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Abstract

In this tutorial, we provide a coordinate-free derivation of the system of equa-
tions that govern equilibrium of a thin shell that can undergo shear. This
system involves tensorial fields representing the internal force and couple
per unit length that adjacent parts of the shell exchange at their common
boundary. By an appropriate decomposition of those quantities, we obtain a
representation of the internal power in terms of time derivatives of suitable
strain measures. Subsequently, we propose constitutive equations that em-
ploy these strain measures as independent variables. After specializing the
theory to the case of unshearable shells, we linearize the resulting equations.
As an application, we study the free vibrations of a pressurized spherical shell,
showcasing the advantages of a coordinate-free perspective, which simplifies
both the deduction and the solution of the final governing equations.

Keywords: Thin structures, oriented continua, equilibrium equations

1. Introduction

1.1. Aim of this tutorial
Most of the scholarly work dealing with shells makes extensive use of

coordinate systems, and sometimes of concepts from differential geometry,
such as covariant derivatives, Christhoffel symbols, and so on. The same is
true for most textbooks on shell theory (Adriaenssens et al., 2014; Ciarlet,
2021; Mansfield, 1989; Møllmann, 1981). In some cases, the treatment is
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adapted to the special geometry of the shell, and to special loading conditions
Calladine (1983).

While coordinates undeniably serve a crucial role in solving specific prob-
lems, their utilisation may have the unintended consequence of impeding
mechanical insight and obscuring the theory, particularly for those who are
new to the field. By relying on coordinates, focus may be shifted towards
heavy algebraic manipulations, diverting attention from the fundamental me-
chanical principles that underlie the theory.

The goal of the present tutorial is to provide a coordinate-free derivation
of the equations that govern the equilibrium of elastic shells using a direct
approach. We specifically focus on a director-based shell theory characterized
by a single director with unit magnitude. Our aim is to demonstrate that
a basic understanding of the theory of thin shells can be achieved without
relying heavily on differential geometry. In fact, the only concepts we shall
need are: a notion of the superficial gradient; a notion of the superficial
divergence and a version of the superficial divergence theorem for tangential
vector fields; the basic result that the superficial gradient of the unit normal
is a symmetric tensor whose range is contained in the tangent space.

In our derivation, we have taken inspiration from Šilhavý (2013). In
particular, we borrow from Šilhavý (2013) the idea of identifying superficial
vectors and tensors with linear mappings having their domain of definition
in the entire space, rather than the tangent space to the surface. This ap-
proach, which can be found in several antecedents, with one of the earliest
being in the work of Gurtin (1995), makes it conceptually easier to compare
vectors or tensors at two different points of the surface. In contrast to Šilhavý
(2013), however, we consider also shearable shells and, more importantly, our
approach is not variational.

Another coordinate-free treatment of two-dimensional material surfaces
can be found in the work of Gurtin and Ian Murdoch (1975), where bodies
with material boundaries capable of sustaining tension were considered. An
extension of the model to incorporate couple stresses by means of a theory
of grade two has been proposed by Murdoch (1978). A coordinate-free form
of the equilibrium equations, obtained by a deductive approach, are also
offered by Favata and Podio-Guidugli (2012). Equations of equilibrium in
coordinate-free form have been obtained by Šilhavý (2013) as Euler–Lagrange
equations of an energy functional. Within a purely geometrical setting, the
equations of compatibility have been given a coordinate-free formulation by
Seguin and Fried (2022). A coordinate-free version of the Koiter’s model,
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deduced from three-dimensional elasticity through the deductive approach,
has been obtained by Steigmann (2013).

1.2. Deductive and direct approaches
To place our contribution into perspective, a digression concerning the

conventional approaches to deriving theories of thin structures is fitting. The
problem of establishing consistent theories of shells, or other thin structures
such as rods or ribbons, has been addressed through two approaches: the
deductive approach and the direct approach (Villaggio, 1997).

The deductive approach pursues a theory of thin structures by a process
of “dimension reduction” that has its starting point in a three-dimensional
theory. Typically, this theory is linear or nonlinear elasticity, or a multi-
physics theory having elasticity as its backbone. Nevertheless, there exist
derivations that begin with with the theory of viscous fluids (Ribe, 2002),
and with atomistic models (Azizi et al., 2023; Davini et al., 2017)

The most elementary approaches to dimension reduction hinge on an
Ansatz concerning the particular form of the displacement, strain, or stress.
Such assumptions are often based on intuition or on comparisons with special
cases which admit exact solutions. Although the Ansatz does not satisfy the
three-dimensional equations in all cases, an averaging process is employed
over the thickness of body to provide approximate descriptions of the stress,
strain, and displacement.

More systematic and sophisticated methods for developing theories of thin
structures have also been devised: the asymptotic method (Ciarlet et al.,
1996; Ciarlet and Lods, 1996; Steigmann, 2007; Wang et al., 2019), the vari-
ational method (Anzellotti et al., 1994; Freddi et al., 2012; Friesecke et al.,
2002), the constraint and the scaling method (Daví, 1993; Lembo, 1989;
Podio-Guidugli, 1989, 1990), among others. These methods not only offer
more systematic derivations, but also make it possible to derive theories of
non-conventional thin structures such as ribbons (Freddi et al., 2016), or
structures made of nematic elastomers (Agostiniani and DeSimone, 2017;
Davoli et al., 2021), magneto-acive materials Davoli et al. (2021), thermoe-
lastic materials Favata (2016), piezoelectric materials (Nicotra and Podio-
Guidugli, 1998; Vidoli and Batra, 2000), polymer gels (Andrini et al., 2021;
Lucantonio and Nardinocchi, 2012), and general morphing materials (Ar-
gento et al., 2021), for which standard methods fall short due to lack of
intuition and the absence of precedent.
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Figure 1: Left: the surface S, a typical point x, the normal n(x), and the tangent space
TxS at x. Right: the image S of S, the image y(x) of x, the corresponding normal
n(y(x)), and the tangent space Ty(x)S at y(x). For an unshearable shell, the director
coincides with the current normal, i.e., d(x) = n(x).

