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bUniversité Libre de Bruxelles and International Solvay Institutes,

ULB – Campus Plaine CP231, 1050 Brussels, Belgium
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Abstract
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defined through a gauging of the Carroll algebra along the lines of standard Poincaré (or
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1 Introduction

The interest of the Carrollian (or ultra-relativistic) contraction of the Poincaré alge-

bra [1,2] in the context of gravity first appeared in the study of the “strong coupling” [3]

or zero signature [4,5] limit of Einstein’s theory. Initially expressed in Hamiltonian terms,

the covariant formulation of that limit was worked out in [6], where the underlying Car-

rollian geometry was identified and constructed. As realized more recently [7], the limit

appearing in [3–6] is the “electric” Carrollian contraction of Einstein gravity. There is an-

other Carrollian contraction, called “magnetic” in [7], which is also easily obtained in the

Hamiltonian formalism. Conserved charges and asymptotic symmetries for both “electric”

and “magnetic” Carrollian gravity were then studied in [8–10]. Aside from the original

motivation, Carrollian field theories and gravity recently received a renewed interest due
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to their relation with the physics taking place at the null boundaries of asymptotically-flat

spacetimes in general relativity, see e.g. [11–14].

Specifically, the magnetic Carrollian limit of Einstein gravity on which we focus in this

note can be derived as follows. One starts from the canonical action in D + 1 spacetime

dimensions,

I =

∫

dt dDx
(

πij ġij −NH⊥ −N iHi

)

. (1.1)

The Hamiltonian constraints take the form

H⊥ = HM +HE , Hi = − 2∇jπi
j , (1.2)

where

HM = −
√
g

16πGM

(R− 2Λ) , HE =
16πGMc

2

√
g

(

πijπij −
1

D − 1
π2

)

, (1.3)

with GM = c−4GN and GN denoting Newton’s constant. One can then take the limit

c→ 0, effectively dropping the term HE in the Hamiltonian density, which is subleading

in that expansion [7]. One thus obtains the action of magnetic Carrollian gravity:

IM =

∫

dt dDx
(

πij ḣij −NHM −N iHi

)

. (1.4)

Signals of the existence of a magnetic Carrollian limit of general relativity were also

pointed out in [15] by implementing the limit c → 0 on specific solutions. The magnetic

theory was also recovered in [16] at the next-to-leading order in a Carrollian expansion of

the covariant Einstein-Hilbert action, developed along the lines pioneered in [17]. In the

Hamiltonian setup, the electric Carrollian limit is obtained instead by rescaling the fields

and Newton’s constant so as to keep in the limit c→ 0 the term HE in the Hamiltonian

density while dropping HM , without affecting neither the kinetic term nor Hi.

The key dynamical feature that distinguishes the magnetic contraction from the electric

one is that the momentum πij conjugate to the metric cannot be eliminated using its own

equation of motion in the magnetic case, while it can in the electric case. In the electric

theory, eliminating πij leads to the second-order covariant action of [6], while in the

magnetic theory the equation of motion for πij forces the Carrollian second fundamental

form (or extrinsic curvature) to vanish. This property plays a significant role below.

There exist other approaches to Carrollian theories of gravity, which are based on the

gauging of the Carroll algebra along the lines of standard Poincaré (or (A)dS) gaug-

ings [18–21]. A natural question is then to compare the Hamiltonian and gauging pro-

cedures. The form of the equations of motion points towards the identification of the

theory developed in [18] with electric Carrollian gravity, and of that developed in [19]

with magnetic Carrollian gravity. In this paper, we focus on the magnetic case and we

prove that the actions presented in [19] and [7] are indeed equivalent.
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Our paper is organized as follows. In section 2, we introduce the quantities that ap-

pear in the gauging of the Carroll algebra and that give a Cartan description of Carrollian

geometry. In section 3, we prove the equivalence of the first-order action of [19] with the

Hamiltonian action of [7]. In section 4, we revisit this result starting from the relation be-

tween the first-order and Hamiltonian formulations of Einstein gravity and implementing

the limit c → 0 afterward. This allows us to show how the key features of the magnetic

theory are already visible in general relativity provided that one solves only part of the

torsion constraint. In Appendix A, we discuss how one could modify this limiting proce-

dure to obtain instead the electric theory, highlighting however a series of unsatisfactory

features that are absent in the magnetic limit.

2 Gauging of the Carroll algebra - Kinematics

We review in this section Carrollian geometry from the point of view of Carrollian connec-

tions and “solderings”. A soldering attaches to the manifold the connection components

associated with translations so that they can be regarded as tangent vectors to the mani-

fold (“local frames”). This identification endows the tangent spaces to the manifold with

the structure of a flat Carroll spacetime, on which the homogeneous Carroll group acts.

This approach to Carrollian geometry is quite general and necessary for understanding

the gauging procedure to be presented later; see also the reviews [22, 23] and references

therein for related discussions. We develop in this section the concepts per se, without

any reference to a limiting procedure that would regard the Carrollian structure as a

contraction of the corresponding Poincaré one.

2.1 Carroll algebra

The Carroll algebra [1, 2] is a contraction of the Poincaré algebra and its non-vanishing

commutators are

[Jab, Pc] = δcbPa − δcaPb , (2.1a)

[Jab, Cc] = δcbCa − δcaCb , (2.1b)

[Jab, Jcd] = δacJdb + δbdJca − δadJcb − δbcJda , (2.1c)

[Ca, Pb] = δabH . (2.1d)

The Latin indices a, b, . . . from the beginning of the alphabet are internal indices taking

spatial values 1, . . . , D. The corresponding capital letters A,B, . . . take the spacetime

values 0, 1, . . . , D. The generators H , Pa, Ca and Jab are associated with time transla-

tions, spatial translations, Carrollian boosts and spatial rotations, respectively. Carrollian

boosts and spatial rotations define the homogeneous Carroll subalgebra.
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Carroll transformations leave both the degenerate metric

(ζAB) =

(

0 0

0 δab

)

(2.2)

and the vector

(nA) =

(

1

0

)

