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Phenomenological model of supercooled liquid as a possible resolution of the

Kauzmann paradox
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The diverging relaxation time in approaching hypothetical ideal glass transition is a subject of
hot debate. In the current paper we demonstrate, how diverging relaxation time and turning excess
entropy to zero (which is an essence of Kauzmann’s paradox) can be avoided, using as an example the
model molecular glassformer, propylene carbonate. For this purpose we compare its thermodynamic
and dielectric relaxation properties, both known from the literature. The agreement between two
sets of data can be achieved, if we suppose, that enthalpy of supercooled liquid propylene carbonate
is governed by activation law, and relaxation time follows double exponential law. We propose
the generalized Adam-Gibbs law to reconcile this two dependencies, and qualitatively discuss its
implications.

The most fundamental characteristic of liquid (super-
cooled or normal) is the relaxation time τ0, which sepa-
rates phonon-like vibrations at frequencies higher than
ω0 ∝ 1/τ0 from slowly relaxing shear movements at
lower frequencies. It should be kept in mind, that this
border is not sharp, rather τ0 or ω0 is f characteristic
time/frequency, describing certain distribution of relax-
ators (Fig. 1). In normal liquid this relaxation is in the
range below 100 GHz, but rapidly (superactivationally)
shifts into the lower frequency region with lowering the
temperature ( as the liquid becomes supercooled). So,
in the vicinity of glassification temperature (defined by
convention, as the temperature, at which relaxation time
is below the typical measurement time, that is 102 − 103

s), the distribution can be conveniently measured in su-
percooled liquid by dielectric spectroscopy technique (if
the liquid is polar, see Fig. 1), by shear modulus mea-
surements [1] or ultra sound attenuation techniques [2].
In most liquids these methods give similar dependence
of relaxation time vs. temperature [1]. A notable excep-
tion (for not well known reasons) is monoalcohols [3, 4],
but for propylene carbonate, which will be used as an
example throughout this paper, the coincidence of relax-
ation time, measured by different techniques, is well es-
tablished. Additional advantage of propylene carbonate
in comparison to other popular molecular glassformers
(such as glycerol or propylene glycol) is, that propylene
carbonate retains unimodal relaxation till rather high
pressures (4.6 GPa [2]), in contrast to glycerol and propy-
lene glycol, whose relaxation at these pressures splits
[5–7], thus they can not be regarded as simple liquids.
Moreover, propylene carbonate has relatively high boiling
temperature (513 K) and correspondingly high crossover
temperature TA ≈ 300 K [8] (for comparison, glassifica-
tion temperature of propylene carbonate Tg=159 K) at
which crossover from high-temperature Arrhenius depen-
dence to low temperature super-activation one occurs.
This fact makes possible testing various analytical mod-
els in comparatively wide temperature range, to describe
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FIG. 1. Imaginary part of dielectric relaxation (loss function)
in propylene carbonate at different temperatures according to
Ref. [2]. The symbols are experimental data, solid curves are
fits to model relaxation function. Vertical lines mark positions
of characteristic frequencies obtained from the fits.

this superactivation dependence.

Note, that the slower the liquid measurement experi-
ment is, the lower the temperature of liquid vitrification.
This is reflection of the fact, that slower experiments are
able to measure the liquids with slower relaxation times,
so at extremely long time, the glass will behave as a liq-
uid itself [9]. What happens with the relaxation time,
when the liquid vitrifies? There is no clear answer, but
certainly the liquid (glass) becomes non-ergodic, and the
sample more or less freezed in the state, corresponding to
the temperature, at which glassification took place. Cer-
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tainly, some sort of relaxation exists even in the glassy
state, which manifests itself in the experiments on glass
aging [10]. These experiments demonstrate, that the
properties of glass, kept for a long time at a fixed tem-
perature below the glass transition temperature, are very
different from those of fresh glass (obtained in the single
experimental run from glassification temperature to this
fixed temperature).

