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For a model with many-to-one connectivity it is widely expected that mean-field theory captures
the exact many-particle N → ∞ limit, and that higher-order cumulant expansions of the Heisenberg
equations converge to this same limit whilst providing improved approximations at finite N . Here we
show that this is in fact not always the case. Instead, whether mean-field theory correctly describes
the large-N limit depends on how the model parameters scale with N , and the convergence of
cumulant expansions may be non-uniform across even and odd orders. Further, even when a higher-
order cumulant expansion does recover the correct limit, the error is not monotonic with N and
may exceed that of mean-field theory.
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I. INTRODUCTION

Networks in which one site couples non-locally to
many satellite sites occur in a wide range of many-body
open quantum systems. For example, models where a
driven electronic spin interacts with a bath of nuclear
spins are relevant to nuclear magnetic resonance spec-
troscopy [1–4], quantum sensing [5–7] and quantum in-
formation processing [8–14]. The network structure is
also common in quantum optics where it defines the in-
teraction of a bosonic mode with an ensemble of emit-
ters [15], or equally a single emitter with many electro-
magnetic modes [16]. In many such cases, the large num-
ber of satellite sites precludes exact calculations, partic-
ularly when accounting for non-unitary dynamics due to
incoherent processes. Consequently there is a need for
approximate methods capable of handling large, driven-
dissipative systems with many-to-one connectivity. We
discuss below how mean-field theory and cumulant ex-
pansions may provide a suitable set of methods.

For models with finite connectivity, mean-field theory
is typically only accurate in high dimensions [17]. In
contrast, there are many reasons to believe it should re-
cover the exact behavior of many-to-one models in the
thermodynamic limit. First, given N identical satellites,
monogamy of entanglement [18] restricts the entangle-
ment between any two sites such that quantum correla-
tions in the system vanish as N → ∞. However, there is
no similar restriction on classical correlations which may
certainly persist in this limit. Second, in models with
weak couplings to satellite sites, these may be treated
as a harmonic bath for the central site with a linear re-
sponse that becomes exact as N → ∞ [19]. Third, for
models with an interaction between a large number of
emitters and a bosonic mode, the mean-field equations
can be justified via saddle-point analysis [20]. There are
further rigorous results regarding the exactness of mean-
field theory as N → ∞ within this class [21–23]. In spite
of these results, we present here a simple example where
mean-field theory does not always capture the N → ∞
limit of a many-to-one model.

Even when mean-field theories correctly describe the
exact N → ∞ behavior, other methods may be required
to capture effects at finite N . Different forms of cumulant
expansion of the Heisenberg equations have been widely
applied to many-body systems [16, 24–39] as a system-
atic approximation scheme in which increasing orders of
correlations are included; this is hoped to improve accu-
racy at the cost of growing complexity. The power of this
approach is the small dimension of the resulting problem
(independent of system size N), and the ability of even
low orders of expansion to produce accurate results at
intermediate N . Hence, they are a tool to both capture
behavior at N ≫ 1 and to study finite size effects.

The difficulty of direct simulation at large N means
that cumulant expansions are rarely benchmarked
against exact methods much beyond N ∼ 30. Confi-
dence in results may then be based on the assumptions
that evaluation at larger N and higher orders of expan-
sion provide more accurate approximations. However, we
show cases here where neither of these assumptions are
correct.

In this work we thoroughly explore the convergence of
cumulant expansions for a driven-dissipative central spin
model. We demonstrate how the ability of mean-field
theory to capture the N → ∞ steady state of the full
quantum model depends on the scaling of parameters.
Further, we show how even when mean-field theory does
capture the exact behavior at N → ∞, convergence of
higher-order cumulant expansions to the same result is
not guaranteed. We discuss how this convergence behav-
ior arises in light of correlations present in the system and
show that similar behavior may be observed in models of
light-matter interaction. Permutation symmetry allows
us to make comparisons to exact results for the central
spin model at relatively large N ∼ 150 whereby we show
the error in cumulant expansion approximations does not
generally decrease monotonically with N , nor with the
order of expansion.

The structure of the paper is as follows. In Section II
we give an overview of the central spin model and the per-
mutation symmetric method that may be used to solve
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FIG. 1. (a) Network of the model: a central site (index 0)
couples to N identical satellites (n = 1, . . . , N). (b) Each site
is a two-level system (spin-1/2) subject to decay (κ or Γ↓)
and, in the case of the satellites, pump Γ↑.

it at finite N . In Section III we explain the cumulant
expansion method and its application to the model at
mean-field and second order. Section IV then compares
the results for these approximations up to third order to
exact data under two different choices for scaling of pa-
rameters as N → ∞. Finally, in Section V we present
the results for higher-order expansions in both the cen-
tral spin and the Tavis–Cummings models before sum-
marizing our findings and the scope for future work in
Section VI.

