the YSN functional. With the
mixed-type pairing, the pairing gap of neutrons decreases
gradually from N = 90 to 114. Near the drip line, the
mixed-type pairing gives almost 50% reduction of MoI to
the YSN pairing.

A significant enhancement of MoI near the drip line
using the YSN functional is due to a deformed-shell ef-
fect and an isovector-density dependence (an effective
decrease in the strength) of the pairing functional. In-
deed, this mechanism explains the lowering of E(2+1 ) in
40Mg [29]. The reduction in the strength of the pair in-
teraction with an increase in the asymmetry can be seen
by the comparison of Figs. 4(a) and 4(b). A reduction of
the MoI relative to the rigid body is due to the pairing,
and the reduction found in very neutron-rich nuclei with
the asymmetry α = (N−Z)/A > 0.3 is apparently weak-
ened when using the YSN pairing functional. Scattering
of the data points is associated with the shell effect.

Finally, I discuss the enhancement of MoI in a different
point of view. As the quadrupole collectivity increases,
one sees a lower energy and a stronger transition. Empir-

ically, the following relation has been found and the 91%
of the observed 328 data points are reproduced within a
factor of two [44]:[

B(E2; 0+1 → 2+1 )

1 e2fm4

]
×
[
E(2+1 )

1 MeV

]
= 32.6

Z2

A0.69
. (3)

This corresponds to

J =
3

32.6

(
3

4π

)2

A0.69R4
0β

2 [MeV−1], (4)

where R0 is given in the unit of fm. Figures 4(c) and 4(d)
show the calculated MoI divided by A2.02 as a function
of the deformation parameter β. With the mixed-type
pairing, the calculated MoI scatter around the empirical
line, and most of them are within a factor of two. On
the other hand, with the YSN functional, the empirical
line is entirely off the trend of the calculated MoI for
α > 0.3. Therefore, E(2+1 ) can be low in neutron-rich
nuclei despite the B(E2) value is not high. A systematic
measurement of E(2+1 ) and B(E2) in neutron-rich nuclei
deepens the understanding of the pairing in nuclei and
puts a constraint on the pairing density functional.

IV. SUMMARY

I have performed systematic calculations of the MoI
from the proton drip line to the neutron drip line to
see the roles of neutron excess in the collective rota-
tional motion. To describe neutron-rich nuclei where
the loosely-bound neutrons and the continuum coupling
are necessary to consider, the cranked HFB equation is
solved in the coordinate space. The comparison with the
available experimental data and other models shows that
the present model surprisingly well describes the ground-
state MoI, namely the E(2+1 ) value, for deformed nuclei
with β > 0.1. By employing the pairing density func-
tional constructed to describe the isospin dependence in
neutron-rich nuclei, I have found that the MoI are greatly
enhanced near the drip line, whereas the magnitude of de-
formation is not as strong as estimated by the empirical
relation between the E(2+1 ) and B(E2) values. A system-
atic measurement of E(2+1 ) and B(E2) in neutron-rich
nuclei puts a constraint on the density dependence of the
pairing effective interaction. The stronger the isovector-
density dependence is, the more significant the enhance-
ment of MoI in neutron-rich nuclei is.
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