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Abstract

We consider the Nielsen-Olesen vortex non-minimally coupled to Einstein gravity with
cosmological constant Λ. A non-minimal coupling term ξ R |φ|2 is natural to add to the
vortex as it preserves gauge-invariance (here R is the Ricci scalar and ξ a dimensionless
coupling constant). This term plays a dual role: it contributes to the potential of the
scalar field and to the Einstein-Hilbert term for gravity. As a consequence, the vacuum
expectation value (VEV) of the scalar field and the cosmological constant in the AdS3

background depend on ξ. This leads to a novel feature: there is a critical coupling ξc
where the VEV is zero for ξ ≥ ξc but becomes non-zero when ξ crosses below ξc and
the gauge symmetry is spontaneously broken. Moreover, we show that the VEV near the
critical coupling has a power law behaviour proportional to |ξ− ξc|1/2. Therefore ξc can be
viewed as the analog of the critical temperature Tc in Ginzburg-Landau (GL) mean-field
theory where a second-order phase transition occurs below Tc and the order parameter has
a similar power law behaviour proportional to |T − Tc|1/2 near Tc. The plot of the VEV
as a function of ξ shows a clear discontinuity in the slope at ξc and looks similar to plots
of the order parameter versus temperature in GL theory. The critical coupling exists only
in an AdS3 background; it does not exist in asymptotically flat spacetime (topologically a
cone) where the VEV remains at a fixed non-zero value independent of ξ. However, the
deficit angle of the asymptotic conical spacetime depends on ξ and is no longer determined
solely by the mass; remarkably, a higher mass does not necessarily yield a higher deficit
angle. The equations of motion are more complicated with the non-minimal coupling term
present. However, via a convenient substitution one can reduce the number of equations
and solve them numerically to obtain exact vortex solutions.
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1 Introduction

In this work, we consider the Nielsen-Olesen vortex, a 2 + 1-dimensional abelian Higgs model,
non-minimally coupled to Einstein gravity with and without cosmological constant. Compared
to previous work on the effects of gravity on vortices [1–4] the new ingredient in the action
is the non-minimal coupling term ξ R |φ|2 where R is the Ricci scalar, ξ is a dimensionless
coupling constant and φ is a complex scalar field. When gravity is present, it is perfectly
fitting to add this term to the action as it preserves the local U(1) gauge invariance of the
vortex.

The non-minimal coupling term changes the physical landscape significantly, in a qualitative
fashion. This is related to the dual role that it plays: it acts as part of the potential for the
scalar field but also contributes to the Einstein-Hilbert term for gravity. As a consequence, the
old parameters when ξ = 0 such as the VEV v, cosmological constant Λ and α (proportional to
the inverse of Newton’s constant) become effectively the VEV veff , the asymptotic cosmological
constant Λeff and αeff respectively that now depend on the coupling ξ. The novel feature
that emerges is that in an AdS3 background, where Λeff is non-zero and negative, there exists
a critical coupling ξc where the VEV veff is zero for ξ at or above ξc but is non-zero when
ξ crosses below ξc. When the VEV crosses from zero to non-zero at ξc, the local U(1) gauge
symmetry is spontaneously broken corresponding to a phase transition to a vortex. The critical
coupling ξc acts like the analog of the critical temperature Tc in Ginzburg-Landau (GL) mean-
field theory where the order parameter is zero above Tc but is non-zero below Tc [5, 6]. There
is a second-order phase transition when the temperature crosses below Tc and this is typically
accompanied by a symmetry that is spontaneously broken. The analogy between ξc and Tc
can be made quantitative. Near ξc, we show that the VEV veff has a power-law behaviour
proportional to |ξ − ξc|1/2 which is similar to the |T − Tc|1/2 power-law behaviour of the order
parameter near Tc in GL mean-field theory [5, 6]; both have a critical exponent of 1/2. The
plot of the VEV versus the coupling ξ looks very similar to the plot of the order parameter
versus temperature T in GL mean-field theory and in both cases there is a discontinuity in the
slope at the critical point where the slope diverges.

The magnitude of the scalar field, represented by the function f(r), starts at zero at the origin
r = 0 and reaches its VEV asymptotically (at a large radius, the computational boundary R
which represents formally infinity). An important feature is that the scalar field reaches its
VEV slower, over a larger radius, as one approaches the critical coupling ξc. In other words,
the core of the vortex extends out further. The plot of the scalar field’s “extension” 1 as a
function of ξ shows a dramatic increase near the critical coupling ξc. We show analytically that
the extension is expected to diverge in the limit ξ → ξc. This is the analog to the divergence
of the coherence length at the critical temperature Tc in GL mean-field theory [5, 6]. We also

1The extension is defined here as the radius where it reaches 99.9% of its VEV.
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plot the extension of the magnetic field which shows a similar trend; starting at its peak value
at the origin, it falls off slower (extends further out) as one approaches the critical coupling ξc.

We derive analytical expressions for the VEV veff and the asymptotic cosmological constant
Λeff as a function of ξ and four other parameters that appear in the Lagrangian. When ξ = 0,
veff reduces to v and Λeff reduces to Λ. However, when ξ 6= 0, veff does not depend only on v
and ξ and Λeff does not depend only on Λ and ξ. They depend each on five parameters in total.
A non-zero ξ therefore causes veff and Λeff to have a dependence on extra parameters besides
itself compared to ξ = 0. This wider influence ultimately stems from the aforementioned dual
role that the non-minimal coupling term plays.

An important point is that the critical coupling exists only in asymptotic AdS3 spacetime; it
does not exist in asymptotically flat spacetime (Λeff = 0) where the VEV is a fixed non-zero
constant independent of ξ. However, the non-minimal coupling term still plays a significant role
in a flat background. In 2 + 1-dimensional General Relativity without cosmological constant,
it is well known that outside matter the spacetime is locally flat but has the topology of a cone
whose deficit angle is proportional to the mass [7]. However, we found that the deficit angle
was not determined solely by the mass of the vortex but also depended on the coupling ξ. One
remarkable consequence of this is that a higher mass did not necessarily yield a higher deficit
angle.

The focus of this paper is to study how the vortex changes with the coupling ξ. The effect of
other parameters such as Λ, v and the winding number n has already been studied in previous
work [3]. We therefore fix all other parameters and obtain numerical results for different values
of ξ. With the non-minimal coupling term, the equations of motion are more complicated.
Nonetheless, via a convenient substitution, one can reduce the number of equations and solve
them numerically. In an AdS3 background, we obtained vortex solutions for nine values of the
coupling ξ. These ranged from −0.14 to 0.095 (near ξc) and included the case ξ = 0. For the
parameters chosen, the critical coupling turned out to be equal to ξc = 2/21 ≈ 0.0952. Note
that ξc is an upper bound as the VEV is zero for any ξ above this value. For each ξ, we provide
plots of the scalar field f(r), gauge field a(r), metric field A(r) and magnetic field Bm(r). In
a table, for each ξ, we state the numerical values obtained for the VEV veff , the cosmological
constant Λeff , the ADM mass, the peak value of the magnetic field and the numerically
integrated magnetic flux. The expected theoretical values for veff and Λeff obtained from
our derived analytical expressions are also quoted in the table. The numerical values and
the theoretical expectations for the VEV, cosmological constant and magnetic flux, matched
almost exactly (to great accuracy, within three or four decimal places). This provides a strong
mutual confirmation of both our numerical simulation and our derived analytical expressions.
We verified numerically that the VEV near ξc indeed obeys the power law |ξ − ξc|1/2. As
previously mentioned, the critical exponent of 1/2 points to a clear analogy with GL mean-
field theory where ξc acts as the analog of the critical temperature Tc. For asymptotically flat
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spacetime, we considered five values of ξ ranging from −0.4 to +0.4. The metric field A(r)
starts at unity at the origin r = 0 but then dips below unity and reaches asymptotically (at
sufficiently large radius) a plateau at a positive constant value (labelled D) that is different for
each ξ. This is in stark contrast to AdS3 where the metric field A(r) grows as r2 at large radius.
The mass and the deficit angle at each ξ are calculated from the numerical value obtained for
D.

We now place this paper in context, with a focus on previous studies of gravitating vortices
that we referred to earlier [1–4]. It was recognized a long time ago that Einstein gravity in 2+1
dimensions yields a locally flat spacetime outside localized sources, albeit with the topology
of a cone [7]. However, things become interesting when one includes a negative cosmological
constant as this leads to the famous BTZ black holes [8, 9]. Later, in a higher-derivative
extension of Einstein gravity in 2 + 1 dimensions called Bergshoeff-Hohm-Townsend (BHT)
massive gravity [10], black hole solutions in both de Sitter and anti-de Sitter space were found
as well as wormhole solutions, kinks, and gravitational solitons [11]. An analytical study of
black holes with spherical scalar hair in AdS3 was then later studied [1]. Closer to our topic of
interest, they also constructed black hole vortex solutions with a complex scalar field. These
solutions departed from the conventional non-singular vortex in two ways. The scalar field
had a singularity at the origin and asymptotically tended towards zero which satisfied the
Breitenlohner-Freedman bound [12] in AdS3 but was not the minimum of the potential. In [2],
how vortices affect the tunneling decay of a false vacuum under Einstein gravity was studied
and it was found that compared to Coleman-de Luccia bubbles [13] the tunneling exponent was
less by a factor of a half. Hence vortices are short-lived and become of cosmological interest [2].
The non-singular vortex under Einstein gravity in an AdS3 and Minkowski background was
first studied in [3]. These were not black hole solutions as in [1]. Non-singular vortex solutions
were found numerically for different values of the cosmological constant Λ, VEV v and winding
number n. Two expressions for the (ADM) mass of the vortex were obtained: one in terms of
the metric and one as an integral overly purely matter fields. The latter showed that the mass
was roughly proportional to n2 v2 (an n2 dependence had also been found in [1]). The mass
of the vortex increased as the magnitude of the cosmological constant increased and led to a
slightly smaller core for the vortex. Later, work was then extended to include singular vortex
solutions besides non-singular ones [4]. Vortices with conical singularities were obtained in flat
backgrounds and BTZ black hole solutions were obtained in curved backgrounds, though it was
found that the vortex cannot ultimately hold a black hole at its core [4]. Our present paper
introduces the non-minimal coupling term which is missing in all previous studies of gravitating
vortices. As previously pointed out, this term preserves the local U(1) gauge invariance of the
vortex and is therefore a perfectly natural candidate to add to the action when gravity is
present. We already discussed how this term changes the physics significantly, qualitatively.

