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Abstract: We discuss some aspects of the metric configuration space in quantum gravity
in the background field formalism. We give a necessary and sufficient condition for the
parameterization of Euclidean metric fluctuations such that i) the signature of the metric is
preserved in all configurations that enter the gravitational path integral, and ii) the param-
eterization provides a bijective map between full Euclidean metrics and metric fluctuations
about a fixed background. For the case of foliatable manifolds, we show how to parameter-
ize fluctuations in order to preserve foliatability of all configurations. Moreover, we show
explicitly that preserving the signature on the configuration space for the Lorentzian quan-
tum gravitational path integral is most conveniently achieved by inequality constraints. We
discuss the implementation of these inequality constraints in a non-perturbative renormal-
ization group setup.
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1 Introduction

The arguably most conservative framework to develop a quantum theory of gravity is to
quantize the metric within a path integral formalism [1–4]. In order to define the quantum
gravitational path integral, a configuration space must be chosen. For instance, one could
restrict the spacetime dimensionality and topology as well as the signature of the metric,
e.g., summing over Lorentzian spacetimes with trivial spacetime topology only. One might
further restrict the gravitational path integral, for example, by summing over globally
hyperbolic spacetimes only.

These conditions select a subset of the space of all metrics, constraining the integration
domain in the path integral. Imposing such constraints is complicated by the fact that the
path integral also requires a regularization. The unregularized path integral is ill-defined,
and therefore it is crucial to understand how constraints and regularization can both be
implemented in the path integral at the same time.

Defining a regularization requires to thin out the configuration space appropriately, such
that in the limit of vanishing thinning parameter, the full configuration space is recovered.
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The thinning should be implemented in such a way that at finite thinning parameter, the
resulting path integral is finite. Further, it is desirable that the thinning is physically
meaningful, in that the selected configurations should be physically relevant. The latter
property is expected to be key to obtain robust approximations.

In the context of a quantum field theory on a flat background the regularization can
be implemented, after Wick-rotating to Euclidean signature, via an ultraviolet cutoff in
momentum space.1 This is tied to a local notion of coarse-graining, where locality refers to
a background metric.

Regularizing the quantum gravitational path integral is a more subtle issue than it is in
“standard” quantum field theories. In continuum, metric2 approaches to quantum gravity,
the thinning procedure comes at considerable extra cost, as it typically requires the intro-
duction of a background metric, for potential alternatives see [6, 7]. A background metric is
not a natural notion in quantum gravity, unless one explores only the strictly perturbative
regime. Otherwise, all configurations of spacetime should be treated on the same footing,
thus preserving background independence. In a manifestly background-independent path
integral over metrics there is no notion of locality, and thus local coarse-graining requires
the introduction of a distinguished metric using background field techniques [8, 9].3

Therefore we are led to the challenge of restricting the configuration space of metric
fluctuations, within the background field formalism in such a way that the regularization
is consistent with imposing the constraints, e.g., on spacetime signature and topology.

For our discussion it is useful to distinguish two different types of constraints. The first
type are “equality constraints” where allowed configurations have to satisfy a strict equality.
These are the standard constraints encountered in classical mechanics (e.g., the mass of a
pendulum is constrained to be on a circle of a given radius, the string length). In a quantum
field theory setup, such constraints can be implemented using Dirac delta distributions. To
this end, one can perform a constraint analysis à la Dirac [18, 19], determine the full set
of second class constraints, and implement them at the level of the path integral using
the Senjanovic method [20]. The second type of constraints, and the most relevant for
the present discussion, are “inequality constraints” where allowed configurations have to
satisfy an inequality. The equivalent in classical mechanics would be, e.g., a ball bouncing
off a hard surface (see, e.g., [21] for an implementation in the quantum-mechanical path
integral). A prominent example for an inequality constraint in gravity is the restriction
of metric fluctuations such that the signature of the full metric stays fixed. It is a main
goal of this article to understand how this type of constraints can be implemented in the

1A cutoff on the eigenmodes of the covariant Laplacian with respect to the background metric is a
natural generalization to the case of a non-trivial background metric which admits a Wick rotation, see,
e.g., [5] for a discussion of the latter requirement.

2Similar arguments may hold in cases where the fundamental degrees of freedom are not described by
the metric, but by other fields, such as the vielbein, torsion, holonomies, or the affine connection.

3Avoiding the introduction of a background metric leads to pregeometric settings [10–14], where the
use of non-metric degrees of freedom allows to coarse-grain in a background independent way, see, e.g.,
[15–17]. As a drawback, the connection to continuous geometries becomes a highly non-trivial one. Thus,
restrictions on the configuration space of geometries can become highly challenging to interpret in this
pregeometric context.
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gravitational path integral, see also [22–26].
This paper is organized as follows: In section 2 we discuss some preliminaries on the

path integral, illustrate the problem and introduce our notation. In section 3, we first
highlight our strategy to best implement inequality constraints on the space of field config-
urations: finding a suitable parameterization of the fluctuations such that the path integral
can be taken over the unconstrained fields. We then discuss the construction of signature-
preserving metric parameterizations in Euclidean quantum gravity. We show that there
are infinitely many possible parameterizations which define bijective maps from the space
of real symmetric fluctuation fields to Euclidean metrics of a given topology, given a back-
ground metric of the same topology. As has been emphasized before [27, 28], the linear
parameterization is not one of them, while the exponential one [27–30] is. In section 4, we
then explore how to impose the constraint that a foliation exists in a consistent and covari-
ant way, extending previous work in [31].4 In particular, we show that a foliation structure,
where all fluctuations preserve the signature of the full metric, can be implemented by a
suitable choice of parameterization, without adding additional constraints to the path inte-
gral. We turn our attention to Lorentzian signature in section 5 and discover that beyond
the perturbative setting there are severe obstructions to the construction of a bijective map
between the space of real symmetric fluctuation fields and the space of Lorentzian metrics,
generalizing the discussion of the exponential parameterization in [32]. In particular, we
present an explicit example showing why the Euclidean strategy is doomed to fail in the
Lorentzian case. This suggests that using the background field method in the Lorentzian
setup requires a direct implementation of an inequality constraint. We illustrate how this
can be done within the Functional Renormalization Group (FRG) framework in section 6 in
the case of a scalar field theory subject to an inequality constraint, and we derive a modified
version of the FRG equation [9, 33–35] which takes the inequality constraint into account.
Finally, we discuss and summarize our findings in section 7.

2 The path integral over metrics

In this section we motivate the necessity of finding a bijective map between a background
metric and the full metric on the level of the gravitational path integral.

Our discussion focuses on approaches to quantum gravity that are based on a path
integral over spacetime metric configurations. One difficulty in this approach is that the
gravitational path integral

Z =

∫
Dgµν eiS[gµν ] , (2.1)

where S is the gravitational action, is ill-defined, as it misses a regularization. Lattice
methods to evaluate the path integral of quantum gravity, such as Euclidean or Causal

