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Complex, concentrated, multi-component alloys have been shown to display outstanding thermo-
mechanical properties, that have been typically attributed to sluggish diffusion, entropic, and lat-
tice distortion effects. Here, we investigate two metal alloys with such exemplary properties, the
equiatomic, single-phase, face-centered-cubic (FCC) alloys NiCoCr and NiCoCrFeMn, and we com-
pare their microstructural kinetics to the behaviors in a pure-Ni FCC metal. We perform long-time,
kinetic Monte Carlo (kMC) simulations, and we analyze in detail the kinetics of atomic vacancies.
We find that vacancies in both concentrated alloys exhibit subdiffusive thermally driven dynamics,
in direct contrast to the diffusive dynamics of pure Ni. Subdiffusive dynamics shall be attributed to
dynamical sluggishness, that is modeled by a fractional Brownian random walk. Furthermore, we
analyze the statistics of waiting times, and we interpret long power-law-distributed rest periods as
a direct consequence of barriers’ energy-scales and lattice distortions.

Atomic-scale transport properties in complex concen-
trated alloys (CCAs) have long been hypothesized to be
characterized by comparatively slow kinetics, as opposed
to pure metals and conventional alloys, hence the term
sluggish diffusion [1, 2]. Together with high entropy of
mixing, severe lattice distortion, and also, the cocktail
effect, these so-called “core effects” are commonly identi-
fied as the principal sources of exceptional CCA thermo-
mechanical properties (e.g. single-phase thermodynamic
stability [3], creep resistance [4], and high-temperature
strength [5]). Sluggishness of diffusion dynamics, in par-
ticular, connects to apparent compositional and under-
lying atomic structure complexities [6], but its demon-
stration and connection to multi-principal element al-
loys’ outstanding properties have been challenging [7].
In this Letter, we demonstrate in molecular simulations
(cf. Fig. 1) the sluggishness of vacancies in CCAs, and
further model it in terms of subdiffusive fractional Brow-
nian dynamics. We investigate two alloys with excep-
tional mechanical properties (equiatomic FCC NiCoCr
and NiCoCrFeMn [6]), and we develop connections of
the subdiffusive vacancy dynamics to underlying crystal
lattice distortions.

Diffusion sluggishness in CCAs has been evasive, given
that typical measurements of elemental tracer diffusivi-
ties display conventional metallic behavior [7, 8]. Instead,
it appears that slow diffusion kinetics may not be a robust
feature of CCAs in an absolute temperature sense [2, 7, 9]
but can be perceived within a reduced temperature scale
(i.e. with melting temperature Tm as the scaling factor)
when compared with pure metals and/or conventional
alloys [8, 10, 11]. This is based on a heuristic argument
that alloys’ diffusion coefficients D at Tm are almost in-
dependent of specific chemical compositions but tend to
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FIG. 1. Thermally-assisted vacancy migration in NiCoCr at
T = 1400 K. The line segments in a) indicate defect trajecto-
ries over order 100 Monte Carlo moves of size 1 Å. Each Monte
Carlo step in b) involves a center (blue) atom in I diffusing
to a neighboring vacant site as in III through a saddle-point
configuration of II. The arrows in II denote atomic displace-
ments relative to I. The migration barrier is determined based
on the energy cost between II and I on the energy hyper-
surface along the reaction coordinate. During the course of
each simulation, we typically observe 12 different sets of non-
crystalline topology as in I.

show variations with the crystal structure [7]. It follows
that D ∝ e−∆E∗(1/T∗−1) with reduced units T∗ = T/Tm
and ∆E∗ = ∆E/kBTm. Here kB is the Boltzmann con-
stant. This suggestion was further strengthened by high
rescaled activation energies ∆E∗ of interdiffusion, due to
inherent ruggedness in potential energy landscape, from
severe lattice distortions [12, 13], confirming the impor-
tance of rescaling, for tracer(inter) diffusivities. In con-
trast, CCA modeling efforts to extract atomic-level trans-
port properties have been mainly centered on coarse-
grained meso-scale modeling of vacancy-driven diffusivity
under thermal activation [14, 15] and/or irradiation con-
ditions [16], without explicit links to atomistic, composi-
tional complexities [17–20]. It is currently clear that the
characterization of kinetic sluggishness requires the thor-
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ough understanding of composition-dependent atomistic
features.