Our paper is organized in the following fashion. In section 2, we obtain analytical expressions
for the VEV veff and the cosmological constant Λeff in terms of ξ and other parameters.
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Details of the derivation are relegated to Appendix A. We also obtain an expression for the
critical coupling ξc in terms of the parameters of the theory and discuss the analogy with the
critical temperature Tc in GL mean-field theory. In section 3 we state the equations of motion
in an abbreviated form and in Appendix B we write down the full equations that are used in our
numerical simulation. In section 4 we obtain analytical expressions for the asymptotic metric.
In section 5 we obtain an expression for the ADM mass and also obtain an expression for the
deficit angle in asymptotically flat space. In section 6 we state the expression for the magnetic
field and derive a formula for the magnetic flux which is a topological invariant independent
of ξ. In section 7 we present all our numerical results in plots and tables for different values of
the coupling ξ in both an AdS3 and Minkowski background. Before presenting the numerical
results, we obtain useful analytical expressions for the behaviour of the scalar, gauge and metric
field asymptotically and near the origin. We end with our conclusion in section 8 where among
other things, we discuss an interesting and challenging problem to solve in the future.

2 Lagrangian for the vortex non-minimally coupled to Einstein
gravity

The vortex non-minimally coupled to Einstein gravity with cosmological constant has the
following Lagrangian density in 2 + 1 dimensions:

L =
√
−g
(
α (R− 2Λ)− 1

4
FµνF

µν − 1

2
(Dµφ)†(Dµφ) + ξ R |φ|2 − λ

4
(|φ|2 − v2)2

)
. (1)

Here φ is a complex scalar field, Fµν is the usual electromagnetic field tensor, R is the Ricci
scalar, Λ is a cosmological constant, the constant α is equal to 1

16πG where G is Newton’s
constant and ξ is a dimensionless coupling constant. The interaction with the gauge field Aµ
is incorporated via the usual covariant derivative Dµφ = ∂µφ + i eAµφ where e is a coupling
constant. The constants λ and v are parameters that enter into the potential for the scalar
field. The constants α, λ and v are positive whereas ξ can be positive, negative or zero. In
2 + 1-dimensional General Relativity, positive Λ do not yield black holes (i.e. the famous BTZ
black holes require negative Λ). Similarly, positive Λ do not support vortices [3] and the non-
minimal coupling term does not change that fact. We will see that Λ must be either negative
or zero which will ultimately yield asymptotic AdS3 or Minkowski spacetime respectively.

The Lagrangian density has a local U(1) symmetry; it is invariant under the following gauge
transformations

φ(x)→ ei e η(x) φ(x) (2)

Aµ(x)→ Aµ(x)− ∂µη(x) (3)
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where η(x) is an arbitrary function. The non-minimal coupling term ξ R |φ|2 is clearly invariant
under the above gauge transformation and is therefore a perfectly natural ingredient to add to
the gravitating vortex.

2.1 The VEV and cosmological constant as a function of ξ

When ξ = 0, the VEV and cosmological constant are simply v and Λ respectively. When ξ 6= 0,
the VEV and cosmological constant change and become functions of ξ and other parameters.
These will be labeled by veff and Λeff to denote that they are the actual (effective) VEV
and cosmological constant respectively for general coupling ξ. In this section we determine
expressions for them. This requires one to know only the asymptotic behaviour of the fields
and this can be determined directly from the Lagrangian without working out the full equations
of motion.

Asymptotically, one reaches the vacuum when the asymptotic spacetime is either AdS3 or
Minkowski; these are maximally symmetric spacetimes that can be viewed as the ground
states of General Relativity [14]. In this asymptotic region, the kinetic term for the scalar field
and gauge field tend to zero: −1

2(Dµφ)†(Dµφ) → 0 and −1
4FµνF

µν → 0. This occurs when
asymptotically the magnitude of the scalar field approaches the minimum of the potential (the
non-zero VEV) and the gauge field approaches a non-zero constant equal to the winding number
n. In 2 + 1 dimensions, the asymptotic value of the Ricci scalar is given by2 6 Λeff where Λeff
is either negative (AdS3 background) or zero (Minkowski background). The potential for the
scalar field can be readily picked out from the Lagrangian and asymptotically is given by

V (|φ|) =
λ

4
(|φ|2 − v2)2 − ξ R |φ|2 =

λ

4
(|φ|2 − v2)2 − 6 ξ Λeff |φ|2 . (4)

The VEV occurs at the minimum of this potential where the derivative with respect to |φ| is
zero. This yields two possibilities: |φ| = 0 and the solution

|φ|2 = v2eff = v2 +
12 ξ Λeff

λ
. (5)

When v2eff is positive, veff is the minimum of the potential and corresponds to the VEV (and
|φ| = 0 is a local maximum). In this case, since the VEV is non-zero, the gauge symmetry
is spontaneously broken. When v2eff is negative (and hence veff is imaginary), this signals
that |φ| = 0 is now the minimum of the potential (the VEV). A zero VEV corresponds to the
unbroken phase.

2Note that the vacuum Einstein field equations with cosmological constant Λeff yield R = 4Λeff in 3 + 1
dimensions but R = 6Λeff in 2 + 1 dimensions.
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With the non-minimal coupling term ξ Rφ2 term present in the action, the cosmological con-
stant asymptotically is no longer Λ but Λeff ; this is governed by the equation

α(R− 2 Λ) + ξ R v2eff −
λ

4
(v2eff − v2)2 = (α+ v2eff ξ)(R− 2 Λeff ) . (6)

If we substitute R = 6 Λeff above, we can solve the two equations (5) and (6) for veff and
Λeff as a function of ξ and the other parameters of the theory. This is worked out in Appendix
A and the equations are (A.7) and (A.8):

veff =

[
2v2 +

α

ξ
−
√

(α+ v2 ξ)2 − 24αΛ ξ2/λ

ξ

]1/2
(7)

and

Λeff =
λ

12 ξ2

(
α+ v2 ξ −

√
(α+ v2 ξ)2 − 24αΛ ξ2/λ

)
. (8)

Equation (6) also implies that the coefficient in front of R asymptotically is not α but

αeff = α+ v2eff ξ . (9)

Newton’s constant asymptotically is obtained from αeff so that the condition αeff > 0 must
be satisfied. We expect that lim ξ→0 veff = v, lim ξ→0 Λeff = Λ and lim ξ→0 αeff = α; this is
in fact the case as one can readily check. When Λ in (8) is negative, this yields a negative
Λeff so that the background is AdS3. In that case, veff and Λeff change with ξ. However,
when Λ = 0 and α + v2 ξ > 0 one obtains Λeff = 0 and veff = v regardless of the value of ξ
or the other parameters. Therefore, in a Minkowski background (Λeff = 0) the VEV remains
constant at v as ξ changes. Note that Λ = 0 with α+ v2 ξ < 0 is not a physically viable option
as it leads to a negative αeff i.e. one obtains v2eff = 3 v2 + 2α

ξ so that αeff = α + v2eff ξ is

equal to 3 (α+ v2 ξ) which is negative.

When ξ = 0, veff is simply v but when ξ 6= 0, veff does not depend only on v, ξ and λ but
also on the gravitational parameters α and Λ. Similarly, when ξ 6= 0, Λeff does not depend
only on Λ, ξ and α but also on the parameters v and λ appearing in the scalar potential. We
see that the non-minimal coupling term has a wide reach because of the dual role it plays in
affecting simultaneously the potential of the scalar field and the Einstein-Hilbert gravitational
term.

2.2 Critical coupling ξc

The VEV, given by (5), is equal to zero at a critical coupling ξc. This occurs when

2v2 +
α

ξ
−
√

(α+ v2 ξ)2 − 24αΛ ξ2/λ

ξ
= 0 (10)
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which has the solution

ξc = − 2 v2 αλ

3 (v4λ+ 8αΛ)
(11)

if the condition α + 2 v2 ξ > 0 is satisfied. This condition implies that v4λ + 8αΛ in the
denominator of (11) is negative. The critical coupling is therefore positive and exists only

when Λ is negative and obeys the inequality Λ < −v4λ
8α . A negative Λ implies Λeff < 0 so that

the spacetime is asymptotically AdS3. In particular, the case Λ = 0 (which yields Λeff = 0)
has no critical coupling and has a fixed VEV at v. There is therefore no critical coupling in
asymptotic Minkowski spacetime. The critical coupling exists only in AdS3 when Λ < −v4λ

8α .

What happens when Λ is negative but falls in the range −v4λ
8α < Λ < 0? The spacetime is

asymptotically AdS3 since Λeff < 0 and the VEV changes with ξ but it always remains above
zero; there is no transition from the unbroken phase (zero VEV) to the broken phase (non-zero
VEV). Note that the value of the critical coupling does not depend on the winding number n.

When the critical coupling exists, the VEV is zero for ξ ≥ ξc, but is non-zero and grows as ξ
decreases below ξc. A phase transition from a symmetric (unbroken) phase to a spontaneously
broken phase occurs when ξ crosses below ξc. In figure 1 below, we plot veff as a function of

ξ (for parameters α = 1, v = 1, λ = 1 and Λ = −1). Since Λ < −v4λ
8α = −1/8, the condition

for a critical coupling is satisfied and its value from (11) is ξc = 2/21 = 0.0952. We see that
the VEV is zero above ξc = 0.0952 but becomes non-zero and increases as ξ decreases below
ξc. The VEV is continuous but one can readily see that the derivative (slope of graph) is
discontinuous at ξc. We will see that in fact the slope diverges at that point.

