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We perform a direct search for an isotropic stochastic gravitational-wave background (SGWB)
produced by cosmic strings in the Parkes Pulsar Timing Array second data release. We find no
evidence for such an SGWB, and therefore place 95% confidence level upper limits on the cosmic
string tension, Gµ, as a function of the reconnection probability, p, which can be less than 1 in the
string-theory-inspired models. The upper bound on the cosmic string tension is Gµ . 5.1 × 10−10

for p = 1, which is about five orders of magnitude tighter than the bound derived from the null
search of individual gravitational wave burst from cosmic string cusps in the PPTA DR2.

I. INTRODUCTION

Over the past few years, the gravitational wave (GW)
community witnessed the detection of a population of
GW events [1–4] with ground-based interferometers that
are sensitive in frequencies from Hz to kHz. A pulsar
timing array (PTA) [5–7] offers a unique opportunity
of extending the GW observations to the very low fre-
quencies from nHz to µHz, by regularly monitoring the
time of arrivals (TOAs) of radio pulses from an array
of highly stable millisecond pulsars in the Milky Way.
There are three major PTA projects, namely the Euro-
pean PTA (EPTA) [8], the North American Nanoherz
Observatory for GWs (NANOGrav) [9], and the Parkes
PTA (PPTA) [10]. These PTA projects have been moni-
toring the TOAs from dozens of pulsars with a weekly to
monthly cadence for more than a decade. These PTAs
along with the Indian PTA (InPTA) [11], the Chinese
PTA (CPTA) [12] and the MeerKAT interferometer [13],
support the International PTA (IPTA) [14, 15]. Potential
GW sources in the PTA frequency band include a variety
of physical phenomena such as supermassive black hole
binaries (SMBHBs) [16–18], scalar-induced GWs [19–24],
first-order phase transition [25, 26], and cosmic strings
[27–30].

Recently, the NANOGrav [31], PPTA [32], EPTA [33]
and IPTA [34] successively reported strong evidence for
a stochastic common-spectrum process modeled by a
power-law spectrum in their latest data sets. However,
there is no significant evidence for the tensor transverse
spatial correlations, which are necessary to claim a de-
tection of stochastic GW background (SGWB) predicted
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by general relativity. The origin of this spatially un-
correlated common-spectrum process (UCP) is still un-
known. Further investigations indicate that the UCP
can possibly come from various physical processes such
as phase transitions [35–40], domain walls [37, 41, 42],
cosmic strings [37, 41, 43, 44], or the non-tensorial polar-
ization modes from alternative gravity theories [45–48].

Cosmic strings are linear topological defects that
can either form in the early Universe from symmetry-
breaking phase transitions at high energies [49–52] or
be the fundamental strings of superstring theory (or
one-dimensional D-branes) stretched out to astrophysi-
cal lengths [52, 53]. After their formation, the intersec-
tion between cosmic strings can lead to reconnections
and form loops, which will then decay due to relativistic
oscillation and emit GWs. PTA observations may de-
tect a cosmic string network either through GW bursts
emitted at cusps or through the SGWB superposed by
radiation from all loops existing through cosmic history.
A null detection of the individual GW burst from cos-
mic strings in PPTA DR2 has been reported in [30], thus
placing a 95% upper limit on the cosmic string tension to
be Gµ . 10−5. In this work, we perform the first direct
search for the SGWB produced from a network of cosmic
strings in the PPTA DR2 data set. The remainder of this
paper is organized as follows. In Sec. II, we review the
SGWB energy spectrum produced by the cosmic strings.
In Sec. III, we describe the data set and methodology
used in our analyses. Finally, we summarize the results
and give some discussion in Sec. IV.

II. SGWB FROM COSMIC STRINGS

We now review the SGWB produced by cosmic strings
following [54]. A cosmic string network consists of both
long (or “infinite”) strings that are longer than the hori-
zon size and loops formed from smaller strings. When
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two cosmic strings meet one another, they can exchange
partners with a reconnection probability p, and form
loops. Once loops are formed, they oscillate and decay
through the emission of GWs [50], shrinking in size. A
cosmic string network grows along with the cosmic ex-
pansion and evolves toward the scaling regime in which
all the fundamental properties of the system scale with
the cosmic time. The scaling regime can be achieved
through the formation and subsequent decay of loops.
The GW spectrum created by a cosmic string network
is exceptionally broadband, depending on the size of the
loops created.