Manifestations of vitrification are manifold. Besides
the observation, that the relaxation process shifts below
some fixed frequency, it can be observed as a drop by
the typical value of several kB per molecule in the sys-
tem of the liquid’s specific heat [11, 12]. These processes
are not quite different. The drop of specific heat in the
glassy state, compared to supercooled liquid, may be as-
sociated with the shift of slow movements into nonergodic
region, so that subsequent measurements of the specific
heat involve only fast vibrations. It is indeed observed in
experiments for high frequency measurements of specific
heat near the temperature of vitrification. It was con-
cluded, that specific heat in the high frequency asymp-
totic drops to values of about the glassy state values [13].
Vibrational properties of glass are difficult to estimate,
and even more difficult to calculate, but it turns out, that
integral characteristic of glass phonon vibrations, such as
phonon specific heat, is remarkably close to that of crys-
tal phase [14]. It can be thought of in this way: phonon
density of state of the supercooled liquid/glass can be re-
garded as the broadened and slightly shifted to the lower
region version of density of state of the crystal, except for
the frequency region close to zero. Since the density of
state in the region below 100 GHz (a typical relaxation
frequency of supercooled liquid) is low and tends to zero,
the difference between vibrational/phonon specific heat
of supercooled liquid and crystal is negligible. As a rule
of thumb, this vibrational contribution to the specific
heat cV near the melting temperature can be evaluated
as being significantly lower than 3kB per atom in the
system [11, 12]. So, the excess (let us name it that) spe-
cific heat of slow movements which “disappear” during
vitrification process in glassy molecular liquids (where
molecules consists of several atoms) makes only a small
contribution into total specific heat of the glass/liquid.
Rough method of evaluation of the specific heat drop is
to subtract the specific heat of the crystal from that of
the supercooled liquid in the temperature region, where
the measurements of both quantities are possible, and
extrapolate it to adjacent temperature regions. Suppos-
edly, this method should yield a good approximation of
excess specific heat, although it turns out to have a slight
temperature dependence.

Now we (following Kauzmann) envisage a sort of
thought experiment – what happens with specific heat
and internal energy of the supercooled liquid, if we in-
finitely slow down our cooling process? Certainly (in
light of the above said), glassification temperature will

shift to lower temperatures, so we can probe even slower
relaxation processes. Kauzmann [15–17] supposed, that
the specific heat drop ∆cP during vitrification process at
slower cooling rates does not change much (it is almost
constant). If we take experimental heat of fusion ∆H
and divide it by this specific heat drop during vitrification
process, it turns out, that the difference of internal energy
between supercooled liquid and crystal should vanish at
some non zero temperature TK = Tm −∆H/∆cP (ener-
getic Kauzmann’s temperature), where Tm is the melting
temperature. Kauzmann discovered, that for practically
all supercooled liquids, this temperature is above zero.
From a simple consideration it also follows, that the spe-
cific heat in this point should change discontinuously, so
this transition (if achieved) was believed to be similar to
the second order.

Besides energetic Kauzmann’s temperature, there ex-
ists an entropic one (where excess configurational entropy
drops to zero), which causes more problems, since it is
closer to the melting temperature, than the energetic
Kauzmann’s temperature. It can be understood from
the simple inequality:

∆H(Tm)

Tm

= ∆S =

Tm
∫

0

cPdT

T
>

Tm
∫

0

cPdT

Tm

=
∆H(Tm)−∆H(0)

Tm

(1)

So, the entropic Kauzmann’s temperature is the one,
at which only some part of enthalpy of fusion turns to
zero (in contrast to energetic Kauzmann one where all
enthalpy of fusion drops to zero). This inequality also
demonstrates, that in supercooled liquid freezed in in-
finitely slow rate even at zero energy, a residual internal
energy ∆H(0) should exist. This is a simple reflection of
the fact, that supercooled liquid at zero temperature is
in metastable state, compared to crystal.

