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Abstract

We prove the existence of a B-continuous viscosity solution for a class of infinite di-
mensional semilinear partial differential equations (PDEs) using probabilistic methods. Our
approach also yields a stochastic representation formula for the solution in terms of a scalar-
valued backward stochastic differential equation. The uniqueness is proved under additional
assumptions using a comparison theorem for viscosity solutions. Our results constitute the
first nonlinear Feynman–Kac formula using the notion of B-continuous viscosity solutions
and thus introduces a framework allowing for generalizations to the case of fully nonlinear
PDEs.

1 Introduction

The classical Feynman–Kac formula going back to Richard Feynman [14] and Mark Kac [23]
gives a stochastic representation for the solution of a linear partial differential equation (PDE)
in terms of a path integral over a diffusion process. This result and generalizations thereof have
since found many applications in various fields such as quantitative finance and stochastic optimal
control, see e.g. [33]. Recent years have shown a rising interest in control problems associated
with stochastic partial differential equations (SPDEs), see e.g. [12]. Therefore, generalizations of
the Feynman–Kac formula to infinite dimensions are of increasing importance. Another emerging
field that relies on nonlinear generalizations of the Feynman–Kac formula is numerical analysis
for high-dimensional PDEs. The stochastic representation for solutions of PDEs can be utilized to
develop numerical schemes based on machine learning methods, see e.g. [4,20,22]. In this paper,
we prove a generalization of the classical Feynman–Kac formula to semilinear PDEs in infinite
dimensional spaces using the theory of B-continuous viscosity solutions and backward stochastic
differential equations (BSDEs).

For finite initial and terminal times 0 ≤ t < T < ∞, respectively, and a separable Hilbert
space H , we consider the SPDE{

dXt,x
s = [AXt,x

s + b(s,Xt,x
s )]ds+ σ(s,Xt,x

s )dWs, s ∈ [t, T ]

Xt,x
t = x ∈ H,

(1)

where A : D(A) ⊂ H → H is an unbounded linear operator, and b : [0, T ] × H → H and
σ : [0, T ]×H → L2(Ξ, H) are the drift and noise coefficient, respectively. Moreover, (Ws)s∈[t,T ]

is a cylindrical Wiener process on some separable Hilbert space Ξ and defined on some probability
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Semilinear Feynman–Kac Formulae for B-Continuous Viscosity Solutions

space (Ω,F , (Fs)s∈[t,T ],P) with (Fs) being its natural filtration augmented by all P-null sets.
Furthermore, we consider the infinite dimensional PDE
vt(t, x) + ⟨Ax+ b(t, x), Dv(t, x)⟩H

+1
2 tr(σ∗(t, x)D2v(t, x)σ(t, x))− f(t, x, v(t, x), σ∗Dv(t, x)) = 0, (t, x) ∈ [0, T ]×H

v(T, x) = g(x), x ∈ H,
(2)

where f : [0, T ]×H×R×Ξ → R and g : H → R are given. In order to introduce the main ideas,
let us assume that equation (2) admits a smooth solution v with Dv(t, x) ∈ D(A∗), where A∗

denotes the adjoint of A. Then, applying Itô’s formula and plugging in equation (2) immediately
yields that {

Y t,x
s = v(s,Xt,x

s )

Zt,x
s = σ∗Dv(s,Xt,x

s )
(3)

solves the BSDE{
dY t,x

s = f(s,Xt,x
s , Y t,x

s , Zt,x
s )ds+ ⟨Zt,x

s , dWs⟩Ξ, s ∈ [t, T ]

Y t,x
T = g(Xt,x

T ).
(4)

In particular, for s = t, equations (3) and (4) yield the following stochastic representation of v:

v(t, x) = Y t,x
t

= g(Xt,x
T )−

∫ T

t
f(s,Xt,x

s , v(s,Xt,x
s ), σ∗Dv(s,Xt,x

s ))ds

−
∫ T

t
⟨σ∗Dv(s,Xt,x

s ),dWs⟩Ξ.

(5)

The preceding discussion is only formal since the PDE (2) in general, does not admit a smooth
solution and therefore, the solution of the BSDE (4) can not be given in terms of the derivative of v
as in (3). However, the stochastic representation (5) remains valid even if the solution of equation
(2) is not differentiable. The objective of this paper is to prove that the stochastic representation

u(t, x) := Y t,x
t (6)

yields a B-continuous viscosity solution for the PDE (2), see Theorem 4. Furthermore, we prove
under additional assumptions that u as given in (6) is the unique solution of the PDE (2).

Remark 1.1. The representation (6) can be viewed as a nonlinear generalization of the classical
Feynman–Kac formula: If f(s, x, y, z) = k(s, x)y+ l(s, x) for some functions k, l : [t, T ]×H →
R, then the BSDE (4) admits an explicit solution formula for Y t,x in terms of Xt,x and Zt,x. The
Zt,x-dependency drops out when taking the expectation in (5), yielding the classical Feynman–Kac
formula, see e.g. [24, Chapter 5, Theorem 7.6].

In the finite dimensional case, nonlinear Feynman–Kac formulae using BSDEs go back to
Pardoux and Peng [29]. Following their seminal work, there were many generalizations of this
relationship between PDEs and BSDEs in various directions such as relaxing the assumptions on
the coefficients [1,25], and deriving a similar relationship for integral-partial differential equations
and BSDEs involving a forward jump-diffusion process [3], for nonlocal PDEs and mean-field
BSDEs [6], for quasilinear PDEs and forward-backward SDEs [13, 31, 32], for reflected BSDEs
and related obstacle problems for PDEs [10] and, more recently, even for fully nonlinear PDEs and
second order BSDEs [8, 34, 35].

In the infinite dimensional case, the first nonlinear Feynman–Kac formula using BSDEs was
obtained by Fuhrman and Tessitore in [16], again followed by generalizations relaxing the assump-
tions on the coefficients [5, 18, 26, 28], and deriving similar relationships for elliptic PDEs and
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infinite horizon BSDEs [17, 19, 21], for PDEs on a space of continuous functions and stochas-
tic delay differential equations [15, 27], for integro-differential equations and BSDEs involving
jump-diffusions [2], and for quasilinear PDEs and forward-backward SDEs [7].

Except for [2], all of the results in the infinite dimensional case study the PDE (2) in the
framework of mild solutions. In [2], the authors obtain stochastic representations for viscosity
solutions of PDEs in infinite dimensional spaces similar to, and in some ways more general than,
the one described in (6). However, their proofs make use of the underlying control problem, which
imposes a certain structure on the nonlinearity f in (2). In this work, our objective is to prove such
a relationship between BSDEs and PDEs in infinite dimensional spaces using the framework of
B-continuous viscosity solutions without relying on stochastic control methods. As a byproduct,
our probabilistic approach yields a new method to prove existence of B-continuous viscosity
solutions for infinite dimensional PDEs involving unbounded terms. There are various methods in
the existing literature for proving the existence of solutions, see [12, Chapter 3] and the references
therein. These existing approaches construct solutions even for fully nonlinear PDEs exploiting
the connection with infinite dimensional stochastic control problems, using finite dimensional
approximations, or by extending Perron’s method to the infinite dimensional case. However, in
our setting, we do not impose any structural assumptions on the nonlinearity f and therefore, in
general one cannot introduce an associated stochastic control problem to construct a solution to the
PDE (2). Furthermore, the method using finite dimensional approximations imposes the additional
assumption that the unbounded operator A satisfies the strong B-condition for a compact operator
B (see Assumption (A2) for a definition of the strong B-condition). Finally, Perron’s method
requires the additional coercivity assumption −⟨A∗x, x⟩H ≥ C∥B−1/2x∥2H for some constant
C > 0 and all x ∈ D(A∗), see [12, Section 3.9].

Let us also mention that our work introduces a framework for the extension of the classical
Feynman–Kac formula to the case of infinite dimensional fully nonlinear PDEs using second order
BSDEs in the spirit of the corresponding results in finite dimensions, see [8,34,35]. This problem
will be investigated in future work.

The remainder of the paper is organized as follows: In Section 2, we introduce the notation and
the assumptions we are working with in the following sections. In Section 3, we prove some results
for scalar-valued BSDEs driven by an infinite dimensional Wiener process. Section 4 contains our
main result, the existence of a B-continuous viscosity solution of equation (2) and its stochastic
representation (5). Furthermore, the uniqueness is also discussed in Section 4.

2 Assumptions

We impose the following assumptions on the unbounded operator A.

Assumption 2.1. (A1) LetA : D(A) ⊂ H → H be a linear, densely defined, maximal dissipative
operator.

(A2) LetB ∈ L(H) be a strictly positive, self-adjoint operator that satisfies the strongB-condition
for A, i.e., A∗B ∈ L(H) and

−A∗B + c0B ≥ I (7)

for some c0 ≥ 0.

Under Assumption (A1), the operator A is the generator of a C0-semigroup which we denote
in the following by (S(s))s∈[t,T ]. Furthermore, using the operator B, we define the space H−1 as
the completion of the space H with respect to the norm

∥x∥2H−1
:= ⟨Bx, x⟩H . (8)

We impose the following assumptions on b and σ.
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Assumption 2.2. (B1) Let b : [0, T ]×H → H be B([0, T ])⊗ B(H)/B(H)-measurable and let
there be a constant C > 0 such that

∥b(s, x)− b(s, x′)∥H ≤ C∥x− x′∥H (9)
∥b(s, x)∥H ≤ C(1 + ∥x∥H) (10)

for all s ∈ [0, T ], x, x′ ∈ H .

(B2) Let σ : [0, T ] × H → L2(Ξ;H) be B([0, T ]) ⊗ B(H)/B(L2(Ξ, H))-measurable and let
there be a constant C > 0 such that

∥σ(s, x)− σ(s, x′)∥L2(Ξ,H) ≤ C∥x− x′∥H−1 (11)
∥σ(s, x)∥L2(Ξ,H) ≤ C(1 + ∥x∥H), (12)

for all s ∈ [0, T ], x, x′ ∈ H .

Remark 2.3. While the Lipschitz condition on b, and the linear growth conditions on b and σ are
standard assumptions in the theory of SPDEs, the Lipschitz condition on σ with respect to the
H−1-norm imposes additional restrictions. Note, however, that this is a standard assumption in
the theory of B-continuous viscosity solutions, see [12, Chapter 3]. For examples in which this
condition is satisfied, see [12, Remark 3.21].

Finally, we impose the following assumptions on the coefficients of the BSDE.

Assumption 2.4. (C1) Let f : [0, T ] × H × R × Ξ → R be uniformly continuous on bounded
subsets of (0, T )×H × R× Ξ and satisfy the following conditions:

• There exists a constant C > 0 such that

|f(s, x, y, z)− f(s, x′, y′, z′)|≤ C(∥x− x′∥H+|y − y′|+∥z − z′∥Ξ) (13)

for all s ∈ [0, T ], x, x′ ∈ H , y, y′ ∈ R, z, z′ ∈ Ξ.

• It holds ∫ T

0
|f(s, 0, 0, 0)|2ds <∞. (14)

(C2) For g : H → R, let there be a constant C > 0 such that

|g(x)− g(x′)|≤ C∥x− x′∥H (15)

for all x, x′ ∈ H .

Remark 2.5. Note that the SPDE (1) as well as the BSDE (4) are well-posed under these assump-
tions, see e.g. [9, Theorem 7.2] and [12, Proposition 6.20], respectively.

3 BSDEs

In this section, we prove some basic results for scalar-valued BSDEs with infinite dimensional
driving noise. For the corresponding theory when the driving noise is finite dimensional, see
e.g. [11, 30, 36].
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3.1 Explicit Solution of Linear BSDE

First, we need the following explicit solution formula for linear BSDEs. Consider the equation{
dYs = −[asYs + bs + ⟨cs, Zs⟩Ξ]ds+ ⟨Zs, dWs⟩Ξ. s ∈ [t, T ]

YT = η ∈ L2(Ω),
(16)

where a, b : [t, T ] × Ω → R and c : [t, T ] × Ω → Ξ are progressively measurable processes and
η is FT -measurable. Throughout this section, we assume that a and c are uniformly bounded
in (s, ω) ∈ [t, T ] × Ω, and that b is square-integrable, i.e., E[

∫ T
t |bs|2ds] < ∞. Under these

assumptions, the linear BSDE (16) has a unique solution, see [12, Proposition 6.20]. Let

Γs = exp

[∫ s

t
ar −

1

2
∥cr∥2Ξdr +

∫ s

t
⟨cr, dWr⟩Ξ

]
. (17)

Then

dΓs = Γsasds+ Γs⟨cs,dWs⟩Ξ (18)
dΓ−1

s = Γ−1
s (−as + ∥cs∥2Ξ)ds− Γ−1

s ⟨cs, dWs⟩Ξ. (19)

By [12, Proposition 6.18], there exists an adapted process V ∈ L2([t, T ]× Ω;Ξ) such that

ΓT η +

∫ T

t
Γsbsds = E

[
ΓT η +

∫ T

t
Γsbsds

]
+

∫ T

t
⟨Vs,dWs⟩Ξ. (20)

Proposition 3.1. The solution of the linear BSDE (16) is given by{
Ys = Γ−1

s E
[
ΓT η +

∫ T
s Γrbrdr

∣∣∣Fs

]
Zs = Γ−1

s Vs − csYs.
(21)

Proof. Using (20), we derive from (21) that

Ys = Γ−1
s

(
E
[
ΓT η +

∫ T

t
Γrbrdr

]
−
∫ s

t
Γrbrdr +

∫ s

t
⟨Vr, dWr⟩Ξ

)
(22)

= Γ−1
s

(
E
[
ΓT η +

∫ T

t
Γrbrdr

]
−
∫ s

t
Γrbrdr +

∫ s

t
⟨ΓrZr + ΓrcrYr, dWr⟩Ξ

)
. (23)

Applying Itô’s formula yields

dYs =
[
Γ−1
s

(
−asds+ ∥cs∥2Ξds

)
− Γ−1

s ⟨cs,dWs⟩Ξ
]
ΓsYs (24)

+ Γ−1
s [⟨ΓsYscs + ΓsZs, dWs⟩Ξ − Γsbsds]− Γ−1

s ⟨cs, csΓsYs + ΓsZs⟩Ξds (25)
= −[asYs + bs + ⟨cs, Zs⟩Ξ]ds+ ⟨Zs, dWs⟩Ξ. (26)

Since YT = η, this proves that (Y,Z) as given in (21) solves the BSDE (16).

3.2 Comparison for BSDEs

In the remainder of this section, letF : Ω×[t, T ]×R×Ξ → R beP×B(R×Ξ)/B(R)-measurable,
where P denotes the progressive σ-algebra on Ω× [t, T ] and B(Λ) denotes the Borel σ-algebra of
any topological space Λ. Furthermore, assume that there exists a constant C > 0 such that

|F (s, y, z)− F (s, y′, z′)|≤ C(|y − y′|+∥z − z′∥Ξ) (27)

P-almost surely and for every s ∈ [t, T ], y, y′ ∈ R and z, z′ ∈ Ξ. Finally, assume that

E
[∫ T

t
|F (s, 0, 0)|2ds

]
<∞. (28)
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We consider the BSDE{
dYs = F (s, Ys, Zs)ds+ ⟨Zs,dWs⟩Ξ, s ∈ [t, T ]

YT = η ∈ L2(Ω),
(29)

where η is FT -measurable.

Definition 3.2. A pair (Y,Z) of adapted processesY ∈ L2(Ω;C([t, T ])) andZ ∈ L2([t, T ]×Ω;Ξ)
is a supersolution of the BSDE (29) if for every t ≤ s < r ≤ T it holds{

Yr ≤ Ys +
∫ r
s F (s

′, Ys′ , Zs′)ds
′ +

∫ r
s ⟨Zs′ ,dWs′⟩Ξ

YT = η.
(30)

A pair (Y,Z) of adapted processesY ∈ L2(Ω;C([t, T ])) andZ ∈ L2([t, T ]×Ω;Ξ) is a subsolution
of the BSDE (29) if for every t ≤ s < r ≤ T it holds{

Yr ≥ Ys +
∫ r
s F (s

′, Ys′ , Zs′)ds
′ +

∫ r
s ⟨Zs′ ,dWs′⟩Ξ

YT = η.
(31)

Note that this definition is equivalent with the following definition.

Definition 3.3. A triple (Y, Z, I) of adapted processes Y ∈ L2(Ω;C([t, T ])), Z ∈ L2([t, T ] ×
Ω;Ξ) and I ∈ L2(Ω;C([t, T ])) is a supersolution of the BSDE (29) if I(t) = 0 P-almost surely, I
is increasing, and for every s ∈ [t, T ] it holds

Ys = η −
∫ T

s
F (r, Yr, Zr)dr + IT − Is −

∫ T

s
⟨Zr, dWr⟩Ξ. (32)

A triple (Y,Z,D) of adapted processes Y ∈ L2(Ω;C([t, T ])), Z ∈ L2([t, T ] × Ω;Ξ) and D ∈
L2(Ω;C([t, T ])) is a subsolution of the BSDE (29) if D(t) = 0 P-almost surely, D is decreasing,
and for every s ∈ [t, T ] it holds

Ys = η −
∫ T

s
F (r, Yr, Zr)dr +DT −Ds −

∫ T

s
⟨Zr, dWr⟩Ξ. (33)

Remark 3.4. The fact that (30) and (31) follow from (32) and (33), respectively, is immediate. For
the opposite direction, consider the process

s 7→ Yt +

∫ s

t
F (r, Yr, Zr)dr +

∫ s

t
⟨Zr, dWr⟩Ξ − Ys. (34)

Note that this process is increasing if (Y,Z) is a supersolution in the sense of Definition 3.2 and
decreasing if (Y,Z) is a subsolution in the sense of Definition 3.2. Moreover, using this process
as I and D, respectively, equations (32) and (33) are satisfied.

In the case of linear BSDEs, we have the following comparison result.

Proposition 3.5. Let (Y, Z) be a supersolution of the linear BSDE (16). Then it holds

Ys ≥ Γ−1
s E

[
ΓT η +

∫ T

s
Γrbrdr

∣∣∣∣Fs

]
, (35)

i.e., a supersolution to the linear BSDE (16) dominates the solution to the linear BSDE.

Proof. Let (Y,Z, I) be a supersolution of the linear BSDE (16). Then an application of Itô’s
formula yields that

ΓsYs +

∫ s

t
Γrbrdr (36)

is a local supermartingale. From this fact, one easily deduces (35).
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Next, let us prove a comparison result for sub- and supersolutions.

Proposition 3.6. Let (F i, ηi), i = 1, 2, satisfy the same assumptions as (F, η) above, and let
(Y 1, Z1) and (Y 2, Z2) be a sub- and supersolution of the BSDE (29) associated with (F 1, η1) and
(F 2, η2), respectively. Assume

(i) η2 ≥ η1

(ii) F 2(s, Y 2
s , Z

2
s ) ≤ F 1(s, Y 2

s , Z
2
s ) ds⊗ P-almost surely.

Then for every s ∈ [t, T ], it holds Y 2
s ≥ Y 1

s P-almost surely. Moreover, if there exists an s ∈ [t, T ]
such that

η2 − η1 +

∫ T

s
F 1(r, Y 2

r , Z
2
r )− F 2(r, Y 2

r , Z
2
r )dr > 0 (37)

P-almost surely, then Y 2
s > Y 1

s P-almost surely.

Proof. Note that

Y 2
r −Y 1

r ≤ Y 2
s −Y 1

s −
∫ r

s
as′(Y

2
s′−Y 1

s′)+bs′+⟨cs′ , Z2
s′−Z1

s′⟩Ξds′+
∫ r

s
⟨Z2

s′−Z1
s′ ,dWs′⟩Ξ, (38)

where
as′ =

1

Y 2
s′ − Y 1

s′
(F 1(s′, Y 1

s′ , Z
1
s′)− F 1(s′, Y 2

s′ , Z
1
s′))1{Y 2

s′ ̸=Y 1
s′}

(39)

and
bs′ = F 1(s′, Y 2

s′ , Z
2
s′)− F 2(s′, Y 2

s′ , Z
2
s′) (40)

and

cs′ =
Z2
s′ − Z1

s′

∥Z2
s′ − Z1

s′∥2Ξ
(F 1(s′, Y 2

s′ , Z
1
s′)− F 1(s′, Y 2

s′ , Z
2
s′))1{Z2

s′ ̸=Z1
s′}
. (41)

Therefore, we obtain from Proposition 3.5 and assumptions (i) and (ii)

Y 2
s − Y 1

s ≥ Γ−1
s E

[
ΓT (η

2 − η1) +

∫ T

s
Γrbrdr

∣∣∣∣Fs

]
≥ 0, (42)

where Γ is given by equation (17). The strict inequality follows from (37).

3.3 A Priori Estimates for BSDEs

Lemma 3.7. Let (Y,Z) be the solution of the BSDE (29). Then it holds

E

[
sup

s∈[t,T ]
|Ys|2+

∫ T

t
∥Zs∥2Ξds

]
≤ CE

[
|η|2+

(∫ T

t
|F (s, 0, 0)|ds

)2
]
. (43)

The proof of this result can be found in [16, Proposition 4.3].

Lemma 3.8. Let (F i, ηi), i = 1, 2, satisfy the same assumptions as (F, η) above and let (Y 1, Z1)
and (Y 2, Z2) be the solution of the BSDE (29) associated with (F 1, η1) and (F 2, η2), respectively.
Then it holds

E

[
sup

s∈[t,T ]

∣∣Y 1
s − Y 2

s

∣∣2 + ∫ T

t

∥∥Z1
s − Z2

s

∥∥2
Ξ
ds

]

≤ CE

[∣∣η1 − η2
∣∣2 + (∫ T

t
|F 1(r, Y 1

r , Z
1
r )− F 2(r, Y 1

r , Z
1
r )|dr

)2
]
.

(44)
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Proof. Note that for all s ∈ [t, T ] it holds

Y 1
s − Y 2

s = η1 − η2 −
∫ T

s
F 1(r, Y 1

r , Z
1
r )− F 2(r, Y 2

r , Z
2
r )dr −

∫ T

s
⟨Z1

r − Z2
r ,dWr⟩Ξ

= η1 − η2 −
∫ T

s
F 1(r, Y 1

r , Z
1
r )− F 2(r, Y 1

r , Z
1
r )dr

−
∫ T

s
ar(Y

1
r − Y 2

r ) + br(Z
1
r − Z2

r )dr −
∫ T

s
⟨Z1

r − Z2
r ,dWr⟩Ξ,

(45)

where
ar :=

F 2(r, Y 1
r , Z

1
r )− F 2(r, Y 2

r , Z
1
r )

Y 1
r − Y 2

r

1{Y 1
r ̸=Y 2

r } (46)

and
br :=

F 2(r, Y 2
r , Z

1
r )− F 2(r, Y 2

r , Z
2
r )

Z1
r − Z2

r

1{Z1
r ̸=Z2

r}. (47)

Now, Lemma 3.7 yields the result.

4 Feynman–Kac Formulae for B-Continuous Viscosity Solutions

In this section, we prove that the stochastic representation formula (6) yields a B-continuous
viscosity solution of the PDE (2). Under additional assumptions, we establish uniqueness.

4.1 B-Continuous Viscosity Solutions

First, we recall the notion of B-continuous viscosity solutions. Let us begin by introducing the
notion of B-continuity and the class of test functions we are using, see [12, Definitions 3.3, 3.4,
and 3.32].

Definition 4.1. Let B ∈ L(H) be a strictly positive, self-adjoint operator on H . A function
u : (0, T )×H → R∪ {±∞} is B-upper semicontinuous (respectively, B-lower semicontinuous)
if, for any sequences (tn)n∈N in (0, T ) and (xn)n∈N in H such that tn → t ∈ (0, T ), xn ⇀ x and
Bxn → Bx as n→ ∞, we have

lim sup
n→∞

u(tn, xn) ≤ u(t, x) (respectively, lim inf
n→∞

u(tn, xn) ≥ u(t, x)). (48)

A function u : (0, T )×H → R isB-continuous if it is bothB-upper semicontinuous andB-lower
semicontinuous.

Definition 4.2. A function ψ is a test function if ψ = φ+ h(t, ∥x∥H), where:

(i) φ ∈ C1,2((0, T ) × H) is locally bounded, and is such that φ is B-lower semicontinuous,
and φt, A∗Dφ, Dφ, D2φ are uniformly continuous on (0, T )×H .

(ii) h ∈ C1,2((0, T ) × R) and is such that for every t ∈ (0, T ), h(t, ·) is even and h(t, ·) is
non-decreasing on [0,+∞).

Now, we define the notion of B-continuous viscosity solution, see [12, Definition 3.35].

Definition 4.3. A locally bounded and upper semicontinuous function u on (0, T ] ×H which is
B-upper semicontinuous on (0, T ) × H is a viscosity subsolution of (2) if u(T, x′) ≤ g(x′) for
x′ ∈ H and the following holds: wheneveru−ψ has a local maximum at a point (t, x) ∈ (0, T )×H
for a test function ψ as in Definition 4.2 then

ψt(t, x) + ⟨x,A∗Dφ(t, x)⟩H + ⟨b(t, x), Dψ(t, x)⟩H

+
1

2
tr(σ∗(t, x)D2ψ(t, x)σ(t, x))− f(t, x, u(t, x), σ∗(t, x)Dψ(t, x)) ≥ 0. (49)

8



A locally bounded and lower semicontinuous function u on (0, T ] × H which is B-lower semi-
continuous on (0, T ) ×H is a viscosity supersolution of (2) if u(T, x′) ≥ g(x′) for x′ ∈ H and
the following holds: whenever u+ψ has a local minimum at a point (t, x) ∈ (0, T )×H for a test
function ψ as in Definition 4.2 then

− ψt(t, x)− ⟨x,A∗Dφ(t, x)⟩H − ⟨b(t, x), Dψ(t, x)⟩H

− 1

2
tr(σ∗(t, x)D2ψ(t, x)σ(t, x))− f(t, x, u(t, x),−σ∗(t, x)Dψ(t, x)) ≤ 0. (50)

A viscosity solution of (2) is a function which is both a viscosity subsolution and a viscosity
supersolution of (2).

4.2 Existence and Stochastic Representation

First, we recall the following a priori estimates for the forward SPDE (1), see [12, Lemma 3.23]
and [16, Proposition 3.3], respectively.

Lemma 4.4. Let Assumptions 2.1 and 2.2 be satisfied. Then, there exists a constant C > 0
independent of t ∈ [0, T ] such that

E
[
∥Xt,x

T −Xt,x′

T ∥2H−1
+

∫ T

t
∥Xt,x

s −Xt,x′
s ∥2Hds

]
≤ C∥x− x′∥2H−1

(51)

for all x, x′ ∈ H . Furthermore, there exists a constant C > 0 such that

E
[
∥Xt,x

T −Xt,x′

T ∥2H
]
≤ C

T − t
∥x− x′∥2H−1

(52)

for every t ∈ [0, T ) and for all x, x′ ∈ H .

For the proof of our main result, we need to extend the processes (Xt,x
s )s∈[t,T ] and (Y t,x

s , Zt,x
s )s∈[t,T ]

to the entire interval [0, T ]. For s ∈ [0, t), we set Xt,x
s := x. Now, that Xt,x is defined on the

entire interval [0, T ], we can solve the BSDE (4) on the entire interval.

Lemma 4.5. Let Assumptions 2.1 and 2.2 be satisfied. Then, for every x ∈ H , it holds

E

[
sup

s∈[0,T ]
∥Xt′,x

s −Xt,x
s ∥2H

]
→ 0 (53)

as t′ → t.

Remark 4.6. In [16, Proposition 3.3], the authors actually prove a stronger result than this.
However, we only need the stated result.

Now, let us state and prove our main result.

Theorem 4.7. Let Assumption 2.1, 2.2 and 2.4 be satisfied. Let (Y,Z) be the solution of the BSDE
(4), and define u(t, x) := Y t,x

t . Then u is a B-continuous viscosity solution of the PDE (2) in the
sense of Definition 4.3.

Proof. Note that the terminal condition is satisfied by definition. In the first step, we are going to
prove the B-continuity of u, and in the second step, we are going to prove the viscosity property.

Step 1: Let (t, x) ∈ (0, T ) ×H . Let tn → t, xn ⇀ x and Bxn → Bx and fix N ∈ N such
that |tn − t|< (T − t)/2 for all n ≥ N . We have

|u(tn, xn)− u(t, x)|=
∣∣∣Y tn,xn

tn − Y t,x
t

∣∣∣ ≤ ∣∣∣Y tn,xn
tn − Y tn,x

tn

∣∣∣+ ∣∣∣Y tn,x
tn − Y t,x

t

∣∣∣ . (54)

9
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For the first term, choosing {
F 1(s, y, z) := f(s,Xtn,xn

s , y, z)

η1 := g(Xtn,xn

T )
(55)

and {
F 2(s, y, z) := f(s,Xtn,x

s , y, z)

η2 := g(Xtn,x
T )

(56)

and applying Lemma 3.8 yields∣∣∣Y tn,xn
tn − Y tn,x

tn

∣∣∣2
≤ CE

[ ∣∣∣g(Xtn,xn

T )− g(Xtn,x
T )

∣∣∣2
+

(∫ T

tn

|f(s,Xtn,xn
s , Y tn,xn

s , Ztn,xn
s )− f(s,Xtn,x

s , Y tn,xn
s , Ztn,xn

s )|ds
)2

]
.

(57)

Using Assumption 2.4, we obtain∣∣∣Y tn,xn
tn − Y tn,x

tn

∣∣∣2 ≤ CE
[
∥Xtn,xn

T −Xtn,x
T ∥2H+

∫ T

tn

∥Xtn,xn
s −Xtn,x

s ∥2Hds

]
. (58)

Applying Lemma 4.4 yields ∣∣∣Y tn,xn
tn − Y tn,x

tn

∣∣∣2 ≤ C∥xn − x∥2H−1
(59)

for some constant that is uniform in n ≥ N .
Now let us turn to the second term in (54). Let us first consider the case that tn ↓ t. Then we

have∣∣∣Y tn,x
tn − Y t,x

t

∣∣∣2
≤ CE

[ ∣∣∣g(Xtn,x
T )− g(Xt,x

T )
∣∣∣2 + ∫ T

tn

|f(s,Xtn,x
s , Y tn,x

s , Ztn,x
s )− f(s,Xt,x

s , Y t,x
s , Zt,x

s )|2ds

+

∣∣∣∣∫ T

tn

⟨Ztn,x
s − Zt,x

s , dWs⟩Ξ
∣∣∣∣2 + ∫ tn

t
|f(s,Xt,x

s , Y t,x
s , Zt,x

s )|2ds+
∣∣∣∣∫ tn

t
⟨Zt,x

s , dWs⟩Ξ
∣∣∣∣2
]
.

(60)

The fourth and the fifth term tend to zero as tn ↓ t due to the continuity of the integral. For the
first term, we have ∣∣∣g(Xtn,x

T )− g(Xt,x
T )

∣∣∣2 ≤ C∥Xtn,x
T −Xt,x

T ∥2H . (61)

For the second term we have by Assumption (C1)∫ T

tn

|f(s,Xtn,x
s , Y tn,x

s , Ztn,x
s )− f(s,Xt,x

s , Y t,x
s , Zt,x

s )|2ds

≤ C

∫ T

tn

∥Xtn,x
s −Xt,x

s ∥2H+|Y tn,x
s − Y t,x

s |2+∥Ztn,x
s − Zt,x

s ∥2Ξds.
(62)

Therefore, applying Lemma 3.8 and using (61), we obtain

E
[∫ T

tn

|f(s,Xtn,x
s , Y tn,x

s , Ztn,x
s )− f(s,Xt,x

s , Y t,x
s , Zt,x

s )|2ds
]

≤ CE

[
sup

s∈[0,T ]
∥Xtn,x

s −Xt,x
s ∥2H

]
.

(63)
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For the third term, we have by Lemma 3.8

E

[∣∣∣∣∫ T

tn

⟨Ztn,x
s − Zt,x

s , dWs⟩Ξ
∣∣∣∣2
]
= E

[∫ T

tn

∥Ztn,x
s − Zt,x

s ∥2Ξds
]

≤ CE

[
sup

s∈[0,T ]
∥Xtn,x

s −Xt,x
s ∥2H

]
.

(64)

Applying Lemma 4.5 yields that the right-hand side of (60) tends to zero as tn ↓ t. Now, let tn ↑ t.
In this case, (60) takes the form∣∣∣Y tn,x

tn − Y t,x
t

∣∣∣2
≤ CE

[ ∣∣∣g(Xtn,x
T )− g(Xt,x

T )
∣∣∣2 + ∫ T

t
|f(s,Xtn,x

s , Y tn,x
s , Ztn,x

s )− f(s,Xt,x
s , Y t,x

s , Zt,x
s )|2ds

+

∣∣∣∣∫ T

t
⟨Ztn,x

s − Zt,x
s ,dWs⟩Ξ

∣∣∣∣2 + ∫ t

tn

|f(s,Xtn,x
s , Y tn,x

s , Ztn,x
s )|2ds+

∣∣∣∣∫ t

tn

⟨Ztn,x
s ,dWs⟩Ξ

∣∣∣∣2
]
.

(65)

The first three terms can be treated with similar arguments as before. For the fourth term, we have

E
[∫ t

tn

|f(s,Xtn,x
s , Y tn,x

s , Ztn,x
s )|2ds

]
≤ C

∫ t

tn

|f(s, 0, 0, 0)|2ds+ CE
[∫ t

tn

∥Xtn,x
s ∥2H+|Y tn,x

s |2+∥Ztn,x
s ∥2Ξds

]
.

(66)

Due to Assumption (C1), the first term converges to zero as tn ↑ t. Considering the term involving
Xtn,x in the second integral, we have

E
[∫ t

tn

∥Xtn,x
s ∥2Hds

]
≤ CE

[∫ t

tn

∥Xtn,x
s −Xt,x

s ∥2H+∥Xt,x
s ∥2Hds

]
≤ CE

[
sup

s∈[0,T ]
∥Xtn,x

s −Xt,x
s ∥2H

]
+ CE

[∫ t

tn

∥Xt,x
s ∥2Hds

] (67)

where the first term on the right-hand side tends to zero as tn ↑ t due to Lemma 4.5 and the second
term tends to zero since the integrand is integrable over [0, T ]. For the terms involving Y tn,x and
Ztn,x in the second integral in (66), we have

E
[∫ t

tn

|Y tn,x
s |2+∥Ztn,x

s ∥2Ξds
]

≤ CE
[∫ T

0
|Y tn,x

s − Y t,x
s |2+∥Ztn,x

s − Zt,x
s ∥2Ξds

]
+ E

[∫ t

tn

|Y t,x
s |2+∥Zt,x

s ∥2Ξds
]
.

(68)

Applying Lemma 3.8 and Assumption 2.4, we obtain for the first term

E
[∫ T

0
|Y tn,x

s − Y t,x
s |2+∥Ztn,x

s − Zt,x
s ∥2Ξds

]
≤ CE

[
sup

s∈[0,T ]
∥Xtn,x

s −Xt,x
s ∥2H

]
, (69)

which tends to zero as tn ↑ t due to Lemma 4.5. The second term on the right-hand side of
(68) tends to zero as tn ↑ t since the integrand is integrable over [0, T ]. Together with (59), this
concludes the proof of the B-continuity.

Step 2: First, we show that u is a viscosity subsolution. Let ψ = φ+ h be a test function as in
Definition 4.2 such that

0 = (u− ψ)(t, x) = max
s∈[0,T ]
x′∈H

(u− ψ)(s, x′) (70)
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We can assume without loss of generality that the maximum is strict, see [12, Lemma 3.37].
Assume, for sake of contradiction, that

ψt(t, x) + ⟨x,A∗Dφ(t, x)⟩H + ⟨b(t, x), Dψ(t, x)⟩H

+
1

2
tr(σ∗(t, x)D2ψ(t, x)σ(t, x))− f(t, x, u(t, x), σ∗Dψ(t, x)) < 0. (71)

Fix ε > 0 such that for all t ≤ s ≤ t+ ε and ∥x′ − x∥H≤ ε, it holds

ψt(s, x
′) + ⟨x′, A∗Dφ(s, x′)⟩H + ⟨b(s, x′), Dψ(s, x′)⟩H

+
1

2
tr(σ∗(s, x′)D2ψ(s, x′)σ(s, x′))− f(s, x′, u(s, x′), σ∗Dψ(s, x′)) < 0. (72)

Now, we define the stopping time

τ := inf{s ≥ t|∥Xt,x
s − x∥H≥ ε} ∧ (t+ ε). (73)

Let (Y t,x, Zt,x) be the solution of the BSDE (4), and define for t ≤ s ≤ t+ ε

(Y 1
s , Z

1
s ) := (Y t,x

s∧τ ,1[0,τ ](s)Z
t,x
s ). (74)

Then we have
u(t+ h,Xt,x

t+h) = Y
t+h,Xt,x

t+h

t+h = Y t,x
t+h (75)

due to the uniqueness of the solution of the SPDE (1) and the uniqueness of the solution of the
BSDE (4). Therefore, for every r ∈ [t, t+ ε]

Y t,x
r∧τ = u(r ∧ τ,Xt,x

r∧τ ), (76)

which shows that (Y 1, Z1) solves the BSDE{
dY 1

s = 1[0,τ ](s)f(s,X
t,x
s , u(s,Xt,x

s ), Z1
s )ds+ ⟨Z1

s ,dWs⟩Ξ
Y 1
τ = u(τ,Xt,x

τ ).
(77)

On the other hand, we obtain from Itô’s formula for test functions (see [12, Proposition 1.166])
that for every r, s ∈ [t, t+ ε], r ≥ s,

ψ(r ∧ τ,Xt,x
r∧τ )

≤ ψ(s ∧ τ,Xt,x
s∧τ ) +

∫ r

s
1[0,τ ](s

′)
(
ψt(s

′, Xt,x
s′ ) + ⟨Xt,x

s′ , A
∗Dφ(s′, Xt,x

s′ )⟩H
)
ds′

+

∫ r

s
1[0,τ ](s

′)⟨b(s′, Xt,x
s′ ), Dψ(s′, Xt,x

s′ )⟩Hds′

+
1

2

∫ r

s
1[0,τ ](s

′)tr
(
σ∗(s′, Xt,x

s′ )D2ψ(s′, Xt,x
s′ )σ(s′, Xt,x

s′ )
)
ds′

+

∫ r

s
⟨1[0,τ ](s′)σ∗(s′, X

t,x
s′ )Dψ(s′, Xt,x

s′ ), dWs′⟩Ξ.

(78)

Therefore,
(Y 2

s , Z
2
s ) := (ψ(s ∧ τ,Xt,x

s∧τ ),1[0,τ ](s)σ
∗Dψ(s,Xt,x

s )) (79)
is a supersolution of the BSDE

dY 2
s = 1[0,τ ](s)

[
ψt(s,X

t,x
s ) + ⟨Xt,x

s , A∗Dφ(s,Xt,x
s )⟩H + ⟨b(s,Xt,x

s ), Dψ(s,Xt,x
s )⟩H

+1
2 tr(σ∗(s,Xt,x

s )D2ψ(s,Xt,x
s )σ(s,Xt,x

s ))
]
ds+ ⟨Z2

s ,dWs⟩Ξ
Y 2
τ = ψ(τ,Xt,x

τ ).
(80)

Due to inequality (72) and the definition of τ , we can apply Proposition 3.6 to obtain

ψ(t, x) = Y 2
t > Y 1

t = Y t,x
t = u(t, x) (81)

which contradicts (70) and therefore concludes the proof that u is a B-continuous viscosity
subsolution. The proof that u is a B-continuous viscosity supersolution is similar.
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4.3 Uniqueness

In order to prove uniqueness, we rely on a comparison theorem for the PDE (2) which is proved
using analytic methods. For this result to hold, we have to impose additional assumptions on the
coefficients of the PDE.

Assumption 4.8. (C1) Let σ be uniformly continuous on bounded subsets of (0, T )×H .

(C2) For y′ ≥ y, let
f(s, x, y′, z)− f(s, x, y, z) ≥ 0 (82)

for all (s, x, z) ∈ (0, T )×H × Ξ.

Theorem 4.9. Let Assumptions 2.1, 2.2, 2.4 and 4.8 be satisfied. Then u(t, x) := Y t,x
t is the

unique B-continuous viscosity solutions satisfying

lim
t→T

|u(t, x)− g(S(T − t)x)|= 0 (83)

uniformly on bounded subsets of H and

|u(t, x)|≤ C1 exp
(
C2 (ln (1 + ∥x∥H))2

)
(84)

for some constants C1, C2 ≥ 0 and all (t, x) ∈ (0, T )×H .

Proof. Once we know that u satisfies (83) and (84), the result follows from [12, Theorem 3.54].
Let us first prove (83). Note that

|u(t, x)− g(S(T − t)x)|2

= E
[
|Y t,x

t − g(S(T − t)x)|2
]

= E

[∣∣∣∣g(Xt,x
T )−

∫ T

t
f(s,Xt,x

s , Y t,x
s , Zt,x

s )ds−
∫ T

t
⟨Zt,x

s ,dWs⟩Ξ − g(S(T − t)x)

∣∣∣∣2
]

≤ E

[∫ T

t
|f(s,Xt,x

s , Y t,x
s , Zt,x

s )|2ds+
∣∣∣∣∫ T

t
⟨Zt,x

s ,dWs⟩Ξ
∣∣∣∣2
]

+ E
[
|g(Xt,x

T )− g(S(T − t)x)|2
]
.

(85)

For the first term, using Itô’s isometry and Assumption 2.4, we have

E

[∫ T

t
|f(s,Xt,x

s , Y t,x
s , Zt,x

s )|2ds+
∣∣∣∣∫ T

t
⟨Zt,x

s ,dWs⟩Ξ
∣∣∣∣2
]

≤ C

∫ T

t
|f(s, 0, 0, 0)|2+E

[
∥Xt,x

s ∥2H+|Y t,x
s |2+∥Zt,x

s ∥2Ξ
]
ds.

(86)

Applying Lemma 3.7, we obtain

E

[∫ T

t
|f(s,Xt,x

s , Y t,x
s , Zt,x

s )|2ds+
∣∣∣∣∫ T

t
⟨Zt,x

s , dWs⟩Ξ
∣∣∣∣2
]

≤ C

∫ T

t
|f(s, 0, 0, 0)|2+1 + E

[
∥Xt,x

s ∥2H
]
ds.

(87)

13



Semilinear Feynman–Kac Formulae for B-Continuous Viscosity Solutions

For the last term in (85), using Assumption (C2), we have

E
[
|g(Xt,x

T )− g(S(T − t)x)|2
]

≤ CE
[
∥Xt,x

T − S(T − t)x∥2H
]

= CE

[∥∥∥∥∫ T

t
S(T − s)b(s,Xt,x

s )ds+

∫ T

t
S(T − s)σ(s,Xt,x

s )dWs

∥∥∥∥2
H

]

≤ CE

[∫ T

t
∥S(T − s)b(s,Xt,x

s )∥2Hds+

∥∥∥∥∫ T

t
S(T − s)σ(s,Xt,x

s )dWs

∥∥∥∥2
H

]
.

(88)

Using again Itô’s isometry and the linear growth assumption on b and σ, we obtain

E
[
|g(Xt,x

T )− g(S(T − t)x)|2
]
≤ C

∫ T

t
1 + E

[
∥Xt,x

s ∥2H
]
ds. (89)

Therefore, together with (87), we have

|u(t, x)− g(S(T − t)x)|2≤ C

∫ T

t
|f(s, 0, 0, 0)|2+1 + E

[
∥Xt,x

s ∥2H
]
ds. (90)

Due to Assumption (C1) and well-known a priori estimates for the solution of the SPDE (1) (see
e.g. [9, Theorem 7.2]), the right-hand side converges to zero as t → T uniformly on bounded
subsets of H . The growth condition (84) follows from Lemma 3.7 and the same a priori estimates
for the solution of the SPDE (1).
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