This work reports on a novel atomistic-based simu-
lation investigation of diffusion properties in two key
complex concentrated alloys that have consistently
displayed excellent mechanical properties [1]. We
investigate vacancy migration in single-phase FCC
equiatomic NiCoCr and NiCoCrFeMn solid solutions
using molecular simulations, and we identify anomalous
dynamics akin to (self-)diffusion in other complex
systems with heterogeneous substructure [21]. We find
that these complex concentrated alloys are characterized
by vacancy sub-diffusion, in contrast to single-element
metals, through a fractional Brownian process [22], due
to severe lattice distortions, that governs long-term
kinetics of thermally-assisted defect motion. We in-
vestigate a fairly broad range of simulation timescales
through a kinetic Monte-Carlo sampling framework that
is implemented, using the kinetic Activation-Relaxation
Technique (k-ART) [23], that detects vacancy energetics,
as illustrated in Fig. 1. The short-term dynamics is re-
solved by directly probing statistics of vacancy hopping,
in terms of rest times, and pure FCC Ni behavior is used
as a benchmark. We argue that long waiting periods,
statistically characterized by broad non-exponential
temporal distributions, can best describe sluggishness in
metal diffusion. The former can be described as a direct
consequence of barrier energy scales and their broad
spectrum owing to atomic-level chemical complexities.

Methods— Model Ni and NiCoCr alloys were imple-
mented as systems of N = 1370 atoms within cubic
boxes with dimension L = 26.0 Å in a three-dimensional
(d = 3) periodic setup. The interatomic forces were de-
rived from the embedded-atom method potential devel-
oped recently by Ma et al. [24]. To test the robustness
of our findings with respect to interatomic details, we
also made use of the modified embedded-atom (m-eam)
framework proposed by Choi et al. [25] which was suc-
cessfully applied in the context of Cantor alloys. The
NiCoCrFeMn model alloys consist of order N = 13, 500
atoms within periodic cubes of size L = 54.0 Å. Defect-
free crystalline structures were prepared by performing
energy minimization in LAMMPS [26] and were further
relaxed upon the insertion of a point defect (single va-
cancy in this case). We also checked that prepared multi-
component alloys closely resemble random solid solutions
with no or negligible chemical ordering effects.

To probe the vacancy dynamics under thermal effects,
we make use of the k-ART software [23] based on the
initial structures prepared at zero temperature. We
opted not to feed thermalized samples at finite tempera-
tures to k-ART in order to magnify the effects of lattice
distortions [23, 27]. To investigate vacancy-driven diffu-
sivity in metals, we perform between 102 − 103 Monte
Carlo steps within the temperature range 1000 − 2000
K. Figure 1 shows defect trajectories in NiCoCr as well
as typical atomic rearrangements next to a vacant site
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FIG. 2. Total mean-squared displacements (msd) as a func-
tion of time t corresponding to a) pure Ni b) NiCoCr alloy
at different temperatures. Panels c) and d) are the same
as a) and b) but plot the vacancy mean-squared displace-
ments msdv(t). Dashdotted curves indicate fitting curves
msd(t) ∝ t2H at t→∞. The curves in b) and d) are shifted
horizontally for the better clarity.

at T = 1400 K. The vacancy dynamics and associated
hopping closely resembles a random walk in three
dimensions with temporally-uncorrelated increments in
space.

Anomalous Diffusion— We calculate the mean-squared
displacement of atoms including all effects due to atoms
crossing periodic boundaries. The displacement vec-
tor uiα(t′, t) = ~ri(t

′ + t) − ~ri(t
′) is defined per atom

i = 1...N given a reference time t′ and over duration
t. Here ~ri(t) denotes the position of atom i at time
t. Squared displacements are summed and averaged
over atoms i and different reference times t′ to obtain
the displacement variance as a function of duration t,
i.e. msd(t) = 〈 ~ui(t′, t) . ~ui(t′, t) 〉i,t′ . The msd associ-
ated with the single vacancy msdv(t) is defined in a sim-
ilar manner but including motion of a subset of atoms in
the nearest neighborhood of the vacant site (see Fig. 1).
To improve collected statistics in the random solid solu-
tion alloy, we consider ensembles of eight different realiza-
tions associated with each temperature of interest. The
temporal evolution of msd(t) and msdv(t) corresponding
to pure Ni and NiCoCr alloy are shown in Fig. 2(a-d)
at various temperatures. Both sets of curves mark the
cross-over from an initial plateau regime, as a signature
of solid-like behavior, at short time-scales to a diffusive
regime due to relaxations at later times. Similar trends
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FIG. 3. Total mean-squared displacements msd(Å2) as a func-
tion of time t(s) corresponding to model a) Ni b) NiCoCr-
FeMn alloy using the m-eam potential function. Panels c)
and d) are the same as a) and b) but plot the vacancy mean-
squared displacements msdv(t). Dashdotted curves indicate
fitting curves msd(t) ∝ t2H at t → ∞. The curves in b) and
d) are shifted horizontally for the better clarity.