Adam and Gibbs assumed, that reaching the Kauz-
mann temperature requires infinite time, and proposed
the formula between relaxation time at fixed tempera-
ture τ(T ) and excess entropy of the liquid ∆S(T ) at the

same temperature τ(T ) = exp
(

B
T∆S(T )

)

[18]. By the

order of magnitude T∆S(T ) is equal to enthalpy of the
supercooled liquid T∆S(T ) ≈ ∆H(T ) − ∆H(0) (it can
be shown later, that in our model this equation holds
true with good accuracy). At Kauzmann’s temperature
∆H(T ) − ∆H(0) is zero, so the relaxation time at fi-
nite temperature should be infinite. It was supposed,
that this notion corresponds to experimental data, be-
cause previously relaxation time observed in supercooled
liquids was fitted by the Vogel-Fulcher-Tamman (VFT)

equation τ(T ) = exp
(

C
T−T0

)

where T0 was believed to

be close to Kauzmann’s temperature. Although this ap-
proximation is good in the case of propylene carbonate
[12], for many other glassformers more recent studies pro-
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FIG. 2. The difference of specific heat between supercooled
liquid and crystal states of propylene carbonate. Red curve
is a theoretical approximation according to activation law, ◦
– experimental data of specific heat difference (Angell et al.
[12]). Tm, Tg and TK are experimental melting, glassification
and Kauzmann’s temperatures.

vide little evidence of relaxation time diverging at finite
temperatures [19]. Clearly, there is a problem of how
to reconcile the non-diverging relaxation time at finite
temperature with non-zero thermodynamic Kauzmann’s
temperature (which can be concluded from experiments),
at which this time is supposed to diverge.

The simple idea is, that excess specific heat and excess
internal energy of supercooled liquid should tend to zero
smoothly at low temperature. Let us consider the case,
that excess internal energy of liquid is governed by acti-
vation law : ∆H(T )−∆H(0) = H0 exp

(

−
E
T

)

(the energy
and temperature we will treat in energy units kB = 1).
Then the specific heat of this contribution to liquid en-
ergy can be obtained as : ∆cP = H0E

T 2 exp
(

−
E
T

)

. As a
side remark, one can recall the Ref. [14] where the drop
of specific heat at constant pressure during glassification
processes related to the ratio between thermal expansion
coefficient α and bulk modulus B in the supercooled liq-
uid and glassy state in the well-known thermodynamic
equation cp − cv = −α2TBV which can reach values of
about 100 % of specific heat in glass state.

To resolve this set of equations using experimental data
for 3 unknown parameters (∆H(0), H0 and E), we need
the third equation which is provided by the balance of
entropy:
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FIG. 3. Dielectric relaxation time in propylene carbonate vs.
temperature [2]. Blue line is a fit according to the Bradbury-
Shishkin equation (Eq. 3).

∆S(Tm) = H0

Tm
∫

0

d exp
(

−
E
T

)

T
= H0 exp

(

−

E

Tm

)(

1

Tm

+
1

E

)

(2)
For propylene carbonate we can solve equations for

specific heat and entropy taking the experimental values
of the excess specific heat at melting temperature (∆cp ≈

6R) and entropy of fusion (∆S(Tm) = ∆H(Tm)/Tm ≈

4R. They can be easily resolved and yield the values

E = Tm
∆cp

2∆S(Tm)

(

1 +
√

1 + 4∆S(Tm)
∆cp

)