Figure 1 should bring to mind the graph (see fig. 2)3 of the order parameter as a function of
temperature in the Ginzburg-Landau (GL) mean-field theory of second-order phase transitions
where the order parameter is zero above a critical temperature Tc but increases above zero
below Tc. Our critical coupling ξc is the analog to the critical temperature Tc. We can make
this connection more quantitative. In GL mean-field theory, at temperatures T below and near
Tc, the order parameter is proportional to (Tc−T )1/2 [5,6] a power law behaviour with critical
exponent of 1/2. The VEV for ξ below and near ξc has a similar behaviour. Using (11), we
can express Λ in terms of ξc and substitute this into (7) to obtain

veff =

[
2v2 +

α

ξ
−

√
α2 + 2 v2 α ξ + v4 ξ2 − ξ2 (−2 v2 αλ−3 v4 λ ξc)

λ ξc

ξ

]1/2
. (12)

Expanding veff above about the critical coupling ξc yields

veff = k (ξc − ξ)1/2 +O
(
(ξc − ξ)3/2

)
(13)

3Image courtesy of C. Lygouras, “Critical behavior of the order parameter and specific heat in the
second-order phase transition from Landau theory”, May 4, 2020. Wikimedia Commons contributors,
‘File:LandauTheoryTransitions.svg‘, Wikimedia Commons, the free media repository.
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Figure 1: The VEV veff as a function of ξ plotted for parameters α = 1, v = 1, λ = 1 and
Λ = −1. The VEV is zero at or above ξc = 0.0952 and transitions to a non-zero value below
ξc where it increases as ξ decreases. When ξ crosses below ξc, there is a transition from a
symmetric phase to a spontaneously broken phase. Note that, as expected, the VEV is equal
to v = 1 at ξ = 0.

where the proportionality constant is k = v√
ξc+(2 v2 ξ2

c )/α
. We therefore see that the power law

behaviour of the VEV near ξc and of the order parameter near Tc in GL theory are similar and
have the same critical exponent of 1/2. From (13), one can readily see that the slope in figure
1 diverges at ξc (just like the slope in figure 2 diverges at Tc). We will set that the VEV for
values of ξ near ξc in our numerical simulation follows closely the power law behaviour given
by (13).

We will now determine the equations of motion, solve them numerically and obtain plots of
various quantities for different values of the coupling ξ. The equations (7) and (8) for the
VEV and cosmological constant that we derived in this section will be used to predict the
asymptotic values of our plots and we will see that they match exactly. This provides a strong
confirmation of both our derived theoretical results of this section and of our numerical vortex
solutions in later sections.
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Figure 2: The order parameter η0(T ) as a function of temperature in the GL mean-field theory.
The order parameter is zero at or above the critical temperature Tc but is non-zero below Tc.
There is a discontinuity in the slope at Tc and there is a second-order phase transition when
the temperature crosses below Tc.

3 Rotationally symmetric ansatz and the equations of motion

For the vortex, we consider rotationally symmetric static solutions. The ansatz for the gauge
and scalar field is

Aj(x) = εjkx̂
k a(r)

er
(14)

φ(x) = f(r) ein θ (15)

where a(r) and f(r) are functions of r that represent the gauge and scalar field respectively.
The non-negative integer n is called the winding number. A 2 + 1 dimensional metric which is
rotationally symmetric can be expressed as

ds2 = −B(r) dt2 +
1

A(r)
dr2 + r2 dθ2 (16)

where A(r) and B(r) represent two metric functions of r.

With the ansatz (15) and (16), the Langrangian density (1) reduces to

L =
√
B/Ar

(
α (R− 2Λ)− A(a′)2

2 e2 r2
− (f ′)2A

2
− (n− a)2 f2

2 r2
+ ξR f2 − λ

4
(f2 − v2)2

)
. (17)

Since f approaches a non-zero constant asymptotically, one requires that a→ n asymptotically
(which yields (n− a)2 f2 → 0) so that one avoids a logarithmic divergence in the energy of the
vortex [3, 16]. The Ricci scalar is a function of A and B and their derivatives:

R =
(B′)2A

2B2
− A′

r
− A′B′

2B
− B′A

rB
− B′′A

B
. (18)
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Note that when the complex scalar field is inserted in the Lagrangian density, the winding
number n appears but not the coordinate θ since the phase cancels out. The Lagrangian
density therefore depends on r only and solutions are rotationally symmetric. The Euler-
Lagrange equations of motion for A(r), B(r), f(r) and a(r) are respectively

4 e2 r AB′(α+ ξ f2 + 2 r ξ f f ′) +B
(
e2r2(v4λ+ 8αΛ) + 2e2(n2 − r2v2λ− 2na+ a2)f2

+ e2r2λf4 + 16 e2r ξ A f f ′ − 2A(a′ 2 + e2r2f ′ 2)
)

= 0 (19)

e2r2λf4 + e2r (rv4λ+ 8rαΛ + 4αA′) + 2e2f2(n2 − r2v2λ− 2na+ a2 + 2rξA′)

+ 2A (a′ 2 + e2r2(1 + 8ξ)f ′ 2) + 8e2rξf
(
rA′f ′ + 2A (f ′ + rf ′′)

)
= 0 (20)

2r2ξAfB′ 2 + rB
(
− 2rξfA′B′ +A (rB′f ′ − 4ξf(B′ + rB′′))

)
+B2

(
− 2r2λf3

− 2f (n2 − r2v2λ− 2na+ a2 + 2rξA′) + r (rA′f ′ + 2A(f ′ + rf ′′))
)

= 0 (21)

rAa′B′ +B
(

2 e2r (n− a)f2 − 2Aa′ + ra′A′ + 2 rAa′′
)

= 0 . (22)

We can reduce the above four equations of motion to three by extracting W (r) = B′/B from
equation (19) and substituting it into equations (21) and (22). The function W (r) contains
A, f and a and their derivatives. The main point is that the three remaining equations no
longer have any dependence on B(r). However, the equations become longer especially the
one for the function f(r). We write them out in full in Appendix B; equations (B.2), (B.3)
and (B.4) are the equations we solve numerically. To avoid writing out cumbersome lengthy
equations here, the three remaining equations are written below using W (r) and W ′(r). Note
that we need W ′ because of the appearance of B′′ in (21). In particular, B′′/B = W ′ + W 2.
The three remaining equations are

e2r2λf4 + e2r (rv4λ+ 8rαΛ + 4αA′) + 2e2f2(n2 − r2v2λ− 2na+ a2 + 2rξA′)

+ 2A (a′ 2 + e2r2(1 + 8ξ)f ′ 2) + 8e2rξf
(
rA′f ′ + 2A (f ′ + rf ′′)

)
= 0 (23)

2 r2 ξA f W 2 − 2r2ξ f A′W +Ar
(
rW f ′ − 4ξf(W + r (W ′ +W 2))

)
− 2 r2λf3

− 2 f (n2 − r2v2λ− 2na+ a2 + 2 rξ A′) + r
(
rA′f ′ + 2A (f ′ + rf ′′)

)
= 0 (24)

r Aa′W + 2 e2 r (n− a)f2 − 2Aa′ + r a′A′ + 2 r Aa′′ = 0 . (25)

When W (r) given by (B.1) is substituted into the above equations we obtain the full equations
(B.2), (B.3) and (B.4).
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4 Asymptotic analytical solutions

One can solve analytically for the metric in vacuum by setting f = veff and a = n identically
in Eq. (23). This yields

A′(r) = −r
(8αΛ + λ (v2eff − v2)2)

4(α+ ξ v2eff )
(26)

with solution

A0(r) = −
(8αΛ + λ(v2eff − v2)2)

8(α+ ξ v2eff )
r2 + C = −Λeff r

2 + C (27)

where the subscript ‘0’ denotes vacuum and C is an integration constant. In the last step we
substituted veff given by (7) and this yields Λeff given by (8) as the coefficient of −r2 (see
also Eq. (A.3)). Of course, this is exactly what we expect the metric of pure AdS3 to be for
cosmological constant Λeff . The initial conditions at r = 0 are determined by the constant
C. We set C = 1 since in 2 + 1 dimensions this choice avoids a conical singularity at the
origin [7, 8]. Moreover, C = 1 also works for the case of vortices embedded in asymptotically
Minkowski spacetime (Λeff = 0).

We can now solve for the metric functionB0(r) in vacuum by substitutingA0(r) with C = 1 into
Eq.(19). This yields B0(r) = k0 (−Λeff r

2 + 1) where k0 is an integration constant (positive).
We can absorb this constant into a redefinition of time in the line element (16) so that

B0(r) = −Λeff r
2 + C = A0(r) . (28)

In the presence of the vortex, we have that f → veff and a → n asymptotically. Note that
in contrast to the vacuum case, these are now only the asymptotic values. The vortex departs
significantly from that in the core region near the origin. In numerical simulations, f and a
start at zero at the origin and reach their asymptotic value (within less than a percent) at a
finite radius R, the computational boundary which represents formally infinity. The asymptotic
form of the metric function A in the presence of matter (the vortex) is obtained again via Eq.
(23) and yields at r = R

A(R) = −Λeff R
2 +D . (29)

The constant D differs from the constant C in (27); as one goes through the core of the vortex,
one naturally emerges into an asymptotic region that differs from the purely vacuum one and
this is reflected in D being a different constant from C. We will see that the (ADM) mass of
the vortex will be expressed in terms of A0(R) and A(R).