We describe the GW energy spectrum of cosmic strings
in terms of the dimensionless tension, Gµ, and the recon-
nection probability, p. Even though p = 1 for classical
strings, it can be less than 1 in the string-theory-inspired
models. In this work, we adopt the convention that the
speed of light c = 1. The dimensionless GW energy den-
sity parameter per logarithm frequency as the fraction of
the critical energy density is [54]

Ωgw(f) =
8πGf

3H2
0p
ρgw(t0, f), (1)

where t0 is cosmic time today, and ρgw is the GW energy
density per unit frequency that can be computed by

ρgw(t, f) = Gµ2
∞∑

n=1

CnPn, (2)

with

Cn(f) =

∫ t0

0

dt

(1 + z)5
2n

f2
n(l, t). (3)

Here, Pn is the radiation power spectrum of each loop,
and n(l, t) is the density of loops per unit volume per unit
range of loop length l existing at time t. The SGWB from
a network of cosmic strings has been computed in [54]
with a complete end-to-end method by (i) simulating the
long string network to extract a representative sample
of loop shapes; (ii) using a smoothing model to estimate
loop shape deformations due to gravitational backreac-
tion; (iii) computing GW spectrum for each loop; (iv)
evaluating the distribution of loops over redshift by inte-
grating over cosmological time; (v) integrating the GW
spectrum of each loop over the redshift-dependent loop
distribution to get the overall emission spectrum; and at
last (vi) integrating the overall emission spectrum over
cosmological time to get the current SGWB. The simula-
tions span a large parameter space of Gµ ∈ [10−25, 10−8],
and f ∈ [10−15, 1010]; and the output of the expected en-
ergy density spectra has been made publicly available1.

1 http://cosmos.phy.tufts.edu/cosmic-string-spectra/

III. THE DATA SET AND METHODOLOGY

The PPTA DR2 [55] data set includes pulse TOAs
from high-precision timing observations for 26 pulsars
collected with the 64-m Parkes radio telescope in Aus-
tralia. The data were acquired between 2003 and 2018,
spanning about 15 years, with observations taken at a
cadence of approximately three weeks [55]. Details of
the observing systems and data processing procedures
are described in [10, 55].

To search for the GW signal from the PTA data,
one needs to provide a comprehensive description of the
stochastic processes that can induce the arrival time vari-
ations. The stochastic processes can be categorized as
being correlated (red) or uncorrelated (white) in time.
A careful analysis of the noise processes for individual
pulsars in the PPTA sample has been performed in [56],
showing that the PPTA data sets contain a wide vari-
ety of noise processes, including instrument dependent
or band-dependent processes. Similar to [47], we adopt
the noise model developed in [56] to characterize the noise
processes. After subtracting the timing model of the pul-
sar from the TOAs, the timing residuals δt for each single
pulsar can be decomposed into (see e.g. [57])

δt = Mε+ δtRN + δtDET + δtWN + δtCP. (4)

The first term Mε in the above equation accounts for
the inaccuracies in the subtraction of timing model [58],
where M is the timing model design matrix obtained
from TEMPO2 [59, 60] through libstempo2 interface, and
ε is a small offset vector denoting the difference between
the true parameters and the estimated parameters of
timing model. The second term δtRN is the stochas-
tic contribution from red noise [56], including achro-
matic spin noise (SN) [61]; frequency-dependent disper-
sion measure (DM) noise [62]; frequency-dependent chro-
matic noise (CN) [63]; achromatic band noise (BN) and
system (“group”) noise (GN) [57]. We use 30 frequency
components for the red noise of the individual pulsar.
The third term δtDET represents deterministic noise [56],
including chromatic exponential dips [57], extreme scat-
tering events [62], and annual dispersion measure varia-
tions [64]. The fourth term δtWN represents white noise
(WN), including a scale parameter on the TOA uncer-
tainties (EFAC), an added variance (EQUAD), and a
per-epoch variance (ECORR) for each backend/receiver
system [65]. The last term δtCP is the stochastic contri-
bution due to the common-spectrum process (such as an
SGWB), which is described by the cross-power spectral
density [66]

SIJ(f) =
H2

0

16π4f5
ΓIJ(f) ΩGW(f), (5)

2 https://vallis.github.io/libstempo

http://cosmos.phy.tufts.edu/cosmic-string-spectra/
https://vallis.github.io/libstempo
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Parameter Description Prior Comments

White noise

Ek EFAC per backend/receiver system U[0, 10] single pulsar analysis only

Qk[s] EQUAD per backend/receiver system log-U[−8.5,−5] single pulsar analysis only

Jk[s] ECORR per backend/receiver system log-U[−8.5,−5] single pulsar analysis only

Red noise (including SN, DM and CN)

ARN red noise power-law amplitude log-U[−20,−8] one parameter per pulsar

γRN red noise power-law index U[0, 10] one parameter per pulsar

Band/System noise

ABN/GN band/group-noise power-law amplitude log-U[−20,−8] one parameter per band/system

γBN/GN band/group-noise power-law index U[0, 10] one parameter per band/system

Deterministic noise

AE exponential dip amplitude log-U[−10,−2] one parameter per exponential dip event

tE[MJD] time of the event U[57050, 57150] for PSR J1643 one parameter per exponential dip event

U[56100, 56500] for PSR J2145

log10τE[MJD] relaxation time for the dip U[log105, 2] one parameter per exponential-dip event