II. MODEL

We consider a single spin-1/2 (Pauli matrices σα
0 ) in-

teracting with N spin-1/2 satellites (Pauli matrices σα
n)

according to

H =
ω

2
σz
0 +

N∑
n=1

[
ϵ

2
σz
n + g

(
σ+
0 σ

−
n + σ−

0 σ
+
n

)]
. (1)

Here ω and ϵ are on-site energies for the central and a
satellite spin, and g the interaction strength. In addi-
tion we consider dissipation with rate κ from the central
site as well as incoherent pump Γ↑ and loss Γ↓ for each
satellite. These are included as Markovian terms in the
master equation for the total density operator ρ,

∂tρ = −i [H, ρ]+κL[σ−
0 ]+

N∑
n=1

(
Γ↑L[σ+

n ]+Γ↓L[σ−
n ]
)
, (2)

with L[x] = xρx†−{x†x, ρ}/2. Schematics for the system
and these processes are given in Figs. 1(a) and 1(b).

The anisotropic interactions in Eq. (1) arise, for exam-
ple, between the nitrogen-vacancy center and the 13C nu-
clear spins in diamond [40]. This system has been exten-
sively studied for its potential role in emerging quantum
technologies including spectroscopy [2–4], quantum sens-
ing [5–7], and computing [12, 13]. For our purpose the

0 n
N
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0

n

N

N(a) (b)

FIG. 2. (a) Mean-field reduction to a two-body problem
where expectations of a satellite evolve according to ex-
pectations of the central site (⇀) which in turn evolve
according to N copies of the satellite expectations (↽).
(b) In the second-order cumulant expansion central-satellite
and satellite-satellite expectations couple into the system
[Eqs. (10) and (11)].

model serves a minimal formulation of the open many-
to-one problem to investigate mean-field theory and cu-
mulant expansions. In certain cases, such as the absence
of dissipation, or when the satellite dissipation is collec-
tive, there exist analytical or efficient numerical meth-
ods capable of accessing large-N behavior of central spin
models [41–46]. However, for the case we consider with
individual dephasing these methods do not apply.

The model Eq. (2) has cumulant equations that are an-
alytically tractable up to third order whilst also allowing
exact calculations for relatively large system sizes. Be-
low, to compare approximations, we analyze the central-
site population, p↑0, in the steady state. This relates to
the polarization, ⟨σz

0⟩, via p↑0 ≡ (1+⟨σz
0⟩)/2 and increases

from zero as the ratio Γ↑/ΓT (ΓT = Γ↑+Γ↓) is increased.

The invariance of the model under the interchange of
satellite spins allows one to work in a permutation sym-
metric basis when performing exact calculations [47–52].
This provides a combinatoric reduction in the size of the
Liouvillian L. In our case this allows finding the eigen-
vector of L with eigenvalue 0, i.e., the steady state, up
to N = 150. No information is lost by working in this
basis. In particular, all correlations can be computed ex-
actly and compared to the prediction of the cumulant
expansions.

III. MEAN-FIELD AND CUMULANT
EXPANSIONS

We now explain the cumulant expansion method and
its application to the central spin model at mean-field
and second order. Expressions for third-order cumulant
equations are also provided in Appendix A.

From the master equation, Eq. (2), one can derive
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equations of motion for single-site expectations,

∂t⟨σz
0⟩ = −κ (⟨σz

0⟩+ 1) + 4gN Im
[
⟨σ+

0 σ
−
n ⟩

]
, (3)

∂t⟨σz
n⟩ = −ΓT ⟨σz

n⟩+ Γ∆ − 4g Im
[
⟨σ+

0 σ
−
n ⟩

]
, (4)

∂t⟨σ+
0 ⟩ =

(
iω − κ

2

)
⟨σ+

0 ⟩ − igN⟨σz
0σ

+
n ⟩, (5)

∂t⟨σ+
n ⟩ =

(
iϵ− ΓT

2

)
⟨σ+

n ⟩ − ig⟨σ+
0 σ

z
n⟩, (6)

where Γ∆ = Γ↑−Γ↓ and ΓT = Γ↑+Γ↓. This set of equa-
tions is not closed since, for example, ∂t⟨σz

0⟩ depends on
⟨σ+

0 σ
−
n ⟩. The equation for ⟨σ+

0 σ
−
n ⟩ will in turn depend on

expectations of operators from three different sites, and
so on, resulting in an exponential number of equations
involving operators on all sites.