can be also seen in Fig. 3(a-d) corresponding to pure
Ni and NiCoCrFeMn based on the the m-eam potential
function.

To describe the observed cross-over, we fit a nonlin-
ear model, msd(t) = 〈u2〉 + Kt2H , to the msd data by
the least-squares regression, giving the results shown as
dashdotted curves in Fig. 2(a-d). Here H is the Hurst ex-
ponent [28] and K and 〈u2〉 are the fit parameters. In the
long-time limit t → ∞, the variance scales like a power-
law with the time lag as msd(t) ∝ t2H . In Fig. 4(c),
we recover the square-root dependence of displacements
with time, i.e. H = 1/2, over the range of studied tem-
peratures for pure Ni obeying a standard diffusion pro-
cess. In this case, the slope of the msd curves versus
time— that is, K— is equivalent to the diffusion coef-
ficient. Interestingly, the Hurst exponents fitted to the
NiCoCr data in Fig. 4(d) suggest a subdiffusive behav-
ior with 0 < H < 1/2 [21] showing an overall growth
toward H = 1/2 with increasing temperature T . The
emerging subdiffusion seems to be also relevant in NiC-
oCrFeMn alloys as in Fig. 4(f), as opposed to pure Ni in
Fig. 4(e), but our data indicate almost no (meaningful)
temperature-dependence associated with exponents H.

We may now proceed with the hypothesis of anti-
correlations between successive increments and thus frac-
tional Brownian motion as a potential source of subdiffu-
sion [22]. This is shown by a generated Brownian path in

Fig. 4(b) corresponding to H < 1/2 where the random
walker tends to be self-trapped within certain cages at
short/intermediate timescales. One can also show that a
standard Brownian motion (with H = 1/2) in Fig. 4(a)
may not possess this caging property. The characteristic
scale associated with such traps may be inferred from the
initial plateau regions within the msdv(t) fits in Fig. 2(d)
with 〈u2〉1/2 = 1.1 − 1.5 Å. This length should corre-
spond to almost half the mean vacancy hopping distance
(e.g. mean nearest-neighbor distance between atoms) as
sketched in Fig. 1. The time lag marking the cross-over
from the plateau regime to anomalous diffusion should
also set a (temperature-dependent) caging timescale.

If we are to assume uncorrelated increments within
a Markov process, another plausible explanation for
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FIG. 4. Model fractional Brownian walks associated with
Hurst exponents a) H = 0.5 b) H = 0.4, each showing 1, 000
discrete increments with zero mean and standard deviation
a) 0.03 and b) 0.06 Å. Estimated Hurst exponents H based
on the msd data presented in Fig. 2 and 3 correspond to c)
pure Ni d) NiCoCr alloy e) m-eam based Ni f) m-eam based
NiCoCrFeMn alloy. The dashdotted lines indicate H = 1/2.
The (red) markers indicate the start points at (0, 0, 0) and the
end points.
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suppressed diffusion is the presence of long rest times
(with independent but bounded increments) which could
be understood in the framework of continuous-time
random walks [29]. In what follows, we describe the
observed subdiffusive trends based on underlying waiting
time distributions.

Waiting Times and Energy Barriers— For a (homoge-
neous) Poisson process with independent events of con-
stant rate λ, the wait time statistics should obey an ex-
ponential distribution p(tw) = λ exp(−λtw). The rele-
vance of such dynamics for pure Ni is demonstrated in
Fig. 5(a) where the rescaled distributions λ−1p(tw) are
plotted against scaled waiting times λtw.