Asymptotically, using (19), we obtain B(R) = k A(R). Here k is an integration constant
(positive); it can no longer be absorbed into a redefinition of time since that has been carried
out once already with the constant k0. At large radius R, in the presence of the vortex, we
obtain that B(R) is proportional to A(R) but not equal to it.
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5 Expression for the (ADM) mass of the vortex

An important property of a vortex is its finite mass. In curved spacetime, the mass of a
localized source is defined as its ADM mass [15]. AdS3 is a maximally symmetric spacetime
with isometry group SO(2, 2) and has a timelike Killing vector so that a conserved energy (the
ADM mass) naturally applies to matter embedded in it. The ADM mass in 2 + 1 dimensions
can be calculated via the following expression [15]:

M = −2αeff lim
Ct→R

∮
Ct

(k − k0)
√
σN(R) dθ . (30)

Note that αeff , given by (9), must be used here instead of α. Here Ct is the circle at spatial
infinity where infinity corresponds to the computational boundary r = R. The lapse N(R)

is given by
(
B0(R)

)1/2
=
(
A0(R)

)1/2
. The metric on Ct is σAB and

√
σ = R where σ is its

determinant. The extrinsic curvature of Ct embedded on the two-dimensional spatial surface
obtained by setting t to be constant in (16) is given by k whereas its embedding in the two-
dimensional spatial surface of AdS3 is given by k0. A straightfoward calculation yields

k =

(
A(R)

)1/2
R

; k0 =

(
A0(R)

)1/2
R

(31)

Substituting all the above quantities into (30) yields our final expression for the ADM mass:

M = 4π αeff

(
A0(R)− [A0(R)A(R)]1/2

)
. (32)

We will use the above expression to calculate the ADM mass in an AdS3 background. Note
that if A(R) = A0(R) one obtains M = 0 which implies that our definition has set empty AdS3

space to have zero mass. This is the desired and expected result since maximally symmetric
spacetimes can be viewed as the ground states of General Relativity [14] and as such are
typically set to zero energy.

The analytical expression (27) for the vacuum metric A0(R) is −Λeff R
2 + 1 and this can be

readily calculated for any given R. From (29) we have that A(R) = −Λeff R
2 +D where D is

a constant. This corresponds to the case with matter (the vortex) and it is obtained by solving
the equations of motion numerically since we do not know a priori the value of the constant D.
The mass M of the vortex is then obtained via (32). Though A0(R) and A(R) both change
with R, at a large enough R, the mass M hardly changes as R increases and the matter fields
f(r) and a(r) plateau to their respective asymptotic values of veff and n respectively. The
value of A(r) at r = 0 is an initial condition. In vacuum, A(r) must reduce to A0(r) so that
their initial conditions at the origin must match. This implies that A(0) = A0(0) = C = 1.
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5.1 ADM mass in asymptotically flat space and angular deficit

In asymptotically flat spacetime where Λ = Λeff = 0, the ADM mass formula (32) remains
valid but simplifies greatly. We have that A0(R) = C = 1 and A(R) = D which yields

Mflat = 4π αeff
(
1−D1/2

)
(33)

where αeff = α + ξ v2 since veff = v. Note that A0(r) = B0(r) stay constant at unity for all
r (this represents the vacuum Minkowski spacetime). In contrast, A(r) is unity at the origin
r = 0 but dips below unity as r increases until it plateaus to a positive value D at large radius R.
The value of D is obtained numerically. Recall that localized matter in 2+1 dimensions yields
an asymptotically Minkowski spacetime with an angular deficit [7]. Asymptotically, A(r) = D

and the spatial part of the metric (16) becomes dr2

D + r2dθ2. If we define r0 = r/D1/2 and

θ0 = D1/2 θ we obtain a manifestly flat metric dr20 + r20 dθ
2
0 but with θ0 ranging now from 0 to

2πD1/2 instead of 2π. Since 0 < D < 1 there is an angular deficit of

δ = 2π (1−D1/2) . (34)

Using (33) with αeff = 1/(16πGeff ) we obtain that δ = 8πGeff Mflat which is the formula
for the angular deficit produced by a mass Mflat in 2 + 1 Minkowski spacetime [7] if Geff
replaces G in [7]. Asymptotically, the spacetime is locally flat but topologically a cone. There
is however no conical singularity at the origin in our case in contrast to the point mass in [7].
The spacetime is smooth at the origin since the vortex by construction is an extended non-
singular object. In our case, the conical spacetime is only the asymptotic spacetime and does
not extend into the core of the vortex.

In the original work of [7], the only way to change the angular deficit is to change the mass
since G remains constant. In our case, Geff depends on the coupling ξ. Therefore as ξ changes,
one can encounter a scenario (and one does as our numerical results will show) where a higher
mass yields a smaller deficit angle than a smaller mass. This is another instance of how the
non-minimal coupling term plays a novel role.

6 Magnetic flux as a topological invariant independent of cou-
pling ξ

The vortex contains a magnetic field which we labelBm. We will see when we plot our numerical
results that it has its maximum at the origin and then decreases towards zero outside a core
region. The maximum value of the magnetic field at the origin as well as its profile depends on
the coupling ξ. After we present our numerical results, we will look at the radial extension of
the scalar field as a function of ξ, a measure of how far the field extends before it reaches close
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to its plateau value (the VEV). We will see that the radial extension of the scalar field increases
significantly as we approach the critical coupling ξc. This is analogous to the coherence length
in GL mean-field theory which diverges near the critical temperature. We have discussed here
the radial extension of the scalar field because we will see that the radial extension of the
magnetic field as a function of ξ undergoes the same fate and also increases as we approach
the critical coupling ξc. The magnetic field profile therefore provides us with an additional
window into how far the core region of the vortex extends.

An important property of the magnetic field is that even though its profile changes with the
coupling ξ, the magnetic flux Φ obtained by integrating the magnetic field over the entire
two-dimensional area stays constant (i.e. it is independent of the value of ξ). We show here
that the magnetic flux depends only on the winding number n and hence is a topological

invariant. The quantity −A (a′)2

2 e2 r2 appearing in the Lagrangian density (17) stems from the term
−1

4FµνF
µν and hence is identified with −B2

m/2 where Bm is the magnetic field (no electric

field is present hence the absence of an E2

2 term). It follows that the magnetic field is given

by Bm =
√
Aa′

e r which reduces to the well-known result a′/(e r) for the magnetic field in fixed
Minkowski spacetime [16] where A(r) = 1 identically.

The magnetic flux Φ, the integral of the magnetic field over the invariant area element, yields

Φ =

∫
d2x
√
γ Bm =

∫
dr dθ

( r√
A

) (√Aa′
e r

)
=

2π

e

∫ R

0
a′ dr =

2π

e
(a(R)− a(0)) =

2π n

e
(35)

where γ = r2/A is the determinant of the spatial two-metric obtained from (16) by setting t to
be constant. We used the boundary conditions on the function a(r): a(R) = n and a(0) = 0.
Note that the expression for the magnetic flux Φ = 2π n

e is the same in curved space as it is in
fixed Minkowski spacetime [16]. In the next section where we present our numerical results,
we will integrate numerically over the area the different magnetic field profiles for different
coupling ξ and show that the result is the same independent of the profile and ξ. Besides
demonstrating numerically that the magnetic flux is a topological invariant in curved space, it
also provides another check on our numerical simulation. The magnetic flux is “quantized” as
it comes in integer steps of 2π/e. This does not stem from any quantization procedure imposed
on the fields but from the topology of the vortex which is characterized by its winding number
n.

7 Numerical solutions of vortex in curved space

The three equations of motion (B.2), (B.3) and (B.4) are solved numerically to obtain non-
singular profiles for the scalar field f(r), the gauge field a(r) and the metric function A(r).
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The initial conditions at the origin r = 0 are

f(0) = 0 ; a(0) = 0 ; A(0) = 1 . (36)

These initial conditions ensure that our vortex solutions are non-singular. Let R be the com-
putational boundary representing formally infinity. We expect that

f(R) = veff ; a(R) = n ; A(R) = D − Λeff R
2 (37)

where D is a constant that is determined only after running the numerical simulation and
depends on the matter distribution of the vortex. The quantity veff is the value where f(r)
plateaus at numerically and we will see that it matches very closely our theoretical prediction
given by (7). The winding number of the vortex is given by the positive integer n and we will
see that a(r) plateaus at that value numerically. The coefficient Λeff in front of R2 in A(R) can
be extracted from our numerical simulation by evaluating −A′′(r)/2 at r = R. We will see that
it matches very closely our theoretical prediction for the asymptotic value of the cosmological
constant given by (8). We obtain the profiles by adjusting f ′(r) and a′(r) near the origin until
the curves for f(r) and a(r) plateau towards their respective constant values beyond a certain
radius (in our numerical simulations they reach their expected constant values to within less
than a tenth of a percent at the computational boundary R).

7.1 Analytical behaviour of the fields near the origin and asymptotically

The equations of motion are a long complicated set of coupled non-linear differential equations
which require a numerical solution. However, before presenting the numerical results, it is
instructive to extract some useful analytical information from the equations. In particular,
we will determine the analytical behaviour of the fields near the origin and in the asymptotic
region. We will see that the asymptotic profile of a vortex is not supported by a positive
cosmological constant Λeff ; it must be either negative (AdS3 background) or zero (Minkowski
background). This is similar to the fact that in 2 + 1 dimensional General Relativity (GR),
a black hole exists for negative cosmological constant (the BTZ black hole [8, 9]) but not for
positive cosmological constant. There is no black hole in a Minkowski background either but
in contrast, one can have a vortex in a Minkowski background.