To obtain a manageable number of equations, in the
M th-order cumulant expansion moments of order M + 1
are rewritten as non-linear combinations of lower-order
moments by setting the corresponding cumulant [24, 53]
to zero. Such an approximation corresponds to making
an ansatz for the many-body state ρ that involves corre-
lations between at most M sites. We stress here the dis-
tinction is between sites (or Hilbert spaces) of the many-
body system, not operators in themselves (as, e.g., used
in Ref. [28]). This is natural for two-level systems, where
one easily identifies ⟨σ+

0 σ
−
0 σ

z
n⟩ = (⟨σz

0σ
z
n⟩+ ⟨σz

n⟩)/2, but
for bosonic operators, e.g., a, it is common to see fac-
torizations such as ⟨a†aσz⟩ ≈ ⟨a†⟩⟨a⟩⟨σz⟩ + . . . whose
validity depends on additional assumptions of Gaussian-
ity [54].

A. Mean-field equations

At first order, that is mean-field theory, second-order
moments factorize into products (⟨σα

0 σ
β
n⟩ ≈ ⟨σα

0 ⟩⟨σβ
n⟩)

and an effective two-body problem results [Fig. 2(a)].
Solving for the steady state one finds ⟨σz

0⟩ = −1
for Γ↑/ΓT below a critical pump ratio Rc ≡ (1 +
ΓTκ/4g

2N)/2, while for Γ↑/ΓT > Rc:

⟨σz
0⟩ =− 1

2

(
1− Γ∆N

κ

)
− 1

2

√(
1− Γ∆N

κ

)2

+
Γ2
T

g2
, (7)

⟨σz
n⟩ = − κΓT

4g2N⟨σz
0⟩

, ⟨σ+
n ⟩ =

iκ

2gN⟨σz
0⟩

⟨σ+
0 ⟩, (8)

where the magnitude of ⟨σ+
0 ⟩ is fixed by∣∣⟨σ+

0 ⟩
∣∣2 = −⟨σz

0⟩
(
1 + ⟨σz

0⟩
)
/2. (9)

For simplicity we took ω = ϵ above but have checked our
conclusions do not change off resonance.

Although the model has U(1) symmetry, i.e., Eq. (2)
is invariant under σ± → σ±e±iθ, it is necessary to retain
the symmetry-breaking terms ⟨σ+

0 ⟩ and ⟨σ+
n ⟩ when per-

forming the mean-field approximation in order to obtain
a non-trivial solution: the state ⟨σz

0⟩ = −1 is always a
solution to the mean-field equations that only becomes
unstable when Γ↑/ΓT > Rc.

B. Second-order cumulant equations

Breaking symmetry is not necessary at second order
where ⟨σ+

0 σ
−
n ⟩ can be non-zero whilst respecting the sym-

metry. The required equations for second moments are
[Fig. 2(b)]

∂t⟨σ+
0 σ

−
n ⟩ =

(
i(ω − ϵ)− κ+ ΓT

2

)
⟨σ+

0 σ
−
n ⟩+

ig

2
⟨σz

n⟩

− ig

2
⟨σz

0⟩ − ig(N − 1)⟨σz
0⟩⟨σ+

n σ
−
m⟩, (10)

∂t⟨σ+
n σ

−
m⟩ = −ΓT ⟨σ+

n σ
−
m⟩+ 2g Im

[
⟨σ+

0 σ
−
n ⟩

]
⟨σz

n⟩, (11)

with n ̸= m. Here we set third cumulants to zero and use
the U(1) symmetry to write ⟨σz

0σ
+
n σ

−
m⟩ ≈ ⟨σz

0⟩⟨σ+
n σ

−
m⟩,

⟨σ+
0 σ

−
n σ

z
m⟩ ≈ ⟨σ+

0 σ
−
n ⟩⟨σz

n⟩. Equations (3), (4), (10),
and (11) can also be solved exactly, albeit not explicitly,
to find p↑0 = [1 + ⟨σz

0⟩]/2.

IV. RESULTS AT MEAN-FIELD AND
SECOND-ORDER CUMULANTS

In the following we compare the mean-field result
Eq. (7) and the solution to the second-order equations
Eqs. (3), (4), (10), and (11) to the exact steady state.
We do this this under two possible choices for scaling
parameters in the model as N → ∞.

A. Fixed g
√
N

Figure 3(a) shows p↑0 vs 1/N when fixing g
√
N . This

scaling is often relevant in the context of light-matter cou-
pling, where coupling strength g is inversely proportional
to the square root of mode volume: as the system be-
comes larger, both N and mode volume grow, but g

√
N

remains fixed. Here we see there is no agreement between
the exact and approximate results, each taking different
N → ∞ limits. This is in marked contrast to the Tavis–
Cummings or Dicke models [51], where both mean-field
and second-order cumulant approximations converge to
the exact steady-state as N → ∞ for this scaling. Below
we explain how the convergence of second-order cumu-
lants to mean-field theory is precluded by g ∝ 1/

√
N for

the central spin model.