We observe significant deviations from the hypothesis
of a Poisson process, particularly at low T , as demon-
strated in Fig. 5(b) corresponding to the NiCoCr al-
loy. At T = 1000 K, the rescaled distribution in the
main plot is characterized by a fairly shallow power-
law crossing over to a steeper decay that extends for
almost two decades in tw. As T is increased toward
2000 K, we see a gradual transition to exponential-like
decays which is consistent with our msd data indicat-
ing a subdiffusive-to-diffusive cross-over at elevated tem-
peratures (cf. Fig. 4(d)). At T = 1000 K, we find

P (tw) ∝ t−(1+α)
w with α = 1.0 asymptotically for λtw > 1

indicating long rest periods. The waiting time distribu-
tions associated with the Cantor alloy indicate nearly
the same scaling properties (data not shown). We note
that broad tw distributions with diverging mean times
(i.e. 0 < α < 1) but with a bounded jump length vari-
ance corresponds to a subdiffusive Brownian process [21].
In that case, msd(t) ∝ tα and, therefore, H = α/2 .

The inset of Fig. 5(a) and (b) also show the relevance of
Arrhenius-based activation with λ ∝ exp(−∆Eeff/kBT )
with effective barriers ∆Eni

eff = 1.0 eV and ∆Enicocr
eff =

0.65 eV. Given the melting temperatures T ni
m = 2100 K

[30] and T nicocr
m = 1650 K [24], it follows that ∆Eni

∗ >
∆Enicocr
∗ with ∆Eni

∗ = 5.5 and ∆Enicocr
∗ = 4.6. This,

however, does not agree with most empirical observa-
tions that, in general, CCAs tend to have a higher scaled
energy barrier than conventional alloys. We remark that
∆E∗ is typically inferred from the Arrhenius-like depen-
dence of the diffusion coefficients on (reduced) tempera-
ture and that the latter quantity is mathematically ill-
defined in our case owing to the anomalous diffusion
behavior associated with NiCoCr. Furthermore, the in-
ferred slope associated with NiCoCr may show variations
depending on the selected range of T in our regression
analysis. Due to a slightly negative curvature at lower
temperatures, i.e. non-Arrhenius behavior as in the in-
set of Fig. 5(b), one might infer larger effective energies
leading to a better agreement with experimental findings.
That said, the Hurst exponent should be viewed as the
robust measure of sluggishness in our study as opposed
to the scaled activation energies.

Given the above estimates for exponent α, the scal-
ing law predicts H = 0.5 (i.e. the standard diffusion)
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FIG. 5. Atom-scale statistics at various temperatures T =
1000 K ( ), 1200 K ( ), 1400 K ( ), 1600 K ( ), 1800 K
( ), 2000 K ( ). Waiting time distributions λ−1p(tw) scaled
by mean activity rate λ(s−1) corresponding to a) pure Ni b)
NiCoCr alloy. Statistics of energy barriers corresponding to
NiCoCr c) statistical distributions p(∆E) d) scatter plot of
waiting times tw(s) and scaled energy barriers ∆E/kBT at
T = 1000, 1400, and 1800 K. The dashdotted (red) curve
denotes exp(−λtw). The insets in a) and b) plot activation
rate λ against inverse temperature 1/T . The curves in b) are
shifted vertically for the sake of clarity. The data points in
d) are shifted vertically for a better clarity.

which contradicts our observations based on Fig. 4(d)
at low temperatures. A plausible explanation could be
given when one considers the bi-linear form for waiting
time distributions (on logarithmic scales) in Fig. 5(b)
with a relatively shallow slope α = 0.4 corresponding to
λtw < 1. This could yield a Hurst exponent H < 1/2 in
a rough agreement with the observed trends in Fig. 4(d).
On a different note, we observed power-law decays asso-
ciated with jump size distributions p(∆x) for NiCoCr as
shown in Supplementary Materials (SM). In the context
of complex disordered alloys, the observed power-law be-
havior could be understood theoretically in terms of both
local atomic misfits and vacancy hopping that induce
long-range residual strains within the embedding elas-
tic medium [31, 32]. In the large ∆x limit, the theory
further predicts p(∆x) ∝ |∆x|−(1+µ) with µ = d/(d− 1)
[33] in fair agreement with the observed scaling behavior
for NiCoCr (see Fig. S6(b) in SM).