With the direct approach, a thin structure is instead regarded from the
outset as a lower-dimensional continuous body. To resist bending, this body
must support internal couples, a feature which demands that extra kinemat-
ics comes into play, through the inclusion of a set of directors or the second
gradients of the deformation in the list of state variables. Examples of ap-
plication of the direct approach can be found in the work of Antman (2005),
Naghdi (1973), and Rubin (2000). It is worth noting that, for most director-
based shell theories (Cohen and DeSilva (1966); Hilgers and Pipkin (1992);
Koiter and Simmonds (1973); Sanders (1963)) the set of relevant directors
reduces to the unit normal to the surface; in this case, the strain energy
depends on both the first and second gradients of the deformation.

1.3. Outline
Our presentation is based on the direct approach described above. We

model a shell as a two dimensional continuous body of oriented particles. We
identify the set of such particles with a smooth surface S in three-dimensional
Euclidean point space E , and we describe the typical configuration of the shell
by assigning to each particle x ∈ S a place y(x) on the deformed surface S,
and an orientation, specified by a unit vector d(x) as illustrated in Fig. 1.3.
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Our first result is a coordinate-free form of the equilibrium equations that
govern the shell:

divS + b = 0,

skw
(
(divM + c)⊗ d+ SF⊤ +MG⊤) = 0.

(1)

These equations are obtained through an argument based on the invariance
of the external power expended on an arbitrary subsurface P of the reference
configuration S.

Here F = ∇y and G = ∇d are the (superficial) gradients of, respectively,
the placement and the director field. Moreover, S and M are tensor fields on
S which convey the densities, per unit referential length, of force and couple
that adjacent body parts exchange across their common boundary in the
deformed configuration. In the theory of shells, the tensors S and M play
analogous roles to the Piola stress in three-dimensional Cauchy continua.
Likewise, b and c are the surface densities of the body force and the body
couple, possibily including inertia.

The tensor fields S, M , F , and G are superficial : they are supposed
to act solely on vectors on TxS, the tangent space at x. For convenience,
however, we extend their domain of definition to TE , the space of all vectors,
by stipulating that Sn = 0, Mn = 0, and so on. Thus, S, M , F , and G
are linear transformation from TE , the space of translations of E into itself,
whose null space includes n. This makes it conceptually easier to compare
the values of tensor fields at different point of S without introducing the
differential-geometric notion of a connection (Lee, 2003).

In the first of (1), the divergence of the superficial tensor field S is defined
as follows: first, for v a tangential vector field, we set divv = tr∇v = P · ∇v,
where ∇v is the surface gradient of v and P(x) = I − n(x) ⊗ n(x) is the
projection on the tangent space TxS. Then, divS, is the unique vector field
such that a ·divS = div(S⊤a) for every constant vector a (note that S⊤a is
a tangential vector field). The divergence of all other tensor fields is defined
in a similar fashion.

In the second of (1), the symbol ⊗ denotes the dyadic product: given
two vectors, say u and v, their dyadic product is the tensor defined by
(u⊗v)w = (v ·w)u for every vector w; moreover, the operator skw applied
to a tensor gives its skew-symmetric part. Since the dimension of the space
of skew-symmetric tensors is three, the second of (1) is equivalent to three-
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scalar equations; of these equations, the first two can be gathered into

d× (divM + c− l) = 0, (2)

where l = (SF⊤−FS⊤)d (note that the projection of (2) along d vanishes
identically). The remaining scalar equation is an algebraic symmetry condi-
tion, whose expression is better rendered by introducing the decompositions:

S = FN+ d⊗ q, M = FM+ d⊗m, G = FG+ d⊗ g, (3)

where N, M, and G are tangential tensor fields, that is superficial tensor
fields whose range at a given point x is orthogonal to n(x) (the referential
normal), and q, m, and g are tangential vector fields. We refer to N and q
as, respectively, the membrane-force tensor and the shear-force vector. One
may interpret N and M as the two-dimensional counterparts of the Cosserat
stress (also known as second Piola–Kirchhoff stress). With (3), the scalar
symmetry condition that complements (2) is

skwÑ = 0, (4)

where Ñ, defined by
Ñ = N− GM⊤, (5)

is the effective membrane-force tensor.
Our second result, which relies heavily on the decompositions (3) is the

representation

Wint(P)[ẏ, ḋ] =

∫
P

(
Ñ · Ė+M · K̇+ q̃ · ṡ

)
dS (6)

for the internal power , where q̃ = q−Mg is the effective shear vector, and

E =
1

2
(F⊤F − P), K = F⊤G−∇n, s = F⊤d, (7)

account, respectively, for in plane strain, bending, and shearing. The tensor
fields E, K and the vector field g vanish when the shell is in the reference
configuration, and are invariant under a change of observer, thus they may be
considered as appropriate measures of strain. We remark that the expressions
(7) are not postulated, but rather follow from the decompositions (3) by
working out the expression of the internal power.
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The expression (6) of the internal power suggests that constitutive pre-
scriptions should be provided for Ñ, M, and q̃, and that these quantities
should depend on E, K, and s. Evidently, these prescription should be con-
sistent with the symmetry requirement (4). To exploit these constitutive
equations, the equations of equilibrium (1)1 and (2) should be rewritten as:

div(FN) + (divq)d+Gq+ b = 0,

d× (div(FM)− F q̃+ c) = 0.
(8)

The substitution of the expressions of the strain measures (7) into the con-
stitutive equations then leads to a system of governing equations for the
unknowns y and d.

We next turn our attention to unshearable shells, characterized by the
internal constraint:

F⊤d = s ≡ 0. (9)

For unshearable shells, we have m = 0 and g = 0, so that FM = M and
q̃ = q. Furthermore, the bending tensor K can be written as

K = −n∇F −∇n, (10)

where n∇F denotes the tangential tensor defined such that (n∇F ) · A =
∇F · (n⊗A) for every second-order superficial tensor A. Thus, unshearable
shells are in all respects bodies of second-gradient.

