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Active loop extrusion – the process of formation of dynamically growing chromatin loops due to
the motor activity of DNA-binding protein complexes – is firmly established mechanism responsible
for chromatin spatial organization at different stages of cell cycle in eukaryotes and bacteria. The
theoretical insight into the effect of loop extrusion on the experimentally measured statistics of
chromatin conformation can be gained with an appropriately chosen polymer model. Here we
consider the simplest analytically solvable model of interphase chromosome which is treated as ideal
chain with disorder of sufficiently sparse random loops whose conformations are sampled from the
equilibrium ensemble. This framework allows us to arrive at the closed-form analytical expression
for the mean-squared distance between pairs of genomic loci which is valid beyond the one-loop
approximation in diagrammatic representation. Besides, we analyse the loops-induced deviation of
chain conformations from the Gaussian statistics by calculating kurtosis of probability density of
the pairwise separation vector. The presented results suggest the possible ways of estimating the
characteristics of the loop extrusion process based on the experimental data on the scale-dependent
statistics of intra-chromosomal pair-wise distances.

Introduction. A series of recent single-molecule exper-
iments have shown that the structural maintenance of
chromosomes proteins, such as condensin and cohesin,
when binding to DNA can exhibit ATP-dependent motor
activity leading to progressive growth of DNA loops [1–7].
These works provided long-awaited direct evidence of ac-
tive loop extrusion – a hypothetical molecular mechanism
previously introduced to explain a broad range of data on
spatial organization of genome throughout the cell cycle
[8–10]. Incorporation of loop extrusion mechanism into
polymer models of chromatin folding has proven to be
successful in explaining the experimental data on three
dimensional genome organization in live cells available
due to explosion of super-resolution imaging methods and
sequencing-based techniques. In particular, the molecu-
lar dynamics simulation of chromatin folding accounting
for the motor units that randomly bind to chromatin fiber
and extrude chromatin loops until stochastically dissoci-
ating (see Fig. 1a) allows to reproduce the interphase
domains observed in the population-averaged Hi-C maps
[11–15]. Besides, computational models indicate that
loop extrusion can explain condensin-mediated mitotic
chromosome compaction and segregation [16–19]. Taken
together, these results pave the way towards a better un-
derstanding of how 3d chromatin architecture regulates
the genome function [20].

The growing body of experimental data calls for de-
velopment of analytical models that would give easily
interpretable predictions concerning effect of loop extru-
sion machinery on statistics of chromatin conformation
avoiding the need to perform computationally intensive
simulations. Recent theoretical work [21] has shown the
promise of the fractal polymer model with quenched dis-

FIG. 1. (a) A schematic of the loop extrusion model: over
time a motor protein (depicted in red) binds chromatin, ex-
trudes a loop, and unbinds. (b) Variants of mutual arrange-
ment of two neighboring cohesin-anchored loops. From left
to right: two loops separated a gap; blocking configuration;
nested configuration; two cohesins bypassing each other form
a Z-loop. In sufficiently low cohesion concentration one can
neglect the second and the third scenarios. (c) Polymer chain
with an array of sparse random loops as a model of interphase
chromosome (loop bases are depicted in red).

order of random loops for systematization of the experi-
mentally available statistical information on the pairwise
contacts in interphase genome of higher eukaryotes for
genomic scales up to several megabases. Here we exploit
the minimalistic version of this model where chromatin
is treated as ideal chain with loops disorder to describe
the expected footprints of cohesin-driven loop extrusion
in the statistics of the physical distances between pairs
of genomic loci in interphase chromosome, which can po-
tentially be extracted via state-of-art microscopy-based
techniques [22–32].
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Model formulation. Let us list key assumptions under-
lying our theoretical analysis. First of all, based on esti-
mates presented in previous studies [21, 33], we will as-
sume that for interphase chromatin the fraction of nested,
blocking and Z-like loop configurations (see Fig. 1b) is
relatively small, so that most of the cohesin-mediated
loops are separated from each other by loops-free gaps as
shown in Fig 1c. Since both cohesin-chromatin binding
kinetics and ATP-consuming motor activity of cohesin
are inherently stochastic, the array of cohesion-mediated
loops should be characterized statistically. Given the
previous assumption of a fairly low concentration of co-
hesin, one can treat the lengths of loops and of inter-
loops gaps as statistically independent. Assuming addi-
tionally a constant extrusion speed, Poisson kinetics of
cohesin binding/dissociation, uniform distribution of co-
hesin binding sites and neglecting distinct loop extrusion
barriers (see, e.g., Refs. [13, 34]), we adopt the expo-
nential probability densities for random lengths of loops
and gaps with parameters λ and g denoting the mean
loop length and mean gap length, respectively. The di-
mensionless ratio λ/g is less than or of order of unity
in interphase [21, 33]. Next, simple estimates show that
the characteristic time required for the cohesin complex
to extrude a chromatin loop corresponding to a DNA
region of ∼ 100 kbp, which corresponds to typical loop
length in interphase estimated from in vivo Hi-C data,
is long compared to the relaxation time of such a loop
[21]. Given this argument, in our analytical calculations
we will treat the loops disorder as frozen. Finally, com-
pletely neglecting steric effects and affinity interactions,
we will assume that chromatin is an ideal phantom chain
with the Kuhn segment leff [35].