7.1.1 Behaviour of A(r), f(r) and a(r) near the origin

The initial conditions on the fields at r = 0 are f(0) = 0, a(0) = 0 and A(0) = 1. We would like
to know the behaviour of these fields in the vicinity of r = 0. If we linearize (B.2) about A = 1

we obtain A(r) = 1 − r2(v4 λ
8α + Λ). This quadratic behaviour implies that its first derivative
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A′(r) at r = 0 is always zero regardless of the parameters so that the metric function always
starts out flat at the origin. This is what is observed numerically. Linearizing (B.4) about
a = 0 yields a(r) = b r2 with b a positive constant. We see that a(r) also starts out flat at
the origin since a′(0) = 0. Again, this agrees with our numerical simulation. Linearizing (B.3)
about f = 0 yields f(r) = c rn where n is the winding number and c a positive constant. Near
the origin, f ′(r) = c nrn−1 so that f ′(0) = c for n = 1 and f ′(0) = 0 for n > 1. This implies
that f(r) starts off flat at the origin when n > 1 but with a positive slope when n = 1. Note
that the fields near r = 0 have no dependence on the coupling ξ.

7.1.2 Behaviour of A(r), f(r) and a(r) asymptotically

Asymptotically, the metric function A(r) is given by D − Λeff r
2 where D is a constant. The

matter fields a and f plateau to their constant values of n and veff respectively asymptotically.
We would like to know their behavior as they approach these constant values. At large r we
can write a(r) = n−ε(r) and f(r) = veff−β(r) where ε and β are small positive perturbations
which must vanish asymptotically. Substituting these expressions into equation (B.4) and (B.3)
and keeping only terms linear in ε and β yields the differential equations

e2 v2eff ε(r) + rΛeff ε
′(r) + r2 Λeff ε

′′(r) = 0 (38)

2 v2eff
(
αeff λ− 24 Λeff ξ

2
)
β(r) + rΛeff

(
αeff + 16 v2eff ξ

2
) (

3β′(r) + rβ′′(r)
)

= 0 . (39)

The above equations are valid only for the case Λeff 6= 0 (the case Λeff = 0 will be treated
separately). Both equations have power law fall off solutions

ε(r) = b r
−

e veff

(−Λeff )1/2 (40)

β(r) = c r

−1−
[−αeff Λeff + 2αeff v

2
eff λ− 64 v2eff Λeff ξ

2

−αeff Λeff − 16 v2eff Λeff ξ2

]1/2

(41)

where b and c are positive constants. Since (40) is valid only if Λeff is negative, the above
profiles apply only to an AdS3 background. An important point is that the profile of a vortex
which requires the gauge field a to plateau at n and f to plateau at veff is not supported by a
positive Λeff . It is supported by a negative Λeff and as we will now see, also by a zero Λeff .
The vortex therefore exists only in an AdS3 or Minkowski background.

When Λeff = 0, asymptotically we have A(r) = D where D here is positive (since a non-
singular profile requires that A(r) > 0). We also have veff = v. The differential equations
governing the perturbations ε and β are then

e2 r v2 ε(r) +D
(
ε′(r)− rε′′(r)

)
= 0 (42)
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2 r v2λ
(
α+ v2ξ

)
β(r)−D

(
α+ v2ξ(1 + 8ξ)

) (
β′(r) + rβ′′(r)

)
= 0 (43)

with solutions

ε(r) = b e
−e v r√
D
√
r (44)

β(r) = c e
−v r

(
2λαeff

D (αeff+8 v2 ξ2)

)1/2

1√
r

(45)

where b and c are positive constants. The above result is for a Minkowski background (Λeff =
0) but where Einstein gravity and a non-minimal coupling term acts on the vortex. The
exponential fall-off expressions (44) and (45) are similar to those found in fixed Minkowski
spacetime [16] and we recover them if we set ξ = 0 and D = 1.

7.2 Plot of vortex profiles and magnetic field in AdS3 for different ξ

The parameters that appear in the Lagrangian density (17) for the vortex are λ, e, n, v, α,
Λ and ξ. The goal here is to determine how the vortex changes with the coupling ξ and to
observe what happens as we approach the critical couling ξc. How the vortex changes with
the other parameters such as Λ, n and v has been studied elsewhere [3]. We therefore run
numerical simulations for different values of ξ with the other parameters held fixed; we set
λ = 1, e = 3, n = 1, v = 1, α = 1, and Λ = −1. We work in natural units where ~ = c = 1.
Though our parameters and quantities such as the radius, mass and magnetic field are quoted
as numbers, they should be thought of as having a unit attached to them (except for the
winding number n which is a pure number)4 As we have seen, a negative Λ automatically
ensures that the asymptotic cosmological constant Λeff will be negative. Our solutions in this
section will therefore correspond to an AdS3 background. Note that though v and Λ are held
fixed, the VEV veff and the cosmological constant Λeff will change with ξ.

Recall that a critical coupling ξc exists only if v4λ+8αΛ is negative. With the above values for
the parameters this latter quantity is negative (equal to −7) and therefore a critical coupling
exists. It is given by (11) and substituting the values of our parameters is equal to ξc = 2/21 ≈

4In AdS3 the appropriate length scale is the AdS length `. From (27), the quantity −Λeff r
2 must be

dimensionless. We quote Λeff as a pure negative number but one should think of a unit y attached to it so
that Λeff × y = −1/`2. Therefore the unit attached to the radius r is y−1/2 which in terms of the AdS length
is (−Λeff )1/2 `. Note that the equation for ε(r) in (41) implies that e veff/(−Λeff )1/2is dimensionless. The
quantity λ/e2 is also dimensionless. The mass is proportional to αeff = α + v2

eff ξ and therefore the mass is

expressed in units of the VEV squared which is y1/2 and this can be expressed in terms of the inverse of the

AdS length. The magnetic field is given by Bm =
√
Aa′

e r
and since A(r) and a(r) are dimensionless, it has units

of y3/4which can be expressed in terms of the inverse of the AdS length to the power of 3/2.
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0.0952 (the same value that appears in our plot of the VEV vs. ξ in fig. 1). This implies
that for ξ ≥ 2/21 the VEV is zero and there is no vortex. We therefore obtained vortices for
ξ < 2/21.

We considered nine values of the coupling ξ that ranged from −0.14 to 0.095 (close to the
upper bound ξc) which includes the case ξ = 0. We present below figures 3-11, one for each
value of the couplings in order of increasing ξ. Each figure contains plots of the scalar field
f(r), the gauge field a(r), the metric function A(r) and the magnetic field Bm(r). We also
made separate plots of f and A that focus on the core region near the origin where the fields
undergo significant change. There are therefore six plots associated with each value of ξ. We
also present some numerical results in table format. In table 1 we present the following data
for each value of ξ: the theoretically expected and numerically obtained value of the VEV veff
and cosmological constant Λeff , the (ADM) mass of the vortex, the peak value of the magnetic
field at the origin and the numerically integrated magnetic flux.

In table 1, the formula (7) for the VEV veff matched almost exactly (to within three and
four decimal places) the value where f plateaued numerically. Similarly, our formula (8)
for the cosmological constant Λeff matched almost exactly (again to within three and four
decimal places) the numerical value of the asymptotic cosmological constant. This provides
strong confirmation of both our analytical formulas and numerical simulation. In figures 3-
11, the magnetic field Bm always peaks at the origin and then falls off with radius towards
zero. As ξ increases and approaches closer to the critical coupling, the value of the peak
magnetic field decreases (see plot in fig. 13) but the magnetic field extends further out since
it falls off to zero more slowly. As a consequence, the magnetic flux obtained numerically by
integrating over the magnetic field profile remained constant as ξ changed (see table 1) and
matched exactly (to within three or four decimal places) the expected theoretical value of
Φ = 2π n/e = 2π/3 = 2.0944 (where we substituted n = 1 and e = 3). That this numerically
integrated magnetic flux remained constant across different magnetic field profiles provides
another strong check on our numerical simulation.

In table 1, the VEV monotonically decreases from a value of 1.6475 at ξ = −0.14 to a value of
0.04584 at ξ = 0.095. We plot the nine data points in fig. 12 and they trace out a curve similar
to the plot in fig. 1 of the VEV vs. ξ obtained theoretically and hence also similar to the
plot in fig. 2 of the order parameter vs. temperature in GL mean-field theory. We now verify
numerically that the data points in our sample that are close to the critical coupling ξc = 2/21
follow the power law with critical exponent 1/2 that we previously derived for ξ near ξc i.e.
veff = k (ξc − ξ)1/2 where k = v√

ξc+(2 v2 ξ2
c )/α

(see (13)). For the values of our parameters we

obtain k = 2.96985. For ξ = 0.095, which is the closest data point to ξc in our sample, we
obtain k (ξc − ξ)1/2 = 0.04583 which matches almost exactly our numerical result of 0.04584
for the VEV quoted in table 1. Another data point we can consider is ξ = 0.09 as it is not
that far off from the critical coupling. This yields k (ξc − ξ)1/2 = 0.2149 which still matches
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quite closely our numerical result of 0.2161. This constitutes a quantitative confirmation that
the non-minimally coupled vortex in AdS3 undergoes critical phenomena with exponent 1/2
at the critical coupling ξc.

We mentioned above that the magnetic field extends further out as ξ increases towards the
critical coupling ξc. The same thing happens with the scalar field f . For cases ξ = −0.14,
ξ = −0.12 and ξ = −0.10, f can be seen to roughly plateau already “near the origin” (see plots
of f “near the origin” in figures 3-5). At higher ξ, f has not plateaued yet near the origin (see
plots of f “near the origin” in figures 6-11). This implies that it must extend further out to
reach its VEV. In particular, as ξ approached near the critical coupling ξc, the regular plot of
f vs. r has to be extended to drastically larger radii to accommodate the fact that f plateaus
so much more slowly. We will discuss the extension of the scalar field (and of the magnetic
field) in more detail in the next subsection.