, ζAB n
B = 0 (2.3)

invariant. One can in fact define the Carroll group as the group of linear transformations

that leave these objects invariant. The degenerate metric enables one to lower mean-

ingfully (i.e., in a Carroll-invariant way) the internal indices. The above commutation

relations can be written in a compact way as

[JAB, PC ] = ζCBPA − ζCAPB , (2.4a)

[JAB, JCD] = ζACJDB + ζBDJCA − ζADJCB − ζBCJDA , (2.4b)

with P0 = H and J0b = Cb = −Jb0.
One can also include a cosmological constant Λ = σD(D−1)

2ℓ2
by considering the Carroll

(A)dS algebra, which is a contraction of the (A)dS algebra and includes the additional

non-vanishing commutators

[H,Pa] = − σ

ℓ2
Ca , [Pa, Pb] = − σ

ℓ2
Jab , (2.5)

or together as

[PA, PB] = − σ

ℓ2
JAB , (2.6)

where σ = 1 (−1) corresponds to the dS (AdS) case.

2.2 Carrollian connection – Vielbein

The first step in the “gauging” of a Lie algebra is to define a connection one-form taking

values on that algebra, here the Carrollian one (or its (A)dS counterpart):

Aµ = τµH + eµ
aPa + ωµ

aCa +
1

2
ωµ

abJab , (2.7)

where µ are D + 1 spacetime indices.

While the (local) introduction of a connection one-form can be done for any algebra,

the next step to be discussed uses the particular feature that some of the generators of the

Carroll algebra are translations and can be identified with a basis of tangent (co)vectors

to the manifold. Specifically, we shall make throughout the non-degeneracy assumption

that the one-forms τµ, eµ
a are linearly independent, so that the set of D + 1 one-forms
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{τµ, eµa} constitute a basis of the cotangent space (“soldering”). This implies that the

determinant

E = det (τµ, eµ
a) =

1

D!
ǫa1···aDǫ

µ0···µDτµ0
eµ1

a1 · · · eµD

aD 6= 0 (2.8)

does not vanish. The dual basis of the tangent space is denoted by {nµ, eµa} and fulfills

eµ
aeµb = δab , τµn

µ = 1 , nµeµ
a = 0 , τµe

µ
a = 0 . (2.9)

From these relations, one derives

eµ
aeνa + τµn

ν = δµ
ν , (2.10)

(right and left inverses coincide) and

det (nµ, eµa) = E−1 . (2.11)

The basis of tangent vectors {nµ, eµa} is called the “vielbein”, or “local frame” while

the one-forms {τµ, eµa} are the “inverse vielbein”, or “dual local frame”.3 We introduce

the notation

(EµA) ≡ (τµ, eµ
a) , (Eµ

A) ≡ (nµ, eµa) , (2.12)

in terms of which the above relations read

EµAEµ
B = δAB , EµAEν

A = δµ
ν . (2.13)

The vielbein and its inverse enable one to convert spacetime indices into tangent space

ones and vice-versa. We can in particular convert the indices of the Carroll-invariant

internal metric ζAB and of the vector nA into spacetime indices, yielding a degenerate

metric gµν in spacetime and the vector nµ already introduced in (2.12),

gµν = EµAEνBζAB = eµ
aeν

bδab and nµ = Eµ
An

A , (2.14)

which fulfill by construction

gµνn
ν = 0 . (2.15)

It follows from this relation that τµ is not obtained by lowering the index ν of nν with

the metric gµν and this is the reason why we used a different letter. By contrast, we have

eµ
a δab = gµν e

ν
b and the use of the same letter here should not lead to confusion. In fact,

one has in all cases

ζAB EµA = gµν Eν
B , (2.16)

but this relation reduces to 0 = 0 when B = 0.

3We resort here to the notation which is customary in general relativity, but we stress that in the

supergravity literature (and in [19] to which we often refer in the next section) the word “vielbein” is

often used to denote the set of one forms {τµ, eµa} rather than the vectors {nµ, eµa}.
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Under local gauge transformations, the Carrollian connection (2.7) transforms as δAµ =

DµΓ, where DµΓ = ∂µΓ + [Aµ,Γ] is the covariant derivative of the gauge parameter

Γ = ξH + ξaPa + λaCa +
1

2
λabJab . (2.17)

In components, this gives

δeµ
a = ∂µξ

a + ωµ
abξb − eµ

bλab , (2.18a)

δτµ = ∂µξ + ωµ
aξa − eµ

aλa , (2.18b)

δωµ
ab = ∂µλ

ab + 2ωµ
c[aλb]c −

2σ

ℓ2
eµ

[aξb] , (2.18c)

δωµ
a = ∂µλ

a + ωµ
abλb − ωµ

bλab −
σ

ℓ2
(τµξ

a − eµ
aξ) , (2.18d)

where X[µYν] =
1
2
(XµYν −XνYµ). These formulas show that the determinant condition

is preserved under transformations of the homogeneous Carroll group (boosts and spatial

rotations, with ξ = ξa = 0) for which δE = 0, but in general not under inhomogeneous

transformations (internal translations).

Given its importance, we write explicitly the transformation rule of the inverse vielbein

to which (2.18) reduces for homogeneous Carroll transformations:

δeµ
a = −eµbλab , δτµ = −eµaλa . (2.19)

With the identification of {nµ, eµa} as a basis of the tangent space, we have also a linear

action of the homogeneous Carroll group in the tangent space at each point, which follows

from (2.19) and the duality of the frames, and reads

δeµa = eµbλ
b
a + λan

µ , δnµ = 0 . (2.20)

It follows that, contrary to the one-form τµ, the vector nµ is invariant under local ho-

mogeneous Carroll transformations. The degenerate metric gµν is also invariant under

these transformations in the tangent space since the internal metric (2.2) is itself Carroll-

invariant (λca ≡ δcbλ
b
a is antisymmetric).

One can write more compactly the transformation laws of the vielbein and the inverse

vielbein as

δEµ
A = Eµ

Bλ
B
A , δEµA = −EµB λAB (2.21)

with

(λAB) =

(

0 λb
0 λab

)

. (2.22)

Tensors in the tangent space transform with the matrix λAB.