Summarizing the above assumptions, we arrive at a
model of an equilibrium ideal chain with quenched dis-
order of random loops, characterized by exponential
probability densities of statistically independent con-
tour lengths of loops and gaps. As shown in Ref. [21],
the semi-analytical calculations and asymptotic one-loop
analysis based on this model qualitatively reproduce spe-
cific shape of experimental contact probability curves
universal among mammalian cells. Also, in the work
[36] this model has been used to extract one-loop predic-
tions regarding the scale-dependent conditional probabil-
ities of triple contacts, which can be measured with the
experimental techniques for detecting multiple contacts
between more than two chromatin regions [24, 27, 37–46].
In this paper, we focus on the statistics of the physical
distances between pairs of genome regions rather than on
pairwise contact frequencies. Overcoming the method-
ological shortcomings of the semi-analytical and pertur-
bative approaches used in Refs. [15, 21, 36], here we
present a method for exact summation of a diagrammatic
series which allows us to derive an analytical answer for
mean-squared distance between pair of loci and can po-
tentially be generalized to the statistical moments of ar-

FIG. 2. Four classes of diagrams contributing to the MSD
between two points of the ideal chain with disorder of random
loops: (a) both points reside beyond the cohesin-mediated
loops; (b) one point resides at a loop, while another point is
in inter-loop gap (t1 ≥ 0, 0 ≤ t2 ≤ s); (c) both points reside
in the same loop (t1 ≥ 0, 0 ≤ s ≤ t2); (d) the points belong
to two different loops (t1 ≥ 0, 0 ≤ t2 ≤ s, 0 ≤ τ ≤ s − t2,

T̃ ≥ s− t2 − τ). Note that the dash-dotted lines in diagrams
(a), (b) and (d) may contain arbitrary number of random
loops.

bitrary order. In what follows, the key steps of derivation
are outlined, whereas the technical details can be found
in Appendix.

Outline of calculations. Let us denote as ~R(s) the vec-
tor between two points of the chain separated by the
contour distance s. The main metric of interest for us
is the mean-squared distance (MSD) defined as 〈R2(s)〉,
where angular brackets denote averaging of the statis-
tics of thermal noise and random loops. Clearly, there
are four scenarios for the relative arrangement of the se-
lected points and bases of the cohesin-mediated loops,
see Fig. 2. Given this, the average physical separation
can be represented as

〈R2(s)〉 =
∑

α=a,b,c,d

〈R2
α(s|{A}α)〉loops, (1)

where α enumerates the diagrams according to Fig. 2,
R2
α(s|{A}α) is the conditional MSD obtained by averag-

ing of R2(s) over thermal noise at fixed pattern of ran-
dom loops, {A}α represents the set of random variables
parametrising the corresponding diagram, and 〈...〉loops

denotes averaging over variables {A}α. Note that since
the loop disorder is quenched by assumption, the averag-
ing over thermal fluctuations precedes the averaging over
the statistics of random loops in Eq. (1).

To arrive at the MSD, one first needs to derive the con-
ditional expressions R2

α(s|{A}α) associated with the dif-
ferent diagrams, depicted in Fig. 2. By virtue of the cen-
tral limit theorem, the large-scale conformational statis-
tics of the loop-free ideal chain is equivalent to that of the
Brownian particle trajectory, with time measured in the
units of the polymer contour length and diffusion coeffi-
cient D = leff/6 (see, e.g., Ref. [35]). Thus, if λ, g � leff

and we are interested at scales s � leff, then chromatin
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conformation can be thought of as alternating free Brow-
nian paths and Brownian bridges.

In the absence of random loops, the MSD between
two sites of an equilibrium Gaussian chain behaves as
R2(s) = leffs. As follows from analysis presented in
Refs. [15, 21], the conditional MSD R2

α(s|{A}α) associ-
ated with fixed configuration of random loops obeys the
same linear scaling law, but with an effective contour sep-
aration s̃α[s, {A}α] substituted for s. More specifically,
one obtains (see Appendix for details)

R2
α(s|{A}α) = leffs̃α[s, {A}α], (2)

where

s̃a[s, xs] = (1− xs)s, (3)

s̃b[s, t1, t2, xs−t2 ] = (1− xs−t2)(s− t2) + t1t2
t1+t2

, (4)

s̃c[s, t1, t2] =
(

1− s
t1+t2

)
s, (5)

s̃d[s, t1, t2, τ, xτ , T̃ ] = t1t2
t1+t2

+ (1− xτ )τ + t̃1 t̃2
t̃1+t̃2

, (6)

and t̃1 = T̃ + τ + t2 − s, t̃2 = s − τ − t2. Here t1, t2,
T̃ and τ represent the contour lengths of the segments
depicted in Figs. 2a, b, and d, while xs, xs−t2 and xτ are
the fractions of contour length occupied by loops in the
segments depicted by dotted lines in diagrams (a), (b)
and (d), respectively. Note, that this variables obey the
constraint 0 ≤ xs, xs−t2 , xτ < 1.