4At the level of a classical Lagrangian or Hamiltonian, the correct implementation of a constraint such
as a foliation structure requires to first identify all constraints via the Dirac analysis. At the level of an
off-shell path integral however, it is not clear that the Dirac analysis is necessary. In particular, one could
first aim at resumming all quantum fluctuations, and determine the full set of constraints at the level of
the effective Lagrangian only.
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space of Lorentzian metrics gµ⌫
<latexit sha1_base64="Sr5gm0mcYboPHAW7/98qTid2/bk=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKWxEUG9BLx4juCaYXcLsZDYZMjO7zEMIS/7CiwcVr36ON//GSbIHTSxoKKq66e6KM8608f1vr7Syura+Ud6sbG3v7O5V9w8edGoVoQFJeao6MdaUM0kDwwynnUxRLGJO2/HoZuq3n6jSLJX3ZpzRSOCBZAkj2DjpcdDLQ2FDaSe9as2v+zOgZdIoSA0KtHrVr7CfEiuoNIRjrbsNPzNRjpVhhNNJJbSaZpiM8IB2HZVYUB3ls4sn6MQpfZSkypU0aKb+nsix0HosYtcpsBnqRW8q/ud1rUkuo5zJzBoqyXxRYjkyKZq+j/pMUWL42BFMFHO3IjLEChPjQqq4EBqLLy+T4Kx+VffvzmvN6yKNMhzBMZxCAy6gCbfQggAISHiGV3jztPfivXsf89aSV8wcwh94nz9jOJDs</latexit><latexit sha1_base64="Sr5gm0mcYboPHAW7/98qTid2/bk=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKWxEUG9BLx4juCaYXcLsZDYZMjO7zEMIS/7CiwcVr36ON//GSbIHTSxoKKq66e6KM8608f1vr7Syura+Ud6sbG3v7O5V9w8edGoVoQFJeao6MdaUM0kDwwynnUxRLGJO2/HoZuq3n6jSLJX3ZpzRSOCBZAkj2DjpcdDLQ2FDaSe9as2v+zOgZdIoSA0KtHrVr7CfEiuoNIRjrbsNPzNRjpVhhNNJJbSaZpiM8IB2HZVYUB3ls4sn6MQpfZSkypU0aKb+nsix0HosYtcpsBnqRW8q/ud1rUkuo5zJzBoqyXxRYjkyKZq+j/pMUWL42BFMFHO3IjLEChPjQqq4EBqLLy+T4Kx+VffvzmvN6yKNMhzBMZxCAy6gCbfQggAISHiGV3jztPfivXsf89aSV8wcwh94nz9jOJDs</latexit><latexit sha1_base64="Sr5gm0mcYboPHAW7/98qTid2/bk=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKWxEUG9BLx4juCaYXcLsZDYZMjO7zEMIS/7CiwcVr36ON//GSbIHTSxoKKq66e6KM8608f1vr7Syura+Ud6sbG3v7O5V9w8edGoVoQFJeao6MdaUM0kDwwynnUxRLGJO2/HoZuq3n6jSLJX3ZpzRSOCBZAkj2DjpcdDLQ2FDaSe9as2v+zOgZdIoSA0KtHrVr7CfEiuoNIRjrbsNPzNRjpVhhNNJJbSaZpiM8IB2HZVYUB3ls4sn6MQpfZSkypU0aKb+nsix0HosYtcpsBnqRW8q/ud1rUkuo5zJzBoqyXxRYjkyKZq+j/pMUWL42BFMFHO3IjLEChPjQqq4EBqLLy+T4Kx+VffvzmvN6yKNMhzBMZxCAy6gCbfQggAISHiGV3jztPfivXsf89aSV8wcwh94nz9jOJDs</latexit>

space of Euclidean metrics gµ⌫
<latexit sha1_base64="Sr5gm0mcYboPHAW7/98qTid2/bk=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKWxEUG9BLx4juCaYXcLsZDYZMjO7zEMIS/7CiwcVr36ON//GSbIHTSxoKKq66e6KM8608f1vr7Syura+Ud6sbG3v7O5V9w8edGoVoQFJeao6MdaUM0kDwwynnUxRLGJO2/HoZuq3n6jSLJX3ZpzRSOCBZAkj2DjpcdDLQ2FDaSe9as2v+zOgZdIoSA0KtHrVr7CfEiuoNIRjrbsNPzNRjpVhhNNJJbSaZpiM8IB2HZVYUB3ls4sn6MQpfZSkypU0aKb+nsix0HosYtcpsBnqRW8q/ud1rUkuo5zJzBoqyXxRYjkyKZq+j/pMUWL42BFMFHO3IjLEChPjQqq4EBqLLy+T4Kx+VffvzmvN6yKNMhzBMZxCAy6gCbfQggAISHiGV3jztPfivXsf89aSV8wcwh94nz9jOJDs</latexit><latexit sha1_base64="Sr5gm0mcYboPHAW7/98qTid2/bk=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKWxEUG9BLx4juCaYXcLsZDYZMjO7zEMIS/7CiwcVr36ON//GSbIHTSxoKKq66e6KM8608f1vr7Syura+Ud6sbG3v7O5V9w8edGoVoQFJeao6MdaUM0kDwwynnUxRLGJO2/HoZuq3n6jSLJX3ZpzRSOCBZAkj2DjpcdDLQ2FDaSe9as2v+zOgZdIoSA0KtHrVr7CfEiuoNIRjrbsNPzNRjpVhhNNJJbSaZpiM8IB2HZVYUB3ls4sn6MQpfZSkypU0aKb+nsix0HosYtcpsBnqRW8q/ud1rUkuo5zJzBoqyXxRYjkyKZq+j/pMUWL42BFMFHO3IjLEChPjQqq4EBqLLy+T4Kx+VffvzmvN6yKNMhzBMZxCAy6gCbfQggAISHiGV3jztPfivXsf89aSV8wcwh94nz9jOJDs</latexit><latexit sha1_base64="Sr5gm0mcYboPHAW7/98qTid2/bk=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKWxEUG9BLx4juCaYXcLsZDYZMjO7zEMIS/7CiwcVr36ON//GSbIHTSxoKKq66e6KM8608f1vr7Syura+Ud6sbG3v7O5V9w8edGoVoQFJeao6MdaUM0kDwwynnUxRLGJO2/HoZuq3n6jSLJX3ZpzRSOCBZAkj2DjpcdDLQ2FDaSe9as2v+zOgZdIoSA0KtHrVr7CfEiuoNIRjrbsNPzNRjpVhhNNJJbSaZpiM8IB2HZVYUB3ls4sn6MQpfZSkypU0aKb+nsix0HosYtcpsBnqRW8q/ud1rUkuo5zJzBoqyXxRYjkyKZq+j/pMUWL42BFMFHO3IjLEChPjQqq4EBqLLy+T4Kx+VffvzmvN6yKNMhzBMZxCAy6gCbfQggAISHiGV3jztPfivXsf89aSV8wcwh94nz9jOJDs</latexit>