If the local matter density in the core region of the vortex is high enough it causes the metric
function A(r) near the origin to have a noticeable dip: the metric starts at A = 1 at the
origin r = 0, dips below unity in the core region, reaches a minimum that is above zero before
increasing to reach its asymptotic r2 dependence. The dip can be seen in the plot of A “near
the origin” and the asymptotic r2 dependence is more evident in the regular plot of A vs. r.
The plots of the metric function A(r) near the origin in figures 3 to 11 reveals that the dip
monotonically decreases as ξ increases and is most pronounced at ξ = −0.14. This implies
that the local matter density in the core region is greatest for ξ = −0.14. Though A in this
case dips the closest to zero (i.e. its minimum is smallest) it does not cross zero. If A crossed
zero, this would signal black hole formation and a singularity. However, our non-singular initial
conditions prevents one from constructing vortices beyond a local matter density where gravity
becomes so strong that the scalar field is no longer able to reach its asymptotic plateau value.
The fact that f is fixed to be zero at the origin prevents one from constructing vortex solutions
when gravity’s effect gets too strong. This places a lower bound on ξ; for the values of our
parameters, we were not able to construct non-singular vortices roughly below ξ = −0.14. This
lower bound was reached way before the lower bound set by the condition αeff = α+v2effξ > 0.
With veff given by (7) and using the values of our parameters, one can readily check that this
would have occurred at the much lower value of ξ = −0.26.

In table 1 one can see that the ADM mass is highest at ξ = −0.12 and decreases afterwards
as ξ increases towards ξ = 0.095. There is one case that does not follow this trend in masses.
The ADM mass at ξ = −0.14 is actually lower than the mass at ξ = −0.12 (the data points
of mass vs. ξ is plotted in fig. MPlot and the curve illustrates nicely the trend in masses).
The case ξ = −0.14 has the highest VEV which would seem to imply that it should have
the highest mass (vortices with higher VEV will usually have more mass in fixed Minkowski
spacetime [16]). Why then is the mass lower for ξ = −0.14 than for ξ = −0.12? This is due
to the fact that the ADM mass receives contributions not only from matter but also from
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the negative binding energy of the gravitational field (see section 3.9 on “Thin-shell collapse”
in [15] for a clear illustration of this). The metric field A(r) near the origin for ξ = −0.14 (fig.
3) has a more pronounced dip than for ξ = −0.12 (fig. 4). So the negative gravitational binding
energy is significant enough in ξ = −0.14 to yield a lower ADM mass than in ξ = −0.12.
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Figure 3: Case ξ = −0.14. This is the case with the lowest value of ξ and the highest VEV
(value where f plateaus). The gauge field plateaus at n = 1 which is the same value for all
subsequent cases. The dip in the metric function A(r) near the origin is the most pronounced
of our sample. The magnetic field Bm peaks at the origin and has the highest peak in our
sample. The magnetic field also falls off the fastest (extends out the least). The plot of f near
the origin shows that f plateaus quickly (does not extend much before reaching its VEV).
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Figure 4: Case ξ = −0.12. This is the case with the next lowest value of ξ. f plateaus at a
lower VEV than ξ = −0.14 but it has the highest (ADM) mass in our sample. The dip in the
metric function A(r) near the origin is not as pronounced as in ξ = −0.14. The magnetic field
Bm at the origin is lower than for ξ = −0.14 but it falls off slower so that the magnetic flux
turns out to be the same. Again, the plot of f near the origin shows that f plateaus quickly
and hence has a small extension.
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Figure 5: Case ξ = −0.10. f plateaus at a lower VEV than the previous cases. The dip in
the metric function A(r) near the origin is still pronounced but not as much as in ξ = −0.12
or ξ = −0.14. The magnetic field Bm at the origin is lower than for ξ = −0.12 but it falls off
slower which yields the same magnetic flux as previous cases. The plot of f near the origin
shows that f still plateaus relatively quickly though less fast than in previous cases.

24



                                                                                 

 

Figure 6: Case ξ = −0.05. f plateaus at a lower VEV than the previous cases. The dip in the
metric function A(r) near the origin is visible but not as pronounced as in previous cases. The
magnetic field Bm has a profile that yields the same magnetic flux as previous cases. The plot
of f near the origin now shows that f is no longer plateauing quickly (it needs to extend more
before reaching its VEV).
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Figure 7: Case ξ = 0. The non-minimal coupling term is turned off. The VEV is therefore
equal to v = 1. The dip in the metric function A(r) near the origin is still visible. The magnetic
field Bm extends further out but yields the same magnetic flux as previous cases. The plot of f
near the origin shows that f is still rising and requires more radial distance before it plateaus
to its VEV).
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Figure 8: Case ξ = 0.05. The regular plot of f vs. r now has a computational boundary of
R = 40 whereas in all previous cases it was R = 12. This is because f reaches its VEV now
much slower and one needs to extend the computational boundary so that f can reach its VEV
to the same level of accuracy. The plot of f near the origin shows that f has a large slope and
is also far from its plateau value so that it requires significantly more radial distance before
it plateaus to its VEV. The numerical values of the metric function A show that there is an
extremely tiny dip right near the origin but this is not visible on the plot. The magnetic field
Bm, just like f , extends further out than all previous cases.
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Figure 9: Case ξ = 0.07. The regular plot of f vs. r has a computational boundary of R = 90.
The plot of f near the origin shows that f is now quite far from its plateau value. It requires
now a larger radial distance before it plateaus to its VEV. There is no longer any dip in the
metric function A: the numerical values show A(r) increases monotonically. The magnetic
field Bm, just like f , extends out much further than previously.
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Figure 10: Case ξ = 0.09. This is the second largest ξ in our sample and we are now getting
quite close to the critical coupling ξc ≈ 0.0952 where the derivative of the VEV with respect to
ξ diverges. The change from ξ = 0.07 to ξ = 0.09 is therefore large. The regular plot of f vs.
r has a significantly larger computational boundary of R = 800. The plot of f near the origin
shows that f is very far from its plateau value. It requires now a very large radial distance
before it plateaus to its VEV. Again, there is no longer any dip in the metric function A and
it increases monotonically. The magnetic field Bm, just like f , extends out again much further
than previously.
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Figure 11: Case ξ = 0.095. This is the largest ξ in our sample and is very close to the
critical coupling ξc ≈ 0.0952. Since we are near the critical point, the change from ξ = 0.09 to
ξ = 0.095 is very large. The plot of f near the origin shows that f is again very far from its
plateau value; this is why the regular plot of f vs. r requires an extremely large computational
boundary of R = 5 × 106. This is the radius required for f to reach its VEV to the same
level of accuracy as the other cases. The “extension” of f (a measure of the radius required to
reach the VEV) has therefore increased enormously as ξ approached near the critical coupling
ξc and this is analogous to the divergence of the coherence length in GL mean-field theory as
one approaches the critical temperature Tc.
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Table 1: We present data for ξ ranging from −0.14 to 0.095 (near the critical coupling ξc =
2/21 ≈ 0.0952). The theoretically predicted values of the VEV veff and cosmological constant
Λeff calculated using (7) and (8) respectively match the numerical values to within three
or four decimal places. The peak value of the magnetic field occurs at the origin and also
decreases monotonically as ξ increases. The magnetic flux obtained by integrating numerically
over the magnetic field profile remains constant despite the different profiles and its numerical
value matches the theoretically expected value of Φ = 2π n/e = 2.0944 to within three or four
decimal places. This provides a very strong check on our numerical simulation. The ADM
mass increases from ξ = 0.095 to ξ = −0.12 but this trend does not extend all the way to
ξ = −0.14; this is due to a significant negative gravitational binding energy in the case of
ξ = −0.14 (see body of text for more details).
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Figure 12: Plot of the numerical value of the VEV vs. ξ. The data points trace out a curve
similar to the plot in fig. 1 of the VEV vs. ξ that was obtained theoretically and similar to
the curve in fig. 2 of the order parameter vs. temperature in GL mean-field theory. The VEV
decreases monotonically and its slope gets steeper (more negative) as ξ increases towards the
critical coupling. The data points near ξc obey the power law veff ∝ (ξc − ξ)1/2 (see body of
text above for exact comparison); this confirms that our system undergoes critical phenomena
with a critical exponent of 1/2.

Figure 13: Plot of peak magnetic field vs. ξ. Like the VEV, it decreases monotonically as ξ
increases but in sharp contrast to the VEV, its slope gets flatter (less negative) as ξ increases
towards the critical coupling. Therefore, the peak magnetic field does not act like an order
parameter.
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Figure 14: Plot of mass M vs. ξ. Near the critical coupling, this plot looks similar to the one
for the VEV; in particular, its slope gets steeper (more negative) as ξ increases towards the
critical coupling. The mass increases as ξ decreases but unlike the VEV, this trend stops when
we get to the most negative point, ξ = −0.14, where the mass is less than for ξ = −0.12 due
to gravity’s effect (see discussion in body of text).
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7.2.1 Extension of scalar field and magnetic field and divergence at critical cou-
pling ξc

We have already mentioned that as ξ increases towards the critical coupling, the scalar field
and magnetic field extend further out. In the case of the scalar field, this means it rises slower
and plateaus at its VEV over a longer radius. For the magnetic field, it means that starting
from its peak at the origin, it decreases towards zero in a slower fashion, again over a longer
radius. In short, the core region of the vortex occurs over a longer spartial range as ξ gets
larger.

To make this more quantitative, we will define the extension rf of the scalar field to be the
radius where it reaches 99.9% of its VEV and define the extension rB of the magnetic field to
be the radius where it has fallen to 0.1% of it its peak value (i.e. decreased by 99.9% from
its peak at the origin). We plot in fig 15 the scalar field extension rf vs. ξ and in fig. 16 the
magnetic field extension rB vs. ξ. In both cases, there is a very rapid increase in the extension
when ξ is near the critical coupling ξc. We will see that the extension actually diverges at the
exact value of ξ = ξc = 2/21. This is reminiscent of the divergence of the coherence length in
GL mean-field theory at the critical temperature Tc.