The metric gµν and the vector nµ provide a complete set of Carroll invariants that can

be constructed out of the vielbein. This is because gµν and nµ determine the vielbein up

to a Carroll transformation. Indeed if {n′µ, e′µa} is such that

gµν = e′µ
ae′ν

bδab , n′µ = nµ , (2.23)
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then {n′µ, e′µa} differ from {nµ, eµa} by a linear transformation preserving the Carrollian

structure (2.2)–(2.3), i.e., by a Carroll transformation. The invariants gµν and nµ are

redundant since one has gµνn
µ = 0. A non-redundant set of variables is given by (gµν , E):

if one knows gµν , the vector n
µ is determined up to normalization, which is fixed by E . The

variables (gµν , E) are the basic variables of [6], where E was denoted Ω. It follows from this

observation that any function of the vielbein that is invariant under local transformations

can be viewed as a function of gµν and E . The field τµ was also introduced in [6,7], where

it was denoted θµ.

2.3 Extrinsic curvature and Carroll-compatible torsion-free con-

nections

Another important object introduced in [6], which we will need below, is the second

fundamental form or extrinsic curvature defined as4

Kµν ≡ −1

2
Lngµν = −1

2
(nρ∂ρgµν + gµρ∂νn

ρ + gνρ∂µn
ρ) . (2.24)

Contrary to what happens in the Riemannian case, it is now a spacetime tensor. It has,

however, the same number of independent components as a spatial symmetric tensor since

it is transverse, Kµνn
ν = 0. Because of this property, Kab defined through

Kab ≡ eµae
ν
bKµν (2.25)

contains the same information as Kµν (since Kµν = eµ
aeν

bKab) and transforms as

δKab = Kcbλ
c
a +Kacλ

c
b (2.26)

under internal homogeneous Carroll transformations.

The identification of the components EµA of the Carrollian connection as a frame in

the cotangent space enables one to define a covariant derivative Dµ for tangent tensors,

by restricting the full Carroll-covariant derivative Dµ to the homogeneous subgroup,

DµT = ∂µT + [ωµ, T ] , ωµ = ωµ
aCa +

1

2
ωµ

abJab =
1

2
ωµ

ABJAB (2.27)

(ωµ
a ≡ ωµ

0a = −ωµ
a0). For instance, for a vector v = vAPA = v0H + vaPa,

Dµv
0 = ∂µv

0 + ωµav
a , Dµv

a = ∂µv
a + ωµ

a
bv

b (2.28)

and similarly for a covector ψA

Dµψ0 = ∂µψ0 , Dµψa = ∂µψa − ωµaψ0 + ωµa
bψb . (2.29)

4Note for comparison that the authors of ref. [19] introduced an overall sign difference in the definition

of the extrinsic curvature as compared to [6].
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This covariant derivative automatically preserves the metric and the normal vector nA

DµζAB = 0 , Dµn
A = 0 . (2.30)

In analogy with the terminology used in Riemannian geometry, one might call ωµ
AB

introduced in eq. (2.27) the “spin connection”.

Parallel transport and covariant derivatives are concepts that can be formulated in

any tangent basis, so one can translate the covariant derivatives defined in the local

frame {Eµ
A

∂
∂xµ} to the coordinate frame { ∂

∂xµ}. The connection in the coordinate basis

is denoted Γµ
ρσ. The spin connection ωµ

AB and Γµ
ρσ are related through the standard

change-of-frame formulas for a connection, namely

∂ρEµ0 + ωρ
aEµa − Γσ

ρµEσ0 = 0 , (2.31a)

∂ρEµa + ωρ
abEµb − Γσ

ρµEσa = 0 . (2.31b)

These can be compactly written

DρEµA = 0 , (2.32)

where Dρ acts on all (internal and spacetime) indices. One way to think about these

formulas is that they express that the covariant derivative of the Kronecker tensor is zero

(as it should!), in particular if the computation is carried in a mixed basis (one index in

the local frame, one index in the coordinate frame). One sometimes calls these equations

“the vielbein postulate”.

Torsion-free connections, for which D[µχν] = ∂[µχν] for any one-form χµ, play an impor-

tant role in Riemannian geometry and are defined in an analogous manner in Carrollian

geometry. In a coordinate frame, in both Riemannian and Carrollian geometry, the ab-

sence of torsion is equivalent to the symmetry of Γσ
ρµ in its lower indices ρ, µ,

Γσ
ρµ = Γσ

µρ . (2.33)

For Carrollian geometry, in the local frames {Eµ
A} this condition is itself equivalent in

view of (2.31) to the vanishing of the torsion tensors5

Tµν = 2
(

∂[µτν] + ω[µ
aeν]a

)

, (2.34a)

Tµν
a = 2

(

∂[µeν]
a + ω[µ

abeν]b
)

, (2.34b)

expressions which can be succinctly written as

Tµν
A = 2

(

∂[µEν]A + ω[µ
ABEν]CζBC

)

. (2.35)

It is a well-known result of Riemannian geometry that there is a unique torsion-free,

metric-compatible connection for any Riemannian metric, called the “Levi-Civita connec-

tion”. This is not so in Carrollian geometry. One has instead [6, 24–26]:

5In order to connect our notation with that of [19], one has to change the sign of ωµ
a, ωµ

ab and of

the tensors Rµν
a and Rµν

ab that we will introduce shortly in (2.40). This is a consequence of a sign

difference in the generators Ca and Jab of the Carroll algebra (2.1).
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• A necessary and sufficient condition for the existence of a torsion-free connection

that preserves the Carrollian structure (Dρgµν = 0, Dρn
µ = 0) is that the extrinsic

curvature vanishes,

Kµν = 0 . (2.36)

• When this condition is satisfied, the connection is not unique but determined up to

the addition of nρSµν where Sµν is an arbitrary symmetric and transverse tensor,

Γρ
µν → Γρ

µν + nρSµν , Sµν = Sνµ , Sµνn
µ = 0 . (2.37)

The proof is direct and is most easily carried out in local coordinates where nµ =

(1, 0, · · · , 0). [In such a coordinate system, gtt = gti = 0 and Γk
ij = γkij are the spa-

tial Christoffel symbols, Γj
ti = 0 (⇔ Kij = 0) while the Γt

ij are arbitrary.] Another way

to see that the extrinsic curvature must vanish is to consider the components

TABC ≡ Eµ
AEν

BTµν
DζCD (2.38)

of the torsion tensor and to observe that the connection drops from T0(bc), which contains

only the vielbein and its derivative and is in fact proportional to KµνEµ
bEν

c, so that the

constraint T0(bc) = 0 implied by the torsion-free condition (2.33), enforces Kµν = 0.

2.4 Torsion and curvature

The curvature of the Carrollian connection (2.7) can be decomposed as

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] = Tµν H + Tµν
aPa + Fµν

aCa +
1

2
Fµν

abJab , (2.39)

where the “torsions” Tµν and Tµν
a are defined in eq. (2.34) and where the “curvatures”

read

Fµν
a = 2

(

∂[µων]
a + ω[µ

abων]b −
σ

ℓ2
τ[µeν]

a
)

≡ Rµν
a − 2σ

ℓ2
τ[µeν]

a , (2.40a)

Fµν
ab = 2

(

∂[µων]
ab + ω[µ

acων] c
b − σ

ℓ2
e[µ

aeν]
b
)

≡ Rµν
ab − 2σ

ℓ2
e[µ

aeν]
b . (2.40b)

Here, we also introduced the curvatures of the Carroll algebra, denoted by Rµν
a and Rµν

ab,

that one recovers for σ = 0. They read explicitly

Rµν
AB = 2

(

∂[µων]
AB + ω[µ

ACων]
DBζCD

)

. (2.41)

Note that because the invariant metric ζDB is degenerate, there is no term quadratic in

ωµ
a.
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The full curvature in eq. (2.39) transforms covariantly under Yang-Mills-type gauge

transformations, which yields in terms of its components

δTµν
a = Fµν

abξb − Tµν
bλab , (2.42a)

δTµν = F a
µνξa − Tµν

aλa , (2.42b)

δFµν
ab = 2Fµν

c[aλb]c −
2σ

ℓ2
Tµν

[aξb] , (2.42c)

δFµν
a = Fµν

abλb − Fµν
bλab −

σ

ℓ2
(Tµνξ

a − Tµν
aξ) . (2.42d)

While torsion and curvature mix under Carrollian translations, they transform separately

under the homogeneous Carroll subgroup, i.e. for ξb = 0 and ξ = 0:

Tµν
a = −Tµν bλab , δTµν = −Tµνaλa , (2.43a)

δFµν
ab = 2Fµν

c[aλb]c , δFµν
a = Fµν

abλb − Fµν
bλab , (2.43b)

implying

δRµν
ab = 2Rµν

c[aλb]c , δRµν
a = Rµν

abλb − Rµν
bλab . (2.44)

Setting

(Tµν
A) = (Tµν , Tµν

a) , Rµν
0a = Rµν

a , (2.45)

these relations can be written as

δTµν
A = −λABTµν

B , δRµν
AB = −λACRµν

CB − λBCRµν
AC . (2.46)

It follows in particular from these relations that

R = Eµ
AEν

BRµν
AB (2.47)

is invariant both under local Carroll homogeneous transformations in the tangent space

and coordinate transformations. It is called the scalar curvature.6 In components,

R = 2nµeνaRµν
a + eµae

ν
bRµν

ab . (2.48)

3 Gauging of the Carroll algebra - Dynamics

In this section, we first review the action proposed in [19] and we highlight that its

equations of motion select a torsion-free Carrollian connection. As we have seen, this

connection is defined up to an arbitrary symmetric tensor and we show that the latter

can be identified with the momentum conjugate to the spatial metric. Taking advantage

of this observation, we then prove that the action obtained from the gauging of the Carroll

algebra in [19] is equivalent to the action of magnetic Carrollian gravity of [7].

6We use the notation R not to confuse this object with the spatial scalar curvature appearing in the

Hamiltonian formulation.
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3.1 Action from gauging

To fix the dynamics one can set up an action principle requiring that the action be invari-

ant only under local homogeneous Carroll transformations. This condition preserves the

non-degeneracy assumption. One also requires the action to be invariant under spacetime

diffeomorphisms (which preserve E 6= 0 too). One obvious candidate, which is the analog

of the Einstein-Hilbert action — or rather, its first-order Einstein-Cartan formulation in

which vielbein and spin connection are treated as independent variables —, is

ICar[EµA, ωµ
AB] =

1

16πGM

∫

dt dDx E (R− 2Λ)

=
1

16πGM

∫

dt dDx E
(

2nµeνaRµν
a + eµae

ν
bRµν

ab − 2Λ
)

.

(3.1)

This is the action proposed in [19] starting from a c→ 0 limit of the relativistic Einstein-

Cartan action, where GM is a constant resulting from a rescaling of Newton’s constant.7

See also [21] for a classification of all terms built out of the connections in eq. (2.7) and

the curvatures in eq. (2.39) that are invariant under local homogeneous Carroll transfor-

mations.

The equations of motion that one derives from the action (3.1) impose the vanishing

of the torsion (2.35) (by extremizing the action with respect to the spin connection),

together with a Carrollian analog of Einstein’s equations (by extremizing the action with

respect to the vielbein). Thus, the action (3.1) forces the connection to be torsion-free

in addition to preserving the Carrollian structure. From what we have recalled above,

this implies that the extrinsic curvature vanishes and that the connection is not uniquely

determined from the vielbein but involves an arbitrary, transverse symmetric tensor.

In order to see how this arises in detail, we follow closely, in this paragraph and the

next, the paper [19], which provides important insight into the dynamical aspects of the

theory with action (3.1). From the torsion equations, one can solve for all the connection

components, except for the symmetrized boost component ω(ab)
0 ≡ Eµ

(aδb)cωµ
c0 of the

connection (2.27), which remains arbitrary and in terms of which the other components

can be expressed,

ωµ
a = − τµn

νeρ a∂[ντρ] − eν a∂[µτν] + Sabeµ b , (3.2a)

ωµ
ab = 2 eρ[a∂[µeρ]

b] − eµ ce
ρ aeν b∂[ρeν]

c . (3.2b)

Here, Sab = Sba is an arbitrary symmetric tensor, which can be identified with −ω(ab)0

as one can verify immediately from (3.2). One can view Sab as the spatial components

of a symmetric tensor SAB in the vielbein basis, the components S0A of which are ar-

bitrary but do not occur in the above expressions. By lowering the indices, one gets

7When D+1 = 4 this action can be written in a MacDowell-Mansouri form: ICar = − σℓ2

16πGM

∫

〈F ∧ F〉
with 〈CaJbc〉 = ǫabc.
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a symmetric, transverse, twice covariant tensor, which captures the ambiguity in the

Carroll-compatible, torsion-free connections described above. The variation of the action

with respect to ω(ab)0 yields an equation equivalent to T0(ab) = 0, which cannot be solved

for ω(ab)
0 but sets instead the extrinsic curvature to zero.

The next step is to eliminate the dependent spin connection components using (3.2)

while keeping the independent ones Sab, to get [19]

ICar[EµA, Sab] =
1

16πGM

∫

dt dDx E
(

2nµeνaRµν
a|

Sab=0 + eµae
ν
bRµν

ab − 2Λ

− 2
(

Sab − δabS
)

Kab

)

,

(3.3)

where S ≡ δabS
ab. In this form of the action, it is manifest that the field Sab acts as a

Lagrange multiplier enforcing the condition

Kab = 0 (3.4)

that the extrinsic curvature of the metric gµν should vanish.

3.2 Time gauge

We have now everything at hand to establish the equivalence of the action (3.3) with the

action (1.4) describing the magnetic limit of Einstein’s theory. The most expedient way

to do so is to (i) go to the “time gauge”, i.e., use the freedom in the Carrollian boosts to

set

τi = 0 , (3.5)

where we split Greek indices as µ = {t, i} (this is permissible since the theory is invariant

under local homogeneous Carroll transformations); and (ii) introduce the lapse N and the

shift N i familiar in the ADM (D + 1)-decomposition of general relativity, which express

the vector ∂
∂t

in the frame {nµ ∂
∂xµ ,

∂
∂xi}.8 We then find that the vielbein and the inverse

vielbein are parametrized as

nµ =

(

1

N
,−N

i

N

)

, eµa =
(

0, eia
)

, (3.6)

and

τµ = (N, 0) , eµ
a =

(

ei
aN i, ei

a
)

, (3.7)

respectively, where e
i
a is a spatial local frame with inverse ei

a (“D-bein”),

e
i
aei

b = δa
b , e

i
aej

a = δij . (3.8)

8We assume that the hypersurfaces t = constant are transverse to the integral curves of nµ, so that

the metric gij induced on these hypersurfaces is non-degenerate and of Euclidean signature.
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These expressions take the same form as in the customary time gauge in general relativity

[27–29]. The residual local Carroll freedom is exhausted by the local rotations acting on

the spatial D-bein.

In terms of this parametrization, useful formulas are

gij = ei
a
ej

bδab , gti = gijN
j , gtt = gijN

iN j , (3.9)

for the metric,

E = Ne = N
√
g (g = determinant of spatial metric) (3.10)

for the determinant of the vielbein,

Kij = − 1

2N
(ġij −∇iNj −∇jNi) , Kti = KijN

j , Ktt = KijN
iN j , (3.11)

for the extrinsic curvature (where ∇ denotes the Levi-Civita connection for the spatial

metric gij) and, using also the time-gauge,

ωt
a = e

ia∂iN +N iSa
bei

b , (3.12a)

ωi
a = Sa

bei
b , (3.12b)

ωt
ab = e

j [a
ėj

b] − e
j [a∂j(ei

b]N i)−N i
e
ja
e
kb
eic∂[jek]

c, (3.12c)

ωi
ab = 2 ej [a∂[iej]

b] − e
ja
e
kb
eic∂[jek]

c, (3.12d)

for the spin connection.

3.3 Recovering the magnetic action

Substituting eqs. (3.12) in the expression (2.41) for the curvature gives

2nµeνa Rµν
a|

Sab=0 = − ∂i
(

2 e eiae
ja∂jN

)

, eµae
ν
bRµν

ab = R , (3.13)

where R is the Ricci scalar constructed with the spatial metric gij. Dropping a total

derivative, the action (3.3) becomes then

ICar[ei
a, N,N i, Sij] =

1

16πGM

∫

dt dDx
√
g N

[

R− 2Λ− 2
(

Sij − δijS
)

Kij

]

, (3.14)

where we have also made the change of dynamical variables Sab → Sij = e
i
ae

j
bS

ab. The

action (3.14) is manifestly first order in time derivatives (through Kij) and second order

in spatial derivatives (through R).

It is also manifest that the action involves the D-bein only through the spatial met-

ric. This is of course a manifestation of local rotation invariance. So, one really has

ICar[ei
a, N,N i, Sij] ≡ ICar[gij , N,N

i, Sij] with exactly the same integral

ICar[gij, N,N
i, Sij] =

1

16πGM

∫

dt dDx
√
g N

[

R− 2Λ− 2
(

Sij − δijS
)

Kij

]

. (3.15)
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Extremization with respect to variations of the spatial metric automatically extremizes

with respect to D-bein variations.

We are now at a stone throw from proving equivalence. This is just achieved by making

one more change of variables, namely,

πij =

√
g

16πGM

(

Sij − hijS
)

⇔ Sij =
16πGM√

g

(

πij − 1

D − 1
hijgklπ

kl

)

, (3.16)

where hij is the inverse to the spatial metric gij. Using the explicit expression of the

extrinsic curvature in terms of ġij , the lapse, and the shift in eq. (3.11), and making an

integration by parts gives then immediately

ICar[gij , N,N
i, Sij] =

∫

dtdDx
(

πij ġij + 2Ni∇jπ
ij −NHM

)

, (3.17)

and therefore the searched-for equality

ICar = IM (3.18)

of the action (3.1) of [19] (after the successive transformations explained above) and the

magnetic action (1.4) of [6].

4 Magnetic limit of the Einstein-Cartan action

In the previous section we related directly the first-order action (3.1) (or its equivalent

reformulation (3.3)) of [19] to the action of magnetic Carrollian gravity in ADM form

of [7]. In both cases, we thus directly considered the result of a ultra-relativistic limit of

general relativity. In this section, we instead first recall the relation between the first-order

and ADM formulations of general relativity following [28, 30, 31] and then we track the

effect of the limit at each stage of the computations. The key point we wish to highlight

is that in the relativistic case one can choose either to fully eliminate the spin connection

via the torsion constraints to recover the second-order formulation of general relativity

or to keep suitable components of the spin connection as independent fields. These turn

out to be proportional to the conjugate momenta to the spatial metric as in (3.16) and

one eventually recovers the ADM formulation of general relativity. After the limit c→ 0

is taken, the first option is instead not available anymore and, as we discussed in the

previous section, one is forced to keep the field Sab in the action.

4.1 Setting the stage for the Carrollian limit

We start from the first-order formulation of general relativity, i.e. from the Einstein-Cartan

action

I =
c3

16πGN

∫

dt dDx E
(

Eµ
AE

ν
B Rµν

AB − 2Λ
)

, (4.1)
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where

Rµν
AB = 2 ∂[µΩν]

AB + 2Ω[µ
AC Ων]

DB ηCD , (4.2)

with ηCD = diag(−1,+1, . . . ,+1), while c denotes the speed of light and GN is Newton’s

constant. Moreover, tangent space indices take the values A,B = 0, 1, . . . , D, while Eµ
A

is the coframe, Ωµ
AB is the spin connection and E = det

(

Eµ
A
)

. To define the Carrollian

limit we introduce a dimensionless parameter ǫ via c = ǫ ĉ, so that the limit corresponds

to sending ǫ→ 0. For simplicity, in the following we shall also set ĉ = 1. We then consider

the same scaling in ǫ for the components of the coframe and of the spin connection as

in [19]:

Eµ
A = (ǫ τµ, eµ

a) , Ωµ
AB =

(

ǫ ωµ
a, ωµ

ab
)

, (4.3)

where we make explicit the link with the one-forms that we used in the previous sections.

Taking the limit ǫ→ 0 while rescaling Newton’s constant as

GN = ǫ4GM (4.4)

leads to the action (3.1).

To link the first-order action (4.1) to the ADM formulation of general relativity, it

is convenient to introduce the following quantities starting from the components of the

rescaled coframe Eµ
A of eq. (4.3) and its inverse Eµ

A:

ei
A ≡ Ei

A , nA ≡ −ǫN Et
A , (4.5)

where N is the usual lapse function, while the covector nA at this stage should not be

confused with the vector nA defined in eq. (2.3). The variables ei
A and nA satisfy the

relations

ηAB nA nB = −1 , ei
A nA = 0 , (4.6)

where capital Latin indices are raised and lowered with the Minkowski metric ηAB. All

components of the vielbein and its inverse are determined in terms of ei
A, nA and the

functions N and N i:

Eµ
A = (−ǫ−1N−1 nA, e

i
A + ǫ−1N−1N i nA) , Eµ

A = (ǫN nA + ei
AN i, ei

A) , (4.7)

where we introduced the quantity eiA verifying

eiA ej
A = δij , eiA ei

B = δA
B + nAn

B . (4.8)

The latter can also be defined as eiA = hijej
B ηAB, where h

ij is the inverse of the spatial

metric

gij = ei
A ej

B ηAB . (4.9)

The parametrization (4.7) of the vielbein and its inverse implies the usual ADM decom-

position of the metric:

gµν =

(

N iNi − ǫ2N2 Ni

Ni gij

)

, gµν =

(

− 1
ǫ2 N2

N i

ǫ2 N2

N i

ǫ2 N2 hij − N iNj

ǫ2 N2

)

, (4.10)
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where the spatial indices i, j = 1, . . . , D are raised and lowered using the D-dimensional

spatial metric gij and its inverse hij. From eq. (4.10), it is clear that the metric gµν
becomes degenerate in the limit ǫ→ 0.

All in all, together with the identity E = ǫN
√
g (where we recall that

√
g is the

determinant of the spatial metric gij), this parametrization implies the following rewriting

of the Einstein-Cartan action,

I = ǫ3
∫

dtdDx
√
g

16πGN

[

2 n[B e
i
A]Rti

AB + ǫN
(

ei[A e
j
B]Rij

AB − 2Λ
)

+ 2N [i n[A e
j]
B]Rij

AB
]

.

(4.11)

4.2 Torsion constraint

Varying the action (4.11) with respect to the full spin-connection Ωµ
AB imposes the

vanishing of the torsion

Tµν
A = 2 ∂[µEν]

A + 2Ω[µ
ABEν]

CηBC . (4.12)

We now wish to consider the variation of the same action with respect to the different

components of the spin connection, in order to identify which components of the torsion

are set to zero by each of these variations. In particular, we distinguish

Ωt
ij = Ωt

AB eiA e
j
B , Ωt

i
⊥ = Ωt

AB eiA nB , (4.13a)

Ωi
jk = Ωi

AB ejA e
k
B , Ωij⊥ = Ωi

AB ejA nB . (4.13b)

We can also project the components of the torsion on the basis of the tangent space

introduced in eq. (4.5) and obtain the following relevant components:

Tij⊥ ≡ Tij
A nA = 2 ∂[i ej]

A nA − 2Ω[ij]⊥ , (4.14a)

Tij
k ≡ Tij

A ekA = 2 ∂[i ej]
A ekA − 2Ω[ij]

k , (4.14b)

Tti⊥ ≡ Tti
A nA = ėi

A nA −N j ∂i ej
A nA − Ωti⊥ +N j Ωij⊥ + ǫ ∂iN , (4.14c)

Tt[ij] ≡ Tt[i
A ej]A = ė[i

A ej]A − ǫN ∂[i ej]
A nA − e[i

A ∂j]N
k ekA

−Nk e[i
A ∂j] ekA − Ωtij + ǫN Ω[ij]⊥ +Nk Ω[ij]k . (4.14d)

As we shall see in detail in the following, the components of the torsion that we wrote

explicitly are set to zero by the equations of motion that follow from the variation of

the action (4.11) with respect to all components of the spin connection, except Ω(ij)⊥.

This component plays a role similar to that of the tensor Sab in the previous section

and it is related to the conjugate momenta of the spatial metric in the Hamiltonian

formulation. The corresponding “missing” torsion constraint Tt(ij) corresponds to the

equation of motion allowing one to solve for πij in terms of the time derivative of the

spatial metric.
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In particular, varying with respect to Ωt
ij and Ωt

i
⊥ (which are both Lagrange multi-

pliers) one gets, respectively,

Tij⊥ = 0 , Tij
j = 0 . (4.15)

Varying with respect to Ωj
ki gives

Tti⊥ δ
j
k − Ttk⊥ δ

j
i + ǫN Til

l δjk − ǫN Tkl
l δji − 2 ǫN Tik

j −N j Tik⊥ = 0 . (4.16)

Finally, variation with respect to Ω[ij]⊥ yields

−2 Tt[ij] + Tki
kNj − Tkj

kNi = 0 . (4.17)

As already discussed, in the following we shall not need the variation with respect to Ω(ij)⊥

and therefore we refrain from exhibiting it. Still, eqs. (4.15), (4.16) and (4.17) suffice to

set to zero all components of the torsion that we included in eq. (4.14). In particular, we

are thus setting to zero the component Tij
k of the torsion. By taking a linear combination

of the cyclic permutations of this constraint over the indices i, j and k one obtains

ekA ∂i ej
A + Ωi

k
j − γij

k = 0 , (4.18)

where we introduced the Christoffel symbol γij
k of the Levi-Civita connection for the

spatial metric.

4.3 Rewriting of the action in Hamiltonian form

Up to now, we proceeded without fixing any gauge for the local Lorentz frame. For

simplicity, we now fix the time gauge, see eq. (3.7). Under this condition, nA = nA = δ0
A,

which is precisely eq. (2.3), and the conjugate momenta to the spatial vielbein ei
a reads

pia ≡
∂L
∂ėia

=
2 ǫ3

16πGN

√
g
(

Ωk
i
⊥ e

k
a − Ωk

k
⊥ e

i
a

)

, (4.19)

where we used the time derivative of the second relation in eq. (4.8) to transfer all time

derivatives onto ei
a. One can then rewrite, upon integration by parts, the first term in

the action (4.11) as

ǫ3
∫

dt dDx

8πGN

√
g n[B e

i
A]Rti

AB =

∫

dt dDx pia ėi
a − ǫ3

∫

dt dDx

16πGN

√
g
(

Ωt
ijTij⊥ − 2Ωt

i
⊥Tij

j
)

≈
∫

dt dDx πij ġij , (4.20)

where we used the symbol ≈ to stress that in the last line we imposed the constraints

following from eqs. (4.15), (4.16) and (4.17). Moreover, we defined

πij ≡ 1

2
p(ia e

j)a =
ǫ3
√
g

16πGN

(

Ω(ij)
⊥ − Ωk

k
⊥ h

ij
)

(4.21)
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and we used that Ω[ij]⊥ = nA ∂[i ej]
A = 0 as a result of the first torsion constraint of

eq. (4.15) and of the time-gauge condition ei
0 = 0.

The term involving
(

ei[A e
j
B] Rij

AB − 2Λ
)

also splits into two parts. The first one

constitutes the spatial curvature on account of ei
a
eja = gij and ei

a
e
ib = δab and the

spatial vielbein postulate (4.18):

ǫ4

8πGN

∫

dt dDx
√
g N

[

ei[A e
j
B]

(

∂i Ωj
AB + Ωi

AC Ωj
DB ζCD

)

− Λ
]

= −
∫

dt dDxN HM ,

(4.22)

where HM is the Hamiltonian constraint of magnetic Carrollian gravity defined in (1.3).

The second one can be rewritten as

ǫ4

8πGN

∫

dt dDx
√
g N ei[A e

j
B] Ωi

A
⊥ Ωj

B
⊥ =

16πGN

ǫ2

∫

dt dDx
N√
g

(

πij πij −
1

D − 1
π2

)

,

(4.23)

where we recognize the same structure as in the Hamiltonian constraint of electric Car-

rollian gravity defined again in (1.3).

Finally, last term in eq. (4.11) reads

ǫ3

8πGN

∫

dt dDx
√
g
(

N i ejA nB −N j eiA nB

) (

∂i Ωj
AB + Ωi

AC Ωj
DB ηCD

)

= 2

∫

dt dDxNi ∇j π
ij .

(4.24)

All in all, we arrive at

I =

∫

dt dDx
(

ġij π
ij −N H⊥ −Ni Hi

)

, (4.25)

with

H⊥ = HM + ǫ2
16πGM√

g

(

gil gjk −
1

D − 1
gij gkl

)

πij πkl , (4.26a)

Hi = −2∇j π
ij , (4.26b)

which is exactly eq. (1.1), with the identification GN = ǫ4GM .

Notice that the combination of the surviving components of the spin connection giving

πij in (4.21) does not depend on ǫ when written in terms of quantities that do not scale

in the Carrollian limit:

πij = −
√
g

16πGM

(

ω(ij) − hij ωk
k
)

, (4.27)

where only the spatial components of ωµ
a = ωµ

0a appears. This implies, in particular,

the relation

Sab = e
i
a e

j
b ω(ij) (4.28)
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which was derived in eq. (3.2). Taking it into account in the limit ǫ→ 0 one recovers from

(4.25) the action of magnetic Carrollian gravity in ADM form of eq. (3.17). Our present

derivation of the relation between the action (4.25) and (3.17) highlights however how

the Hamiltonian constraint of electric Carrollian gravity can be recovered as a subleading

contribution starting from the first-order action.

5 Conclusions

In the gauging approach to Einstein’s theory, the torsion-free, metric-compatible connec-

tion one-form plays a central role. Since such a connection always exists in Riemannian

geometry (and is unique), the gauging approach is well adapted to the description of the

theory.

By contrast, the existence of a torsion-free, Carroll-compatible connection is the ex-

ception rather than the rule in Carrollian geometry [6, 24–26]. Such a connection exists

only if the extrinsic curvature (or second fundamental form) vanishes, and in that case,

it is not unique. It does not come as a surprise, therefore, that the gauging approach

developed in [19], where a connection is introduced from the very beginning, dynamically

implements these features and is equivalent to the magnetic version of Carrollian gravity,

for which exactly the same properties hold - the spatial symmetric tensor parametriz-

ing the non-uniqueness of the connection being the conjugate momentum to the spatial

metric.

In the electric version of Carrollian gravity, however, there is no torsion-free, Carroll-

compatible connection since the extrinsic curvature does not vanish. The standard gaug-

ing approach is for that reason not well adapted to the electric situation, since it assumes

the existence of a physically relevant connection. The non-existence of a natural connec-

tion sheds new light on the difficulties encountered in an orthodox gauging description

of the Carrollian electric limit of Einstein’s theory [21]. Further considerations on this

problem are given in Appendix A.

Even though there is no natural connection, one could blame the problem on the choice

of the Lagrangian. In fact, one can write the second-order action of electric Carrollian

gravity [6] in terms of vielbein and connection as

IElec[EµA, ωµ
AB] ∼

∫

dt dDx E
(

ΘλµΘ
λµ −Θ2

)

(5.1)

and argue that it fits already in the gauging framework, taking the form of a torsion-

squared action. Here, the symmetric, transverse tensor Θλµ is equal to the symmetrized

components eλ
aeµ

bT0(ab) of the torsion, which we have seen does not involve the connection

and is equal to the extrinsic curvature. This is a bit artificial, however, since the connec-

tion does not appear in the Lagrangian and is thus a pure gauge field with no physical
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meaning - the gauge group contains more transformations than local Carroll transforma-

tions and diffeomorphisms and enables one to shift the connection at will. This is as it

should since there is no natural connection in the electric theory.9
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A Comments on the electric limit

In section 4 we saw how the Hamiltonian constraint of electric Carrollian gravity emerges

from the first-order formulation, even if at a subleading order. It is thus natural to ask

if there exists an alternative scaling of the components of the vielbein and of the spin

connection allowing one to recover the full action of electric Carrollian gravity in ADM

form. If one writes

Eµ
A = (ǫ−1 nµ, ǫ−2 eµa) , Eµ

A = (ǫ τµ, ǫ
2 eµ

a) , Ωµ
AB = (ǫ ωµ

a, ǫ2 ωµ
ab) , (A.1)

which differs from eq. (4.3) by the addition of a factor of ǫ2 (resp. ǫ−2) on eµ
a and ωµ

ab

(resp. eµa), chooses the time gauge once again so that the metric field takes the expression

gij = ǫ4 ei
a
eja, and also rescales Newton’s constant as

GN = ǫ2D+2GE , (A.2)

9There is only a limited form of parallel transport involving the extrinsic curvature [6]. Note that the

action, which depends on the vielbein only through the metric and the volume element, can be written

in covariant first-order form

IElec[gλµ,Ω, P
λµ] =

∫

dt dDxΩ
[

PλµKλµ −GλµρσP
λµP ρσ

]

where Pλµ is a symmetric tensor with gauge invariance Pλµ → Pλµ + λλnµ + λµnλ and where Gλµρσ =
1

2
(gλρgµσ + gλσgµρ)− 1

D−1
gλµgρσ. By eliminating Pλµ through its own equation of motion, one recovers

the second order action.

21



then, the relativistic action takes again the ADM form (4.25). This time, however, the

Hamiltonian density takes the form

H⊥ = HE − ǫ2
√
g

16πGE

(R − 2Λ) , (A.3a)

Hi = −2∇j π
ij , (A.3b)

with

πij = −
√
g

16πGE

ωk
a
(

e
(i
a h

j)k − e
k
a h

ij
)

= −
√
g

16πGE

(

ω(ij) − hij ωk
k
)

. (A.4)

When ǫ→ 0, we recover the electric theory

IE =

∫

dt dDx
(

πij ḣij −NHE −N iHi

)

, (A.5)

which is equivalent to eq. (5.1) after elimination of the conjugate momenta. One can also

rescale the cosmological constant Λ = ǫ−2 ΛE to obtain a non-zero cosmological constant

term in the limit in agreement with [16].

There is an important proviso though: if one implements the limit ǫ → 0 in the

Einstein-Cartan action with the rescalings (A.1) and (A.2) one obtains the action

IE =
1

16πGE

∫

dt dDx E
(

2 eµa e
ν
b

(

∂[µ ων]
ab + ω[µ

a ων]
b
)

+ 4nµ eνa ∂[µ ων]
a
)

. (A.6)

This action is not invariant neither under local Carrollian boost nor under local spatial

rotations. Choosing the time gauge introduces therefore a non-trivial restriction in this

context. Also, the rescaling (A.1) affects the definition (4.9) of the spatial metric as

gij = ǫ4 ei
a ej

b δab − ǫ2 ei
0 ej

0 . (A.7)

Its ǫ → 0 limit is very different whether one chooses the time gauge or not, since the

matrix ei
a ej

b δab is assumed to be invertible, but ei
0 ej

0 is only of rank 1. This has to be

contrasted with the magnetic Carrollian limit of section 4, where the choice of the time

gauge did not have any effect on the form of the spatial metric in the ǫ→ 0 limit.

Those observations are in line with the results of [21], where it was shown that it is

not possible to recover the electric Carrollian theory by gauging the Carroll algebra.
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