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The response of materials to dynamical, or shock, loading is important to planetary science, 
aerospace engineering, and energetic materials. Thermal-activated processes, including chemical 
reactions and phase transitions, are significantly accelerated by the localization of the energy 
deposited into hotspots. These results from the interaction of a supersonic wave with the 
materials’ microstructure and are governed by complex, coupled processes, including the 
collapse of porosity, interfacial friction, and localized plastic deformation. These mechanisms are 
not fully understood and today we lack predictive models to, for example, predict the shock to 
detonation transition from chemistry and microstructure alone. We demonstrate that deep 
learning techniques can be used to predict the resulting shock-induced temperature fields in 
complex composite materials obtained from large-scale molecular dynamics simulations with the 
initial microstructure as the only input. The accuracy of the Microstructure-Informed Shock-
induced Temperature net (MISTnet) model is higher than the current state of the art at a fraction 
of the computation cost. 
 

INTRODUCTION 
 
The chemical and physical processes launched by a shockwave as it travels supersonically through 
a material are important in planetary sciences [1], microparticle impact [2], synthesis of new 
materials [3], and the initiation of detonations [4, 5]. Thermally activated processes triggered by 
dynamical loading can be accelerated significantly by the localization of energy into hotspots [ 6 
], which form by the interaction of the supersonic wave and the materials’ microstructure or by 
shock-induced defects. A striking consequence of the importance of hotspots is the near 
impossibility of detonating many single-crystal molecular explosives. Multiple processes lead to 
energy localization, most prominently the collapse of porosity (which involves severe plastic 
deformation, local amorphization, and jetting), interfacial friction, the propagation of cracks, and 
localized plastic deformation. Non-trivial challenges in the prediction of shock-induced hotspot 
formation are the fact that these processes are strongly coupled and occur under extreme 
conditions of temperature, pressure, and strain rate. Given the disparate length and time scales 
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associated with the various mechanisms of energy localization and microstructural features, it is 
not surprising that no single model can predict shock-induced hotspot formation without 
significant approximations [7]. In this paper, we show that deep learning can map the initial 
microstructure of a complex composite material consisting of crystalline grains and a polymer 
binder to the resulting temperature field, including hotspots. Importantly, the training and 
testing data were obtained from atomistic simulations that explicitly capture all the above 
mechanics many of which are sub-grid to the input and output fields of the model. 
 
Continuum models capable of capturing the microstructure of the materials of interest 
necessarily approximate many of the mechanisms of hotspot formation, including localized 
plastic deformation and pore collapse. Hotspots are often considered sub-scale and introduced 
in a statistical manner [8,9]. In contrast, atomistic simulations that describe molecular phenomena 
explicitly cannot reach the characteristic scales of important microstructural features. MD has 
been extensively used to study shock-induced hotspot formation, including the collapse of 
porosity, shear, friction, and localized plastic deformation. These studies have provided valuable 
insight into the mechanisms undergirding the formation of hotspots and the relative potency of 
various processes. Yet, we still lack models to predict the hotspot temperature and size resulting 
from the various energy localization mechanisms, except for simple processes and simple 
geometries [ 10 ]. Recent efforts have compared the temperature fields obtained from MD 
simulations with multi-physics, continuum-level models [11, 12, 13]. These comparisons revealed 
the progress in continuum modeling but also point to their intrinsic limitations and the need for 
nano-meter scale resolution with the consequent computational cost. In addition to physics-
based approaches, deep learning has been used to model the mesoscale thermo-mechanical 
response of materials under shock loading with accuracy comparable to physics-based 
simulations but at a fraction of the computational cost [14]. 
 