Figure 15: Extension of the scalar field f(r) as a function of ξ. Note the rapid increase in the
extension as one approaches near the critical coupling ξc ≈ 0.0952. The extension is expected
to diverge at the exact value of ξc = 2/21.

We will now show analytically that f(r) approaches the VEV in the slowest fashion possible
in the limit when ξ approaches ξc. If we let f(r) = veff − β(r) asymptotically, we know that
β(r) is given by (41) which we rewrite for convenience below

β(r) = c r

−1−
[−αeff Λeff + 2αeff v

2
eff λ− 64 v2eff Λeff ξ

2

−αeff Λeff − 16 v2eff Λeff ξ2

]1/2
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Figure 16: The extension of the magnetic field Bm(r) as a function of ξ. Here also there is a
rapid increase in the extension as one approaches near the critical coupling ξc ≈ 0.0952. The
extension is expected to diverge at the exact value of ξc = 2/21.

= c r−1−P
1/2

(46)

where P is the quantity in square brackets. Since αeff > 0 and Λeff < 0, all the terms in the
numerator and denominator in the square brackets are positive. It should be clear that P ≥ 1.
We have that β approaches zero asymptotically as 1/r1+P

1/2
. When ξ → ξc, we have that

veff → 0 and P → 1. Therefore, as ξ → ξc, β decreases as 1/r2 asymptotically which is the
slowest fall-off it can have which translates to the slowest approach that f can have towards
its VEV.

Now rf is the extension, defined as the radius where f = 0.999 veff so that r1+P
1/2

f is propor-
tional to 1/(0.001 veff ). This diverges as ξ → ξc since veff → 0. It is therefore expected that
the extension rf diverges at the critical coupling ξc in accordance with the trend in fig. 15.

Asymptotically we have that a(r) = n − ε(r) where ε is given by (40). The magnetic field
is given by Bm =

√
A(r) a′(r)/(e r). Asymptotically, A(r) → −Λeff r

2 and a′(r) → −ε′(r)

so that Bm falls off asymptotically as r
−

e veff

(−Λeff )1/2
−1

. As ξ → ξc, we have that veff → 0 so
that Bm falls off as 1/r which is the slowest fall-off possible. The extension rB is therefore
proportional to the inverse of the peak magnetic field as ξ → ξc. Our numerical results show
that the peak value of the magnetic field at the origin keeps decreasing (towards zero) as ξ → ξc
so that the extension rB tends to infinity. This agrees with the fact that the magnetic flux can
remain constant as the peak magnetic field at the origin decreases to zero only if the magnetic
field has an infinite extension.
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7.3 Plot of vortex profiles and magnetic field in asymptotically Minkowski
spacetime

We now consider the role the coupling ξ plays for the case of asymptotically Minkowski space-
time. This corresponds to Λ = 0 which as we have seen, implies Λeff = 0. As previously
mentioned, there is no critical coupling for asymptotically Minkowski spacetime. The VEV
is expected to remain constant at veff = v = 1 and the cosmological constant is expected
to remain at Λeff = 0 i.e. the VEV veff and Λeff have no dependence on ξ in contrast to
the AdS3 case. We run numerical simulations for different values of ξ with the same set of
parameters as before: λ = 1, e = 3, n = 1, v = 1 and α = 1. The only difference is that Λ = 0
now (instead of the Λ = −1 we used in the AdS3 case). We work again in natural units. As
before, the parameters and quantities like the radius, mass and magnetic field are quoted as
numbers but one should think of a unit attached to them5.

We made plots for five different cases: ξ = {−0.4,−0.2, 0.0, 0.2, 0.4}. The plots of the scalar
field f and the gauge field a all plateau at unity regardless of ξ. We also plot the magnetic
field whose profile depends on ξ. The most important plot by far is the one for the metric
A which plateaus asymptotically to a constant value (which we previously labeled D). The
profile of the metric here (starting at unity at the origin and then plateauing to 0 < D < 1)
is in stark contrast to the AdS3 case where the metric had an r2 dependence asymptotically.
The constant D can only be obtained numerically (by running the simulation) and it changes
with ξ. Since the deficit angle depends on D via (34), the deficit angle depends on ξ. We
also calculate the mass Mflat of the vortex via (33). The constant D, the deficit angle δ, the
mass Mflat as well as the peak value of the magnetic field are presented in table 2. In 2 + 1-
dimensional General Relativity in asymptotically Minkowski spacetime, there is the classic
result due to Deser et al. [7] that a point mass produces a deficit angle proportional to the
mass. The ratio of mass to deficit angle is equal to 2 α = 1/(8πG) and is a constant since
Newton’s constant G does not change as the mass changes. In contrast, for the vortex with
non-minimal coupling, the ratio of mass to deficit angle is not constant but depends on ξ: it
is equal to 2αeff = 2(α + v2 ξ) = 2 (1 + ξ) where we substituted the values α = 1 and v = 1
for our parameters. A striking consequence is that it is possible for a larger mass to actually
produce a smaller deficit angle compared to a smaller mass. For example, in table 2, the case
at ξ = −0.4 has the largest deficit angle of 1.894 rad in our sample and has a mass of 2.273
whereas the case at ξ = 0.4 has a smaller deficit angle of 1.225 rad but the largest mass of

5In Minkowski spacetime, the appropriate length scale is set by the VEV v. In particular, e v r is dimensionless
where r is the radius. Though e and v are quoted as numbers one should think of e v as having a unit x of
dimension [L]−1 attached to it. It follows then that the radius r has units of x−1 which has the correct
dimensions of [L]. The mass is proportional to the VEV squared and is therefore expressed in units of x which

has the correct dimension of [L]−1. The magnetic field Bm =
√
Aa′

e r
is expressed in units of x3/2 which has the

correct dimensions of [L]−3/2. As before, λ/e2 is dimensionless.
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3.430 in our sample which is roughly 1.5 times greater than our former case.
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Figure 17: Flat case ξ = −0.4. We plot the metric A, the magnetic field Bm and the scalar
f and gauge field a. Since the VEV of the scalar field is always unity, it plateaus at unity
regardless of the value of ξ. The gauge field a always plateaus at unity also since n = 1 for
all ξ. We therefore show the scalar and gauge field profile here but not in subsequent figures,
since they are roughly similar. The metric profile plateaus at D = 0.488 which yields a deficit
angle of 1.894 rad, the largest deficit angle in our sample but not the one with the highest mass
(see table 2). The magnetic field peaks at 1.43, which is the highest peak in our sample. This
implies that it extends the least (falls off fastest) since the magnetic flux remains constant at
Φ = 2πn/e = 2.0944 to within three or four decimal places.
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Figure 18: Flat case ξ = −0.2. The metric A plateaus at D = 0.615 yielding a deficit angle
1.356 rad, the second largest deficit angle in our sample. The magnetic field peaks at 1.092,
the second largest peak in our sample.
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Figure 19: Flat case ξ = 0. The non-minimal coupling is turned off here. The metric A
plateaus at D = 0.668 yielding a deficit angle of 1.148. The magnetic field peaks at 0.962 and
is less than the previous case.
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Figure 20: Flat case ξ = 0.2. The metric A plateaus at D = 0.668, the same value as the
previous case. It therefore also has a deficit angle of 1.148. It has a peak magnetic field of
0.950 which is less than the previous case. Up to here so far, there has been a trend: the
peak of the magnetic field has monotonically decreased and the deficit angle has decreased or
remained the same.
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Figure 21: Flat case ξ = 0.4. This case departs from the above decreasing trend. The metric
plateaus at D = 0.648 yielding a deficit angle of 1.225 rad and a peak magnetic field of 0.987:
both are greater than in the previous two cases.
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Coupling  
𝜉𝜉 

D  
(plateau value of metric A) 

𝛿𝛿 
Deficit Angle (rad) 

Mass Peak value 
of magnetic 

field 
-0.4 0.488 1.894 2.273 1.433 
-0.2 0.615 1.356 2.170 1.092 
0.0 0.668 1.148 2.296 0.962 
0.2 0.668 1.148 2.755 0.950 
0.4 0.648 1.225 3.430 0.987 

 

Table 2: The most important thing about this table is that the deficit angle is not proportional
to the mass. Compare the first and last row. At ξ = −0.4 one has the largest deficit angle of
1.894 rad with a mass of 2.273 whereas at ξ = +0.4 the mass is significantly higher at 3.430
and yet it has a much smaller deficit angle of 1.225 rad. With the non-minimal coupling term
present, the ratio of mass to deficit angle is not constant but depends on ξ (see body of text).
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8 Conclusion

In this paper, we studied the effects of the non-minimal coupling term ξ R |φ|2 on a vortex
under Einstein gravity in an AdS3 and flat (conical) background. In the case of AdS3, this led
to the emergence of a critical coupling ξc where the VEV of the scalar field is zero for ξ at or
above ξc but is non-zero when ξ crosses below ξc. For the values of our parameters, ξc was
equal to 2/21 ≈ 0.0952. We presented our numerical results in plots and tables for nine values
of ξ. Our plot of the numerically obtained VEV versus ξ was in accord with the theoretical
expectation that the slope has a discontinuity and diverges at the critical coupling ξc. For
ξ near ξc, we verified numerically that the VEV indeed behaved according to the power law
|ξ− ξc|1/2. These results confirmed the idea that the critical coupling ξc acts like the analog of
the critical temperature Tc in GL mean-field theory. In that theory, the order parameter is zero
at or above Tc and is non-zero below Tc and behaves according to the power law |T−Tc|1/2. The
plot of the order parameter versus temperature T also shows a discontinuity and divergence
in the slope near Tc. Numerical results of the “extension” of the scalar field (core region of
the vortex) show that it increases monotonically as ξ increases, with a dramatic increase near
ξc. We showed analytically that it is expected to diverge at the critical coupling and this is
analogous to the divergence of the coherence length in GL mean-field theory as one approaches
the critical temperature.