Dynamics of the vacancy hopping is governed by
local barriers that, in the context of concentrated solid
solutions, are expected to have a broad distribution of
energy scales owing to heterogeneities in local chemical
environments. This is evidenced Fig. 5(c) showing
statistical distributions of local energy barriers p(∆E)
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in NiCoCr spanning at least three decades in ∆E with
mean energy 〈∆E〉 = 0.8 − 0.9 eV and characteristic
peaks around ∆E = 0.5 eV at all temperatures. We
remark that pure Ni possess only one energy scale
(∆E = 1.0 eV) due to the tranlational symmetry of
the crystal. We also note the appearance of smaller
peaks at about ∆E = 0.05 eV that tend to become
suppressed as T is increased toward 2000 K. One might
naively attribute the emerging characteristic energy
scales to the different constituent elements in NiCoCr on
accounts that each species presumably have a typical
chemical environment surrounding it. However, elemen-
tal energy distributions (i.e. p(∆E) conditioned based
on atomic types) do not support this hypothesis (data
not shown). As shown in the scatter plots of Fig. 5(d),
the exponential dependence of (mean) waiting times tw
on the normalized energy barrier ∆E/kBT validates the
relevance of the Arrhenius-like activation.

Conclusions & Discussions— We have presented direct
numerical evidence that thermally-driven dynamics of
single atomic vacancies in model FCC CCAs tends to
obey a subdiffusive behavior, and therefore sluggish dif-
fusion, over sufficiently long timescales. This observation
is in stark contrast to pure single-element metals in which

the vacancy migration typically features a normal diffu-
sive process. We have argued that short-time dynamics
has a strong bearing on the observed long-term kinetics
and is well-described asymptotically by a set of scale-free
characteristics and critical scaling exponents. In this
context, we have reported the relevance of fractional
Brownian motion as a potential origin of suppressed
diffusion possibly due to (anti-)correlation effects. As
for the emerging sluggishness, another plausible scenario
seems to be the presence of long rest periods and the
property that vacancy migration energies possess wide
statistical distributions, covering almost four orders
of magnitude. Broad energy-scales have their root
in underlying chemical/structural disorder and such
microstructure-dynamics correlations have important
implications in alloys’ property prediction and design.
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SUPPLEMENTARY MATERIALS

k-ART ALGORITHM

Kinetic Activation-Relaxation Technique (k-ART)
constructs an exhaustive catalog of atomically-resolved
topology and relevant energy barriers to be used for
event sampling (i.e. vacancy hopping) within the
Arrhenius-based activation process [1]. In this context,
the hopping rate obeys the following dynamics Ωj =
Ω0 exp(−∆Ej/kBT ) where index j ∈ T (i) refers to a
distinct topology identity classified based on the local en-
vironment of a center atom i with respect to its nearest
neighbors within the cutoff radius rc = 4.0 Å. Here kB
is the Boltzmann constant. Energy barriers ∆Ej are de-
termined based on force fields implemented in LAMMPS
by associating each topology index j with a nearest sad-
dle point and next minimum in the energy hypersurface
within the activation-relaxation framework (see [2] and
references therein). We also set Ω0 = 1013 s−1 as a
typical vibrational frequency although a recent work by
Mousseaua et al. [3] reported non-negligible variations
of this prefactor in concentrated solid solutions. Apart
from being a computational convenience, our choice for a
fixed Ω0 can still capture the underlying hopping dynam-
ics which is strongly governed by chemical heterogeneities
in ∆Ej . Upon each activation process, the topology of
evolved atoms corresponding to the new relaxed configu-
ration will be updated to be used within the next Monte
Carlo sampling.

Based on the above framework, waiting (or rest) times
refer to time intervals between two consecutive events de-
fined as tw = tk+1 − tk in Fig. S1. Here k denotes the
event index. After the elapsed time tw, atom i at position

~r
(k)
i moves to position ~r

(k)
i +∆~ri at tk+1 with increments

∆~ri = (∆xi,∆yi,∆zi). We note that the individual com-
ponents ∆xi, ∆yi, and ∆zi are statistically equivalent as
the activation kinetics has no angular preference (up to
local crystal symmetry).

ROBUSTNESS OF H EXPONENT

As a robustness analysis, we vary tc systematically and
repeat the regression analysis by including the mean-
square displacement (msd) data in Fig. 2(a) and (b)

within the temporal window 0 < t < tc to estimate the
Hurst exponents H. The results are shown in Fig. S2(a-
f) and Fig. S3(a-f) corresponding to pure Ni and NiCoCr
at all temperatures. We obtain fairly robust estimates of
H featuring a progressive evolution toward well-defined
asymptotes at sufficiently large values of tc.

FRACTIONAL BROWNIAN MOTION

A fractal Brownian motion (fBm) is a stochastic pro-
cess where the fBm increments are not necessarily inde-
pendent (as in classical Brownian motion) and can in-
stead be correlated in time with a slowly-decaying mem-
ory [4]. If the increments are positively correlated, then
H > 1/2 and diffusion is enhanced as shown in Fig. S4(a).
Anti-correlated increments leads to H < 1/2 implying
subdiffusion as in Fig. S4(c). For uncorrelated incre-
ments, one recovers ordinary diffusion with H = 1/2 as
in Fig. S4(b). Here the fractional Brownian paths were
implemented based on the Davies-Harte Method [5].

To check the relevance of fBm, we performed a cor-
relation analysis of the vacancy increments for multiple
index shifts n represented by the cross correlation func-
tion cαβ(±n) = 〈 ∆rkα ∆r(k±n)β 〉k with n ∈ (0, 1, 2, ...).
Here 〈.〉k denotes averaging over the event index k and
∆rkα indicates the fluctuating part (with the mean value
subtracted) normalized by the standard deviation asso-
ciated with the vacancy jump ∆rkα. The Greek letters α
and β denote Cartesian indices. As shown in Fig. S5, the
correlation functions associated with discrete increments
are essentially indistinguishable from the noise floor sug-
gesting no or very little “memory” effects.

JUMP SIZE DISTRIBUTIONS

Jump size distributions p(∆x) are shown in Fig. S6(a)
and (b) considering a set of absolute increments |∆x| =
{|∆xi|, |∆yi|, |∆zi|}i=1···N for pure Ni and NiCoCr . The
size distributions possess fairly long tails in both cases
with a power-law decay that spans at least three orders
of magnitude in ∆x. The strong tail and observed power-
law behavior could be understood theoretically in the
context of the long-range perturbation field that local-
ized transformation zones embedded in an infinite elas-
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tic matrix generates in the far-field [6, 7]. In the con-
text of complex disordered alloys, local atomic misfits
may be treated as random dilational/contractional point
sources whose collective elastic-type effects govern the
structure of residual strains/stresses (i.e. strength of
fluctuations and associated disorder length) within the
surrounding medium [8, 9]. Such far-field effects are
known to decay universally as inverse square distance
∆x ∝ 1/rd−1 in three dimensions d = 3 in a broad
range of solids. In the large ∆x limit, the theory further
predicts p(∆x) ∝ |∆x|−(1+µ) with µ = d/(d − 1) [10].
This seems to be a relevant scaling behavior for the NiC-
oCr alloy (but not pure Ni) where the rescaled distribu-
tions p(∆x)|∆x|5/2 show a nearly flat region over almost
three orders of magnitude, as in the inset of Fig. S6(b).
For the case of bounded mean times but diverging jump
size variance with 0 < µ < 2, one essentially recovers a
supper-diffusive dynamics with msd(t) ∝ t2/µ. We note a
shallower-than-predicted decay of increments associated
with pure Ni in the inset of Fig. S6(a) with a charac-
teristic peak around 2 Å that should correspond to the
vacancy hopping distance (e.g. mean nearest-neighbor
distance between atoms).
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FIG. S1. Sketch of a displacement timeseries x(t) associated with atom i in one dimension with jump size ∆xi = x
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i − x
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and waiting times tw = tk+1 − tk between event k and k + 1 as denoted by the symbols.
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FIG. S2. Estimated exponent H plotted against tc associated with pure Ni at various temperatures T . The (red) dashdotted
lines indicate H = 1/2.
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FIG. S3. Estimated exponent H plotted against tc associated with NiCoCr at various temperatures T . The (red) dashdotted
lines indicate H = 1/2.
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FIG. S4. Model fractional Brownian walks associated with Hurst exponents a) H = 0.6 b) H = 0.5 c) H = 0.4. The (red)
markers indicate the start points at (0, 0, 0) and the end points.
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FIG. S5. Dynamics of vacancy increments and associated temporal correlations in NiCoCr alloys at T = 1000 K. a) ∆x(t) b)
∆y(t) c) ∆z(t) d-i) Noise correlations cαβ(n) with index shift n. The dashdotted lines indicate zero correlations.
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FIG. S6. Atom-scale statistics at various temperatures. Jump size distributions p(∆x) corresponding to a) pure Ni b)
NiCoCr alloy as a function of time t(s). The insets in a) and b) are the same as the main graphs but with p(∆x) rescaled by

|∆x|−1− d
d−1 .