≈ 470 K. From

the equation for enthalpy, other parameters can be evalu-
ated (for resulting curve see Fig. 2), in particular, residual
enthalpy at zero temperature is approximately equal to
1/3∆H(Tm). This temperature dependence predicts the
increase of ∆cP with temperature lowering above melt-
ing temperature, but, on the other hand, significantly
underestimates the experimentally observed dependence
(calculated as the difference between the specific heat of
the supercooled liquid and the crystal, see Fig. 2). This
can be due either to the fact, that the true tempera-
ture dependence is stronger than the simple activation
dependence, or to approximate character of the specific
heat difference between the liquid and crystal (more pre-
cise approximation would be the difference between liq-
uid and glass, although we acknowledge significant ex-
perimental difficulties of obtaining these values).
How will behave the relaxation time in the same tem-

perature region? For activation law the characteristic
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FIG. 4. Dielectric relaxation time in propylene carbonate vs.
temperature [20–23] (symbols). Dashed red line is the fit of
experimental data by VFT equation, solid green line – by the
Bradbury-Shishkin one (Eq. 3).

frequency of dielectric relaxation follows the double expo-
nential (the Bradbury-Shishkin ) law [24–29])(see Fig. 3):

ν = ν0 exp(−A exp(E/T )) (3)

This equation seems to be reinvented many times since
then (see e.g. Ref. [30]), and describes non-diverging re-
laxation time at finite temperatures . It can be regarded
as slight modification of the Waterton-Mauro equation
[23, 31, 32] (also known as MYEGA). It results from
application of Adam-Gibbs relation to the internal en-
ergy, following the activation law. We should note, that
in limited temperature range (as depicted in Fig. 3), it
is not evident that the Bradbury-Shishkin equation is
preferrable than its counterpart (VFT). In fact, it is
slightly worse, and its determination coefficient R2 is
marginally lower, than that of VFT equation (0.9996 vs.

0.9998 respectively). The situation drastically changes,
if we fit the data obtained in the significantly wider fre-
quency range, including THz measurements, as well as
data from aging experiments [20–23]. Although in this
data, there was slightly different convention of charac-
teristic frequency adopted (inverse “average” relaxation
time), in contrast to those used by us before (from the fit
of relaxation response), we still consider the difference in-
significant. Fit of this experimental data by VFT and BS
equation is shown in Fig. 4. Without thorough statistical
analysis it is evident, that BS equation provides better
fit of experimental data. It corresponds to the conclu-
sions of Ref. [23], that MYEGA equation provides better

fit of broad band relaxation data, obtained on propylene
carbonate, than VFT one. So, in our fit we just corrobo-
rate observation of Ref. [29] that all “double exponential”
equations provide approximately equally good fits of ex-
perimental data.

However, there is a problem, that the activation energy
E = 960 K, obtained from the dielectric relaxation time is
almost two times higher, than the one deduced from ther-
modynamic consideration (470 K). This discrepancy can
be reconciled, if we take into account qualitative char-
acter of the Adam-Gibbs relation. Instead, one should
propose a generalized Adam-Gibbs relation where the re-
laxation time is related to internal energy of the liquid
H(T ) = ∆H(T )−∆H(0) by the equation:

τ ∝ exp

((

B

H(T )

)γ)

(4)

It is clear, that in propylene carbonate the exponent γ
should be close to 2.

There should be short interpretation of the general-
ized Adam-Gibbs equation (4). Activation law ∆H(T )−
∆H(0) is suitable for description of concentration of some
walls, separating different molecular flows. These walls
require a certain energy E for their creation. Once cre-
ated, they separate the whole volume into “rigid blocks”,
with flows along these walls as the single entities. Since
the flows are constricted by the tubes of current, the
exponent γ ≈ 2. However, the flow of these entities is
hampered inversely exponential to their size, according
to the generalized Adam-Gibbs law (4). Although this
model seems to lack direct evidence, it is not inferior to
other models of relaxation processes in supercooled liq-
uids.

To conclude, we provide phenomenological foundation
of non-divergence of relaxation times in propylene car-
bonate. Comparison of its’ thermodynamic and kinetic
properties (relaxation frequency obtained through broad-
band dielectric spectroscopy) can be satisfactorily de-
scribed, using notion of activation character of inter-
nal energy resulting in the “double exponent” relaxation
time behavior, which can be described by the generalized
Adam-Gibbs relation Eq. (4). This allows us get rid of
Kauzmann’s paradox.
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