Next, we should average conditional MSD R2
α(s|{A}α)

over the statistics of random variables {A}α. In order to
derive the corresponding statistical weights, it is conve-
nient to introduce a two-state Markov jump process in
continuous time where time intervals are measured in
the units of the polymer contour length and stochas-
tic transitions between two states occur with the rates
αl = λ−1 and αg = g−1. Clearly, the statistics of alter-
nating loops and gaps in our original problem are equiv-
alent to the statistics of time intervals that this auxiliary
Markov process spends in different states in the course of
its stochastic dynamics. As shown in Ref. [21] (see also
Appendix), the exact analytical expressions for statisti-
cal weights Wα({A}α; s) can be derived from the basic
properties of two-state Markov chain:

Wa = pgπg→g(s)F(xs), (7)

Wb = 2plα
2
l e
−αl(t1+t2)πg→g(s− t2)F(xs−t2), (8)

Wc = plα
2
l e
−αl(t1+t2), (9)

Wd = plα
3
l e
−αl(t1+t2+T̃ )αgπg→g(τ)F(xτ ), (10)

where pg = αl
αg+αl

and pl =
αg

αg+αl
give the probabili-

ties that a starting point of the walker’s trajectory be-
longs to a free Brownian path and loop, respectively,
πg→g(s) = 1

αg+αl
(αl+αge

−(αl+αg)s) is the probability to

find Markov process in the gap state after time s given
that initially it was in the same state, and F(xs) repre-
sents the probability density of xs. Exact expression for

F(xs) can be extracted from the Pendler’s work [47] on
the occupation time statistics of two-state Markov pro-
cess and is given by Eq. (29) in Appendix.

The loop-averaged conditional MSD 〈R2
α(s|{A}α)〉loops

entering Eq. (1), is given by integration of R2
α(s|{A}α)

with weight Wα({A}α; s) over the variables {A}α. The
main technical difficulties are associated with averaging
over the random variables xs, which parametrizes the ex-
pressions (3), (4) and (6). An exact probability density
F(xs), while efficient for numerical analysis, is incon-
venient for analytical calculations. Note, however, the
conditional MSDs defined by expression (2) are linear
with respect to the variable xs. Exploiting properties of
Markov bridge statistics one obtains (see Appendix)

〈xs〉 =
1

s

∫ s

0

dt
πg→l(t)πl→g(s− t)

πg→g(s)
, (11)

where πg→l(s) =
αg

αg+αl
(1 − e−(αg+αl)s) and πl→g(s) =

αl
αg+αl

(1 − e−(αg+αl)s). With Eq. (11) we can express

conditional MSDs without usage of the cumbersome for-
mula for F(xs). Note that such a trick does not work
in more sophisticated case of contact probability calcu-
lations where associated diagram contributions are non-
linear in 〈xs〉 and should be analysed numerically [21, 36].

Results. Rather laborious calculation procedure finally
leads us to surprisingly elegant analytical expression for
the MSD

〈R2(s)〉 =
leffs

1 + λ/g

[
1 +

λ

g
fMSD

( s
λ

)]
, (12)

where fMSD(z) = 2
3 (z−1(1 − e−z) + E3(z)) and En(z) =∫ +∞

1
x−ne−zxdx is the exponential integral function. Im-

portantly, this result is non-perturbative in the sense that
it takes into account all zoo of diagrams in our model and,
thus, is formally valid for any value of the dimensionless
ratio λ/g.

Let us pass to the analysis of the asymptotic behavior
dictated by Eq. (12). Since limz→0 fMSD(z) = 1, we see
from Eq. (12) that the well-known ideal-chain scaling
law, 〈R2(s)〉 = leffs, is recovered at s � λ. Clearly, this
is because the sufficiently small segments of the chain are
non-sensitive to the loops constraints. In the opposite
limit one finds limz→∞ fMSD(z) = 0, so that 〈R2(s)〉 =
leffs

1 + λ/g
< leffs at s� λ if λ/g . 1. This conclusion also

has rather transparent explanation: the random loops
compactify the large segments of ideal chain via effective
shortening of contour distance between their end points.
As expected, the compactification degree is stronger for
larger values of λ/g.

The double logarithmic scale graph of 〈R2(s)〉 is pre-
sented in Fig. 3a. We see that at λ . g crossover between
small- and large-s linear asymptotic regimes takes place
at the scale s ∼ λ, whereas the mean inter-loop spacing
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(a) (b)

(c)

FIG. 3. (a) The MSD 〈R2(s)〉 (top panel), its log-log deriva-

tive d log10〈R
2(s)〉

d log10 s
(middle panel) and d

ds
〈R2(s)〉

s
(bottom panel)

in dependence on the contour separation s for different values
of λ/g. (b) Kurtosis coefficient K(s) as a function of contour
separation s for the same set of parameters. (c) The minimum

smin of the log-log derivative d log10〈R
2(s)〉

d log10 s
(top panel) and the

maximum smax of the kurtosis coefficient K(s) (bottom panel)
in their dependence on the dimensionless parameter λ/g.

g affects only the magnitude of disorder-induced pertur-
bation of the MSD profile. This observation suggests
how it would be possible to estimate the average length
of the cohesin-anchored loops, having an experimentally
measured profile of MSD. Namely, analysis of Eq. (12)

indicate that the minimum of expression s dds [ 〈R
2(s)〉
s ] in

its dependence on the contour separation s, is determined
by λ and is equal to s∗ ≈ 1.14λ irrespectively of g, see
Fig. 3a. Also, it may be informative to analyse the log-

derivative d log10〈R
2(s)〉

d log10 s
which determines the slope of the

MSD in the log-log scale plot. As we see in Fig. 3c,
the log-derivative exhibits local minimum whose position
smin is of the order of λ and it changes by only 50% with
a twenty-fold increase in g.

Beyond the MSD our model allows to explore how the
functional form of the probability density of separation
vector ~R(s) depends on the linear scale s. Qualitatively,
one may expect that cohesin-mediated random loops do
not destroy normality of statistics of sufficiently short
chain segments of contour length s � λ which are not
affected by loops constraints. Also, Gaussianity must
also restore at large scales, s � λ, g. Indeed, for each
diagram in Fig. 2 the conditional probability density of
~R(s) is Gaussian (see Appendix) with an effective contour
separation whose fluctuations at s � λ, g become small
compared to the average value due to the central limit
theorem.