AG Gaussian bump amplitude log-U[−6,−1] one parameter per Gaussian bump event

tG[MJD] time of the bump U[53710, 54070] one parameter per Gaussian bump event

σG[MJD] width of the bump U[20, 140] one parameter per Gaussian bump event

AY annual variation amplitude log-U[−10,−2] one parameter per annual event

φY phase of the annual variation U[0, 2π] one parameter per annual event

SGWB from cosmic string

Gµ cosmic string tension log-U[−15,−8] one parameter per PTA

p reconnection probability log-U[−3, 0] one parameter per PTA

TABLE I. Model parameters and their prior distributions used in the Bayesian inference.

where ΓIJ is the Hellings & Downs coefficients [67] mea-
suring the spatial correlations of the pulsars I and J .
Following [68], we use 5 frequency components for the
common process among all of the pulsars.

We perform the Bayesian parameter inferences based
on the methodology in [68, 69] to search for the SGWB
from cosmic strings in the PPTA DR2 data set. Since
it is challenging to obtain a complete noise model for
pulsar J0437−4715 and pulsar J1713+0747 [56], we do
not include these two pulsars. A summary of the noise
model for the 24 pulsars used in our analyses can be
found in Table 1 of [47]. We quantify the model selection
scores by the Bayes factor defined as

BF ≡ Pr(D|M2)

Pr(D|M1)
, (6)

where Pr(D|M) measures the evidence that the data D
are produced under the hypothesis of model M. Model
M2 is preferred overM1 if the Bayes factor is sufficiently
large. As a rule of thumb, BF ≤ 3 implies the evi-
dence supporting the model M2 over M1 is “not worth
more than a bare mention” [70]. In practice, we estimate
the Bayes factor using the product-space method [71–74].
Our analyses are based on the latest JPL solar system
ephemeris (SSE) DE438 [75]. We first infer the parame-
ters of each single pulsar without including the common-
spectrum process δtCP in Eq. (4), and then fix the white

noise parameters to their max likelihood values from
single-pulsar analysis to reduce the computational costs
as was commonly done in literature (see e.g. [68, 69]).
We use the open-source software packages enterprise
[76] and enterprise extension [77] to calculate the like-
lihood and Bayes factors and use PTMCMCSampler [78]
package to do the Markov chain Monte Carlo sampling.
Similar to [68, 79], we use draws from empirical distribu-
tions based on the posteriors obtained from the single-
pulsar Bayesian analysis to sample the parameters of red
noise and deterministic noise. Using empirical distribu-
tions can reduce the number of samples needed for the
chains to burn in. The model parameters and their prior
distributions are listed in Table I.

IV. RESULTS AND DISCUSSION

We first consider a model in which both the cosmic
string tension Gµ and the reconnection probability p are
free parameters. Fig. 1 shows the posterior distributions
of the Gµ and p parameters obtained from the Bayesian
search. The Bayes factor of the model including both
the UCP and CS signal versus the model including only
the UCP is BFUCP+CS

UCP = 0.591 ± 0.008, indicating no
evidence for an SGWB signal produced by the cosmic
string in the PPTA DR2.
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FIG. 1. One- and two-dimensional marginalized posterior
distributions for the cosmic string tension, Gµ, and the recon-
nection probability, p. We show both the 1σ and 2σ contours
in the two-dimensional plot.

p
10−13

10−12

10−11

10−10

10−9

G
µ

10−3 10−2 10−1 100

p

1

2

BF

FIG. 2. Top panel: the 95% CL upper limits on the cosmic
string tension, Gµ, as a function of the reconnection proba-
bility, p, from the PPTA DR2. Bottom panel: the corre-
sponding Bayes factor, BF , as a function of the reconnection
probability, p.

We also consider models in which the reconnection
probability p is fixed to a specific value while the cosmic
string tension Gµ is allowed to vary. The lower panel
of Fig. 2 shows the Bayes factor as a function of recon-
nection probability. For all the values of p ∈ [10−3, 1],
we have BFUCP+CS

UCP . 3, confirming that there is no ev-
idence for an SGWB produced by cosmic strings in the
PPTA DR2. We, therefore, place 95% confidence level
upper limit on cosmic string tension Gµ as a function
of reconnection probability p as shown in Fig. 2. The
blue shaded region indicates parameter space that is ex-
cluded by the PPTA DR2. For p = 1, the upper bound
on the cosmic string tension is Gµ . 5.1× 10−10, which
is about five orders of magnitude tighter than the bound
of Gµ . 10−5 [30] derived from the null search of indi-
vidual gravitational wave burst from cosmic string cusps
in the PPTA DR2. Note that Ωgw is enhanced for p < 1,
and therefore tighter constraints on Gµ are obtained for
p < 1.

To sum up, we have searched for the SGWB produced
by a cosmic string network in the PPTA DR2 in the
work. We find no evidence for such SGWB signal, and
therefore place 95% upper limit on cosmic string tension
as a function of reconnection probability.
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