space of real 
symmetric tensors

space of real symmetric tensors hµ⌫
<latexit sha1_base64="hMhu8m1N9A3XOocCRCuBukPMUvo=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKWxEUG9BLx4juCaYXcLsZDYZMjO7zEMIS/7CiwcVr36ON//GSbIHTSxoKKq66e6KM8608f1vr7Syura+Ud6sbG3v7O5V9w8edGoVoQFJeao6MdaUM0kDwwynnUxRLGJO2/HoZuq3n6jSLJX3ZpzRSOCBZAkj2DjpcdjLQ2FDaSe9as2v+zOgZdIoSA0KtHrVr7CfEiuoNIRjrbsNPzNRjpVhhNNJJbSaZpiM8IB2HZVYUB3ls4sn6MQpfZSkypU0aKb+nsix0HosYtcpsBnqRW8q/ud1rUkuo5zJzBoqyXxRYjkyKZq+j/pMUWL42BFMFHO3IjLEChPjQqq4EBqLLy+T4Kx+VffvzmvN6yKNMhzBMZxCAy6gCbfQggAISHiGV3jztPfivXsf89aSV8wcwh94nz9kxJDt</latexit><latexit sha1_base64="hMhu8m1N9A3XOocCRCuBukPMUvo=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKWxEUG9BLx4juCaYXcLsZDYZMjO7zEMIS/7CiwcVr36ON//GSbIHTSxoKKq66e6KM8608f1vr7Syura+Ud6sbG3v7O5V9w8edGoVoQFJeao6MdaUM0kDwwynnUxRLGJO2/HoZuq3n6jSLJX3ZpzRSOCBZAkj2DjpcdjLQ2FDaSe9as2v+zOgZdIoSA0KtHrVr7CfEiuoNIRjrbsNPzNRjpVhhNNJJbSaZpiM8IB2HZVYUB3ls4sn6MQpfZSkypU0aKb+nsix0HosYtcpsBnqRW8q/ud1rUkuo5zJzBoqyXxRYjkyKZq+j/pMUWL42BFMFHO3IjLEChPjQqq4EBqLLy+T4Kx+VffvzmvN6yKNMhzBMZxCAy6gCbfQggAISHiGV3jztPfivXsf89aSV8wcwh94nz9kxJDt</latexit><latexit sha1_base64="hMhu8m1N9A3XOocCRCuBukPMUvo=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKWxEUG9BLx4juCaYXcLsZDYZMjO7zEMIS/7CiwcVr36ON//GSbIHTSxoKKq66e6KM8608f1vr7Syura+Ud6sbG3v7O5V9w8edGoVoQFJeao6MdaUM0kDwwynnUxRLGJO2/HoZuq3n6jSLJX3ZpzRSOCBZAkj2DjpcdjLQ2FDaSe9as2v+zOgZdIoSA0KtHrVr7CfEiuoNIRjrbsNPzNRjpVhhNNJJbSaZpiM8IB2HZVYUB3ls4sn6MQpfZSkypU0aKb+nsix0HosYtcpsBnqRW8q/ud1rUkuo5zJzBoqyXxRYjkyKZq+j/pMUWL42BFMFHO3IjLEChPjQqq4EBqLLy+T4Kx+VffvzmvN6yKNMhzBMZxCAy6gCbfQggAISHiGV3jztPfivXsf89aSV8wcwh94nz9kxJDt</latexit>
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�µ⌫
<latexit sha1_base64="5vsqkHHZVd++PgqktesN6Eq+Cik=">AAAB93icbVDLSsNAFJ3UV62PRl26GSyCq5KIoO6KblxWMFpoQphMJu3QmUmYh1BDv8SNCxW3/oo7/8Zpm4W2HrhwOOde7r0nKRhV2vO+ndrK6tr6Rn2zsbW9s9t09/bvVW4kJgHOWS57CVKEUUECTTUjvUISxBNGHpLR9dR/eCRS0Vzc6XFBIo4GgmYUI22l2G2GKWEaxWXITSjMJHZbXtubAS4TvyItUKEbu19hmmPDidCYIaX6vlfoqERSU8zIpBEaRQqER2hA+pYKxImKytnhE3hslRRmubQlNJypvydKxJUa88R2cqSHatGbiv95faOzi6ikojCaCDxflBkGdQ6nKcCUSoI1G1uCsKT2VoiHSCKsbVYNG4K/+PIyCU7bl23v9qzVuarSqINDcAROgA/OQQfcgC4IAAYGPINX8OY8OS/Ou/Mxb6051cwB+APn8wewMpNO</latexit><latexit sha1_base64="5vsqkHHZVd++PgqktesN6Eq+Cik=">AAAB93icbVDLSsNAFJ3UV62PRl26GSyCq5KIoO6KblxWMFpoQphMJu3QmUmYh1BDv8SNCxW3/oo7/8Zpm4W2HrhwOOde7r0nKRhV2vO+ndrK6tr6Rn2zsbW9s9t09/bvVW4kJgHOWS57CVKEUUECTTUjvUISxBNGHpLR9dR/eCRS0Vzc6XFBIo4GgmYUI22l2G2GKWEaxWXITSjMJHZbXtubAS4TvyItUKEbu19hmmPDidCYIaX6vlfoqERSU8zIpBEaRQqER2hA+pYKxImKytnhE3hslRRmubQlNJypvydKxJUa88R2cqSHatGbiv95faOzi6ikojCaCDxflBkGdQ6nKcCUSoI1G1uCsKT2VoiHSCKsbVYNG4K/+PIyCU7bl23v9qzVuarSqINDcAROgA/OQQfcgC4IAAYGPINX8OY8OS/Ou/Mxb6051cwB+APn8wewMpNO</latexit><latexit sha1_base64="5vsqkHHZVd++PgqktesN6Eq+Cik=">AAAB93icbVDLSsNAFJ3UV62PRl26GSyCq5KIoO6KblxWMFpoQphMJu3QmUmYh1BDv8SNCxW3/oo7/8Zpm4W2HrhwOOde7r0nKRhV2vO+ndrK6tr6Rn2zsbW9s9t09/bvVW4kJgHOWS57CVKEUUECTTUjvUISxBNGHpLR9dR/eCRS0Vzc6XFBIo4GgmYUI22l2G2GKWEaxWXITSjMJHZbXtubAS4TvyItUKEbu19hmmPDidCYIaX6vlfoqERSU8zIpBEaRQqER2hA+pYKxImKytnhE3hslRRmubQlNJypvydKxJUa88R2cqSHatGbiv95faOzi6ikojCaCDxflBkGdQ6nKcCUSoI1G1uCsKT2VoiHSCKsbVYNG4K/+PIyCU7bl23v9qzVuarSqINDcAROgA/OQQfcgC4IAAYGPINX8OY8OS/Ou/Mxb6051cwB+APn8wewMpNO</latexit>
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Figure 1. We illustrate the space of Lorentzian metrics and the space of Euclidean metrics. It is
the key question of this work whether a one-to-one map exists from the space of real symmetric
tensors hµν to the spaces of metrics of fixed signature. It is known that the linear parameterization
maps to a set that contains both Lorentzian and Euclidean metrics (light grey region), unless one
works in perturbation theory (indicated by dashed lines).

dynamical triangulations (EDT/CDT) [36, 37], implement this regularization via a dis-
cretization of spacetime. Physical quantities are then extracted in the continuum limit, if
it exists. In continuum metric formulations, the ill-defined path integral over the metric
gµν is replaced by one over metric fluctuations hµν around a background metric ḡµν , where
a suitable regularization is implemented, namely:

ZR =

∫
DRhµν eiS[ḡµν ;hµν ] , (2.2)

where we indicated that the measure also includes a regularization. A generic difficulty in
this formulation of quantum gravity is how to make sure that quantum fluctuations hµν of
the metric gµν about a background metric ḡµν extend only over those configurations that
one wants to integrate over. Here, we work under the assumption that only metrics of a
fixed signature (either Euclidean or Lorentzian) should contribute to the gravitational path
integral.5 Our work aims at finding conditions to construct parameterizations of the metric
fluctuations which realize a one-to-one map between the space of real symmetric tensors
hµν and the spaces of metrics of fixed (Euclidean or Lorentzian) signature. Our idea is
summarized in figure 1.

A simpler version of the full path integral (2.2) is typically considered in perturbative
setups, where the metric fluctuations hµν are assumed to be small perturbations around a

5Other possibilities can be considered, see, e.g., [38–40].
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flat background, i.e., gµν = ηµν + hµν . In this effective field theoretical (EFT) approach to
quantum gravity, see, e.g. [41, 42], the regularization of the path integral is implemented via
an explicit UV cutoff, given by the Planck scale. Below the cutoff, a perturbative treatment
of quantum gravity is viable. The EFT only breaks down above the cutoff scale where the
theory becomes strongly coupled. In this case a one-to-one map from the space of real
and symmetric tensors hµν to the space of metrics of fixed signatures indeed exists, since
the perturbative nature of metric fluctuations hµν makes it difficult to flip the signature of
the background metric ḡ ≡ η. Thus, no changes in the signature of gµν = ηµν + hµν are
expected to occur.

A different approximation to evaluate the path integral (2.2) consists of integrating over
symmetry-reduced configurations only. For example, in a minisuperspace setup the action
is reduced to a function of just one variable. The quantization of the resulting action defines
the minisuperspace approach to quantum gravity – widely used in quantum cosmology [43–
47] – and allows to explore the impact of quantum gravity in the early evolution of the
universe in a simplified setup with minimal extra assumptions [48–59].

Finally, asymptotically safe quantum gravity aims at a fully non-perturbative evalu-
ation of a path integral over metric configurations [60] based on diffeomorphism-invariant
gravitational actions. Practical computations are typically performed either using FRG
[9, 61–63] or lattice techniques [36, 37]. In contrast to EDT and CDT, the FRG is a con-
tinuum method implementing a local coarse-graining procedure. It is based on the scale-
dependent effective action Γk, which interpolates between the classical action S and the full
quantum effective action Γk=0 = Γ1PI. The insertion of a regulator functional into the path
integral implements the Wilsonian idea of momentum-shell-wise integration of quantum
fluctuations. The definition of momenta requires the definition of a reference background
metric ḡ. However, this background in principle never needs to be specified explicitly. In
contrast to the EFT treatment of quantum gravity, in asymptotically safe quantum gravity,
metric fluctuations hµν can be of arbitrary size. It needs to be stressed at this point that,
for technical reasons, the local coarse-graining procedure requires the use of Euclidean sig-
nature. The more challenging investigation of Lorentzian Asymptotic Safety with the FRG
is one of the open questions outlined in [64]. First steps towards a Lorentzian formulation
have been taken in [31, 65–74].

3 Parameterizations of metric fluctuations for Euclidean quantum grav-
ity

In this section we discuss the Euclidean version of the path integral (2.2), assuming a suit-
able regularization. Our goal is to construct a bijective map between the full Euclidean
metric gµν of a given topology, and metric fluctuations hµν around a (fixed but arbitrary)
Euclidean background ḡµν of the same topology, such that the Euclidean path integral (2.2)
can be replaced by a regularized path integral over the metric fluctuations hµν . The role
of a fixed topology will be discussed below. This mapping can in principle be implemented
using a linear parameterization, together with an inequality constraint, which only selects
spacetimes of a given signature. However, if the latter is not properly implemented, for
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example due to approximations, the path integral over metric fluctuations can contain de-
generate or Lorentzian metrics, cf. subsection 3.2. By contrast, in perturbative approaches
to quantum gravity, for example in the context of an EFT description of quantum gravity
[41, 42, 75, 76], as well as quantum gravity in 2 + ε dimensions [77–79], the linear param-
eterization without additional constraints is under control. As already mentioned, metric
fluctuations are small in the regime of validity of the perturbative expansion and cannot
change the signature of the background metric. We will discuss the possibility of employing
an inequality constraint beyond the perturbative regime and its practical implementation
in section 6.

In this section we will show that in the Euclidean case there exist infinitely many
bijective maps f(·) between the space of Euclidean metric gµν and the space of symmetric,
real fluctuation fields hµν , which takes the form

gµν = ḡµκf(h··)
κ
ν . (3.1)

Here indices on h are raised and lowered with the background metric ḡ, and the full metric
g and the background metric ḡ are defined on the same connected component, i.e., they
share the same topology. In the following we will restrict ourselves to ultralocal parameter-
izations, i.e., those that do not include derivatives. Furthermore, in order to make a proper
connection to a perturbative expansion, we will require that for small h

f(h··)
µ
ν = δµν + hµν +O(h2) . (3.2)

In the next subsection we will study the conditions the parameterization f has to satisfy in
order to preserve the signature and to map bijectively between Euclidean metrics and real
symmetric matrices. We will find that there are infinitely many parameterizations f that
satisfy these conditions.

Before we dive into the discussion, let us briefly clarify the role of the spacetime topology
of the metric. As already mentioned, in this work we aim at finding maps relating metrics
of the same, fixed topology. This is because with finite fluctuations, the topology cannot
be “changed”.6 Let us stress that restricting the parameterization f to be bijective ensures
that h is finite. In contrast, if one would allow h to diverge, one would be able to connect
metrics of different topologies, contradicting the notion that geometries having different
topologies cannot be deformed continuously into each others. One can also illustrate this by
considering a topological invariant, e.g., the Euler characteristic. Its variation with respect
to the metric vanishes exactly, since it is a total derivative. This directly implies that finite
quantum fluctuations cannot change the topology if we do not take into account boundary
degrees of freedom.7 An inclusion of such boundary terms would be very interesting and
could potentially yield topology changes, but we leave this for future work.

6Here we refer to the change of topology of the four-dimensional spacetime metrics induced by their
fluctuations h, and not to the more commonly discussed change of the spatial, three-dimensional topology
as a function of time.

7Strictly speaking, this would still allow fluctuations which keep the Euler characteristic fixed but
nevertheless change the topology. Here we make the assumption that topology changes are always tied to a
change in an index that in general is contained in the action, and whose metric variation vanishes exactly.
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3.1 Existence of bijective, signature-preserving parameterizations for Euclide-
an gravity

A necessary condition for bijectivity of the parameterization (3.1) is to ensure that g and ḡ
have the same signature. To investigate consequences of this condition, we use Sylvester’s
law of inertia [80]. It states that a symmetric square matrix gµν and another symmetric
square matrix ḡµν have the same number of positive, negative and zero eigenvalues if and
only if they are related by

g = ST ḡS , (3.3)

where S is a real invertible matrix. At first glance, this appears to be a non-covariant
relation. However, assuming that S only depends covariantly on the matrix ḡ−1h, we show
in appendix A that S has the form of a rank-(1,1) tensor, and that the relation (3.3) is
equivalent to

gµν = ḡµρ
[
S(ḡ−1h)2

]ρ
ν
. (3.4)

This is the same as
SµρS

ρ
ν = ḡµρgρν = f(h··)

µ
ν , (3.5)

where we suppressed the arguments, and where we have used (3.1) for the last equality.
This implies that parameterizations f that preserve the signature have to be the square of
an invertible matrix S.

In what follows we discuss the conditions that bijectivity imposes on the parameteri-
zation f . Specifically, we will use the fact that positive-definite matrices like the Euclidean
metrics g and ḡ possess a unique positive-definite square root.8 Let us multiply (3.5) from
the left by this unique square root of ḡ, and from the right by its inverse,

√
ḡ−1 g

√
ḡ−1 =

√
ḡ f(ḡ−1 h)

√
ḡ−1 . (3.6)

We now assume that f and S have the following property:

√
ḡf(ḡ−1h)

√
ḡ−1 = f(

√
ḡ−1h

√
ḡ−1) , (3.7)

√
ḡS(ḡ−1h)

√
ḡ−1 = S(

√
ḡ−1h

√
ḡ−1) . (3.8)

This property is satisfied if f and S have a convergent Taylor expansion, or if they have a
representation in terms of an integral transform with exponential kernel (e.g., a Laplace or
Fourier transform).9

Under the assumption that (3.7) holds, it follows that
√
ḡ−1 g

√
ḡ−1 = f(

√
ḡ−1h

√
ḡ−1) ≡ S(

√
ḡ−1h

√
ḡ−1)2 , (3.9)

8Note that the root is, in general, not a rank-(0,2) tensor, since the matrix product of two rank-(0,2)
tensors is not a tensor. This is in contrast to the root of a rank-(1,1) tensor, which can be a rank-(1,1)
tensor again. For that reason, we will suppress the indices in the following. Since final expressions are
covariant, all potential different choices for the branch of the square root lead to the same result.

9Note that strictly speaking f and S also depend on the background metric ḡ individually, since f = ḡ

for h = 0. We will suppress this additional dependence in the following to avoid cluttered notation.
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where the last equality follows from (3.5). Furthermore, we observe that the left-hand side
of (3.9) is a positive-definite matrix, since g is positive-definite and for any vector x,

xT
√
ḡ−1 g

√
ḡ−1x =

(√
ḡ−1 x

)T
g
(√

ḡ−1 x
)
> 0 . (3.10)

Hence, the argument of both f and S is a real symmetric matrix. We conclude that f
is a bijective map from real symmetric matrices to the space of positive-definite matrices.
Therefore, we can also take its positive-definite square root to uniquely define S. This then
ensures that g and ḡ have the same signature.

Since f is bijective, we can solve (3.9) for h and get

h =
√
ḡ f−1(

√
ḡ−1 g

√
ḡ−1)

√
ḡ . (3.11)

It is obvious that the h defined by this equation is symmetric and real. It is also a tensor,
which can be seen by expanding f−1 in a power series. This exists at least locally due to
the inverse function theorem and the perturbative constraint (3.2), which allows us to write

f−1(
√
ḡ−1 g

√
ḡ−1) =

√
ḡ−1 (g − ḡ)

√
ḡ−1 +O((g − ḡ)2) , (3.12)

so that
h = g − ḡ +O((g − ḡ)2) . (3.13)

This expansion moreover proves that the specific choice of square root is inessential, so that
the relation between g and h is indeed unique. We can also write

g =
√
ḡ f(

√
ḡ−1h

√
ḡ−1)

√
ḡ . (3.14)

This form makes it clear that g is positive-definite, cf. (3.10), and indeed a Euclidean metric.
With the condition stated above that f is a bijection between real symmetric matrices and
positive-definite matrices, equations (3.11) and (3.14) conclude the discussion on bijectivity.

3.2 Examples, discussion and implications

In this section we explicitly show that the linear parameterization violates the previously de-
rived conditions. Furthermore, we derive an entire family of bijective parameterizations and
discuss the importance of using a bijective parameterization to avoid inequality constraints.
Finally, we discuss some caveats on the practical implementation of our construction.

Summarizing the findings of the previous subsection, requiring a bijective map between
Euclidean metrics g and real symmetric tensors h restricts the allowed parameterizations
f , defined in (3.1), in the following way:

• f maps real symmetric matrices bijectively to positive-definite real and symmetric
matrices, and

• for small arguments,
f(ḡ−1h) = 1+ ḡ−1h+O(h2) , (3.15)

to abide with the perturbative expansion, (3.2).
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The first condition, together with (3.8), implies that S, the unique positive-definite square
root of f , is invertible as a matrix, such that via Sylvester’s law of inertia, ḡ and g have
the same signature under such a parameterization.

Let us discuss some concrete examples. First, the linear parameterization

gµν = ḡµν + hµν , (3.16)

fails the first criterion, since for the particular matrix h = −ḡ, the metric g vanishes.
Second, as has been established before [27], the exponential parameterization

f exp(ḡ−1h) = exp
(
ḡ−1h

)
(3.17)

fulfills all requirements.
One can construct an entire family of viable parameterizations inspired by the expo-

nential one. In particular,

f exp−b(ḡ−1h) = exp
(
ḡ−1hTL

)
b(hTr) (3.18)

is a family of viable bijections whenever b is a bijection from R to R+, where we have split
the fluctuation h into traceless (hTL) and trace (hTr) parts,

h = hTL +
1

d
ḡ hTr , tr

(
ḡ−1hTL

)
= 0 . (3.19)

Herein, d is the dimension of the Euclidean spacetime. To show that this indeed provides
a viable parameterization and to derive the form of b, we insert the ansatz given by (3.18)
into the definition of the parameterization (3.1), which gives

gµν = ḡµρ exp
(
ḡ−1hTL

)ρ
ν
b(hTr) . (3.20)

Multiplying by ḡ−1 from the left and taking the determinant, we get

det ḡ−1g = b(hTr)d . (3.21)

Since by assumption both ḡ and g are positive-definite, the left-hand side is positive and
we can take the unique real positive d-th root, which determines b(hTr). Using this, we can
also solve for the traceless component,

exp
(
ḡ−1hTL

)
=
(
det ḡ−1g

)−1/d
ḡ−1g . (3.22)

The proof of bijectivity then follows as above.
Let us briefly address the question of practical importance for studies of the quantum

gravitational path integral. Our starting point is the transition from a path integral over
the metric g to a path integral over metric fluctuations h on a background metric ḡ. We
have argued that choosing a parameterization fulfilling the above conditions is necessary to
avoid an inequality constraint in the path integral. This inequality constraint would, for an
arbitrary parameterization, fix the signature of the metric and avoid overcounting metric
configurations. In general, the direct implementation of such an inequality constraint would
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give rise to a Heaviside distribution in the path integral measure. Besides the difficulties
of the practical implementation (e.g., making sure that the inequality constraint is imple-
mented exactly even in settings which require approximations), it is in general non-trivial
to provide the explicit form of the constraint. In addition to the inequality constraint, one
must make sure that no physical configuration is left out by any parameterization, be it of
the above form or not.

As we will show in section 5, signature-preserving parameterizations of the metric
that can be straightforwardly used for Euclidean signature fail for Lorentzian spacetimes.
One therefore must either use inequality constraints (or other more exotic techniques) or
accept a path integral which takes both Euclidean and Lorentzian metrics into account. We
will come back to this construction in section 5, with the concrete implementation of the
inequality constraint in section 6.

Finally, parameterizations as those discussed above only provide a bijective mapping if
fluctuations of arbitrary order are taken into account (assuming that f is not a polynomial).
For instance, if one only works to first order in h in the exponential parameterization,
one recovers the linear parameterization, such that the signature preservation is no longer
guaranteed. More generally, once the series expansion for a given f is truncated at some
finite order, a finite hµν can, e.g., still flip the signature. On a practical level however,
the inclusion of higher and higher powers will eventually converge to the true bijective
parameterization, whereas for, e.g., the linear parameterization, we expect at best a finite
radius of convergence in h. Indeed, such results were found in explicit studies: A non-
perturbative renormalization group study of quantum gravity that included an arbitrary
power of metric fluctuations in the exponential parameterization [81] found an infinite
radius of convergence. An analogous calculation in the linear parameterization reveals a
singularity in the RG equation at h = −ḡ, as expected from the discussion above.

4 Constraints for foliated spacetimes

In a path integral formulation of quantum gravity, globally hyperbolic spacetimes play
a special role, since they possess a well-defined causal structure. This causal structure
ensures the existence of a well-defined Wick rotation to Euclidean spacetimes. Therefore,
if the Lorentzian path integral is restricted to a sum over globally hyperbolic spacetimes,
only these configurations contribute to physical scattering amplitudes. This is indeed the
philosophy at the basis of the CDT program [82].

In the context of CDT, the foliation structure is implemented by means of the Arnowitt-
Deser-Misner (ADM) formalism [83], as this guarantees that only “foliatable” spacetimes
are included in the sum over paths. A similar implementation in the context of the FRG
approach to asymptotically safe quantum gravity [66, 67, 69, 84] would however either break
diffeomorphism invariance down to foliation-preserving diffeomorphism [66], or break the
one-loop structure of the FRG equation [31].

Motivated by these considerations, in this section we will discuss the implementation
of a foliation structure in a manifestly covariant way and within the background field
formalism, extending previous work [31] to general signature-preserving parameterizations.
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We will review some basic properties of the foliation structure and the split of the full fields
into background and fluctuations. In this analysis, we will focus on Euclidean signature,
using the results of the previous section. Our goal is to formulate a path integral over
foliatable manifolds in terms of hµν only.

There are two important aspects to be kept in mind when interpreting the results
in the following in a broader context. First, demanding the existence of a foliation in
Euclidean signature is different from requiring the existence of a consistent causal structure.
As a matter of fact, a foliation in Euclidean signature is always associated to a spatial
direction, but not necessarily to the spatial direction along which an analytical continuation
to Minkowski space is performed. Therefore, restricting the configuration space in Euclidean
signature to foliatable configurations only does not automatically result in the configuration
space of Wick-rotated Lorentzian spacetimes (assuming that an analytical continuation can
be performed at all, see [5]), unless additional conditions are suitably implemented. Second,
since locally any Riemannian manifold is R4, one can always foliate it locally. Therefore,
any difference between the configuration spaces of foliatable and non-foliatable Riemannian
manifolds must be a global one.

4.1 Basics

In this section we lay out the basics to implement a foliation on a Euclidean spacetime
in a covariant way, and discuss fluctuations in terms of “foliation variables” – a vector
nµ, defining the foliation, and the induced metric on the spatial slices, σµν . Furthermore,
we discuss the importance of a linear relation between the metric fluctuations hµν and
the fluctuations of the foliation variables in the context of the FRG. We will come to the
conclusion that, in Euclidean signature, the existence of a foliation does not impact the
path integral.

We start by assuming that there exists a foliation of the spacetime metric gµν in terms
of the orthogonal normalized vector nµ and the spatial metric σµν according to [31]

gµν = σµν + nµnν , (4.1)

with the conditions that

nµ g
µν σνρ = 0 , nµ g

µν nν = 1 . (4.2)

The first equation states that nµ and σµν are orthogonal, whereas the second equation
provides a normalization for nµ. We stress that in this covariant framework, both nµ and
σµν are four-dimensional covariant objects, which distinguishes this setup from the ADM-
framework [83, 85], where the spatial metric and the shift vector are typically introduced
with spatial indices only. The decomposition of the full metric g in terms of foliation
variables σ and n according to (4.1) increases the number of dynamical degrees of freedom.
The role of the two conditions (4.2) is to ensure that the same number of dynamical degrees
of freedom exists. We will comment on this point more extensively in section 4.2.

We split the metric into a fixed but arbitrary background ḡµν and a fluctuation hµν .
The corresponding fluctuations of nµ will be called n̂µ, those of σµν will be called σ̂µν .
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Within a background field formalism, n̂ and σ̂ are the integration variables in the path
integral. Given that n and σ are not independent, one cannot simply assume a linear
relationship between n and n̂, or σ and σ̂. In fact, the dependence of the full fields on the
fluctuations can be non-linear, and even mixed, so that we write

nµ = n̄µ + δnµ(n̂, σ̂) , σµν = σ̄µν + δσµν(n̂, σ̂) , (4.3)

where δnµ and δσµν are the parameterizations of foliation fluctuations. They play the
same role as the parameterization f introduced in the previous section does for the metric
fluctuation. We will assume in the following that the background quantities satisfy the
background version of (4.2).

With the decomposition (4.3), the full metric as a function of parameterized foliation
fluctuations reads

gµν = ḡµν + δσµν + n̄µδnν + δnµn̄ν + δnµδnν . (4.4)

We now want to relate the foliation fluctuations n̂ and σ̂ to the metric fluctuation h in a
way that, at variance with the ADM formalism, preserves general covariance explicitly.

Demanding a linear relationship between these two types of fluctuations, the unique
relation between metric fluctuations h and foliation fluctuations n̂ and σ̂ is

hµν = σ̂µν + n̄µn̂ν + n̂µn̄ν . (4.5)

Let us stress that in a general setting, a linear relation might not be strictly necessary.
One specific framework where the linearity is critical is the FRG. In this context, the path
integral is regularized by means of a mode-suppression term that is quadratic in the field
fluctuations. It thus acts as a scale-dependent mass term h ·R(p2/k2) · h, where k is a RG
scale. Starting from a path integral where the gravitational action is written and regularized
in terms of h, and performing the transformation to foliation variables in a second step,
only a linear relation can preserve the quadratic nature of the mode-suppression term. This
quadratic structure is key in order for the exact FRG equation derived in [33–35], and
adapted for gravity in [9], to be of one-loop form.

Alternatively, one might take the point of view that irrespective of the relationship
between h and (n̂, σ̂), one can simply introduce a mode-suppression term that is quadratic
in the foliation fluctuations n̂ and σ̂. Yet, this comes at the cost of broken background
diffeomorphism invariance, unless the relationship between h and n̂, σ̂ is linear, and the
regulators of the individual sectors are tuned in the right way. This is because both the
background metric ḡ as well as the fluctuation field h transform under a background dif-
feomorphism, such that this auxiliary symmetry becomes the full gauge symmetry once ḡ
and h are combined to the metric g again. Therefore, n̂ and σ̂ transform under background
diffeomorphisms. Unless the relation between h and n̂, σ̂ is linear, they transform in a
non-linear fashion under the auxiliary symmetry. Accordingly, a regulator that is quadratic
in these fields and is introduced in an ad hoc manner in the case of a non-linearly realized
symmetry, breaks background diffeomorphism symmetry. The latter is critical to recover a
diffeomorphism invariant effective action from the FRG formalism. Therefore, the linearity
of the relation (4.5) is critical in this setup.
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4.2 Constraints on foliation fluctuations

In this section we investigate the implications of the constraints (4.2), which ensure or-
thogonality of n and σ, as well as the normalization of n, on the foliation fluctuations.
Demanding that the parameterization of fluctuations of the normal vector δn is completely
determined by the metric fluctuation h, there are parameterizations of foliation variables
that satisfy the foliation constraints (4.2) and at the same provide a bijective map between
background and full metric.

We start with the second constraint, which reads

F2 = nµ g
µν σνρ = 0 . (4.6)

Using the decomposition (4.1), we see that the two constraints (4.2) are not independent,

F2 = nµ g
µν σνρ = nµ g

µν (gνρ − nνnρ) = (1− nµ gµν nν)nρ = −F1nρ . (4.7)

In particular, it is just a single scalar constraint that is effectively imposed. The orthog-
onality and normalization conditions (4.2) are thus not enough to remove all unphysical
fluctuations. By counting the modes, the set of foliation fluctuations (n̂µ, σ̂µν) has 14 inde-
pendent components, while the metric fluctuation hµν only carries 10 (before gauge fixing).
It follows that the constraints have to remove four unphysical modes that have been intro-
duced by the decomposition (4.1). However, as we have seen, the vectorial constraint and
the scalar constraint collapse to one single scalar constraint. This is in fact a consequence of
the invariance of the metric gµν in (4.4) under the shift of the parameterization of foliation
fluctuations δnµ and δσµν by some vector field ωµ,

δnµ → δnµ + ωµ , δσµν → δσµν − (n̄µ + δnµ)ων − ωµ(n̄ν + δnν)− ωµων . (4.8)

This corresponds to a change of the foliation at fixed total metric g. Accordingly, it is
enough to satisfy the scalar normalization constraint in order to implement a foliation
structure.

At this point, we are left with the task of removing the three remaining unphysical
modes introduced by the foliation variables. To this end, it is actually preferable to replace
the fluctuation of the spatial metric by the metric fluctuation h via (4.4). Using h has the
virtue that for a diffeomorphism invariant theory, all information is carried by h only, while
n cannot appear in any equation. In fact, n can only appear explicitly in the dynamics if
the symmetry is explicitly broken to foliation-preserving diffeomorphisms.

To fix the mismatch in the number of fluctuating fields, we require that the param-
eterization of fluctuations of the normal vector n is completely determined by the metric
fluctuation (and background quantities),10

δnµ = n̄ρX(h ··)
ρ
µ ≡ ḡµρX(h ··)

ρ
κ ḡ

κα n̄α , (4.9)

and we fix the matrix X by requiring that the constraint

nµ g
µν nν = n̄µ ḡ

µν n̄ν = 1 , (4.10)
10This requirement is not unique, and one could replace it by other conditions to fix the mismatch in

the number of degrees of freedom. We employ this choice as the simplest and most convenient one.
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is satisfied. Inserting the ansatz for the parameterization of fluctuations of the normal
vector n, (4.9), on the left-hand side yields

nµ g
µν nν = n̄µ

(
δµα +X

µ
α

)
gαρ ḡρκ (δκλ +X

κ
λ) ḡλσ n̄σ , (4.11)

from which we conclude by comparison with the right-hand side that

δµλ =
(
δµα +X

µ
α

)
gαρ ḡρκ (δκλ +X

κ
λ)

⇒
(
δµρ +X

µ
ρ

) (
δρν +X

ρ
ν

)
= ḡµκ gκν ≡ SµκSκν .

(4.12)

In the last step, we have used the condition that ḡ and g have the same signature as discussed
in the previous section, cf. (3.5). We can now immediately fix the parameterization of
fluctuations of the normal vector in terms of the parameterization of metric fluctuations:

X = S − 1 . (4.13)

In this way, the tensor σµν and the vector nµ satisfy the constraints (4.2), and at the same
time the parameterization of foliation fluctuations δnµ and δσµν are expressed entirely in
terms of background quantities and hµν . This means that the metric fluctuations hµν
remain completely unconstrained, so that no inequality constraints on hµν are necessary on
the level of the path integral.

4.3 Discussion and interpretation

As discussed in section 3, the use of suitable parameterizations for the metrics fluctuations
h which preserve the signature of the full metric g makes it possible to avoid a direct im-
plementation of an inequality constraint. Again, this property is automatically ensured by
using a map satisfying (3.3), as this leaves the signature of the full metric, and therefore also
the signature of the spatial metric, unchanged. Examples of these maps are the exponential
parameterization, (3.17), and the family of maps in (3.18).

We might therefore interpret the results of this section as an indication that the use
of a suitable parameterization for the metric fluctuations combined with the choice of a
foliatable background already implement the foliation structure for the full metric.

We emphasize that the conditions we have derived only ensure the existence of some
foliation for the full metric. This does not ensure that some appropriate analytical con-
tinuation of a set of Lorentzian spacetimes is included. It only ensures that there is a
“time direction” that can be identified in the Euclidean setting, such that an analytical
continuation would result in a Lorentzian manifold. Additionally, a Wick rotation is not
straightforwardly implemented in quantum field theories on a curved spacetime, see [5].

5 Parameterizations of metric fluctuations for Lorentzian quantum grav-
ity

We have shown that it is possible to define the path integral over all foliatable Euclidean
metrics in the background field formalism without introducing inequality constraints. This
allows us to write a well-defined path integral which contains both a gauge fixing as well as
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a local regularization term. The setup enables studies of Euclidean Asymptotic Safety in a
foliatable, covariant setting, where full background diffeomorphism symmetry is preserved.

The real Universe is Lorentzian. It is thus key to understand whether it is possible
to use the background field method in Lorentzian quantum gravity without the need for
inequality constraints. In fact, in the case of quantum gravity (or even “standard” quantum
field theory on a curved background) it is not clear whether it is always possible to “connect”
Euclidean and Lorentzian setups via an analytic continuation. In particular, there are
metrics which exist in Euclidean, but do not exist in Lorentzian signature, and vice versa.
Additionally, even for simple examples like a de Sitter space, the analytical continuation is
much more subtle than one might naively expect [5]. It is therefore crucial to explore the
case of Lorentzian quantum gravity directly.

In this section we will show that in the Lorentzian case, no “simple” bijective parame-
terizations can be found, and in particular, all parameterizations that work in the Euclidean
case cannot work in the Lorentzian case. We cannot prove however that no bijective param-
eterizations exist – their construction is nevertheless much more involved than in Euclidean
signature.

Our starting point is the same as for Euclidean signature, namely that the (Lorentzian)
metrics g and ḡ have the same signature if and only if there is a real invertible matrix S
such that

g = ST ḡ S . (5.1)

We will prove that for Lorentzian signature, S in general cannot be a tensor. The proof
proceeds by contradiction, thus assume that S is a rank-(1,1) tensor. This is the only index
structure such that the above equation makes sense. In appendix A we showed that if S is
a tensor, we can write the equivalent condition11

ḡµα gαν = SµαS
α
ν . (5.2)

This implies that if S is a tensor, then the combination ḡ−1 g has to admit at least one real
invertible square root. We will now construct an example where a specific choice of metrics
does not give rise to such a root. For this, consider the Kerr-Newman black hole of mass
M in ingoing Kerr coordinates,

ds2 = −(∆− a2 sin2 θ)

Σ
dv2 + 2dvdr − 2

a sin2 θ

Σ

(
r2 + a2 −∆

)
dvdχ

− 2a sin2 θdχdr +
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θdχ2 + Σdθ2 ,

(5.3)

where ∆ = r2−2Mr+a2 +Q2 and Σ = r2 +a2 cos2 θ, a denotes the spin and Q the charge
of the black hole. In the choice of the specific parameters (M,Q, a) for the full metric g and
for the background metric ḡ, one has to make sure that both belong to the same topolog-
ical class, since otherwise they might not be connected by a continuous parameterization

11More specifically, we have shown this under the assumption that S only depends on ḡ−1h and the
identity. In principle, S could depend on non-covariant objects that combine in such way that S in the end
is a tensor. We will not comment on this possibility and instead work under the reasonable assumptions
that S depends on ḡ−1h and the identity only.
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f(h). Since all four-dimensional non-extremal black holes are characterized by an Euler
characteristic χ = 2 [86–89], it suffices to choose (M,Q, a) such that both g and ḡ have two
non-degenerate horizons. Specifically, choosing the background metric ḡ with parameters

M̄ = 1 , Q̄ =
3

4
, ā = −1

2
, (5.4)

and the full metric g with parameters

M = 1 , Q = 0 , a =
1

2
, (5.5)

and considering the point

r =
1

10
, θ =

π

2
, (5.6)

which in both cases is located between the two horizons, we get for the product

ḡ−1 g =




1001 50 −526 0
4225

4 51 −4433
8 0

−2000 −100 1051 0

0 0 0 1


 . (5.7)

Since the eigenvalues of this matrix are all distinct, it has exactly 16 distinct square roots.
It is straightforward to show that none of the roots are real.

Nevertheless, since the two matrices have the same signature, there must be at least
one real S such that (5.1) is fulfilled. The conclusion that we have to draw from the above
observation is that (5.2) is not equivalent to this condition. This means that the S relating
Lorentzian metrics in general cannot be a tensor. From this statement we can draw an
immediate conclusion: any parameterization that works in the Euclidean, where we have
shown that S is a tensor, cannot work in the Lorentzian.

More generally, one finds that those combinations of metrics g and ḡ do not admit a
tensorial S whose product ḡ−1g admits distinct negative eigenvalues. To see this, first note
that, since both metrics have the same signature by assumption,

det ḡ−1g > 0 . (5.8)

This implies that in four dimensions, the eigenvalues of this product can have the following
form:

• four positive eigenvalues,

• two positive, and two negative eigenvalues,

• four negative eigenvalues,

• two positive, and one pair of complex conjugate eigenvalues,

• two negative, and one pair of complex conjugate eigenvalues,

• two pairs of complex conjugate eigenvalues.
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Now assume that we can diagonalize the product over the reals, so that

P−1ḡ−1gP = P−1S2P = (P−1SP )2 , (5.9)

are both diagonal matrices. Now it is clear that if there are distinct negative eigenvalues,
taking the square root will yield complex entries, so that S isn’t real. The qualifier for
distinct negative eigenvalues is necessary since, e.g., the matrix

(
0 −1

1 0

)
, (5.10)

is a real square root of minus the identity.
From this discussion we conclude that avoiding an inequality constraint by a suitable

choice of parameterization seems to be very involved in the Lorentzian case. For that reason,
in the next section we discuss the direct implementation of an inequality constraint in the
context of the Wetterich equation.

We note that even restricting the metric to be globally hyperbolic likely does not solve
the issue. As an example, we decompose the full metric and the (inverse) background metric
as

gµν = σµν + nµnν , ḡµν = σ̄µν + nµnν , (5.11)

such that the fluctuations of the normal vector n vanish, which implies that n = n̄. For
these choices for ḡ and g, 1 is an eigenvalue of ḡ−1g with eigenvector n. Because of the
orthogonality of n to both σ̄ and σ, the remaining eigenspace of ḡ−1g is spanned by spatial
vectors, and we have to consider the eigenvalues of the product of two spatial Euclidean
metrics σ̄−1σ. Since σ̄−1 and σ do not commute in general, this product is generally not
symmetric. Therefore, it is not guaranteed that σ̄−1σ features only positive eigenvalues. We
conclude that even restricting the path integral to globally hyperbolic Lorentzian spacetimes
only, a bijective, signature preserving parameterization of metric fluctuations of the form
(3.1) and (5.1) does not exist.

6 Inequality constraints in non-perturbative RG flows

We have seen that in the Lorentzian case it is very difficult to find a parameterization
for metric fluctuations which preserves the (Lorentzian) signature of the metric. In other
words, it is difficult to restrict the gravitational path integral to Lorentzian spacetimes only.
There are therefore three possibilities: i) in a quantum theory of gravity, fluctuations of the
metric signature should be allowed, ii) the gravitational path integral must be restricted by
means of inequality constraints or iii) we have to work within an altogether different config-
uration space which ensures classical equivalence with general relativity but where quantum
fluctuations take a different form. In this section we discuss option ii), the implementation
of inequality constraints. We will work within a toy model, and illustrate how an inequality
constraint can be implemented directly within the FRG. Extending this procedure beyond
the simple toy model and using the linear parameterization, it might provide a suitable way
to restrict the path integral to include Lorentzian signatures only.
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In the literature, inequality constraints have often been avoided due to the difficulties
arising in their implementation. As a first attempt to study quantum field theories subject
to inequality constraints, in this section we focus on a simple scalar theory and we propose
a method to implement an inequality constraint at the level of the FRG equations. This
method could be relevant for future studies of asymptotically safe quantum gravity in
Lorentzian signature. Let us consider a scalar field φ whose maximum value is bounded from
above, φ2 ≤ φ2

0. Formally, this condition can be implemented by introducing a Heaviside
distribution θ at the level of the Lorentzian path integral,

Z =

∫
Dφ θ

(
1− φ2

φ2
0

)
eiS[φ] , (6.1)

where S is the action of the scalar field. We will interpret the constraint as an addition to
the action by exponentiating it. To avoid problems due to the non-differentiable nature of
the Heaviside distribution, we first rewrite it as the limit of a smooth function,

θ(x) = lim
α↘ 0

1

1 + e−
2x
α

. (6.2)

In this way,

Z =

∫
Dφ lim

α↘ 0
exp

[
iS[φ]− ln

(
1 + e

− 2
α

(
1−φ

2

φ20

))]
, (6.3)

such that the inequality constraint adds an additional imaginary component to the scalar
potential. For a Euclidean path integral, the extra term is real. We can now perform the
standard derivation of the Wetterich equation (see, e.g., [90] for a detailed review of the
derivation in the case of unconstrained systems, and [65, 66, 72, 91] for considerations on
the Lorentzian case) to arrive at

∂tΓk = lim
α↘ 0

1

2
STr




1

Γ
(2)
k +Rk + i∂2

φ ln

(
1 + e

− 2
α

(
1−φ2

φ20

))∂tRk



. (6.4)

At the level of the flow equation, and after taking the second derivative, we can take the
limit α→ 0. We have to discuss three different cases. For φ2 > φ2

0, the second derivative of
the constraint diverges like 1/α, and therefore the contribution of these field configurations
to the RG flow is suppressed, as required by the inequality constraint. For φ2 < φ2

0,
the contribution of the constraint vanishes exponentially quickly, and thus the RG flow is
unaltered in the strict limit α→ 0. Finally, at the boundary φ2 = φ2

0, the constraint gives a
contribution which diverges quadratically, as ∝ 1/α2.12 With this, in the limit of enforcing
the constraint strictly, the flow equation reads

∂tΓk '
1

2
STr

[
θ

(
1− φ2

φ2
0

)
1

Γ
(2)
k +Rk

∂tRk

]
, (6.5)

12Let us note that the precise way in which the flow is suppressed at small but finite smearing parameter
α depends on the specific function chosen to define the Heaviside distribution (in our case (6.2)), but the
flow of Γk obtained by taking the strict limit α→ 0 is independent of it.
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where we have indicated that potentially boundary terms have to be treated carefully, due
to the distributional character of the Heaviside distribution. In conclusion, an inequality
constraint can be implemented directly at the level of the Wetterich equation. The above
form makes it clear that no polynomial truncation of the action in the field will be influenced
by inequality constraints, with the exception of an expansion point directly on the boundary.

Let us finally discuss implications of this result on calculations using the background
field method and the FRG. In most calculations, a finite order expansion in the fluctuation
field is performed. Such an expansion is insensitive to the Heaviside distribution in the
flow, since its Taylor expansion around almost any configuration is trivial. Therefore, only
calculations that include the full field dependence [81] are sensitive to inequality constraints.

We close with a word of caution by illustrating the case of an Ising model with the
above constraint, in three dimensions. The unconstrained system features a single fixed-
point solution, namely the Wilson-Fisher fixed point, which is relevant for many condensed
matter applications. Studying the differential equation for the scalar potential reveals that
the condition of global existence of the solution singles out the Wilson-Fisher fixed point.
Concretely, if φ0 in the above inequality constraint is chosen large enough, then the Wilson-
Fisher fixed point is still the single solution to the fixed point equation. Conversely, if φ0 is
smaller than the critical value, we expect infinitely many fixed point solutions to exist. This
expectation springs from local existence theorems for differential equations. We conclude
that an inequality constraint potentially changes the structure of the RG flow dramatically.

7 Summary and conclusions

In this work we discussed some details and problems in the construction of the metric
configuration space for the gravitational path integral in both Euclidean and Lorentzian
signature. Continuum approaches to quantum gravity based on this path integral typically
make use of the background field formalism. The spacetime metric is parameterized in
terms of a fluctuation field around a fixed, albeit arbitrary, background metric. The path
integral is then written as a sum over all possible metric fluctuations. A key question
is how to constrain the metric fluctuations such that the functional integral extends over
spacetime configurations belonging to a subset of all possible metrics, e.g., metrics having
a fixed signature and/or topology, without over-counting certain configurations or missing
out on others.

A possible strategy to implement the constraint on the configuration space of the grav-
itational path integral consists of selecting suitable parameterizations for the metric fluctu-
ations that naturally allow to reach only a subset of all possible metrics. Mathematically,
this procedure provides a bijective map between the space of metrics of fixed signature and
topology, and the space of real symmetric metric fluctuations, cf. figure 1. Concretely, we
showed that for Euclidean spacetimes of fixed topology, there exist infinitely many bijec-
tive parameterizations, see, e.g., (3.20). Thus, restricting the signature of the metrics in a
Euclidean path integral can be done within the standard background field method, simply
by choosing an appropriate parameterization, as outlined in subsection 3.2. Furthermore,
in section 4 we found indications that the same parameterizations, together with the choice
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of a foliatable Euclidean background, is sufficient to implement a foliation structure for the
full metric. Thus, restricting the path integral further to only include foliatable Euclidean
manifolds does not pose additional constraints.

A more severe problem in the construction of the configuration space for quantum
gravity arises when trying to restrict the set of all possible metrics to Lorentzian spacetimes
only. Specifically, our discussion in section 5 has highlighted the difficulty in combining the
background field method with a path integral that includes Lorentzian metrics only. In
particular, we have constructed an explicit example which shows that parameterizations
that work for Euclidean spacetimes fail in the Lorentzian case. This could constitute a
major challenge for the Asymptotic Safety program using FRG techniques, which is currently
explored almost exclusively in a Euclidean setting (see [65, 72–74] for exceptions).

To explore the Lorentzian setting, one might hope to obtain the results in Lorentzian
signature by means of an analytic continuation of the Euclidean results, i.e., a Wick rota-
tion. While in the case of quantum field theories on a flat background this procedure is
expected to give the correct result, in the case of quantum field theories on a curved and
fluctuating spacetime defining an analytical Wick rotation is an outstanding open prob-
lem [5]. Moreover, an aspect of Wick rotation that is typically less explored is the question
whether the two configuration spaces are in a one-to-one correspondence. Our results high-
light that within the background field method this is not the case, since parameterizations
of metric fluctuations that provide a bijective map between metric fluctuations hµν and the
full metric in Euclidean spacetimes fail to do so in Lorentzian spacetimes. Therefore, an
analytic continuation of the Euclidean results can – at best – give access to those Lorentzian
metrics which are continuously connected to the flat Minkowski metric.

Our results indicate that any path integral approach to quantum gravity, which is based
on the metric, has to consider an explicit inequality constraint when exploring Lorentzian
quantum gravity. In section 6 we discussed how to implement this inequality constraint
within a simple scalar field theory and we showed how the FRG equation is modified in the
presence of a simple inequality constraint.

An interesting, alternative interpretation of our results is that quantum fluctuations
of spacetime could also trigger signature changes. In this case, one should not limit the
quantum-gravitational path integral to configurations having a specific signature. This is
in line with the old idea [44, 92, 93] that the universe might have been a (static) Euclidean
manifold, which then turned into the evolving Lorentzian universe which we observe today.
If instead one sticks on the idea that the spacetime signature should not fluctuate, an
alternative setup to search for Asymptotic Safety in Lorentzian signature is worthwhile
exploring. In [94, 95], it has been proposed that the causal set setup could be such a
setting. Causal sets [96–98] can be viewed as discrete, causal networks of spacetime points.
Both geometric as well as topological properties of a manifold can to a large extent be
encoded in its causal order, see [99] for recent examples. The subset of causal sets known
as sprinklings corresponds to discretizations of Lorentzian manifolds. If the discretization
scale can be taken to zero at a higher order phase transition in the phase diagram of causal
sets (spanned by the bare values of the couplings), then a universal continuum limit exists
for the path integral over Lorentzian manifolds, such that Lorentzian Asymptotic Safety is
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realized. For studies of the phase diagram of causal sets in restricted configuration spaces,
see [100–103]. For related work in discrete networks for quantum gravity, see also [104].

We close our discussion with a comment on degenerate metrics and spatial topology
changes in view of our results, highlighting key differences between the Euclidean and
Lorentzian cases. Keeping the signature of the full metric fixed implies that the metric
cannot be degenerate. In fact, parameterizing the metric fluctuations by means of a map
which satisfies Silverster’s law of inertia, (3.3), automatically excludes degenerate metrics,
since the map f has to be invertible.

In a Lorentzian universe, there are many examples of spacetimes which can undergo a
variation (with time) of the topology of the spatial slices. An emblematic example is that
of “trousers spacetimes”, where the universe (the “trunk”) branch off as a function of time
and splits into two baby universes (the “legs” of the trousers). The metric of this spacetime
is thus degenerate at the branch point. Using the background field method and a suitably
implemented constraint on metric fluctuations, such a metric would be excluded by the
“sum over paths” in the gravitational path integral.

Spacetimes exhibiting changes of topology can also be defined in the Euclidean. In
this case, a topology change does not occur in time, but in space. A key example is
that of Euclidean wormhole, where a “spatial tube” connects different (spatial) regions of
the Euclidean manifold. At variance with the trousers spacetimes of the Lorentzian case,
Euclidean wormholes do not feature degeneracies in the metric [105, 106]. Therefore, the
corresponding metric would not be excluded by the (Euclidean) gravitational path integral,
provided that the metric fluctuations are parameterized with a map satisfying (3.3).
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A Proof that ST ḡS = ḡS2

According to the Sylvester’s law of inertia [80], a symmetric square matrix gµν and an-
other symmetric square matrix ḡµν share the same number of positive, negative and zero
eigenvalues if and only if they are related by the similarity transformation in (3.3). In this
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Appendix we show that ST ḡS = ḡS2, provided that the matrix S depends only on the
combination h = ḡ−1h and on the identity.

In order to prove that ST ḡS = ḡS2, it is sufficient to notice that if S is a matrix that
depends on h only, then it admits the representation [80]

S = S01+ S1h+ S2h
2 + S3h

3 , (A.1)

We can thus write

ST ḡS = ST (S0ḡ + S1h+ S2hḡ
−1h+ S3hḡ

−1hḡ−1h)

= ST (S0ḡ + S1h+ S2hḡ
−1h+ S3hḡ

−1hḡ−1h)T

= ((S0ḡ + S1h+ S2hḡ
−1h+ S3hḡ

−1hḡ−1h)S)T

= (S0ḡ + S1h+ S2hḡ
−1h+ S3hḡ

−1hḡ−1h)S

= ḡS2 .

(A.2)

In the first step we inserted S and multiplied it by ḡ. In the second step, we used that
the bracket is a symmetric matrix, so that we can take the transpose without changing
anything. The third step combines the product of transposes to the transpose of the product
in reverse order. We again realize that the bracket is a symmetric matrix, so we can remove
the transpose. Finally, we notice that the bracket is nothing else than ḡS, which completes
the proof. This is non-trivial, and only works because S is a function of h (and the identity)
only.
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