To quantify the possible deviations of scale-dependent
two-point statistics from Gaussianity we calculate the

kurtosis coefficient defined as K(s) = 〈R4(s)〉
〈R2(s)〉2 . Clearly,

the value 5/3 corresponds to the normal statistics of
three-dimensional ideal chain. The generalization of non-
perturbative calculations presented above to the case
of the fourth-order statistical moment 〈R4(s)〉, enter-
ing the definition of the kurtosis, is possible in prin-
ciple, but practically difficult to implement. However,
if λ/g � 1 and s � g, one can neglect the diagrams
containing two or more cohesin-mediated loops due to
their vanishing statistical weights, and analytical calcu-
lations become feasible. Expanding statistical weights
given by Eqs. (32)-(40) in linear order upon small param-
eters λ/g and s/g and using the relation R4

α(s|{A}α) =
5
3 l

2
effs̃

2
α[s, {A}α], which follows from the Gaussianity of

conditional statistics of vector ~R for each diagram, we
find the following asymptotic result (see Appendix)

K(s) =
5

3

∑
α〈s̃2

α[s, {A}α]〉loops∑
α〈s̃α[s, {A}α]〉2loops

≈ 5

3
+
λ

g
fKurt

( s
λ

)
,

(13)
where fKurt(s) = 2

3s2 ((9 + 4s− 3s2)e−s− 9 + 5s+ s2(5 +
3s)E3(s)).

Equation (13) tells us that rare random loops produce
a linear correction in small parameter λ/g � 1 to the
value 5/3 corresponding to normal statistics of three-
dimensional ideal chain in the absence of loops disorder.
The corresponding plot of the kurtosis coefficient K(s)
as a function of s is represented in Fig. 3b. Data as-
sociated with the regime λ/g ∼ 1 were generated via
numerical integration of diagram contributions over ex-
act statistical weights. We found that the one-loop pre-
diction (dashed line) is rather accurate at λ/g . 0.1,
but underestimates K(s) when λ/g & 1. In agreement
with the general arguments discussed above, the kurto-
sis coefficient is close to 5/3 at s � λ and s � λ. At
intermediate scales of contour distances statistics of the
separation vector ~R exhibits deviation from Gaussianity,
and this effect is the more pronounced, the greater the
dimensionless parameter λ/g. Most importantly, the kur-
tosis coefficient is peaked at the point s = smax, whose
position is mainly determined by λ and changes by only
10% when g is changed by a factor of 20. Thus, we ex-
pect that measurement of the scale-dependent kurtosis
may provide an estimate for mean loop size λ along with
the analysis of experimental MSD profile. Note also that
the loops-induced violation of normality predicted by our
model cannot be reproduced in the framework of Hetero-
geneous Loop Model [48–50] since it postulates normal
statistics of chromatin at all genomic scales. The same
applies to the modelling approach based on inference of
the maximum entropy distribution of pair-wise distances
with experimental mean-squared distances as constraints
[51].

Conclusion. To the best to our knowledge, the exist-
ing literature lacks the sufficient amount of relevant sta-
tistical information characterised by high genomic and
spatial resolution required to directly confront our pre-
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dictions with experiment. Nevertheless, we believe that
the required data will become available in the coming
years due to modern tools for high-throughput super-
resolution imaging enabling direct visualization of the
spatial positions of many genomic loci at the single-cell
level [32, 52–55]. Noteworthy, while modelling the chro-
matin conformation by ideal chain seem to be reasonable
for some types of data [21, 54, 56], quantitative agreement
between theory and experiment in a wider range of sit-

uations may require more complex polymer models that
resist analytical treatment. In particular, further (mostly
numerical) work is required to establish how statistics of
pairwise distances in the presence of loop extrusion is
affected by excluded volume effects.

S.B. thanks Leonid A. Mirny, Hugo B. Brandão and
Kirill Polovnikov for valuable discussions. The work was
supported by the Russian Science Foundation, project
no. 22-72-10052.

APPENDIX

The Appendix is structured as follows. In the first section, we remind the basic statistical properties of free Brownian
paths and Brownian bridges relevant for derivation of diagram contributions. Next, in the second section we discuss
the basic properties of two-state Markov jump process required to construct exact statistical weights of the diagrams.
In sections III-VI, we derive the integral expressions for the loop-averaged contributions coming from each type of
diagrams. Finally, in the section VII, we provide details of one-loop calculations of the kurtosis coefficient.

I. Basic Statistical properties of Brownian paths

In what follows we will heavily exploit the well-known analogy between a polymer and a random walk, see, e.g.,
Refs. [35, 57]. Within this analogy, the coordinate along the polymer plays a role of time and the polymer contour is
thought of as the trajectory of a random walker, see Fig. 4a. Adopting this language, we, thus, obtain a random walk
whose trajectory represents the alternating free Brownian paths, which correspond to the gap regions of the polymer,
and the Brownian bridges corresponding to the cohesion-mediated loops in our original polymer model. Let us recall
the key statistical properties of Brownian motion.

The propagator of the free Brownian motion in three dimensions,

Gfree(~r, t|~r0, 0) =
1

(4πDt)3/2
exp

(
− (~r − ~r0)2

4Dt

)
, (14)

describes the probability to find the Brownian particle having diffusivity D in the point ~r after time t if it starts in
~r0. In context of the polymer model, Eq. (14) represents the probability distribution of the separation vector ~r − ~r0

between two monomers inside a gap region of the polymer provided that their contour separation is t.
The Brownian bridge is the Brownian trajectory subject to the condition that the particle must return to its starting

position after a certain amount of time. Propagator of a Brownian bridge of length T with a base in ~r0 is given by

Gbridge(~r, t|~r0, 0;~r0, T ) =
Gfree(~r, t|~r0, 0)Gfree(~r0, T |~r, t)

Gfree(~r0, T |~r0, 0)
=

(
T

4πDt(T − t)

)3/2

exp

(
− T (~r − ~r0)2

4Dt(T − t)

)
, (15)

where 0 ≤ t ≤ T . Eq. (15) describes the probability that the Brownian particle, which starts in ~r0 and returns to ~r0

after time T , will be in ~r at the moment of time t. Equivalently, this equation defines the probability distribution of
the separation vector between the loop base and the monomer inside this loop given the contour separation t and the
loop length T .

More generally, the Brownian bridge pinned at two different points ~r1 and ~r2 at the moments of time t1 and t2,
respectively, is characterised by the following probability distribution

Gbridge(~r, t|~r1, t1;~r2, t2) =

(
t2 − t1

4πD(t2 − t)(t− t1)

)3/2

exp

(
− (~r2 − ~r)2

4D(t2 − t)
− (~r − ~r1)2

4D(t− t1)
+

(~r2 − ~r1)2

4D(t2 − t1)

)
, (16)

where t1 ≤ t ≤ t2.
In what follows the propagators determined by Eqs. (14) and (15) play a role of building blocks of the diagram

calculations. But before proceeding to the corresponding calculations, we need to discuss the basic properties of the
two-state Markov chain that will be required to derive the statistical weights of the diagrams depicted in Fig. 2 in
main text.
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FIG. 4. (a) Based on the analogy between polymer conformation and random walk trajectory, we introduce a time axis with
time intervals measured in the units of the polymer contour length. (b) The continuous time Markov jump process with two
states, “Loop” and “Gap”, and transition rates αl = λ−1, αg = g−1. By construction, statistics of time intervals that this
auxiliary Markov process spends in different states coincides with the statistics of alternating loops and gaps in our polymer
model.

II. Basic Statistical Properties of Two-State Markov Process

Let us consider a Markov process with the transition rates αl = 1/λ and αg = 1/g between two states, “Gap” and
“Loop”, which dictates the duration of random time intervals which the random walker introduced in previous section
spends in the free and looped segments of its trajectory, see Fig. 4b. In other words, this auxiliary Markov process
generates the random length of gaps and loops in the original polymer model.

The stochastic dynamics of the two-state continuous-time Markov jump process is described by the following pair
of equations

dπg
ds

= −αgπg + αlπl, (17)

dπl
ds

= αgπg − αlπl, (18)

where πg(s) and πl(s) represent the probabilities that the monomer having contour coordinate s lies on the gap or
loop, respectively. It is straightforward to find the stationary solution of these equations

pg =
αl

αg + αl
, pl =

αg
αg + αl

. (19)

Clearly, pg (pl) gives the probability that a randomly chosen point of the polymer with disorder op loops belongs to
a gap (loop) region.

The propagator πA→B(s) of the Markov process is defined as the probability to find the process in the state “B”
after time s under the condition that it starts in the state “A”. It is easy to find from Eqs. (17) and (18) that

πg→g(s) =
1

αg + αl

[
αl + αge

−(αl+αg)s
]
, (20)

πg→l(s) =
αg

αg + αl

[
1− e−(αg+αl)s

]
, (21)

πl→g(s) =
αl

αg + αl

[
1− e−(αg+αl)s

]
, (22)

πl→l(s) =
1

αg + αl

[
αg + αle

−(αg+αl)s
]
. (23)

In the limit s→ +∞, these expressions turn into statistically stationary probabilities pg and pl to find the process in
given states, i.e. lims→∞ πl→g(s) = lims→∞ πg→g(s) = pg, lims→∞ πl→l(s) = lims→∞ πg→l(s) = pl.

To perform averaging over the loop disorder (see below), we will also need to know the statistical moment 〈xs〉,
where xs is the time spent in the “Loop” state during the time interval [0, s] under the condition that the Markov
process occupies the “Gap” state at both ends of this interval. To calculate the expectation of xs, we introduce
the stochastic variable ζ(t), which can take two values: ζ(t) = l if at the moment t the Markov jump process is in
the “Loop” state, and ζ(t) = g if the process is currently in the “Gap” state. Then the random variable xs can be
represented as

xs =
1

s

∫ s

0

I[ζ(t) = l]dt, (24)
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where I[...] is an indicator variable equal to one if the condition in its argument is true, and equal to zero otherwise.
Performing averaging one obtains

〈xs〉 =
1

s

∫ s

0

〈I[ζ(t) = l]〉dt =
1

s

∫ s

0

Pr[ζ(t) = l|ζ(0) = g, ζ(s) = g]dt, (25)

where Pr[ζ(t) = l|ζ(0) = g, ζ(s) = g] is the probability of finding the Markov jump process in the “Loop” state at
time t given that it was in the “Gap” state both at time 0 and at time s. This probability can be easily calculated
due to the lack of memory of the past in a Markov process. Indeed,

Pr[ζ(t) = l|ζ(0) = g, ζ(s) = g] =
Pr[ζ(s) = g|ζ(t) = l]Pr[ζ(t) = l|ζ(0) = g]

Pr[ζ(s) = g|ζ(0) = g]
, (26)

and since Pr[ζ(s) = g|ζ(t) = l] = πl→g(s − t), Pr[ζ(t) = l|ζ(0) = g] = πg→l(t) and Pr[ζ(s) = g|ζ(0) = g] = πg→g(s)
we obtain

Pr[ζ(t) = l|ζ(0) = g, ζ(s) = g] =
πl→g(s− t)πg→l(t)

πg→g(s)
. (27)

Substituting this result into Eq. (25) yields

〈xs〉 =
αgαl[2 + (αg + αl)s+ e(αg+αl)s((αg + αl)s− 2)]

s(αg + αl)2[αg + αle(αg+αl)s]
. (28)

Beyond the mean value, the full statistics of the random variable xs can be extracted from the results of Ref. [47].
Namely, the probability density F(xs) is given by

F(xs) =
e−αgsδ(xs) +

√
αgαl(1−xs)s2

xs
I1

(
2
√
αgαlxs(1− xs)s2

)
e−αg(1−xs)s−αlxss

αl
αg+αl

+
αg

αg+αl
e−(αg+αl)s

, (29)

where I1(...) denotes the modified Bessel function of the first kind [58].

III. Diagram A. Derivation of Eqs. (3) and (7)

We wish to calculate the mean-squared displacement (MSD) of the random walker after time s. Depending on the
modes of the walker motion at the initial and final moments of time we should distinguish four cases represented in
Fig. 2 of the main text. If the walker is in the free segments of its trajectory both initially and after time s, see
the diagram in Fig. 2a, then the probability density function of the walker’s displacement ~r is given by the Gaussian
distribution

Pa(~r|s, xs) = Gfree(~r, (1− xs)s|~0, 0) =
1

(4πDs̃a[s, xs])3/2
exp

(
− r2

4Ds̃a[s, xs]

)
, (30)

with the effective contour separation s̃a[s, xs] = (1 − xs)s, where xs denotes the fraction of time that walker spent
performing Brownian bridges during the course of motion; 0 ≤ xs < 1. The intuition behind Eq. (30) is quite
transparent: since the closed Brownian paths don’t produce the walker’s displacement, the overall effect of loops in
diagram (a) is equivalent to reduction of the time allowed to the walker for exploration of the neighborhood. For the
mean-squared displacement we, thus, obtain

R2
a(s|xs) =

∫
d3rr2Pa(~r|s, xs) = 6Ds̃a[s, xs]. (31)

Next, using basic properties of two-state Markov jump process described in section II, we find that the diagram (a)
is characterized by the following statistical weight

Wa(xs; s) = pgπg→g(s)F(xs), (32)

where pg = αl
αg+αl

gives the probability that a starting point of the walker’s trajectory belongs to a free Brownian

path, πg→g(s) = 1
αg+αl

(αl + αge
−(αl+αg)s) is the probability to find the walker in the free segment of its trajectory
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after time s under the condition that initially it is also in the free segment, and F(xs) is the probability distribution
of the random variable xs determined by Eq. (29). To average the contribution of the diagram (a) over the disorder
of random loops, we should integrate the product R2

a(s|xs)Wa(xs; s) over xs from 0 up to 1, i.e.

〈R2
a(s|xs)〉loops =

∫ 1

0

dxsR2
a(s|xs)Wa(xs; s) = 6Dspgπg→g(s)(1− 〈xs〉), (33)

where 〈xs〉 is given by Eq. (28).

IV. Diagram B. Derivation of Eqs. (4) and (8)

Next, let us assume that the walker starts in the loop and finds itself in the free segment of its trajectory after
time s. As shown in Fig. 2b of the main text, the loop containing the starting point of the walker’s trajectory is
parameterized by the time intervals t1 and t2. After averaging over the position of the loop base ~r0, the probability
density function of the walker’s displacement becomes

Pb(~r|s, t1, t2, xs−t2) =

∫
d3r0Gbridge(~0, 0|~r0,−t1;~r0, t2)Gfree(~r, t2 + (1− xs−t2)(s− t2)|~r0, t2) =

=
1

(4πDs̃b[s, t1, t2, xs−t2 ])3/2
exp

(
− r2

4Ds̃b[s, t1, t2, xs−t2 ]

)
,

(34)

where s̃b[s, t1, t2, xs−t2 ] = (1−xs−t2)(s− t2) + t1t2
t1+t2

, and 0 ≤ xs−t2 < 1, t1 ≥ 0, 0 ≤ t2 ≤ s. Now xs−t2 is the fraction
of time the walker spend performing Brownian bridges during the time interval between t2 and s. Therefore, the
mean-squared displacement of the walker is given by

R2
b(s|t1, t2, xs−t2) =

∫
d3rr2Pb(~r|s, t1, t2, xs−t2) = 6Ds̃b[s, t1, t2, xs−t2 ]. (35)

Next, for the statistical weight of the diagram (b) we obtain

Wb(t1, t2, xs−t2 ; s) = 2plα
2
l e
−αl(t1+t2)πg→g(s− t2)F(xs−t2), (36)

where pl =
αg

αg+αl
gives the probability that a starting point of the walker’s trajectory belongs to a loop. Obviously,

the case when the walker starts in the free segment and finishes in the closed segment is completely equivalent to the
situation that we have just considered. This explains the origin of factor 2 in Eq. (36).

From Eqs. (35) and (36) one obtains that the loops-averaged contribution of the diagram (b) is given by the
following integral

〈R2
b(s|t1, t2, xs−t2)〉loops =

∫ ∞
0

dt1

∫ s

0

dt2

∫ 1

0

dxs−t2R2
b(s|t1, t2, xs−t2)Wb(t1, t2, xs−t2 ; s) =

= 12Dplα
2
l

∫ ∞
0

dt1

∫ s

0

dt2

[
(1− 〈xs−t2〉)(s− t2) +

t1t2
t1 + t2

]
e−αl(t1+t2)πg→g(s− t2).

(37)

V. Diagram C. Derivation of Eqs. (5) and (9)

Now let us consider the scenario when the starting and the final points of the walker’s trajectory belong to the
same loop, see Fig. 2c in the main text. Performing averaging over the position of the loop base we find the following
result for the probability distribution of the walker’s displacement after time s

Pc(~r|s, t1, t2) =

∫
d3r0Gbridge(~0, 0|~r0,−t1;~r0, t2)Gbridge(~r, s|~0, 0;~r0, t2) =

=
1

(4πDs̃c[s, t1, t2])3/2
exp

(
− r2

4Ds̃c[s, t1, t2]

)
,

(38)
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where s̃c[s, t1, t2] =
(

1− s
t1+t2

)
s, and t1 ≥ 0, t2 ≥ s. From Eq. (38) one obtains the mean-squared walker’s

displacement

R2
c(s|t1, t2) =

∫
d3rr2Pc(~r|s, t1, t2) = 6Ds̃c[s, t1, t2], (39)

whereas for the the statistical weight of the trajectories described by the diagram (c) we find

Wc(t1, t2; s) = plα
2
l e
−αl(t1+t2). (40)

Thus, the loop-averaged contribution of the diagram (c) to mean-squared displacement is determined by the fol-
lowing double integral

〈R2
c(s|t1, t2)〉loops =

∞∫
0

dt1

∞∫
s

dt2R2
c(s|t1, t2)Wc(t1, t2; s) = 6Dsplα

2
l

∞∫
0

dt1

∞∫
s

dt2

(
1− s

t1 + t2

)
e−αl(t1+t2). (41)

VI. Diagram D. Derivation of Eqs. (6) and (10)

Finally, the probability distribution of the walker’s displacement in the situation when the initial and final point of
its trajectory belong to different loops is given by

Pd(~r|s, t1, t2, τ, xτ , T2) =
1

(4πDs̃d[s, t1, t2, τ, xτ , T̃ ]
exp

(
− r2

4Ds̃d[s, t1, t2, τ, xτ , T̃ ]

)
, (42)

where s̃d[s, t1, t2, τ, xτ , T̃ ] = t1t2
t1+t2

+ (1 − xτ )τ + t̃1 t̃2
t̃1+t̃2

, and t̃1 = T̃ + τ + t2 − s, t̃2 = s − τ − t2, t1 ≥ 0, 0 ≤ t2 ≤ s,

0 ≤ τ ≤ s − t2, 0 ≤ xτ ≤ 1, T̃ ≥ s − t2 − τ . In this case, xτ denotes the fraction of time the walker spend in
”Loop” state during the time interval between t2 and s − t̃2. From Eq. (42) one obtains the mean-squared walker’s
displacement

R2
d(s|t1, t2, τ, xτ , T̃ ) =

∫
d3rr2Pc(~r|s, t1, t2) = 6Ds̃d[s, t1, t2, τ, xτ , T̃ ]. (43)

Clearly, the statistical weight of the trajectories described by the diagram (d) is given by

Wd(t1, t2, τ, xτ , T̃ ; s) = plα
3
l e
−αl(t1+t2+T̃ )αgπg→g(τ)F(xτ ). (44)

Thus, for the loops-averaged contribution of the diagram (d) we find

〈R2
d(s|t1, t2, τ, xτ , T̃ )〉loops =

∞∫
0

dt1

s∫
0

dt2

s−t2∫
0

dτ

∞∫
s−t2−τ

dT̃

1∫
0

dxτR2
d(s|t1, t2, τ, xτ , T̃ )Wd(t1, t2, τ, xτ , T̃ ; s) =

6Dplα
3
l αg

∞∫
0

dt1

s∫
0

dt2

s−t2∫
0

dτ

∞∫
s−t2−τ

dT̃

[
(1− 〈xτ 〉)τ +

t1t2
t1 + t2

+
(T̃ + t2 + τ − s)(s− t2 − τ)

T̃

]
e−αl(t1+t2+T̃ )πg→g(τ).

(45)
Calculating the integrals in Eqs. (33), (37), (41) and (45) and summing the resulting expressions, we arrive at the

Eq. (12) in main text.

VII. One-loop approximation. Derivation of Eq. (13)

The kurtosis coefficient of the random vector ~R(s) is defined as

K(s) =
〈R4(s)〉
〈R2(s)〉2

. (46)
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FIG. 5. For λ/g � 1 and s/g � 1 the two-point statistics of an ideal chain with a disorder of random loops can be computed
in the one-loop approximation, leaving only those diagrams containing at most one cohesin-mediated loop. In other words,
diagram (d) can simply be ignored, and the dash-dotted line in diagrams (a) and (b) can be replaced by a solid line.

We already know that the MSD 〈R2(s)〉 in our model is given by Eq. (12) in main text. As for the fourth order
statistical moment 〈R4(s)〉, taking into account the Gaussian form of the conditional distribution functions (30), (34),
(38), and (42), one readily obtains

〈R4(s)〉 = 60D2
∑

α=a,b,c,d

〈s̃2
α[s, {A}α]〉loops. (47)

Exact diagrammatic calculations accordingly to Eq. (47) are possible in principle, but practically difficult to
implement. However, analytical derivation of the fourth moment 〈R4(s)〉 becomes feasible in the rare loops limit.
More specifically, if λ/g � 1 and s/g � 1, then one can neglect the realizations of diagrams where there is more than
one loop, see Fig. 5. Then, neglecting the diagram (d) and simplifying the formulas (3)-(5) from the main text, we
obtain

〈R4(s)〉 ≈ 60D2
∑

α=a,b,c

〈s̃2
α[s, {A}α]〉one loop, (48)

where

s̃a[s, xs] = (1− xs)s, (49)

s̃b[s, t1, t2] = s− t2 + t1t2
t1+t2

, (50)

s̃c[s, t1, t2] =
(

1− s
t1+t2

)
s. (51)

When averaging over the disorder of the loops, it is convenient to pass to the new variables T and q defined as

t1 = (1− q)T, t2 = qT. (52)

In terms of these variables, the diagrams (a), (b) and (c) depicted in Fig. 5 are characterized by the following
statistical weights

Wa(xs|s) = pgπg→g(s)F(xs), for 0 ≤ xs < 1, (53)

Wb(T, q, xs−qT |s) = 2plρ̃l(T )πg→g(s− qT )F(xs−qT ), for 0 ≤ q ≤ min[1, sT ], T ≥ 0, 0 ≤ xs−qT < 1, (54)

Wc(T, q|s) = plρ̃l(T ), for s
T ≤ q ≤ 1, T ≥ s, (55)

where ρ̃l(T ) denote the probability density of the random loop length in the statistical experiment where loops are
sampled by random choice of points along the polymer. Clearly, ρ̃l(T ) = T

λ ρl(T ), where ρl(T ) = 1
λ exp(−Tλ ) is the

actual loop length distribution.
Using the smallness of the dimensionless parameters λ/g � 1 and s/g � 1, we find from Eqs. (19), (20) and (29)

pg =
g

g + λ
≈ 1− λ

g
, pl =

λ

g + λ
≈ λ

g
, (56)
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and

πg→g(s)F(xs) ≈ (1− s

g
)δ(xs) +

(1− xs)s2

g
ρl(xss). (57)

By inserting Eqs. (56) and (57) into Eqs. (53,54,55) and neglecting the terms nonlinear in the parameter λ/g one
obtains

Wa(xs|s) ≈ δ(xs) + λ
g

(
−(1 + s

λ )δ(xs) + (1−xs)s2
λ ρl(xss)

)
, for 0 ≤ xs < 1, (58)

Wb(T, q|s) ≈ 2λg
T
λ ρl(T ), for 0 ≤ q ≤ min[1, sT ], T ≥ 0, (59)

Wc(T, q|s) ≈ λ
g
T
λ ρl(T ), for s

T ≤ q ≤ 1, T ≥ s. (60)

Next, performing averaging over disorder of loops, we find that in the first order-approximation with respect to the
ratio λ/g, the fourth-order statistical moment of the random vector ~R(s) is given by

〈R4(s)〉 ≈ 60D2

∫ 1

0

dxss̃
2
a[s, xs]Wa(xs|s) + 60D2

∫ ∞
0

dT

∫ min[1,s/T ]

0

dqs̃2
b [s, T, q]Wb(T, q|s) + (61)

+60D2

∫ ∞
s

dT

∫ 1

s/T

dqs̃2
c [s, T, q]Wc(T, q|s) = (62)

= 60(Ds)2

(
1 +

λ

g

s2

λ

[∫ 1

0

dxρl(xs)(−
3

5
x3 +

5

3
x2 − 2x) +

∫ +∞

1

dxρl(xs)(−
3

5x2
+

5

3x
− 2)

])
= (63)

= 60(Ds)2

(
1 +

λ

g
f4(

s

λ
)

)
, (64)

where

f4(s) =
−54− 96e−s − 10s(3s− 5) + 24(25 + 9s)E5(s)

15s2
, (65)

and En(s) =
∫ +∞

1
x−ne−sxdx is the exponential integral function.

As follows from Eq. (12) in the main text, the MSD in the same approximation is given by

〈R2(s)〉 ≈ 6Ds

[
1 +

λ

d

(
2λ(1− e− s

λ )

3s
− 1 +

2

3
E3(

s

λ
)

)]
(66)

Substituting Eqs. (61) and (66) into Eq. (46) finally yields

K(s) ≈ 5

3
+
λ

g
fKurt(

s

λ
), (67)

where

fKurt(s) =
2

3s2

(
(9 + 4s− 3s2)e−s − 9 + 5s+ s2(5 + 3s)E3(s)

)
. (68)

This result matches equation (13) from the main text.
As noted above, the one-loop approximation relies on smallness of two dimensionless parameters: λ/g and s/g.

However, by a happy coincidence the one-loop answer for MSD agrees with the exact result given by Eq. (12) in
the main text for arbitrary large value of s/g provided λ/g � 1. In other words, the large-scale behaviour of MSD
obtained from one-loop calculations is accurate for any value of s, despite the one-loop approximation is justified only
if s � g. This fact allows us to conclude that since the statistics of zero-mean random vector ~R(s) is Gaussian at
s� g, λ, the one-loop prediction for kurtosis given by Eq. (67) also remains valid for arbitrary s when λ/g � 1.
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