In asymptotically flat (conical) spacetime, we considered five values of ξ and remarkably, found
that higher masses did not necessarily lead to a higher deficit angle as one might naively expect.
The reason for this is that, when a non-minimal coupling term is present, the ratio of mass to
deficit angle is no longer constant but depends on the coupling ξ. This can lead to cases where
a higher mass has a smaller deficit angle than a smaller mass as our data clearly showed.

If ξc acts as the analog to Tc in GL mean-field theory, this naturally raises the question, “Is
the non-minimally coupled vortex a thermodynamic system at non-zero temperature?”. The
answer is clearly no. The Nielsen-Olesen vortex without gravity constitutes a static classical
field configuration which is at zero temperature and has zero entropy. The zero temperature
agrees with the fact that the fields have no average kinetic energy and the zero entropy is in
accord with the fact we know everything about the field’s configuration throughout spacetime;
we are not ignorant of its configuration at any time and no information is hidden from us.
The zero entropy is of course consistent with the zero temperature. When gravity is included,
this can change only if the vortex acquires an event horizon. However, our gravitating vortex
solutions are non-singular static solutions with no event horizon. The temperature and entropy
are again zero and as before, the metric field, as well as the scalar and gauge field, are static
throughout all of spacetime. In contrast, the BTZ black hole [8,9] has a non-zero temperature
and entropy as it has an event horizon (for simplicity, assume no angular momentum or electric
charge, only mass with a single horizon). Note that the BTZ spacetime has a timelike Killing
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vector outside the event horizon but like the Schwarzschild black hole in 3 + 1 dimensions,
it has no timelike Killing vector inside the event horizon [17]. This implies that there is no
coordinate transformation that can put the metric in static form inside the event horizon so
that an outside observer is ignorant of the metric configuration inside at any particular time.
Simply put, information is hidden from us behind the event horizon [21]. Note that in contrast,
our non-singular gravitating static vortex has a timelike Killing vector throughout spacetime
and no information is hidden from us (see also [18–20] for a related discussion).

The vortex actually constitutes a classical solution in quantum field theory (QFT) [16]. The
vortex cannot be obtained from perturbative QFT as it is a non-perturbative solution. It
turns out that since the size of the vortex is much larger than its compton wavelength, the
classical non-perturbative solution constitutes a valid solution to the QFT (i.e. a very good
first approximation) [16]. Perturbation theory can then be used to obtain one-loop quantum
corrections to the vortex by quantizing about the classical configuration. In particular, quan-
tum fluctuations of the scalar field will change the nature of the potential as there will now be
logarithmic terms besides the usual terms [22, 23]. The critical exponent of 1/2 will therefore
change as a consequence of these quantum corrections. So an interesting and pertinent problem
to solve for the future is to determine the critical exponent of the non-minimally coupled vortex
in an AdS3 background after quantum corrections. This would be a considerably more com-
plicated calculation than say the quantization about the 1 + 1-dimensional kink in Minkowski
spacetime [16] as we have one extra spatial dimension and a curved space background.
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A Derivation of the VEV veff and cosmological constant Λeff

In this appendix we derive the expressions for veff and Λeff given by equations (7) and (8)
respectively. We start by rewriting the equations (5) and (6) where veff and Λeff are expressed
in terms of each other:

v2eff = v2 +
12 ξ Λeff

λ
. (A.1)

α(R− 2 Λ) + ξ R v2eff −
λ

4
(v2eff − v2)2 = (α+ ξ v2eff )(R− 2 Λeff ) . (A.2)

We first substitute the asymptotic value of the Ricci scalar, R = 6 Λeff , into (A.2) which yields

Λeff =
αΛ +

λ

8
(v2eff − v2)2

α+ ξ v2eff
. (A.3)

Substituting (A.3) into (A.1) yields a quadratic equation for v2eff :

λξ (v2eff )2 − 2λ(α+ 2v2ξ) v2eff + 2 v2αλ+ 3 v4λξ + 24αΛξ = 0 . (A.4)

This yields the following two possible solutions for v2eff (which we label I and II):

I: 2v2 +
α

ξ
−
√
α2 + 2v2αξ + v4ξ2 − 24αΛξ2/λ

ξ
(A.5)

II: 2v2 +
α

ξ
+

√
α2 + 2v2αξ + v4ξ2 − 24αΛξ2/λ

ξ
(A.6)

However, only the first solution satisfies the requirement that veff is equal to v in the limit
ξ → 0. The second solution yields ∞ in that limit and must be disregarded. Taking the
positive of the square root of the first solution yields the quoted result (7) for veff :

veff =

[
2v2 +

α

ξ
−
√
α2 + 2 v2 α ξ + v4 ξ2 − 24αΛ ξ2/λ

ξ

]1/2
(A.7)

Substituting the above solution (A.7) into (A.3) yields the quoted result (8) for Λeff :

Λeff =
λ

12 ξ2

(
α+ v2 ξ −

√
α2 + v4 ξ2 + 2 v2 α ξ − 24αΛ ξ2/λ

)
. (A.8)
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B Full equations of motion

The three equations of motion quoted in the text are (23),(24) and (25). Equation (25) contains
the function W (r) = B′/B and equation (24)contains W and its derivative W ′. We can extract
W from (19) and this yields

W =
1

4e2rA (α+ ξf 2 + 2rξff ′)

(
− e2r2

(
v4λ+ 8αΛ

)
− 2e2(n2 − r2v2λ

− 2na+ a2)f2 − e2r2λf4 − 16e2rξAff ′ + 2A(a′ 2 + e2r2f ′ 2)
)
. (B.1)

Substituting the above expression for W (as well as its derivative) back into (24) and (25)
and keeping (23) the same yields three equations of motion that have no dependence on the
function B. The full three equations are:

e2r2λf4 + e2r (rv4λ+ 8rαΛ + 4αA′) + 2e2f2(n2 − r2v2λ− 2na+ a2 + 2rξA′)

+ 2A (a′ 2 + e2r2(1 + 8ξ)f ′ 2) + 8e2rξf
(
rA′f ′ + 2A (f ′ + rf ′′)

)
= 0 . (B.2)

− 2r2λf3 − 2f
(
n2 − r2v2λ− 2na+ a2 + 2rξA′

)
+ r(rA′f ′ + 2A(f ′ + rf ′′))

+
1

8e4A(α+ ξf(f + 2rf ′))2

(
ξf(e2r2(v4λ+ 8αΛ)− 2Aa′ 2

+ e2(2(n2 − r2v2λ− 2na+ a2)f2 + r2λf4 + 16rξAff ′ − 2r2Af ′ 2))2
)

+
r

4e4A(α+ ξf(f + 2rf ′))2

(
2e2ξfA′(α+ ξf(f + 2rf ′))(e2r2(v4λ+ 8αΛ)− 2Aa′ 2

+ e2(2(n2 − r2v2λ− 2na+ a2)f2 + r2λf4 + 16rξAff ′ − 2r2Af ′ 2))

− e2Af ′(α+ ξf(f + 2rf ′))(e2r2(v4λ+ 8αΛ)− 2Aa′ 2

+ e2(2(n2 − r2v2λ− 2na+ a2)f2 + r2λf4 + 16rξAff ′ − 2r2Af ′ 2))

+
1

r
ξf

(
− e4(r2(v4λ+ 8αΛ) + 2(n2 − r2v2λ− 2na+ a2)f2 + r2λf4)

(r2λf4 + r(rv4λ+ 8rαΛ + 4αA′) + 2f2(n2 − r2v2λ− 2na+ a2 + 2rξA′) + 8r2ξfA′f ′)

− 4e2A(−2e2r2λξf6 − r2(v4λ+ 8αΛ)(a′ 2 + e2(2α+ r2(1− 2ξ)f ′ 2))

− rf4(4e2ξ(−n+ a)a′ + rλa′ 2 + e2rλ(2(α− 2v2ξ) + r2(1 + 6ξ)f ′ 2))

− 2f2(2e2rα(−n+ a)a′ + (n2 − r2v2λ− 2na+ a2)a′ 2 + e2r2(−2v2αλ+ v4λξ + 8αΛξ

+ (1 + 2ξ)(n2 − r2v2λ− 2na+ a2)f ′ 2)) + 2e2r3λξf5(2f ′ + rf ′′)

+ 2e2rf(2(−n2α+ r2(v2αλ+ 2v4λξ + 16αΛξ) + α(2n− a)a)f ′ + r3(v4λ+ 8αΛ)ξf ′′)
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+ 4e2rf3(−(−5n2ξ + r2λ(α+ 3v2ξ) + 5ξ(2n− a)a+ 2rξ(−n+ a)a′)f ′

+ rξ(n2 − r2v2λ− 2na+ a2)f ′′))− 4A2
(
a′ 4 − 16e4rξf(α+ ξf2)f ′

+ 4e2ra′(α+ ξf(f + 2rf ′))a′′ − 2e2ra′ 2(r(−1 + 2ξ)f ′ 2 + 2ξf(6f ′ + rf ′′))

+ e4r2
(
− 16rξff ′ 3 + r2(1− 4ξ)f ′ 4 − 16ξf(α+ ξf2)f ′′

+ 4r(α+ ξf2)f ′f ′′ + 4f ′ 2(α− 4αξ + ξf(f + 20ξf + r2f ′′))
))))

= 0 . (B.3)

2e2r(n− a)f2 − 2Aa′ + ra′A′ + 2rAa′′

+
a′

4e2 (α+ ξf2 + 2rξff ′)

(
− e2r2

(
v4λ+ 8αΛ

)
− 2e2

(
n2 − r2v2λ− 2na+ a2

)
f2 − e2r2λf4 − 16e2rξAff ′ + 2A

(
a′ 2 + e2r2f ′ 2

) )
= 0 .

(B.4)

The above three equations are those we solve numerically.
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