For an unshearable shell, the shear vector q is a reactive term that can
be eliminated from the equilibrium equations, leading to the system

PdivN +GF−1(divM + c) + Pb = 0,

div(F−1(divM + c))−G ·N + n · b = 0,
(11)

where P = I−n⊗n is the orthogonal projection on the space perpendicular
to n,

N = FN = PS, (12)

and F−1 is the pseudo-inverse of F , that is, given a point x in S, F−1(x) is
the inverse of F (x) when its domain and its codomain are restricted to TxS
and Ty(x)S, respectively.

In particular, if the reference configuration coincides with the deformed
configuration (this choice is possible, in principle, even if the deformed con-
figuration is not known), then F = F−1 = P (we recall that P = I−n⊗n is
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the orthogonal projector on the tangent space in the reference configuration),
and the above equations reduce to

PdivN +∇n(divM + c) + Pb = 0,

div(PdivM + c)−∇n ·N + n · b = 0.
(13)

The system (13) can also be obtained by a formal linearization of the equi-
librium equations (11) for small departures from the reference configuration,
granted that the reference configuration is stress-free. For a transversely-
isotropic shell, the linear constitutive equations read:

N = h
(
2µε+

2µλ

2µ+ λ
(trε)P

)
+
h3

12
∇n

(
2µκ+

2µλ

2µ+ λ
(trκ)P

)
,

M =
h3

12

(
2µκ+

2µλ

2µ+ λ
(trκ)P

)
.

(14)

Here h is the thickness of the shell, µ and λ are the Lamé moduli of the
material that comprises the shell, and

ε =
1

2
(P∇v +∇v⊤P) + w∇n,

κ = −P∇∇w +∇n∇v +∇v⊤∇n+ w(∇n)2 + Pv∇∇n,
(15)

are the linear strain and bending tensors, with w and v, respectively, the
normal and the tangential component of the displacement. Here, consistent
with the notation introduced in (10), we denote by v∇∇n the superficial
tensor such that v∇∇n ·A = ∇∇v ·(v⊗A) for every second-order superficial
tensor A. Note that ∇n = ∇n⊤ and, thus, that (∇n)n = 0, whence it
follows that ∇n is a symmetric superficial tensor field. As a consequence, ε
and κ are symmetric superficial tensor fields. If the shell is stressed in its
reference configuration, the linearization of the equilibrium equations and of
the constitutive equations gives rise to additional terms, both in the equi-
librium equations (13) and in the constitutive equations (14). The explicit
form of these terms is also determined.

To illustrate the benefits of a coordinate-free approach, we specifically
carry out the linearization of the governing equations for an internally pres-
surized spherical shell. As a result, thanks to the coordinate-free approach,
we obtain the motion equations of the shell in terms of well-recognizable and
familiar differential operators, such as gradient, divergence, and Laplacian,
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applied to the normal and tangential components of the displacement field.
As a further result, we derive the characteristic equations that determine the
natural frequencies and mode shapes. This task is greatly simplified by the
notably simple form that the aforementioned differential operators take when
applied to spherical harmonics.

2. Thin-shells - preliminaries

We use the symbol E to denote the ambient three-dimensional Euclidean
point space. We denote by TE the translation space of E . We refer to the
elements of E as points and to the elements of TE as vectors. We use the
term second-order tensor to refer to a linear transformation from TE to TE ,
and we denote the space of such transformations by Lin(TE , TE). We use
the term third-order tensor any linear transformations that maps vectors into
tensors or tensors into vectors. When a third-order tensor A is treated as
a linear transformation of vectors into tensors, we represent its action on a
vector a by Aa. Conversely, when A is regarded as a linear transformation
of tensors into vectors, we denote its action on a second-order tensor A by
AA. We use a dot to denote the standard scalar product between vectors
or second-order tensors. Furthermore, we let aA be the unique second-order
tensor such that aA · A = A · a⊗ A = a · AA for every second-order tensor
A.

In what follows, S is a smooth oriented surface whose positive unit normal
field is denoted by n. Given a point x ∈ S, TxS is the linear space of vectors
orthogonal to n(x). We shall make frequent use of the orthogonal projector
on TxS:

P(x) = I − n(x)⊗ n(x). (16)

A vector field v such that v ·n = 0 everywhere on S is called tangential. A
tensor field A on S is superficial if An = 0 everywhere on S. A superficial
tensor field A that satisfies A⊤n = 0, i.e., has range perpendicular to n
everywhere on S, is also called tangential. Equivalently, a tangential field
A is superficial if and only if PA = A. We shall use bold slanted fonts for
tangential tensor fields that are not superficial, and bold sans-serif upright
fonts for superficial tensor fields.

We refer to Appendix A.1 for the definition of differential operators acting
on scalar, vector, and tensor fields on S. In particular, for the definition of
the gradient operator ∇ and of the allied divergence div operator, alongside
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with a version of the divergence theorem for tangential vector and tensor
fields on a surface.

The kinematical descriptors of the shell are: a smooth, invertible place-
ment y : S → E , which maps S into another smooth surface S; a director
field d : S → U , which maps S on the unit sphere U ⊂ TE .

We require that ∇y(x)+d(x)⊗n(x) be invertible for all x ∈ S. This re-
quirement guarantees that ∇y(x) is invertible when its domain and codomain
are restricted, respectively, to TxS and Tx(y)S, and that the director d(x)
does not belong to Ty(x)S, the tangent space of S at the point y(x). In the
reference configuration the deformation is y(x) = x and the director field is
given by d(x) = n(x) for all x ∈ S. Granted the smoothness of y(·), the
surface S admits a unit normal everywhere, as given by

n =
(∇y)⋆n

|(∇y)⋆n|
, (17)

with A⋆, the cofactor of A, being the unique tensor such that Av ×Aw =
A⋆(v ×w) for all pairs of vectors v and w.

3. Part-wise equilibrium equations.

We assume that there exist two superficial tensor fields S and M such
that the external power expended on an open subset P of the surface S is
given by

Wext(P)[ẏ, ḋ] =

∫
∂P

(SnP · ẏ +MnP · ḋ) +
∫
P
(b · ẏ + c · ḋ), (18)

where nP is the tangential field on ∂P that has unit magnitude, is orthogonal
to ∂P , and points away from P . The vector fields SnP and MnP are the
line densities of, respectively contact forces and contact couples acting on P
through ∂P . We refer to b and c, respectively, as the referential densities of
the body force and the body couple.