B. Fixed κ/N

If instead the ratio κ/N is kept fixed, Fig. 3(b), mean-
field and second-order cumulants have a common limit
that captures the exact behavior. Note Fig. 3(b) is plot-
ted for parameters where non-zero p↑0 is expected; see
Fig. 3(c) for a phase diagram. This scaling may be un-
derstood to realize the limit of strong continuous mea-
surement of the central site [56]. It has the feature, seen
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FIG. 3. (a) Central-site population, p↑0 = [1 + ⟨σz
0⟩]/2, in

mean-field (MF) and second-order cumulant (C2) approxi-
mations when g

√
N = 3 is fixed and κ = 1 in units of ω.

Exact data (blue dots) is included up to N = 150. The
horizontal scale 1/N is such that N → ∞ to the left. (b)
MF, C2 and exact results when κ/N = 1/16 is fixed and
g = 3/4. The gray vertical line at N = 50 indicates points
equivalent to those along the corresponding line in (c). (c)
p↑0 vs Γ↑/ΓT (ΓT = Γ↑ + Γ↓) at fixed κ/N = 1/16, g = 3/4,
and N = 50 (the low cost of the exact calculation allowed
a continuous line to be plotted). The mean-field transition
at Γ↑/ΓT = Rc ≈ 0.53 is analogous to that in a driven-
dissipative Tavis–Cummings model [15] and other models of
lasing [37, 55]. (d) Error in MF and C2 results from (b).
Other parameters used in these panels were ϵ = ω = 1,
ΓT = 2, and [except (c)] Γ↑ = 3/2.

in Eqs. (7)–(9), that expectations of satellite and central-
site quantities are of the same order, O(1), as N → ∞.
In Appendix B we show this holds for higher-order cor-
relations as well. One then observes the asymptotic form
of Eq. (10) (κ ∼ N),

∂t⟨σ+
0 σ

−
n ⟩ = N

(
− κ

2N
⟨σ+

0 σ
−
n ⟩ − ig⟨σz

0⟩⟨σ+
n σ

−
m⟩

)
+O(1),

(12)

matches that predicted by mean-field theory,

∂t
(
⟨σ+

0 ⟩⟨σ−
n ⟩

)
= N

(
− κ

2N
⟨σ+

0 ⟩⟨σ−
n ⟩

− ig⟨σz
0⟩⟨σ+

n ⟩⟨σ−
m⟩

)
+O(1).

(13)

The same is true for Eq. (11) and its mean-field analog,
hence the second-order and mean-field equations have
identical structures as N → ∞ at fixed κ/N .

In contrast at fixed g
√
N the correlations ⟨σ+

n σ
−
m⟩ do

not remain finite as N → ∞ but decay faster than 1/
√
N

(Appendix B). Consequently the terms ∼ g⟨σz
0⟩, g⟨σz

n⟩
in Eq. (10), which are not present in mean-field the-
ory, cannot be discounted as N → ∞. This difference

leads to distinct limits in Fig. 3(a). Note equations for
higher-order moments involving the central site will con-
tain additional terms inconsistent with mean-field theory.
Thus, while higher-order expansions may provide an im-
proved approximation of the exact results, they will gen-
erally have distinct limits. This result also illustrates
how knowledge that certain correlations vanish at large
N is not sufficient to determine if they become irrelevant
as N → ∞. Instead, the scaling with N of parameters
multiplying these correlations must also be taken into
account.

Fig. 3(d) shows further how with κ/N fixed the er-
ror at second order is not monotonic with N and even
exceeds that of mean-field theory for N ≳ 80. The non-
monotonicty is inevitable given this approach captures
the exact N → ∞ limit and must also be exact at N = 2,
when all correlations are fully captured. As such, the
second-order expansion provides an approximation that
is only asymptotically matched to the exact result at the
two limits, and care must be taken in between.

V. HIGHER-ORDER CUMULANT
EXPANSIONS

A. Central spin model

Having established a well defined limit up to second
order at fixed κ/N , we now investigate higher-order cu-
mulant expansions for this scaling. We use the Quantum-
Cumulants.jl Julia framework [35] to obtain fourth and
fifth-order results in addition to the solution to the third-
order equations presented in Appendix A. Surprisingly,
we see in Fig. 4(a) that whilst the fourth-order expan-
sion provides an improved approximation on the entire
range of N , the third-order expansion does not. Instead
it converges to a limit far separated from the true result,
hence there is some N beyond which the second-order
(and mean-field) result provides a better approximation.
Similarly the fifth-order result, despite being exact up to
N = 5 and the best approximation at very small N , fails
to capture the exact N → ∞ limit.

To understand the dependence of convergence on or-
der parity, the previous argument for the asymptotic re-
duction of the second-order equations to mean field as
N → ∞ can be extended to all even orders. First, note
that before any factorization is made the equations for
moments involving satellite sites only match mean-field
theory in structure since H [Eq. (1)] is linear in these
sites. When the central site is involved, this is no longer
the case. However, the terms that survive as N → ∞
at fixed κ/N are those that arise from the commuta-
tor of a central operator with σ+

0 σ
−
n or σ−

0 σ
+
n followed

by a sum ∼ N over the satellites. These terms have
the same structure for both the cumulant equations and
mean-field theory. Second, there is a key point about
the coefficients associated with the cumulant expansion
of a given term. As discussed further in Appendix C, by
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FIG. 4. (a) Central-site population p↑0 in mean-field (MF) and
cumulant approximations up to fifth order (C2-5) at fixed
κ/N = 1/16 [parameters and exact data as in Fig. 3(b)].
Results at fourth and fifth order were derived using Quan-
tumCumulants.jl [35]. Inset: the fifth-order solution has nu-
merical noise beyond N ≳ 2, 500, but is approaching a value
distinct from the third-order limit. (b) Mean-field and cu-
mulant results for the scaled photon number ⟨a†a⟩/N in the
driven-dissipative Tavis–Cummings model using Quantum-
Cumulants.jl. Exact results following a Fock-space trunca-
tion are included up to N = 20 (Nphot. = 20 levels were
sufficient to achieve convergence). Here the parameters were
g
√
N = 9/10, ϵ = ω = κ = 1, ΓT = 1/2, and Γ↑ = 3ΓT /4.

The fifth-order solution became unstable for N ≳ 100.

definition, the sum of coefficients of the cumulant expan-
sion of any given term should sum to 1. However, when
some terms are eliminated because they do not respect
the symmetries of the model, this statement may or may
not remain true. When moments are factorized at even
orders of expansion, the number of non-vanishing terms
under U(1) symmetry does sum to 1 [57]. As this matches
the mean-field prediction for the number of terms, the
asymptotic structure of even-order equations are com-
patible with mean-field theory.

On the other hand, closing the equations at odd orders
requires factorizing moments ⟨σ+

0 σ
−
n σ

+
mσ−

k . . .⟩ involving
raising and lowering operators only. These produce a set
of terms with coefficients that do not sum to 1. For exam-
ple, when constructing the third-order equations setting
the cumulant ⟨⟨σ+

0 σ
−
n σ

+
mσ−

k ⟩⟩ to zero gives

⟨σ+
0 σ

−
n σ

+
mσ−

k ⟩ ≈ 2⟨σ+
0 σ

−
n ⟩⟨σ+

mσ−
k ⟩, (14)

having excluded terms that vanish on account of the U(1)
symmetry. It is the factor of 2 occurring here that is in-
congruent with mean-field theory. The number of terms
produced by these type of factorizations varies with suc-
cessive odd orders (2,−3, 34,−455. . . ), so each can be ex-
pected to converge on its own limiting value at N → ∞,
as observed in Fig. 4(a) for third and fifth orders.

A consequence of these observations is that symmetry-
broken versions of the odd-order equations, for which no
terms of the approximation for ⟨σ+

0 σ
−
n σ

+
mσ−

k . . .⟩ vanish,
can produce the correct limit. In Appendix C we show
this is indeed the case for our model. However, we note
that at finite N the exact solution never shows symmetry
breaking, and that the symmetry-broken approximation

is not necessarily a reliable improvement.

B. Tavis–Cummings model

Finally we observe similar convergence behavior be-
tween even and odd orders in models of light-matter in-
teraction. Figure 4(b) includes results for the driven-
dissipative Tavis–Cummings model up to fifth order of
the cumulant expansion [58]. The Tavis–Cummings
Hamiltonian [59] is frequently used in cavity QED to de-
scribe an ensemble of non-interacting emitters coupled
to a common cavity mode and may be obtained from
Eq. (1) by replacing the central spin with a bosonic op-
erator a [15]. Note for this model g

√
N fixed provides

matching exact and mean-field N → ∞ limits for the
steady state [51].

VI. DISCUSSION

In this paper we examined the convergence of mean-
field and cumulant expansions at N → ∞ as well as their
accuracy at intermediate N . We considered the class of
all-to-one models for which mean-field theory may be ex-
pected to be robust. Yet for our central spin model we
demonstrated that whether mean-field theory captures
the exact steady state as N → ∞ depends on the scaling
of parameters in the model. Further, even when mean-
field theory does capture exact N → ∞ behavior, higher-
order cumulant expansions may not converge to the same
result. Comparison to exact results up to N = 150 al-
lowed us to verify the large-N behavior and show the
error of cumulant expansions is not monotonic with N .

The model considered here has been directly applied to
study defect centers in diamond [2, 3, 60] and quantum
dot systems [60, 61], but our reasoning may be applied
quite generally to central spin models including, for ex-
ample, other anisotropic or isotropic couplings [62–65] or
coherent drive [55, 66, 67]. We have also seen that our
results are relevant to models of collective light-matter
coupling where cumulant expansions are an increasingly
popular choice for analyzing both small and large sys-
tems [16, 30–37].

While we focused on steady state properties, fu-
ture work may use the cumulant expansions to exam-
ine the dynamics of open central spin models [65, 68–
72] for which the scope of mean-field theory to cap-
ture exact N → ∞ behavior has recently been stud-
ied [23, 73]. Similarly, one may look to apply our rea-
soning to models with all-to-all connectivity considering
studies [29, 33, 36, 39, 74] of the limitations of mean-
field approximations in this class. Our results highlight
the need to assess the validity of cumulant expansions in
such applications, and prompt further exploration of how
reliable higher-order expansions can be found.

Note added. Recently, another work studying this same
problem has appeared [73].
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APPENDIX A: THIRD-ORDER CUMULANT
EQUATIONS

In this appendix we provide the third-order cumulant
equations for the central spin model with U(1) symmetry.
In the following, n, m, and k label distinct satellite sites.

∂t⟨σz
0⟩ = −κ (⟨σz

0⟩+ 1) + 4gN Im
[
⟨σ+

0 σ
−
n ⟩

]
(A1)

∂t⟨σz
n⟩ = −ΓT ⟨σz

n⟩+ Γ∆ − 4g Im
[
⟨σ+

0 σ
−
n ⟩

]
(A2)

∂t⟨σ+
0 σ

−
n ⟩ =

(
i(ω − ϵ)− κ+ ΓT

2

)
⟨σ+

0 σ
−
n ⟩+

ig

2
⟨σz

n⟩ −
ig

2
⟨σz

0⟩ − ig(N − 1)⟨σz
0σ

+
n σ

−
m⟩ (A3)

∂t⟨σ+
n σ

−
m⟩ = −ΓT ⟨σ+

n σ
−
m⟩+ 2g Im

[
⟨σ+

0 σ
−
n σ

z
m⟩

]
(A4)

∂t⟨σz
0σ

+
n σ

−
m⟩ = −(κ+ ΓT )⟨σz

0σ
+
n σ

−
m⟩ − κ⟨σ+

n σ
−
m⟩+ 2g Im

[
⟨σ+

0 σ
−
n ⟩

]
+ 8g(N − 2) Im

[
⟨σ+

0 σ
−
n ⟩

]
⟨σ+

n σ
−
m⟩ (A5)

∂t⟨σ+
0 σ

−
n σ

z
m⟩ =

(
i(ω − ϵ)− κ+ 3ΓT

2

)
⟨σ+

0 σ
−
n σ

z
m⟩+ Γ∆⟨σ+

0 σ
−
n ⟩ − ig⟨σ+

n σ
−
m⟩+ ig

2
⟨σz

nσ
z
m⟩ − ig

2
⟨σz

0σ
z
n⟩

− ig(N − 2)

(
⟨σz

0σ
+
n σ

−
m⟩⟨σz

n⟩+ ⟨σz
0⟩⟨σz

nσ
+
mσ−

k ⟩+ ⟨σz
0σ

z
n⟩⟨σ+

n σ
−
m⟩ − 2⟨σz

0⟩⟨σz
n⟩⟨σ+

n σ
−
m⟩

) (A6)

∂t⟨σz
nσ

+
mσ−

k ⟩ = −2ΓT ⟨σz
nσ

+
mσ−

k ⟩+ Γ∆⟨σ+
n σ

−
m⟩ − 8g Im

[
⟨σ+

0 σ
−
n ⟩

]
⟨σ+

n σ
−
m⟩

+ 2g

(
Im

[
⟨σ+

0 σ
−
n ⟩

]
⟨σz

nσ
z
m⟩ − 2 Im

[
⟨σ+

0 σ
−
n ⟩

]
⟨σz

n⟩2 + 2 Im
[
⟨σ+

0 σ
−
n σ

z
m⟩

]
⟨σz

n⟩
) (A7)

∂t⟨σz
nσ

z
m⟩ = −2ΓT ⟨σz

nσ
z
m⟩+ 2Γ∆⟨σz

n⟩ − 8g Im
[
⟨σ+

0 σ
−
n σ

z
m⟩

]
(A8)

∂t⟨σz
0σ

z
n⟩ = −(κ+ ΓT )⟨σz

0σ
z
n⟩ − κ⟨σz

n⟩+ Γ∆⟨σz
0⟩+ 4g(N − 1) Im

[
⟨σ+

0 σ
−
n σ

z
m⟩

]
(A9)

In writing Eqs. (A5)–(A7) fourth-order moments were approximated by setting the fourth-order cumulants to zero:

⟨⟨σ+
0 σ

−
n σ

+
mσ−

k ⟩⟩ = 0, ⟨⟨σz
0σ

z
nσ

+
mσ−

k ⟩⟩ = 0, ⟨⟨σ+
0 σ

−
n σ

z
mσz

k⟩⟩ = 0, (A10)

where

⟨⟨σα
a σ

β
b σ

γ
c σ

δ
d⟩⟩ := ⟨σα

a σ
β
b σ

γ
c σ

δ
d⟩ − ⟨σα

a σ
β
b ⟩⟨σ

γ
c σ

δ
d⟩ − ⟨σα

a σ
γ
c ⟩⟨σ

β
b σ

δ
d⟩ − ⟨σα

a σ
δ
d⟩⟨σ

β
b σ

γ
c ⟩

−⟨σα
a ⟩⟨σ

β
b σ

γ
c σ

δ
d⟩ − ⟨σβ

b ⟩⟨σ
α
a σ

γ
c σ

δ
d⟩ − ⟨σα

a σ
β
b σ

δ
d⟩⟨σγ

c ⟩ − ⟨σα
a σ

β
b σ

γ
c ⟩⟨σδ

d⟩

+2⟨σα
a ⟩⟨σ

β
b ⟩⟨σ

γ
c σ

δ
d⟩+ 2⟨σα

a ⟩⟨σ
β
b σ

γ
c ⟩⟨σδ

d⟩+ 2⟨σα
a ⟩⟨σ

β
b σ

δ
d⟩⟨σγ

c ⟩

+2⟨σα
a σ

β
b ⟩⟨σ

γ
c ⟩⟨σδ

d⟩+ 2⟨σα
a σ

γ
c ⟩⟨σ

β
b ⟩⟨σ

δ
d⟩+ 2⟨σα

a σ
δ
d⟩⟨σ

β
b ⟩⟨σ

γ
c ⟩

−6⟨σα
a ⟩⟨σ

β
b ⟩⟨σ

γ
c ⟩⟨σδ

d⟩.

(A11)

Note that many of these terms vanish for the model with U(1) symmetry.

APPENDIX B: BEHAVIOR OF CORRELATIONS
AS N → ∞

In this appendix we show the behavior of pairwise cor-
relations as N → ∞ for the central spin model. These
results support the arguments for convergence made in
Section IV B.

Figures 5(a) and 5(b) show satellite-satellite ⟨σ+
n σ

−
m⟩

and central-satellite ⟨σ+
0 σ

−
n ⟩ correlations against 1/

√
N

for the model at fixed g
√
N . We show exact results up

to N = 150 as well as the prediction of second-order cu-
mulants and mean-field theory. Notice in particular that
⟨σ+

n σ
−
m⟩ decays faster than 1/

√
N as N → ∞ (vanishing

gradient at 1/
√
N → 0 in Fig. 5(a)). As such, at large

N , the terms ∼ g⟨σz
0⟩,∼ g⟨σz

n⟩ present in the second-
order equation Eq. (10) (but not mean-field theory) are
dominant compared to the final term ∼ g⟨σz

0⟩⟨σ+
n σ

−
m⟩ oc-

curring there.

When instead considering the correlations at fixed
κ/N , shown in Figs. 5(c) and 5(d), we see that both
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0.0 0.2 0.4

1/
√
N

0.00

0.01

0.02

〈σ+
nσ
−
m〉

exact

MF

C2

0.0 0.2 0.4

1/
√
N

0.00

0.02

0.04

Im[〈σ+
0 σ
−
n 〉]

0.0 0.2 0.4

1/
√
N

0.0055

0.0070

0.0085

〈σ+
nσ
−
m〉

0.0 0.2 0.4

1/
√
N

0.015

0.020

0.025

Im[〈σ+
0 σ
−
n 〉]

(a) (b)

(c) (d)

FIG. 5. (a) Satellite-satellite and (b) central-satellite correla-
tions in the steady state of the model with scaling g

√
N fixed

and parameters as in Fig. 3(a) (g
√
N = 3, κ = 1). Exact data

(blue dots) up to N = 150 and second-order (C2) results for
the correlations are included, as well as the mean-field (MF)
approximations ⟨σ+

n σ−
m⟩ ≈

∣∣⟨σ+
n ⟩

∣∣2 and ⟨σ+
0 σ−

n ⟩ ≈ ⟨σ+
0 ⟩⟨σ−

n ⟩.
Note the use of 1/

√
N on the horizontal axis: for this scaling

⟨σ+
n σ−

m⟩ = o(1/
√
N) and Im

[
⟨σ+

0 σ−
n ⟩

]
= O(1/

√
N) as N → ∞

(the real part of ⟨σ+
0 σ−

n ⟩ vanishes at resonance). (c), (d) Same
correlations when instead κ/N is fixed with parameters as in
Fig. 3(b) (κ/N = 1/16, g = 3/4). In this case both pairs of
correlations remain finite for all N .

tend to finite limits, allowing for the reduction of the
second-order cumulant equations to mean-field theory
when N → ∞ as argued in the main text.

Thus we have both a case where correlations vanish
as N → ∞ but mean-field and second-order cumulants
do not have a well-defined limit [Fig. 3(a)], and a case
where they remain finite yet the two approaches have a
common limit capturing the exact behavior [Fig. 3(b)].
This makes evident the fact that knowledge of the behav-
ior of correlations as N → ∞ is not sufficient to conclude
the correctness of mean-field theory or the convergence
of higher-order cumulant expansions in this limit.

APPENDIX C: THIRD-ORDER CUMULANT
EQUATIONS WITH SYMMETRY BREAKING

In this appendix we provide the results of third-order
cumulant expansions with symmetry-breaking terms for
the central spin and Tavis–Cummings models.

Retaining moments, e.g., ⟨σ+
0 σ

+
n ⟩, in the equations of

motion that would otherwise vanish under U(1) symme-
try significantly increases the number of equations re-
quired to form a complete set at any given order. We
used the QuantumCumulants.jl Julia package [35] to de-
rive the third-order equations in each case. Using an

0.00 0.10 0.20
1/N

0.2

0.4

0.6

p↑0
exact

MF

C3

C3 (broken)

0.00 0.10 0.20
1/N

0.00

0.05

0.10

|〈σ+
0 〉|

0.00 0.50 1.00
Γ↑/ΓT

0.0

0.2

0.4

0.6

p↑0
exact

MF

C2

C3

C3 (broken)

C3

C3 (broken)

0.00 0.10 0.20
1/N

0.05

0.10

0.15

〈a†a〉
N

(a) (b)

(c) (d)

FIG. 6. (a) Exact, mean-field (MF), and third-order (C3)
results for the steady state central-site population p↑0 =
[1+⟨σz

0⟩]/2 of the central spin model at fixed κ/N [parameters
as in Fig. 3(b): κ/N = 1/16, g = 3/4]. Third-order results
retaining symmetry-breaking terms in the equations are in-
dicated with a dotted black line. (b) At N = 26 symmetry
breaking ⟨σ+

0 ⟩ ≠ 0 occurs in the steady state of these equa-
tions corresponding to the turning point of the dotted line in
(a). (c) Central population versus Γ↑/ΓT (ΓT = Γ↑ + Γ↓) at
N = 50 as in Fig. 3(c) (κ/N = 1/16, g = 3/4), now includ-
ing third-order results with and without symmetry-breaking
terms. The gray vertical line indicates data from (a). (d)
Exact, mean-field (MF), and third-order (C3) results for the
scaled photon number in the Tavis–Cummings model with
parameters as in Fig. 4(b) (g

√
N = 9/10, Γ↑ = 3ΓT /4).

initial state that breaks the symmetry, these equations
were evolved to long times to obtain a numerical approx-
imation of the steady state.

Since the coefficients of terms in the definition of a cu-
mulant always sum to zero [cf. Eq. (A11)], when one
sets a cumulant to zero to obtain an approximation for
a high-order moment, the number of terms in the ap-
proximation for that moment, accounting for their signs,
is 1. That is, provided no terms in the cumulant van-
ish due to symmetry considerations. As a result, in the
presence of symmetry breaking there is no longer dispar-
ity between the asymptotic form of odd-order cumulant
equations and mean-field theory as N → ∞ due to the
factorization of moments ⟨σ+

0 σ
−
n σ

+
mσ−

k . . .⟩.
In line with the above, Fig. 6(a) shows a common

N → ∞ limit for the third-order equations with symme-
try breaking (dotted line) and mean-field theory. Note
however there is a range of N [N ≤ 26 in Fig. 6(a)]
for which symmetry breaking is not present in the ob-
tained steady state (Fig. 6(b)) and the original third-
order results are followed by the dotted line. Further,
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even with symmetry breaking the third-order results can-
not be relied upon to provide a better approximation
than a second-order expansion. This is clearly seen in
Fig. 6(c), which shows p↑0 against Γ↑/Γ↓ at N = 50.
We point out the agreement of all cumulant expansions
at pump strengths well below the mean-field threshold,
where p↑0 must vanish as N → ∞. Note also the cross-

ing of the third-order (symmetry-preserving) and mean-
field curves which marks the transition to the symmetry-
broken steady state; this is inevitable at large N , where
the third-order result is below the mean-field prediction.

Finally, in Fig. 6(d) we observe similar behavior with
the third-order equations with symmetry-breaking terms
for the Tavis–Cummings model, although in this case the
mean-field limit is approached from below.
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