To address this current gap, we explore whether deep learning [15] can be used to develop 
computationally inexpensive models capable of mapping complex microstructures and defects 
to shock-induced temperature fields from explicit MD simulations. Importantly, given the 
significant computational cost of such MD simulations (e.g. a single shock simulation on a system 
measuring 100 nm in length with 1200 nm2 cross-sectional area requires approximately 28,000 
CPU hours on AMD Epyc 7662 cores), the models should be developed using a relatively small 
number of simulations. Inspired by work on field-to-field mapping using deep learning [16,17], we 
reduce the initial atomic structure into three scalar fields and the final temperature into a single 
field. We find that a dozen independent simulations enable the training of a U-Net-type [17] deep 
neural network capable of predicting the temperature field associated with shock loading of 
microstructures not seen during training, including the location and temperature distribution of 
hotspots. The Microstructure-Informed Shock-induced Temperature net (MISTnet) model, see 
Figure 1, shows comparable or better accuracy than physics-based and machine-learning models 
at a fraction of the computational cost. Convolutional neural networks, including U-nets have 
been used in materials science, with great success, for image classification and segmentation, 
regression, and field to field predictions, and mesoscale modeling. Unlike prior efforts, we 
demonstrate the use of deep learning to by-pass an explicit physics-based simulation that 
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resolves physics that are sub-scale to MISTnet and are described via a particle-based Lagrangian 
framework which is mapped into a Eulerian framework that deforms affinely with the material. 
 

RESULTS AND DISCUSSION 
 
Explicit simulations of hotspot formation in shocked composites 
 
To explicitly capture all mechanisms of hotspot formation in realistic structures, we performed 
all-atom MD simulations of shock propagation on complex microstructures consisting of 
polymer-bonded molecular crystals. Such microstructures are common in energetic materials 
and particle-reinforced polymer composites and include interfaces between different materials, 
anisotropic crystals, and porosity. The explicit description of every atom in the systems, see 
Figure 1(a), enables the explicit simulation of all the processes expected to result in hotspot 
formation, the only approximation being the description of atomic interactions and the use of 
classical mechanics to describe atomic dynamics. Pore collapse, crack propagation, localized 
plasticity, and interfacial friction are described without further approximations or modeling. The 
composite systems consist of 1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) grains and polystyrene 
(PS) binder; they were built using our in-house PBXgen code [ 18 ]. Atomic interactions are 
described with extensively validated force fields [19, 20] that provide an accurate description of 
the thermo-mechanics of these materials [21, 22, 23]. The neglect of chemical reactions is another 
approximation, but the focus of this paper is on the prediction of hotspot formation right after 
the passage of the shock (1 ps after the shock front) when hotspots are fully formed but chemistry 
is negligible.  
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Figure 1 Schematic representation of our approach to learning shock-induced temperature 
fields. (a) Initial atomistic structure of composite; (b) Large-scale MD simulation of shock 

propagation; (c) Shock induced temperature field from MD; (d) MISTnet architecture and input 
and output fields. 

MD simulations for training and testing. We built and shocked 11 independent RDX/PS systems 
with two different PS wgt. %, spherical or facetted RDX crystals, and two cell sizes. The particle 
diameters follow a bimodal distribution, with maxima at 8 and 17 nm, scaled down from typical 
experimental data in energetic materials [24]. We built four systems containing approximately 30 
million atoms (with cell dimensions of approximately 84 nm x 18 nm x 220 nm, these larger 
systems will be denoted L1 to L4) and seven systems with 10 million atoms (approximately 60 nm 
x 18 nm x 100 nm) denoted S1 to S7. Details of the various systems are included in Table 1.  
 
Table 1.  Details of the atomistic PBX systems (Tr, V, and Tst represent training, validation, and 
testing datasets) 
 

PBX RDX crystal particle PS content 
(weight%) 

Dimension (nm) 
Lx, Ly, Lz 

Density 
(g/cm3) 

Datasets 
Shape Orientation 

L1 (Tr)  
Spherical 

 

Oriented 
 

14.7% 84.24, 18.17, 222.24  1.469  16 

L2 (Tr)  
9.5% 

 

83.16, 17.60, 220.02  1.460  16 
L3 (Tr) Random 

 
82.34, 17.84, 218.75  1.464  16 

L4 (Tr) Facetted 87.51, 18.06, 238.68  1.466  16 
S1 (V)  

Spherical 
 

Oriented 
 

14.7% 61.73, 18.17, 102.65  1.482  4 
S2 (Tst)  

9.5% 
 

61.75, 17.61,   97.91  1.499  4 
S3 (Tst)  

 
Random 

 
 

61.43, 17.69,   98.43  1.492  4 
S4 (Tst) Facetted 63.58, 17.94, 109.65  1.491  4 
S5 (V)  

Spherical 
 

 
14.7% 

 

57.14, 18.53, 108.95  1.471  4 
S6 (V) 59.63, 18.23, 106.56  1.464  4 
S7 (V) 59.88, 18.46, 102.65  1.493  4 

 
Each PBX system was subjected to shock loading using adiabatic MD via a convergent shock 
approach [25]. This setup generates two shocks at the cell z boundary that propagate toward the 
center of the simulation box, see Fig. 1(b). Thus, to maximize the information generated, the PBX 
systems are replicated along the shock direction prior to dynamical loading. This results in shocks 
propagating on each microstructure in opposite directions. The particle velocity was 2.5 km/s, 
which results in a shock velocity of approximately 6.7 km/s.  
 
Input and output fields and deep convolutional neural networks 
 
Our goal is to develop predictive models that can relate the initial structure to the resulting 
temperature field following shock loading. Prior efforts involving deep learning of field variables 
in the physical sciences and engineering have focused on continuum models or measurements 
[26 ,27 ]. In contrast, we are interested in predicting the output of an explicit, particle-based 
simulation with chaotic dynamics. Thus, the first step in model development is encoding the 
inputs and outputs into field variables. This is not uncommon for output variables like 
temperature. We computed the center-of-mass temperature of each RDX molecule and polymer 
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monomer and mapped them into an orthorhombic grid to obtain a field of local temperature 
after the passage of the shock. The input to the atomistic simulation is a set of (tens of millions) 
atomic coordinates and velocities that need to be converted into field variables. We choose three 
local properties to characterize the initial microstructure: i) total density, ii) density of RDX, and 
iii) the product of RDX and PS densities to highlight interfaces, see Fig. 1(d). We hypothesized 
that these descriptors could capture hotspot mechanisms like pore collapse and interfacial 
friction. The input fields are mapped over a grid consisting of 32 x 16 x 32 bins (each bin 
approximately 1.9 nm x 1.1 nm x 2.8 nm) for the S1 to S7 systems. The output field (local 
temperature of shocked PBX structure) is mapped into the same number of bins with length along 
the shock direction reduced to 1.7 nm due to shock compression. For systems L1 to L4, we used 
similarly sized bins but larger grids of 44 x 16 x 80. In total, we prepared 92 datasets consisting of 
three input fields and one output field: 28 from the 7 small PBX systems S1 to S7 (considering the 
two shocks per simulation and data augmentation by subjecting each input-output pair to a 
mirror operation on the plane containing the shock direction and the longer transverse 
direction), and 64 from the L1 to L4 (two shocks per simulation, each divided into four regions of 
size matching the small cells, top-left, top-right, lower-left, lower-right, plus mirror 
augmentation). Note that datasets obtained from the L1-L4 simulations have partial overlap.  
 
Our MD data was split into training and testing sets. As mentioned previously, each simulation 
was included a second time, mirrored, as a data augmentation strategy. The complete set of 
simulations was split into training (~70%, marked Tr in Table 1), validation (~17%, marked as V), 
and testing (~13%, marked as Tst). To avoid data leakage, all the datasets originating from each 
simulation (including the multiple datasets from the large systems and mirrored images) were 
sorted together into a training, validation, or testing set. The validation set was sequestered and 
only used to control the early stopping criteria needed to prevent overfitting. 
 
Deep neural networks are known to be universal approximators [28]. These models can model 
complex non-linear functions between inputs and outputs by creating connections through 
internal parameters that can be considered as features of the input data and activation functions 
to act on these parameters. Convolutional Neural Networks (CNNs) have been particularly 
successful in image-processing tasks like classification and image semantic segmentation [29,30] 
with applications in generative modeling [31] and medical imaging [32]. A commonly implemented 
technique for automatic image segmentation is based on an encoder-decoder architecture called 
U-Net, see Figure 1(d). First proposed by Ronneberger et al. [17], U-Nets use layers of convolution 
and pooling to extract and process information at various scales and a “skip-connection” 
approach to convey information from the encoder to the decoder stage, thus improving feature 
localization. In materials science, U-nets have been used to analyze 2D images and identify 
precipitates in Ni-superalloys [33], recognize nanoparticles [27], and locate atomic defects to 
characterize degradation [34].   
 
To map the initial microstructure fields to the shock temperature field, MISTnet uses 3x3x3 
volumetric convolution blocks (a domain approximately 6 nm on the side), max pooling, and ReLU 
activation functions. Batch normalization operations were applied before pooling layers to 
regularize the model variance. Pooling layers were used to down-sample feature maps along 
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their spatial dimensions by taking the maximum value over a window for each channel. By 
pooling these layers, information about regions surrounding each microstructural feature can be 
communicated in downstream operations. A maximum value pooling was selected as it is the 
deviation from the average microstructure that is expected to result in higher temperatures. The 
pooling stride was selected to avoid overlapping windows. To replicate the periodic boundary 
conditions on the simulation, a periodic padding function was selected along the spatial 
directions that do not match the shock direction. This function applies to the convolutional layers 
before the first pooling operation.  
 
The model was trained using the Adam [35] optimizer with a custom loss function based on the 
mean-square error that increases the contribution of voxels with target temperatures over a 
threshold of 1800 K by a factor of five to best capture hotspots. The learning rate decreases from 
0.0005 to 0.0001 after 500 epochs and we use an early stopping criterion based on the validation 
loss, which stops the model if no improvement over 0.0005 is observed in 200 epochs, restoring 
the best weights in the model.  
 
Model accuracy 
 
Figure 2 illustrates the performance of MISTnet for test set S2. Visual inspection of the predicted 
and MD temperature fields clearly shows the model's ability to predict key features of the 
temperature field arising from the interaction between the microstructure and the shock. The 
location, size, and intensity of the hotspots are clearly captured. MISTnet not only predicts the 
hotspots associated with porosity (see red, orange, and black arrows) but also captures non-
trivial features. For example, the model learned that voids elongated along the direction of the 
shock (orange) result in higher temperatures than those elongated in the transverse directions 
(black) [36]. Beyond porosity, interfacial processes like friction and acoustic mismatch are known 
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to result in energy localization, and our model is also capable of capturing those; an example is 
highlighted using green arrows.  
 

 
Figure 2 (a) Initial atomistic structure and shock-induced temperature. (b) Binned data of input 
data (ρtotal, ρRDX, ρRDX ρPS) and outputs comparing the MD and MISTnet results temperature fields. 
 
To quantitatively analyze the accuracy of the field predictions, we performed a series of 
comparisons with varying levels of granularity. At the finest scale, we compare the temperatures 
obtained from MD and MISTnet at the bin level. For this analysis, we apply a Gaussian smoothing 
filter with characteristic length equal to a bin (~2 nm) to the temperatures to account for the 
stochastic nature of MD that leads fluctuations of local temperature. The resulting parity plot 
between temperature predictions vs. MD results for test set S2, Figure 3(a), demonstrates the 
accuracy of MISTnet. A comparison of the raw, unfiltered, data is included in Fig. S1 of the SI. 
Furthermore, as the criticality of hotspots is known to be a function of both the hotspot 
temperature and size, we analyzed the distribution of volume of the material with the 
temperature exceeding a value T. Figure 3(b) shows this distribution as T vs. volume. Again, we 
observe a very good agreement between MD and MISTnet. Figure 3 shows that MISTnet tends 
to underestimate the highest temperatures but these command relatively small volumes. 
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Figure 3. Comparison of MD and MISTnet results. Parity plot (a) and cumulative volume vs. T;  (b) 
for all bins of test dataset from the S2 system. Gaussian smoothing filter is applied to the raw 
temperatures obtained from MD and MISTnet 

To compare our model with prior work, we calculated the average temperature and volume of 
the hotspots from MD and MISTnet for all cases simulated, see Figure 4. Here, we define hotspot 
as those bins with temperature exceeding 1800 K and analysis using hotspot cutoff temperatures 
of 1600 K and 2000 K show similar results, see Fig. S2 in the SI. Across all training, validation, and 
test sets, we observe good agreement between MD and MISTnet. The RMS error in temperature 
is Δ𝑇ത୦୭୲ୱ୮୭୲~50 K and that in volume Δ𝑉ത୦୭୲ୱ୮୭୲~200 nm3, see Table 1. When normalized by the 
average values, the errors in hotspot temperature and volume are 2.3 % and 15%, respectively. 
While direct comparison cannot be made due to the difference in shock conditions, the errors in 
Δ𝑇ത୦୭୲ୱ୮୭୲ are approximately factors of 7 times smaller than those reported for the Physics-Aware 
Recurrent Convolutional Neural Networks (PARC) model [14]. 
 

 
Figure 4. Comparison of hotspots obtained from MD and MISTnet. Average hotspot temperature 
(a) and volume (b) for all cases. 
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                   Table 2 Error analysis of the MISTnet predictions 

 RMSE T field  (K) Δ𝑇ത୦୭୲ୱ୮୭୲(𝐾)  Δ𝑉ത୦୭୲ୱ୮୭୲(nmଷ)  

Train 72.57 41.96 350.84 
Validation 91.57 47.37 107.07 
Test 97.62 58.38 224.16 

 
 
While the measures above quantify the overall temperature distribution and average hotspot 
properties, the criticality of a hotspot depends on their individual characteristics [37]. Therefore, 
we developed a novel one-by-one comparison of predicted vs. MD hotspots. We identify 
individual hotspots via a cluster analysis over grid points with local temperatures above 1800 K, 
using a distance cutoff slightly longer than the body diagonal of a single bin. After the hotspots 
are identified we use an overlap criterion to map MD and MISTnet hotspots, see Section S-3 of 
the SI for the detailed procedure. Figures 5(a) and 5(b) show the spatial distribution of the MD 
and MISTnet hotspots, respectively. We use the same color to indicate matching hotspots 
predicted by both MD and MISTnet model and black for hotspots only seen in the MD or MISTnet. 
As indicated above, we observe remarkable agreement in the location and shape of hotspots. To 
further quantify the accuracy of the mode, Figure 5(c) compares the temperature distribution vs. 
characteristic length (cube root of total volume) of individual hotspots for the MD (left-sided 
violins) and MISTnet (ride-sided violins); identical colors mark matching hotspots. We find several 
hotspots that present in both the MD and MISTnet that have comparable size and temperature 
distribution. Arrows connect matching hotspots. MISTnet slightly underestimates the size (by 
approximately 10%) and highest temperatures of the largest hotspot. Only a few small hotspots 
appear either in the MD or in the MISTnet predictions. 
 

 
            (a)                          (b)                                                                       (c) 

Figure 5: Cluster analysis for a typical testing data set from the S2 system. The hotspot from MD 
(a) and predicted by the MISTnet (b) are marked with identical colors when they are matched 
and black when they are only present in a single field. (c) The temperature distributions of the 
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matched hotspots as a function of characteristic size (left-sided distributions represent MD 
results, and the right-handed distributions MISTnet), selected hotspots are numbered for easy 
identification. 

 

CONCLUSIONS AND OUTLOOK 
 
This paper introduced a deep learning model, MISTnet, capable of predicting the temperature 
field resulting from the shock loading of a composite material with microstructure as the only 
input. The training, validation, and testing data are obtained from multi-million-atom MD 
simulations that explicitly describe all the mechanisms underlying the formation of hotspots. We 
find that three input fields (total density, density of one of two materials in the composite, and 
the product of densities to highlight interfaces) and about a dozen atomistic simulations enable 
MISTnet to map the initial, pre-shock, microstructure to shocked temperature field. Once 
trained, MISTnet can predict temperatures of unseen microstructures with a computational cost 
of 10-4 that of an MD simulation. MIST-net can predict hotspots originating from the collapse of 
porosity and  localized shear and learn subtle effects like the effect of pore orientation. As an 
additional test to stress-test the model, we applied it to predict the hotspot resulting from a 
single cylindrical pore, 20 nm to 50 nm in diameter, in a pure RDX crystal. This microstructure, 
with no polymer, is very different from those of the composites used in training, validation, and 
testing and contains a pore much larger than anything MISTnet has ever seen. Remarkably, 
MISTnet predicts a crescent shape hotspot with a very reasonable temperature distribution, see 
Section S-4 in the SI.  The complexity of the microstructures and accuracy of the temperature 
field predictions go beyond what has been attempted to date either with ML or physics-based 
models. 
 
MISTnet temperature fields can be used as input to models of thermo-mechanics and chemical 
kinetics to simulate subsequent processes. We envision MISTnet as a key component in future 
continuum-scale models, providing sub-scale microstructure-aware information, for shock-
induced phenomena, from materials processing to detonation. In this first effort, MISTnet was 
trained using a single particle velocity, limiting its use. While it should be possible to train a series 
of independent models for various shock strengths, we believe a parametric approach adding an 
additional input indicating the particle velocity will be very valuable. 
 

METHODS 
 
Atomistic simulation on PBX systems 
 
Large scale atomistic MD simulations on PBX systems are conducted by using the open-source 
software LAMMPS [38].  The non-reactive molecular force field for PS is from Dreiding [20] and 
for RDX is based on the Smith-Bharadwaj potential [19] with the modifications from Ref. [36]. 
Van der Waals interactions between the two force fields following the combination rules 



11 
 

described in the Dreiding paper [20]. The particle-particle particle-mesh (PPPM) method [39] is 
used for long-range electrostatic interactions. Our in-house composite builder PBXgen is 
described in detail in Ref. [18]. LAMMPs input files in electronic form are included in the SI. 
 
Microstructural parameters and hotspot temperature are calculated based on the centers of 
mass of molecules (PS monomer is treated as a molecule). Each simulation describes two shocks 
that are separated to generate training, validation, and testing datasets. Each subsystem is 
further mirrored in the thickness direction as a data augmentation strategy. Each microstructure 
is binned into voxels (the dimension of a voxel is about 1.9 nm x 1.1 nm x 2.8 nm) with a fixed 
number of bins in x, y, and z directions. To make the dimensions of voxels approximately equal 
for all datasets, the number of bins is set to be 32x16x32 for small subsystems, and 44x16x80 for 
large subsystems. 
 
The calculations of input and output fields are based on the number of molecules included in 
each voxel. The equations are listed in the following: 

 𝜌௧௧ = (𝑁ோ 𝑀ோ + 𝑁ௌ 𝑀ௌ)/𝑉௩௫                                            (1) 
𝜌ோ = 𝑁ோ  𝑀ோ/𝑉௩௫                                                                    (2) 

𝜌ௌ = 𝑁ௌ 𝑀ௌ/𝑉௩௫                                                                         (3) 
∆௧= 𝜌ோ  𝜌ௌ                                                                                     (4) 

𝑇 = ∑ 𝑇 /𝑁                                                                              (5) 
Where 𝜌 stands for mass density, N represents the number of molecules in the bin, M molecular 
mass, V the volume. Subscripts indicate the molecule type. Tmol represents the instantaneous 
intramolecular temperature of each molecule measured from their center of mass. 
 
The three input fields are based on the initial PBX structure. But the output field represents the 
shock temperature approximately 1 ps after the passage of the shock. This requires tracking the 
shock front and building the temperature field one slice at a time. This is done since heat 
dissipation affects the temperature field and computing the temperature field for the entire 
system at a given time would result in different physics at different locations.  
 
Machine learning models (MISTnet) 
 
MISTnet maps the initial microstructure to shock temperature through convolutional and pooling 
layers down to a latent dimension, and convolution and upsampling layers back to the original 
3D volume dimension.  Figure 6 shows the details of our architecture. Each miniblock of the 
encoding stage includes two convolutional operations with a 3x3x3 kernel, and a rectified linear 
(ReLU) activation, a single 2x2x2 max pooling layer with stride 2. Each encoding miniblock 
doubles the feature maps while reducing the spatial dimensions by half.  
 
Each miniblock of the decoding stage merges the result of a transposed convolutional operation 
with kernel 3x3x3 from the previous layer and the “skip connection” layer equivalent from the 
encoding stage. Two more convolutional operations with kernel 3x3x3 are added afterward, also 
followed by a linear (ReLU) activation. At the final layer of the model, a 1x1x1 convolutional 
operation returns the feature map to a single channel with the starting spatial dimensions. The 
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dimensions of our input systems are 32x 16 x 32 x 3, with the first three dimensions representing 
the spatial coordinates last representing the number of channels.  

 
 

Figure 6. Schematic representation of the MISTnet framework architecture based on U-Net [17]. 
Arrows represent different operations in between layers. Dimensions of our feature maps are 
listed per layer, and quantity of these maps is overlayed in each layer. 
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Data availability 
 
Data used to train and test the MISTnet model is available along with the source code at 
https://github.com/Jverduzc/MISTnet. Data includes all datasets from MD simulations after 
binning. An interactive HTML file per system is also included to explore the accuracy of the 
predictions. 

Code availability 
 
Source code is available at https://github.com/Jverduzc/MISTnet. A tool with an interactive 
notebook to test custom systems with a trained MISTnet model is available at 
https://nanohub.org/tools/mistnet/ 
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