Since d is a unit vector, it is orthogonal to ḋ. Thus the term MnP · ḋ
in the expression of the expended power (18) depends only on the projection
of MnP on the orthogonal complement of d. We therefore assume, without
loss of generality, that the range of M is orthogonal to d, namely that

M⊤d = 0. (19)
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We require that the external power be invariant under the superposition of
a rigid velocity field

ẏ 7→ ẏ + v +W (y − o),

ḋ 7→ ḋ+Wd,
(20)

where v is a constant vector, W is a constant skew-symmetric tensor, and o
is the point corresponding to some chosen origin; this requirement leads to
the part-wise balance equations∫

∂P
Sn+

∫
P
b = 0,∫

∂P
(Sn ∧ (y − o) +Mn ∧ d) +

∫
P
(b ∧ (y − o) + c ∧ d) = 0,

(21)

where a ∧ b = a ⊗ b − b ⊗ a. As shown in Appendix A.2, the use of the
divergence theorem yields∫

P
(divS + b) = 0,∫

P

(
(divM + c) ∧ d+ (divS + b) ∧ (y − o) + 2skw(S∇y⊤ +M∇d⊤)

)
= 0,

(22)
where, for A a tensor, skwA = 1

2
(A − A⊤) is the skew-symmetric part of

the second-ordet tensor A.

4. Point-wise equilibrium equations.

Henceforth we set
F = ∇y, G = ∇d. (23)

We note that, since d · d = 1, ∇d⊤d = 0, that is,

G⊤d = 0. (24)

Thanks to the arbitrariness of the part P in (22), a standard localization
argument yields the point-wise equilibrium equations (1), which we repeat
below for the reader’s convenience:

divS + b = 0, (25a)

skw
(
(divM + c)⊗ d+ SF⊤ +MG⊤) = 0. (25b)
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The first of (25) coincides with (4.9) of DiCarlo et al. (2001); the second can
be obtained by combining (5.14) with (4.23b) of DiCarlo et al. (2001).

Equation (25b) is equivalent to two scalar partial-differential equations,
and one scalar algebraic equation. To verify this assertion, let us consider
any vector field perpendicular to d. With a slight abuse of notation, let us
denote such vector by ḋ (later, we will use the results obtained here with ḋ
being the actual rate of change of d). On taking the scalar product of both
sides of (25b) with 2ḋ⊗ d we obtain

ḋ · (divM + c) = 2ḋ · skw(FS⊤ +GM⊤)d. (26)

Using (19) and (24), we see that GM⊤d = MG⊤d = 0, and hence, on
setting

l = 2skw(FS⊤)d, (27)

we find that (26) can be expressed as

ḋ · (divM + c) = ḋ · l. (28)

Thus, a first consequence of (25b) is

d× (divM + c− l) = 0, (29)

which is equivalent to two scalar partial-differential equations. The other
consequence of (25b) is obtained by pre-multiplying and post-multiplying
(25b) by P d = I − d⊗ d. This yields, in view of (19)–(24),

skw(P dSF
⊤P d +MG⊤) = 0. (30)

By construction, the left-hand side of (30) is a skew-symmetric tensor that, at
a given point x of S, maps the orthogonal complement of d(x) into itself, thus
has rank at most one. Therefore, (30) is equivalent to one scalar equation.

We will see shortly that (30) can be cast in a form that looks more
convenient in the light of the constitutive theory that we develop below, the
starting point of which is an expression of the internal power in terms of
appropriate strain tensors. As a preliminary step, we next introduce suitable
decompositions of the tensorial quantities of interest.
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5. Decomposition

As a preliminary step, we introduce a particular pseudo-inverse of F .
First, we set

F̃ = F + d⊗ n. (31)

In Section 2, we assumed that F̃ (x) be an invertible tensor. As a consequence
of that assumption, we can define the inverse F−1 of F by

F−1 = PF̃
−1
, (32)

where we recall from (16) that P(x) is the orthogonal projector on TxS, the
tangent space of S at x. We observe that F̃

−1
d = n, so that

F−1d = 0. (33)

We also observe that F̃ is a bijection between the orthogonal complement of
n and the orthogonal complement of n. Thus, for every vector v such that
v ·n = 0, we have F̃

−1
v ·n = 0, whence v ·F̃

−⊤
n = 0. Thus, F̃

−⊤
n is parallel

to n and therefore we can write F̃
−⊤
n = αn for some α ∈ R. Then, by (33),

we have αd · n = d · F̃
−⊤

n = F̃
−1
d · n = 1. Altogether, we have

F̃
−⊤

n = (d · n)−1n. (34)

Using (32)–(33), we compute F−1F = PF̃
−1
F = PF̃

−1
(F̃ − d ⊗ n) =

P − PF̃
−1
d ⊗ n = P − F−1d ⊗ n = P. Likewise, using (34) we write

FF−1 = (F̃ −d⊗n)(I−n⊗n)F̃
−1

= I− F̃ n⊗ F̃
−⊤
n = I−d⊗ (d ·n)−1n.

In conclusion, we have established that

F−1F = P, (35a)

FF−1 = P d, (35b)

where
P d = I − (d · n)−1d⊗ n. (36)

We notice that P d is the identity on the orthogonal complement of n, and
that

P dd = 0. (37)
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Additional discussion concerning F−1 is contained in Appendix A.3.
The introduction of the pseudo-inverse F−1 opens the way to a convenient

decomposition of the tensorial quantities of interest. As to the tensor field S,
we can write S = IS = P dS+(d·n)−1(d⊗n)S = FF−1S+(d·n)−1d⊗S⊤n.
Thus, on setting

N = F−1S and q = (d · n)−1S⊤n, (38)

we have the decomposition

S = FN+ d⊗ q. (39)

We note that, since the range of F−1 is orthogonal to n, the tensor field N is
superficial, i.e., N maps tangential tensors into tangential tensors. Likewise,
since S is tangential (i.e. Sn = 0), the vector field q is tangential. We
shall refer to N and q, respectively, as the membrane-force tensor and the
shear-force vector.

The argument leading to (38) can be repeated to obtain the decomposi-
tions

M = FM+ d⊗m, G = FG+ d⊗ g, (40)

where M and G are superficial tensor fields and m and g are tangential
tensor fields. Concerning (40), we observe for later use that, since M⊤ and
G⊤ annihilate d (recall (19) and (24)), we have

M⊤F⊤d+m = 0, G⊤F⊤d+ g = 0, (41)

Using the decompositions (39), (40), and (51), we can rewrite (25a) and
(25b), respectively as

div(FN) + (divq)d+Gq+ b = 0, (42)

and

skw((div(FM) + c− F (q−Mg))⊗ d+ F (N− GM⊤)F⊤) = 0. (43)

Now, we pre-multiply and post-multiply both sides of (43) by F−1 and F−⊤.
Since F−1d = 0, we obtain F−1 skw(F (N − GM⊤)F⊤)F−⊤ = 0, that is,
skw(F−1F (N−GM⊤)F⊤F−⊤) = 0. Recalling the first of (35a), and noting
that N, G, and M are superficial tensor fields, we arrive at the following
symmetry condition:

skw(N− GM⊤) = 0. (44)
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Thus, (43) reduces to skw
(
(div(FM) + c− F (q−Mg))⊗ d

)
= 0, which can

be recast as
d× (div(FM) + c− F (q−Mg)) = 0. (45)

Equations (44) and (45) are equivalent to, respectively, (30) and (29).

6. Internal power and strain measures

6.1. Internal power
Starting from the definition of external power in (19), using the divergence

theorem and exploiting the equilibrium equations (25a) and (29), we write

Wext(P)[ẏ, ḋ] =

∫
P

(
S · Ḟ + (divS + b) · ẏ +M · Ġ+ (divM + c) · ḋ

)
=

∫
P

(
S · Ḟ +M · Ġ+ l · ḋ

)
. (46)

Motivated by (46), we define, for every part P , the internal power expended
on a a pair (ẏ, ḋ) with d · ḋ = 0 as

Wint(P)[ẏ, ḋ] :=

∫
P

(
S · Ḟ +M · Ġ+ l · ḋ

)
. (47)

The definition (47) applies for any assignment of the tensors field S, M ,
and of the vector field l, irrespectively of whether these fields satisfy the
equilibrium equations (25a) and (29). The calculations in (46) show, however,
that if the equilibrium equations (25a) and (29) hold, then the external power
and the internal power coincide:

Wint(P)[ẏ, ḋ] = Wext(P)[ẏ, ḋ]. (48)

6.2. Strain measures
We next exploit the decompositions (39) and (40) to obtain an alternative

expression of the internal power in terms of rates of suitable strain descrip-
tors. We begin with the first term under integral sign on the right-hand side
of (47). By (39), we can write

S · Ḟ = FN · F + d⊗ q · Ḟ = N · F⊤Ḟ + q · Ḟ⊤
d. (49)
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We next turn our attention to the second term under integral sign in (47).
Using the decompositions (40), we obtain

M · Ġ = (FM+ d⊗m) · Ġ = M · F⊤Ġ+ Ġ
⊤
d ·m

= M · ˙
F⊤G−M · Ḟ⊤

G+
˙

G⊤d ·m−G⊤ḋ ·m

= M · ˙
F⊤G−GM⊤ · Ḟ +

˙
G⊤d ·m−Gm · ḋ

= M · ˙
F⊤G− FGM⊤ · Ḟ − (d⊗ g)M⊤ · Ḟ +

˙
G⊤d ·m

− FGm · ḋ− (d⊗ g)Gm · ḋ

= M · ˙
F⊤G− GM⊤ · F⊤Ḟ −Mg · Ḟ⊤

d

+
˙

G⊤d ·m− Gm · F⊤ḋ. (50)

In the last of the above chain of equalities we have used the orthogonality
between ḋ and d to eliminate the last term in the fourth line.

We now consider the last term of the integrand in (47). Using (34) and
(36), we write l = Il = Pd l+(d ·n)−1(d⊗n)l = FF−1l+(d ·n)−1(l ·n)d.
We then set ℓ = F−1l and λ = (d · n)−1l · n, giving

l = Fℓ+ λd, (51)

thus, can write
l · ḋ = Fℓ · d+ λd · ḋ = ℓ · F⊤ḋ. (52)

Combining (49), (50), and (52), we obtain

Wint(P)[ẏ, ḋ]

=

∫
P

(
(N−GM⊤)·F⊤Ḟ+M· ˙

F⊤G+(q−Mg)·Ḟ⊤
d+(ℓ−Gm)·F⊤ḋ

)
.

(53)

We now return to the definition of l in (27), and we use, in order, the de-
composition (39) of S, the symmetry condition (44), and the relations (41)
to obtain

l = FS⊤d− SF⊤d

= FN⊤F⊤d+ Fq− FNF⊤d− (Fq · d)d
= Fq− (Fq · d)d+ FGM⊤F⊤d− FGM⊤F⊤d

= Fq− (Fq · d)d+ FGm− FMg. (54)

16



Since the decomposition (51) is unique, from (54) we deduce that

ℓ = q+ Gm−Mg. (55)

Using (55), and bearing in mind that N − GM⊤ is symmetric, we obtain,
from (53), the following representation for the internal power:

Wint(P)[ẏ, ḋ] =

∫
P

(
(N−GM⊤)· 1

2

˙
F⊤F +M· ˙

F⊤G+(q−Mg)· ˙
F⊤d

)
. (56)

The representation (56) of the internal power motivates us to set

Ñ = N− GM⊤, q̃ = q−Mg, (57)

and to introduce the strain measures

E =
1

2
(F⊤F − P), K = F⊤G−∇n, s = F⊤d, (58)

where we recall that P(x) is the orthogonal projection on TxS. We note on
passing that the strain measures vanish when y(x) = x and d(x) = n(x),
i.e., when the shell is in its reference configuration. By making use of (57)
and (58), we can express (56) as

Wint(P)[ẏ, ḋ] =

∫
P

(
Ñ · Ė+M · K̇+ q̃ · ṡ

)
. (59)

We call E, K, and s, respectively, the stretching tensor, the bending tensor,
and the shear vector.

6.3. Dissipation principle
For ψ the free-energy density per unit reference area, the dissipation

principle asserts that

d

dt

∫
P
ψ ≤ Wext(P)[ẏ, ḋ] = Wint(P)[ẏ, ḋ], (60)

during every admissible process. The arbitrariness of the part P in (60)
yields, by localization, the point-wise version

ψ̇ ≤ Ñ · Ė+M · K̇+ q̃ · ṡ (61)
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of the dissipation principle. Motivated by the form of the right-hand side
of (61), we select as state variables the strain measures E, K and s, and we
assume that the free-energy density ψ obeys the constitutive equation:

ψ = ψ̂(E,K, s). (62)

Then, on requiring, in the manner introduced by Coleman and Noll (1963),
that (61) be satisfied for whatever local continuation of any conceivable pro-
cess, we obtain the constitutive equations:

Ñ = ∂Eψ̂(E,K, s),

M = ∂Kψ̂(E,K, s),

q̃ = ∂sψ̂(E,K, s).

(63)

The equilibrium equation (44), namely

skw Ñ = 0, (64)

is identically satisfied. The remaining equilibrium equations, namely (42)
and (45), can now be written in terms of Ñ, M and q̃:

div(F (Ñ+ GM⊤)) + div(q̃+Mg)d+G(q̃+Mg) + b = 0,

d× div(FM+ c− F q̃) = 0;
(65)

(65) can be cast into a system of partial differential equations where the
unknown quantities are the deformation y and of the director field d. In
fact, Ñ, M, and s depend, through the constitutive equations (63), on the
strains E, K, and s, which in turn can be expressed in terms of F = ∇y,
G = ∇d, and d. Likewise the superficial tensor field G defined in the second
equation of (40) can be expressed in terms of E and K:

G = F−1G = F−1F−⊤F⊤G = (F⊤F )−1(K+∇n) = (2E+ P)−1(K+∇n).
(66)

Finally, g is determined by F , G, and d through the second of (41). Thus,
using the definitions of the strain measures, (66), and the second of (41),
we can write the system of partial differential equations (65) in terms of the
deformation y and the director field d.

It is worth noting that the tangential vector m appearing in the decom-
position of M in (40) does not appear in the power expenditure or in the
equilibrium equations.
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7. Unshearable shells

For an unshearable shell, the shear vector defined in (58) vanishes along
every evolution process:

s = F⊤d = 0, (67)

that is, the director d is orthogonal to the range of the deformation gradi-
ent F = ∇y. At a given point x, there are only two unit vectors with this
property, namely, n(x) and −n(x). Moreover, d(x) = n(x) when the shell
is in its reference configuration. Thus, if we maintain that the current con-
figuration is connected with the reference configuration by a smooth family
of maps satisfying (67), we must have

d = n(F ) =
F ⋆n

|F ⋆n|
, (68)

a formula which shows that the current configuration of the shell is deter-
mined solely by the deformation y : S → S. As a result, the bending tensor
K defined in (58) can be expressed in terms of F and ∇F . Indeed, by taking
the gradient of F⊤n = 0, we obtain F⊤∇n+n∇F = 0, which implies that

F⊤G = −n(F )∇F , (69)

whence
G = −F−⊤(n(F )∇F ). (70)

Note that, by construction, F⊤G is a superficial tensor field. In addition,
the third-order tensor field ∇F = ∇∇y, regarded as a vector-valued bilinear
form, is symmetric on tangential fields (see Šilhavý (2013)), i.e., ∇F (a⊗b) =
∇F (b⊗ a) for every pair a and b of tangential vectors. Accordingly, for any
such pair we have (F⊤G) · (a⊗ b) = −(n∇F ) · (a⊗ b) = n · (∇F (a⊗ b)) =
n · (∇F (b⊗ a)) = (F⊤G) · (b⊗ a). Thus, F⊤G is symmetric. Likewise, the
bending strain K introduced in (58), namely

K = F⊤G−∇n = −n∇F −∇n, (71)

is a symmetric tensor field. Observe also that, granted (68), the projection
tensor P d coincides with the orthogonal projection

P = I − n⊗ n. (72)
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For the vector m in the first of (40) we now have, by (19) and by (67),
m = (M⊤ − M⊤F⊤)d = M⊤d − M⊤F⊤d = 0. Likewise, by (24), (40),
and (41), we have g = (G⊤ − G⊤F⊤)d = G⊤d − G⊤F⊤d = 0. Moreover,
the scalar λ in the decomposition (51) vanishes. Accordingly, (39), (40), and
(51) are now replaced by

S = FN+ n⊗ q, M = FM, G = FG, l = Fℓ. (73)

Since g = 0, the shear-force vector q and the effective shear-force vector q̃
defined in (57) coincide:

q̃ = q. (74)

We find it convenient to introduce the tensor

N = FN. (75)

The equilibrium equation (42) can then be written as:

divN + (divq)n+Gq+ b = 0. (76)

On projecting (76) on the tangent plane Ty(x)S ′ and along n, and on observ-
ing that, since N⊤n = 0, n · divN = div(N⊤n) −∇n ·N = −∇n ·N =
−G ·N , we obtain

PdivN +Gq+ Pb = 0,

divq−G ·N + n · b = 0.
(77)

Next, we write the equilibrium equation (29) as

PdivM + c− Fq = 0. (78)

We multiply both sides of (78) by the pseudoinverse F−1 of F ; on recall-
ing that F−1F = P, that FF−1 = P , and on observing that F−1P =
F−1(FF−1) = F−1, we get

q = F−1(divM + c). (79)

Using (79), the reactive shear force q appearing in (77) can be eliminated,
so that the following system is arrived at:

PdivN +GF−1(divM + c) + Pb = 0,

div(F−1(divM + c))−G ·N + n · b = 0.
(80)
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The above system is supplemented by constitutive equations for N and M .
Bacause of the internal constraint (67), the shear vector does not enter the
free energy density, and the constitutive equations (63) are replaced by

Ñ = ∂Eψ̃(E,K), M = ∂Kψ̃(E,K). (81)

On recalling that N = Ñ+GM⊤, we can write N = FN = F (∂E(ψ̃(E,K) +
G(∂Kψ̃)⊤(E,K)) = F ∂Eψ̃(E,K) +G(∂Kψ̃)

⊤(E,K). Thus, we obtain the con-
stitutive equations

N = F ∂Eψ̃(E,K) +G(∂Kψ̃)
⊤(E,K),

M = F ∂Kψ̃(E,K).
(82)

For a transversely-isotropic shell, a standard choice for the free energy is

ψ̃(E,K) =
1

2
hC(E− E0) · (E− E0) +

1

2

h3

12
C(K−K0) · (K−K0), (83)

where E0 and K0 are given pre-strains, and where the fourth-order tensor
C maps superficial tensors into superficial tensors according to the following
rule:

CA = 2µA+
2µλ

2µ+ λ
(trA)P, (84)

where µ and λ are the Lamé moduli, related to the Young’s modulus and
Poisson coefficient by the relations

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
. (85)

Then, the constitutive equations (82) take the form

N = F N̊+GM̊+ hFCE+
h3

12
GCK,

M = F M̊+
h3

12
FCK,

(86)

with
N̊ = −hCE0 −∇n

h3

12
CK0,

M̊ = −h
3

12
CK0.

(87)
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8. Linearization

8.1. Setup
We consider an ε-parametrized family of deformations

y(x) = x+ ε
1
u(x), (88)

and for convenience we introduce a splitting

ε
1
u = u = wn+ v, v · n = 0. (89)

of the displacement u = ε
1
u into its normal component w and tangential

component v. Next, we assume that

sup
x∈S

( |u(x)|
diam(S)

+ |∇u(x)|
)
≪ 1, (90)

that is, the displacement |u| is small compared to the characteristic length of
the reference domain S and |∇u| is small as well. We assume that the body
couple vanishes and that the body force admits the following expansion:

b = b̊+ ε
1

b +o(ε). (91)

Likewise, we assume that the tensors N and M admit the following expan-
sions:

N = N̊+ ε
1

N + o(ε), M = ε
1

M + o(ε), (92)

with N̊ and b̊ satisfying the system

P(divN̊+ b̊) = 0,

−∇n · N̊+ n · b̊ = 0,
(93)

which follows by enforcing the equilibrium equations (80) for ε = 0.

8.2. The linear problem
By linearizing the equilibrium equations (80) and of the constitutive equa-

tions (86), we aim to show that the quantities

N = ε
1

N , M = ε
1

M , b = ε
1

b, (94)
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obey
PdivN+∇n(divM) + Pb = 0,

div(PdivM)−∇n ·N+ N̊ · (∇∇w −∇n∇v − v∇∇n)

+ b̊ · (∇nv −∇w) + n · b = 0, (95)

with

N = ∇uN̊+ h
(
2µε+

2µλ

2µ+ λ
(trε)P

)
+
h3

12
∇n

(
2µκ+

2µλ

2µ+ λ
(trκ)P

)
,

M =
h3

12

(
2µκ+

2µλ

2µ+ λ
(trκ)P

)
, (96)

where

ε =
1

2
(P∇v +∇v⊤P) + w∇n,

κ = −P∇∇w +∇n∇v +∇v⊤∇n+ w(∇n)2 + P (v∇∇n),
(97)

are the linear strains.
In the special case when N̊ = 0, the equilibrium equations (95) take the

form:
PdivN+∇n(divM) + Pb = 0,

div(PdivM)−∇n ·N+ n · b = 0.
(98)

8.3. Derivation of (95)–(97)
Observing that ∇x = P, from (88) we obtain

F = P+∇u = P+ ε∇ 1
u. (99)

For the normal vector n we assume the expansion

n(ε) = n+ εϕ+ o(ε). (100)

Since |n| = 1, the vector ϕ must be perpendicular to n:

ϕ · n = 0. (101)

Thus, Pϕ = ϕ and hence the requirement F⊤n = 0 yields

ϕ = −∇ 1
u⊤n. (102)
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It then follows that the projection P = I − n ⊗ n admits the expansion
P (ε) = P− ε(ϕ⊗ n+ n⊗ ϕ) + o(ε), which, in view of (102), yields

P (ε)
.
= P+ ε(∇ 1

u
⊤
n⊗ n+ n⊗ n∇ 1

u), (103)

where the symbol .
= denotes equality up to the order ε. Furthermore, for

the tensor G = ∇n we have the expansion G
.
= ∇n + ε∇ϕ, which entails,

because of (102),
G

.
= ∇n− ε∇(∇ 1

u⊤n). (104)

Using (99) and (104), and noting that P∇n = ∇n, we obtain the expansions

E =
1

2
(F⊤F − P) =

1

2
((P+ ε∇ 1

u⊤)(P+ ε∇ 1
u)− P)

.
= ε

1

E,

K = F⊤G−∇n
.
= (P+ ε∇ 1

u)⊤(∇n− ε∇(∇ 1
u⊤n))−∇n

.
= ε

1

K,

(105)

for the strain tensors E and K defined in (58), with

1

E =
1

2
(P∇ 1

u+∇ 1
u⊤P) and

1

K = −P∇(∇ 1
u⊤n) +∇ 1

u⊤∇n. (106)

We observe that both
1

E and
1

K vanish on a rigid displacement. Indeed, any
such displacement has the representation

1
uR(x) =

1
u0 +

1

Wx, (107)

with
1

W = −
1

W⊤, so that

∇ 1
uR =

1

W∇x =
1

WP. (108)

Substitution of (108) into (106) yields
1

E = 1
2
(P

1

WP + P
1

W⊤P) = 0 and
1

K = −P
1

W⊤∇n+ P
1

W⊤∇n = 0, as claimed.
On using the decomposition (89), we can write

ε
1

E =
1

2
(P∇v +∇v⊤P) + w∇n =: ε. (109)

Moreover, noting that ε∇ 1
u⊤n = ε∇(

1
u ·n)−ε∇n

1
u = ε∇(

1
u ·n)−ε∇nP

1
u =

∇w − ∇nv, so that −εP∇(∇ 1
u⊤n) = −P∇∇w +∇n∇v + P(v∇∇n), and
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noting also that ε∇ 1
u⊤∇n = w(∇n)2 + (∇w⊗n)∇n+∇v⊤∇n = w∇n2 +

∇v⊤∇n, we obtain

ε
1

K = −P∇∇w +∇n∇v +∇n∇v + w∇n2 + P(v∇∇n) =: κ. (110)

On recalling (92), the linearization of the constitutive equations (86) yields

N
.
= N̊+ ε

1

N , M
.
= ε

1

M , (111)

with
1

N = ∇ 1
uN̊+ hC

1

E+
h3

12
∇nC

1

K,

1

M =
h3

12
C

1

K.

(112)

We can now substitute the above expansions into the equilibrium equations
(80). At order zero we obtain (93). Taking into account the equilibrium
equations at order zero, we obtain, at first order:

Pdiv
1

N +∇ndiv
1

M + P
1

b = 0,

Pdivdiv
1

M −∇n ·
1

N + n ·
1

b+ N̊ · ∇(∇ 1
u⊤n)−∇ 1

u⊤n · b̊ = 0.
(113)

Multiplying the first of (113) by ε and using (94) we obtain the first of
(95). Multiplying the second of (113) by ε and observing that ∇ 1

u⊤n =

∇w −∇n⊤ 1
u = ∇w −∇n

1
u = ∇w −∇nv we obtain the second of (95).

8.4. A more general case
It is also possible to derive linearized equations with a non-vanishing

initial bending moment and body couple. First, the linearization of the
constitutive equations (86) yields

N
.
= N̊+ ε

1

N , M
.
= M̊+ ε

1

M , (114)

where

1

N = ∇ 1
uN̊− (∇(∇ 1

u⊤n) +∇ 1
u∇n)M̊+ hC

1

E+
h3

12
∇nC

1

K,

1

M = ∇ 1
uM̊+

h3

12
C

1

K.

(115)
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The equilibrium equations at zeroth order are

PdivN̊+∇n(divM̊+ c̊) + P̊b = 0,

div(PdivM̊+ c̊))−∇n · N̊+ n · b̊ = 0.
(116)

Next, we need to compute the linearization of the pseudo-inverse. At first
order, we have the expansion

F−1(ε) = P+ εL+ o(ε), (117)

for some tensor L. To identify L, we recall that F−1F = P. Then, on
combining (99) and (117) we obtain F−1(ε)F (ε) = P+ε(LP+P∇ 1

u)+o(ε).
Thus,

LP = −P∇ 1
u. (118)

Moreover, recalling that the pseudo-inverse F−1 annihilates d = n, we write
0 = F−1(ε)n(ε) = (P+ εL+ o(ε))(n+ εϕ+ o(ε)) = ε(Ln−∇ 1

u⊤n) + o(ε),
to obtain

Ln = ∇ 1
u⊤n. (119)

Since L = L(P + n ⊗ n) = L + (Ln) ⊗ n, on combining (118) and (119)
we obtain the following expression for the first-order term in the expansion
of F−1(ε):

L = −P∇ 1
u+∇ 1

u⊤n⊗ n. (120)

Substituting in to the equilibrium equations we obtain, at first order,

Pdiv
1

N +∇n(div
1

M +
1
c) + P

1

b

+ (−∇(∇ 1
u⊤n) +∇ 1

u⊤n⊗ n− P∇ 1
u)(divM̊+ c̊) = 0.

div(P(div
1

M +
1
c))−∇n ·

1

N + n ·
1

b+ div((∇ 1
u⊤n⊗ n− P∇ 1

u)(divM̊+ c̊))

+ N̊ · ∇(∇ 1
u⊤n)− (n⊗ b̊) · ∇ 1

u = 0. (121)

9. Application: free vibrations of a pressurized spherical shell

As an application of the theory, we deduce and solve the equations that
govern the free vibrations of a pressurized spherical shell. For a generic
geometry, incremental equations governing equilibrium for small departures
from a pre-stressed reference configuration may be found in (Timoshenko
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and Gere, 1961, p. 452) and in Zubov (1976, 1985). A set of equations
obtained by a systematic linearization of non-linear theory has been carried
out more recently in Altenbach and Eremeyev (2014). For a spherical shell,
incremental equilibrium equations can also be found in (Flügge, 1962, p.
262). More recently, the equations that govern axisymmetric oscillations of
pressurized spherical shell have been derived and studied by Kuo et al. (2015),
where the contribution of the pre-stress induced by the internal pressure is
accounted for by an ad hoc argument.

To maintain a manageable complexity in the equations, coordinate-based
treatments are usually restricted to axisymmetric solutions, and often neglect
bending contributions (see for instance Baker (1961); Flügge (1962); Rand
and DiMaggio (1967)). On the contrary, our concise notation alleviates the
need for such assumptions. Still, to underscore the key aspects of the lin-
earization process, we will initially set aside bending moments, introducing
them subsequently.

9.1. The reference state
We suppose that the body admits an equilibrium state, which we refer to

as the reference state, where its material elements occupy a spherical surface
of radius R, under the action of the body-force field

b̊ = pn, (122)

and a null body-couple field. We assume that in the reference state

N̊ =
pR

2
P, M̊ = 0. (123)

To verify that the body-force field (122) equilibrates the stress fields (123)
we observe that, since, for a sphere of radius R,

∇n =
1

R
P, (124)

we have divP = div(I − n⊗ n) = −(∇n)n]− (P · ∇n)n = −(2/R)n, and,
hence,

divN̊ =
pR

2
divP = −pn = −b̊, (125)

and
N̊ · P = p. (126)

Thus the equilibrium equations (93) are satisfied.
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9.2. Perturbed states
We suppose that the body force and body couple in a generic state are

given by:
b = pF ⋆n− hρu′′, c = 0. (127)

We recall that F ