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Abstract

To find out the possible scenarios for quantum gravity consistent with the observed universe, we

numerically investigate the non-perturbative renormalization group equations of a general quadratic

gravity theory recently derived by Sen, Wetterich and Yamada (JHEP 03 (2022) 130). As boundary

conditions, we impose consistency with the Hubble scale and the laboratory scale experiments, and

the Starobinsky model of inflation. We find two kinds of trajectories which go to different regime at

the trans-Planckian scales: i) a trajectory which flows to the asymptotically free regime, and ii) a

trajectory which flows to the asymptotically safe regime. To determine the early-time cosmological

scenario, an additional observational data from beyond the homogeneous and isotropic space-time

is necessary.

I. INTRODUCTION

What possibly happened at the earliest time of the universe evolution from the cosmolog-

ical point of view? There are strong implications to support the scenario that the universe

had likely experienced an accelerated expanding era [1], and the quantum gravity theory is

expected to play a significant role in revealing the dynamics of early universe.

One of the promising frameworks to understand the inflation mechanism is the asymptotic

safety scenario of quantum gravity, also simply called the asymptotic safety [2]. This is based

on Wilsonian renormalization group techniques. The core idea of asymptotic safety is that

gravity is renormalizable in the sense that the quantum nature of gravity is controlled by

a non-Gaussian fixed point: the renormalizable theory can be defined if the theory has a

non-Gaussian fixed point to which the number of relevant couplings is finite. Since the

discovery of a non-Gaussian fixed point of gravity the so-called Reuter fixed point [3, 4],

further evidence for the scenario has been collected (for a recent review see Ref. [5] and

references therein).

Solutions of the renormalization group equations are represented in the form of trajecto-

ries, and the set of all possible trajectories constitute the renormalization group flow. Each

point of the renormalization group flow corresponds to an energy scale-dependent effective

action, which we denote by Γk. This effective action is calculated from the fundamental
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quantum action by partially integrating out the excitations with momenta larger than the

energy scale k [6]. Thus, the effective action Γk well describes physics at the typical energy

scale k in the tree-level approximation. On the other hand, we have to include sufficient

loop corrections of Γk to describe physics at much lower energy scales. In this way, the

effective action Γk is supposed to be connecting the low energy and the high energy physics,

including the Hubble and the Planck scale physics.

The energy scale-dependence of the theory plays an important role in cosmology, because

the physical parameters for the gravitational theories are obtained from the observations

at different energy scales: the cosmological constant is estimated from the Hubble scale

studies [7], the Newton constant from the laboratory experiments [8], and the parameters

related to inflationary dynamics from the studies at much higher energy scales [1]. Then,

one expects to find out a trajectory which relates all the parameters at given different energy

scales, and study quantum gravity at much higher energy scales, keeping the consistency

with lower energy scale dynamics.

In Ref. [9], Gubitosi et al. studied the renormalization group flow of the (Euclidean)

f(R) gravity up to the second order,

Sk =

∫
d4x
√
g

(
Uk −

Fk
2
R− Ck

2
R2

)
, (1)

where Sk is the tree-level approximation of gravitational quantum action Γk. We denote

by x the four dimensional space-time coordinate, by g the determinant of the metric ten-

sor gµν , and by R the scalar curvature. The action is parameterized by the three energy

scale-dependent coupling parameters, Uk, Fk, and Ck. They numerically analyzed the renor-

malization group equations (RGEs) of Eq. (1) and found a trajectory which satisfies the

observational constraints on the cosmological constant, the Newtonian coupling, and Ck,

assuming the Starobinsky model of inflation.

In this paper, we extend the work of Gubitosi et al. [9] by studying the RGEs of grav-

itational action that includes a term proportional to the “square” of Weyl tensor, C2
µνρλ =

CµνρλC
µνρλ. The RGEs for this kind of truncated action was derived non-perturbatively by

Sen, Wetterich, and Yamada in Ref. [10]. We numerically integrate these RGEs to fill all

the boundary conditions introduced by Gubitosi et al. in Ref. [9] with additional conditions

for Dk, the coupling of the square of Weyl term.

We find two types of trajectories which satisfy the above boundary conditions: i) one goes
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to asymptotically free regime at the Planck scale, and ii) one goes to asymptotically safe

regime at the above Planck scale. We will call these trajectories as the asymptotically free

and safe trajectories, respectively. To determine the Planck scale physics from our approach,

one needs an observational constraints on the parameter of the square of Weyl tensor Dk

from beyond isotropic and homogeneous cosmological studies.

The rest of this paper is organized as follows. In Section II, we introduce the non-

perturbative RGEs derived in Ref. [10] and boundary conditions obtained from the obser-

vations. In Section III, basic assumptions of our numerical calculation are explained. In

Section IV, we present our results and Section V contains the conclusion.

II. SETUP

In this study, we analyze the renormalization group equations for coupling parameters in

the following quadratic pure gravitational effective action:

Sk =

∫
d4x
√
g

(
Uk −

Fk
2
R− Ck

2
R2 +

Dk

2
C2
µνρσ + LGB

)
, (2)

where Dk is the running coupling parameter of the square of Weyl tensor. The contribution

from the Gauss-Bonnet term is defined by

LGB = Ek(R
2 − 4RµνR

µν +RµνρσR
µνρσ), (3)

where Ek is a coupling parameter for the Gauss-Bonnet term.

Let us introduce dimensionless coupling parameters uk and wk as

uk = k−4Uk, wk = k−2Fk. (4)

In Ref. [10], Sen, Wetterich, and Yamada non-perturbatively derived the RGEs for the

coupling parameters of uk, wk, Ck, Dk, and Ek, which describe the energy scale dependence

of the gravitational action of Eq. (2), written in the form of

∂tuk = βu(u,w,C,D), (5)

∂twk = βw(u,w,C,D), (6)

∂tCk = βC(u,w,C,D), (7)

∂tDk = βD(u,w,C,D), (8)

∂tEk = βE(u,w,C,D), (9)
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where ∂t = k∂k is the dimensionless scale derivative. The r.h.s. of Eqs. (5)–(9) are called

beta functions. The explicit forms of the RGEs (5)–(9) are listed in Appendix A. We note

that Ek does not enter in the beta functions of all of the couplings, including the beta

function of Ek itself. Since the Gauss–Bonnet term does not contribute to dynamics in the

four dimensional space-time, we will drop Eq. (9) from our consideration.

To find out a trajectory which is consistent with the universe evolution, we impose bound-

ary conditions for the coupling parameters based on the observational data. In this study,

we assume the isotropic Friedmann universe evolution and treat the Weyl coupling Dk as a

free parameter, since the square of Weyl tensor term does not contribute to the dynamics

in the isotropic Friedmann universe. For uk, wk, and Ck, we use the boundary conditions

introduced by Gubitosi et al. in Ref. [9]. Their constraints are expressed as

Λk =
k2uk
2wk

= 4× 10−66 eV2 (k = kHub), (10)

Gk =
1

16πk2wk
= 6.7× 10−57 eV−2 (k = klab), (11)

Ck =1.0× 109 (k = kinf), (12)

where Λk is the running cosmological constant, and Gk is the running Newtonian constant.

Here, we comment on the above constraints. In Eq. (10), it is assumed that the late-

time universe evolution is governed by the standard cosmology, i.e., the late-time universe

is effectively described by the 2Λ−R action. The cosmological constant Λk is evaluated at

the current Hubble scale, kHub = 10−33 eV.

In Eq. (11), we impose the condition from the laboratory-scale experiments for the New-

tonian coupling parameter. The characteristic length scale of the experiments is about

10−1 m, which corresponds to klab = 10−5 eV.

In Eq. (12), we presume that the Starobinsky model of inflation [11–13] effectively de-

scribes the early-time universe evolution. Since the effective action of the Starobinsky model

takes the form of −R + BR2, the running cosmological constant is assumed to be subdom-

inant at kinf = 1022 eV, the approximate Hubble length scale at the inflationary era of the

Starobinsky model [9].
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III. BASIC ASSUMPTIONS

Notice that the observational constraints Eqs. (10)–(12) are given at different energy

scales. To find out a trajectory which is consistent with all of these constraints, in our

numerical study, we shall obtain a set of initial conditions to fill all of these conditions. In

the following discussion, a relation A ' B for given physical values A and B holds if and

only if |(A−B)/A| � 1 holds.

Since quantum effects of gravity would be negligible at much lower energy scales than the

Planck scale, we assume that the running of Ck and Dk are negligible below the inflationary

scale:

Ckinf ' Cklab ' CkHub
, (13)

Dkinf ' Dklab ' DkHub
. (14)

From Eqs. (10)–(14), we demand

ukHub

wkHub

= 8, (15)

wklab = 3.0× 1064, (16)

CkHub
= 1.0× 109 ' Cklab ' Ckinf , (17)

DkHub
' Dklab ' Dkinf . (18)

The numerical integration of RGEs (5)–(8) can lead to singular effects in the infrared

and the ultraviolet regimes. The beta functions, the r.h.s. of RGEs (5)–(8), can be written

by the linear combinations of l2np (x), which is defined as

l2np (x) =
1

n!

1

(1 + x)p+1
, (19)

where n and p are integers and x is m̃2
t or m̃2

σ, defined as

m̃2
t = d− v, m̃2

σ = 3c− v

4
, (20)

where

c =
C

w
, d =

D

w
, v =

u

w
. (21)

Thereby, from Eq. (19), the beta functions have a pole at x = −1, and we have to check the

validity of the RGEs (5)–(8) while the numerical calculations are performed. As discussed
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in Ref. [10], the beta functions are valid for m̃2
t > −1, although more complex for m̃2

σ. Yet,

we will check whether m̃2
t > −1 and m̃2

σ > −1 hold or not, and we will take the numerical

calculations are valid as far as there is no singular behavior in m̃2
t , m̃

2
σ, and all of the coupling

parameters.

IV. RESULTS

We exhibit two types of trajectories which connect the observed universe with i) asymp-

totically free quantum gravity, and ii) asymptotically safe quantum gravity.

A. Asymptotically free quantum gravity

Let us assume that the coefficients of the square of scalar curvature and the square of

Weyl tensor are of the same order of magnitude at kinf . By using Eq. (14), let us set

DkHub
= 1.0× 109. (22)

as an input for Dk. The set of boundary conditions to be satisfied is

ukHub

wkHub

= 8, (23)

wklab = 3.0× 1064, (24)

CkHub
= 1.0× 109 ' Cklab ' Ckinf , (25)

DkHub
= 1.0× 109 ' Dklab ' Dkinf . (26)

We then search the values of ukHub
and wkHub

which realize the above conditions, by nu-

merically integrating out Eqs (5)–(8). The appropriate initial conditions at kHub are found

as

ukHub
= 4.5× 10121, (27)

wkHub
= 5.6× 10120, (28)

CkHub
= 1.0× 109, (29)

DkHub
= 1.0× 109. (30)

From these initial conditions, by numerically integrating out the RGEs (5)–(8), we get a

trajectory satisfying all the boundary conditions.
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To see the singularities in the trajectory, we plot the energy scale dependence of m̃2
t and

m̃2
σ in Fig. 1. Unfortunately, there are regimes near the Hubble scale where m̃2

t , m̃
2
σ > −1 do

not hold. However, these singular effects should be unphysical: terms including singularities

in the beta functions are quantum corrections (see Eqs. (A4)–(A8)), and it is unlikely that

these quantum effects significantly contributes to the energy scale dependence of coupling

parameters. In addition, in our calculations, since the contributions of these singular effects

to the coupling parameters are O(106) and do not contribute to the scale-dependence of

the coupling parameters on the trajectory. Therefore, in this case, we do not take these

contributions from the singularity seriously. Note that there is no singular behavior in m̃2
t

and m̃2
σ.

The values of coupling parameters at the each energy scale, kHub, klab, and kinf , are

summarized in Table. I. It is easily checked that all of the boundary conditions of Eqs. (23)–

(26) are satisfied.

TABLE I. Values of coupling parameters, uk, wk, Ck, and Dk, at the energy scales of kHub, klab,

and kinf on the trajectory obtained from the initial conditions of (ukHub
, wkHub

, CkHub
, DkHub

) =

(4.5× 10121, 5.6× 10120, 1.0× 109, 1.0× 109).

kHub klab kinf

uk 4.5× 10121 1.3× 109 4.1× 10−3

wk 5.6× 10120 3.0× 1064 1.6× 1010

Ck 1.0× 109 1.0× 109 1.0× 109

Dk 1.0× 109 1.0× 109 1.0× 109

The energy scale dependence of the coupling parameters of Λk, Gk, Ck, and Dk are

plotted in Fig. 2. There is no singular behavior in all of the coupling parameters. We note

that the coupling parameters Ck and Dk contribute to the beta functions of Eqs. (5)–(8) in

terms of Ck/wk and Dk/wk (see Appendix A). In case of the initial conditions of Eqs. (27)–

(30), Ck/wk and Dk/wk are much smaller than uk/wk and 1 for k . klab, and thus the

contributions from Ck and Dk to the infrared results of uk and wk are negligible. Therefore,

the universal results of the low energy behavior of Λk and Gk are obtained from such initial

conditions. We can see that the results of Λk and Gk are similar to the results of the previous

work by Gubitosi et al. [9]. The slight running of Gk in the infrared regime is supposed to
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m̃2
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m̃2
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(c)

FIG. 1. The energy scale dependence of m̃2
t and m̃2

σ on the trajectory obtained from the initial

conditions of (ukHub
, wkHub

, CkHub
, DkHub

) = (4.5 × 10121, 5.6 × 10120, 1.0 × 109, 1.0 × 109). We can

see that m̃2
t and m̃2

σ are continuous in the whole range (top panel) and the validity conditions for

the RGEs (5)–(8), m̃2
t , m̃

2
σ > −1, are fail in the Hubble scale regime (middle and bottom panels).
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be an artifact of the scheme to derive the RGEs.
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(b)
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FIG. 2. The energy scale dependence of the coupling parameters of Λk, Gk, Ck, and Dk for the

initial conditions of (ukHub
, wkHub

, CkHub
, DkHub

) = (4.5× 10121, 5.6× 10120, 1.0× 109, 1.0× 109).

Suppose that the universe is approximately described by the de Sitter space-time, at

k & kinf , and compare the contributions of each term in the action of Eq. (2). Assuming

that the Hubble parameter H is comparable with kinf , the scalar curvature can be expressed

as R = −12H2 ' −12k2inf [9]. Note that the square of Weyl tensor vanishes in the isotropic

Friedmann universe, including the de Sitter space-time. However, since Ck and Dk are in the

same order at any energy scales of interest, we simply assume that contributions to physics

from the quadratic terms, R2 and C2
µνρσ, are of the same order of magnitude. In Fig. 3, it

is shown that the isotropic Friedmann universe is well described by −R + R2 action (the

Starobinsky model) at k ' kinf , and at higher energy scales, k & kpl, physics is effectively
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described by the action containing only the quadratic terms. As the coupling values of this

theory, C−1 and D−1, take very small value at k & kpl, this trajectory corresponds to the

asymptotically free quantum gravity theory.

1019 1022 1025 1028 1031 1034 1037

k/eV

1070

1090

10110

10130

10150

Uk

FkR/2

CkR
2/2

Uk

FkR/2

CkR
2/2

FIG. 3. Contributions of terms in the action of Eq. (2) evaluated in the de Sitter space-time for

the initial conditions of (ukHub
, wkHub

, CkHub
, DkHub

) = (4.5× 10121, 5.6× 10120, 1.0× 109, 1.0× 109).

B. Asymptotically Safe Quantum Gravity

In Ref. [10], a non-trivial fixed point that can be considered as the Reuter fixed point

(R-FP) [3, 4] has been found:

uR∗ = 0.000281, wR
∗ = 0.0218, CR

∗ = 0.204, DR
∗ = −0.0132. (31)

Quantum physics described at this non-trivial fixed point can be considered as asymptoti-

cally safe quantum gravity [5, 10]. It is very interesting to search for a trajectory which keeps

the consistency with the observational conditions and flows into this non-trivial fixed point.

However, since the critical surface of this non-trivial fixed point is three dimensional [10] and

the parameter space of the trajectory is four-dimensional, a fine-tuning of the initial condi-

tions is necessary to obtain this trajectory. In this paper, instead of performing this task,
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we study a trajectory which satisfies all of the observational boundary conditions (15)–(18)

and goes to near the R-FP, but run away from the R-FP at the trans-Planckian scales. If

we set the initial conditions for uk, wk, and Ck as

ukHub
= 4.4769× 10121, (32)

wkHub
= 5.5961× 10120, (33)

CkHub
= 1.0081× 109, (34)

the initial condition for Dk that corresponds to such trajectory can be found as

DkHub
= 535.67. (35)

Here, we have set five significant figures for the coupling parameters. The set of the boundary

conditions is

ukHub

wkHub

= 8, (36)

wklab = 3.0× 1064, (37)

CkHub
= 1.0× 109 ' Cklab ' Ckinf , (38)

DkHub
= 535.67 ' Dklab ' Dkinf . (39)

The numerical integration of RGEs (5)–(8) in the initial conditions of Eqs. (32)–(35)

leads to singular effects in the infrared regime. As is in the asymptotically free case, there

are regimes near the Hubble scale where m̃2
t , m̃

2
σ > −1 do not hold (see Fig. 4). Since

the contributions of the singular effects to the coupling parameters are O(106), which is

much larger than DkHub
, the numerical calculations are not reliable. To manage the infrared

singularity, we assume that these singular effects are unphysical as discussed in the previous

subsection, and to eliminate this effects, we set Ck = CkHub
and Dk = DkHub

for k ∈
[kHub, 2.1169× 10−29 eV].

In Fig. 5, we show the renormalization group flow in the Ck-Dk plane for the initial

conditions of Eqs. (32)–(35). The gray arrows indicate the direction of increasing energy

scale. It can be seen that the trajectory approaches to the R-FP, indicated by the star

symbol, with increasing the energy scale, but Dk begins to increase at near the R-FP.

The values of coupling parameters at the each energy scale, kHub, klab, and kinf , for the

initial conditions of Eqs. (32)–(35) are summarized in Table II. It can be seen that all the

boundary conditions of Eqs. (36)–(39) are satisfied.
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FIG. 4. The energy scale dependence of m̃2
t and m̃2

σ on the trajectory obtained from the initial

conditions of Eqs. (32)–(35). We can see that m̃2
t and m̃2

σ are continuous in the whole range (top

panel), and the validity conditions for the RGEs (5)–(8), m̃2
t , m̃

2
σ > −1, are fail in the Hubble scale

regime (middle and bottom panels).
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D
k

FIG. 5. Renormalization group flow in the Ck-Dk plane for the initial condition of Eqs. (32)–

(35). The Reuter fixed point, (uR∗ , w
R
∗ , C

R
∗ , D

R
∗ ), is indicated by the star symbol. The gray arrows

indicate the direction of increasing energy scale.

TABLE II. Values of coupling parameters, uk, wk, Ck, and Dk, at the energy scales of kHub, klab,

and kinf , on the trajectories obtained from the initial conditions of Eqs. (32)–(35). All the boundary

conditions of Eqs. (36)–(39) are satisfied.

kHub klab kinf

uk 4.4769× 10121 1.2567× 109 4.0061× 10−3

wk 5.5961× 10120 2.9649× 1064 1.5943× 1010

Ck 1.0081× 109 1.0081× 109 1.0081× 109

Dk 535.67 539.03 542.85

The energy scale dependence of the coupling parameters of Λk, Gk, Ck, and Dk are

shown in Fig. 6. As discussed in Section IV A, since Ck/wk and Dk/wk are much smaller

than uk/wk and 1 for k . klab, the results of Λk and Gk are similar to the asymptotically

free case (Fig. 2) and results of Gubitosi et al. [9].

Contributions of terms in the action in the de Sitter space-time at k & kinf are compared

in Fig. 7. Although the theory is well approximated by the Starobinsky model at the
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FIG. 6. The energy scale dependence of the coupling parameters of Λk, Gk, Ck, and Dk for

the boundary condition of (ukHub
, wkHub

, CkHub
, DkHub

) = (4.4769 × 10121, 5.5961 × 10120, 1.008 ×

109, 535.67).

inflationary scales, k ' kinf , the value of CkR
2/2 starts to approach the values of Uk and

FkR/2 at 2 × 1025 eV, and they become of the same order at 1031 eV. Although this

trajectory does not hit the R-FP, since Ck does not significantly run away from the fixed

point value, Fig. 7 captures the trans-Planckian physics described by the R-FP.

V. CONCLUSION

Keeping the consistency with infrared physics and the Starobinsky model, we have found

two types of trajectories flowing into i) asymptotically free regime and ii) asymptotically safe
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FIG. 7. Contributions of terms in the action of Eq. (2) evaluated in the de Sitter space-time

for the initial conditions of (ukHub
, wkHub

, CkHub
, DkHub

) = (4.4769 × 10121, 5.5961 × 10120, 1.008 ×

109, 535.67).

regime. These two trajectories predict the same physics under the inflationary scale, with

the assumption that the universe is isotropic Friedmann universe. Although the square of

Weyl tensor term does not contribute to the homogeneous and isotropic universe dynamics,

the boundary condition of Dk has a key roll for the prediction of the Planck scale physics of

gravity in the asymptotically safe quantum gravity. Thus, the determination of the boundary

condition of Dk from cosmological study is important.
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Appendix A: Renormalization group equations

To see the explicit forms of renormalization group equations (5)–(9), let us introduce the

dimensionless mass terms defined as

m̃2
t = d− v, m̃2

σ = 3c− v

4
, (A1)

where

c =
C

w
, d =

D

w
, v =

u

w
, (A2)

and “threshold functions” defined as

l2np (x) =
1

n!

1

(1 + x)p+1
, (A3)

where n and p are integers, and x is a real number. Then, the RGEs of Eqs. (5)–(9) are given

as follows. Readers interested in details of derivations are referred to the original paper [10].

∂tuk =− 4u+
1

32π2

{
20

3
(3d+ 2)l40(m̃

2
t ) +

3

10
(24 + 80c− 5v)l40(m̃

2
σ)− 13

2
l40(0)

}
, (A4)

∂twk =− 2w − 1

96π2

{
−
[

5

2
(4d+ 3)l20(m̃

2
t ) +

40

3
(3d+ 2)l41(m̃

2
t ) (A5)

+
15

2
(2c+ d)(5 + 8d)l61(m̃

2
t )

]
+

[
1

12
(144c− 10v + 45)l20(m̃

2
σ)

− v

20
(120c− 7v + 35)l61(m̃

2
σ) +

1

7
(126c− 7v + 36)l81(m̃

2
σ)

+
27c

7
(224c− 12v + 63)l101 (m̃2

σ)− 5

3
l20(0)

]
− 29

4
l20(0)

}
, (A6)

∂tCk =− 1

576π2

{[
−770

9
(d+ 1)l00(m̃

2
t ) +

40

9
(4d+ 3)l21(m̃

2
t ) +

40

27
(3d+ 2)(3c+ 7d)l41(m̃

2
t )

+
1120

9
(3d+ 2)l42(m̃

2
t ) +

80

3
(8d+ 5)(9c+ 5d)l62(m̃

2
t )

+ 432(5d+ 3)(2c2 + 2cd+ d2)l82(m̃
2
t ) +

5d+ 3

50(1 + m̃2
σ)
l81(m̃

2
t ) +

d(12d+ 7)

15(1 + m̃2
σ)
l101 (m̃2

t )

−400(7d+ 4)(d− 6c)2

21(1 + m̃2
σ)

l121 (m̃2
t )

]
+

[
(12c− v + 4)l00(m̃

2
σ)− 7

20
v(80c− 5v + 24)l41(m̃

2
σ) +

11

15
(120c− 7v + 35)l61(m̃

2
σ)

− 8

63
(183c− 10d)(126c− 7v + 36)l81(m̃

2
σ) +

20

21
(21c− d)(126c− 7v + 36)l81(m̃

2
σ)
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+
(126c− 7v + 36)

210(1 + m̃2
t )

l81(m̃
2
σ) +

5

63
v2(126c− 7v + 36)l82(m̃

2
σ)

+
80

3
c(1080c− 55v + 297)l142 (m̃2

σ) +
60480

11
c2(220c− 11v + 60)l162 (m̃2

σ)

+
126c− 7v + 36

210(1 + m̃2
t )

l81(m̃
2
σ) +

3d(224c− 12v + 63)

140(1 + m̃2
t )

l101 (m̃2
σ)

−25(d− 6c)2(288c− 15v + 80)

9(1 + m̃2
t )

l121 (m̃2
σ)− 17

18
l00(0)

]
− 29

2
l00

}
, (A7)

∂tDk =
1

960π2

{[
1030

9
(d+ 1)l00(m̃

2
t ) +

500

9
(4d+ 3)l21(m̃

2
t ) +

200

27
(3d+ 2)(6c− 13d)l41(m̃

2
t )

+
2800

9
(3d+ 2)l42(m̃

2
t ) +

1600

3
d(8d+ 5)l62(m̃

2
t ) + 4800d2(5d+ 3)l82(m̃

2
t )

+
5d+ 3

5(1 + m̃2
σ)
l81(m̃

2
t ) +

2d(12d+ 7)l101 (m̃2
t )

3(1 + m̃2
σ)

−4000(7d+ 4)(d− 6c)2

21(1 + m̃2
σ)

l121 (m̃2
t )

]
+

[
(12c− v + 4)l00(m̃

2
σ) +

5

4
v(−80c+ 5v − 24)l41(m̃

2
σ) +

13

3
(120c− 7v + 35)l61(m̃

2
σ)

20

63
(183c− 10d)(126c− 7v + 36)l81(m̃

2
σ) +

5

14
v(224c− 12v + 63)l102 (m̃2

σ)

+
25

36
(288c− 15v + 80)l122 (m̃2

σ) +
5

63
v2(126c− 7v + 36)l82(m̃

2
σ)

+
50

3
cv(288c− 15v + 80)l122 (m̃2

σ) +
80

3
c(1080c− 55v + 297)l142 (m̃2

σ)

60480

11
c2(220c− 11v + 60)l162 (m̃2

σ) +
(126c− 7v + 36)

21(1 + m̃2
t )

l81(m̃
2
σ)

+
3d(224c− 12v + 63)

14(1 + m̃2
t )

l101 (m̃2
σ)

−250(d− 6c)2(288c− 15v + 80)

9(1 + m̃2
t )

l121 (m̃2
σ)− 341

18
l00(0)

]
+

7

2
l00(0)

}
, (A8)

∂tEk =− 1

5760π2

{[
430

3
(d+ 1)l00(m̃

2
t ) +

500

3
(4d+ 3)l21(m̃

2
t ) +

200

9
(3d+ 2)(6c+ 5d)l41(m̃

2
t )

+
1600

3
(3d+ 2)l42(m̃

2
t ) + 400d(8d+ 5)l62(m̃

2
t ) + 6480d2(5d+ 3)l82(m̃

2
t )

+
3(5d+ 3)

5(1 + m̃2
σ)
l81(m̃

2
t ) +

2d(12d+ 7)

1 + m̃2
σ

l101 (m̃2
t )−

4000(7d+ 4)(d− 6c)2

7(1 + m̃2
σ)

l121 (m̃2
t )

−360(d+ 1)
N

ξE
l00(m̃

2
t )

]
+

[
(12c− v + 4)l00(m̃

2
σ) +

15

4
v(−80c+ 5v − 24)l41(m̃

2
σ) + 13(120c− 7v + 35)l61(m̃

2
σ)

− 20

21
(183c− 10d)(126c− 7v + 36)l81(m̃

2
σ) +

15

14
v(224c− 12v + 63)l102 (m̃2

σ)
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+
25

12
(288c− 15v + 80)l122 (m̃2

σ) +
5

21
v2(126c− 7v + 36)l81(m̃

2
σ)

+ 50cv(288c− 15v + 80)l81(m̃
2
σ) +

9d(244c− 12v + 63)

14(1 + m̃2
t )

l101 (m̃2
σ)

−250(d− 6c)2(288c− 15v + 80)

3(1 + m̃2
t )

l121 (m̃2
σ)− 317

6
l00(0)

]
− 23

2
l00(0)

}
. (A9)
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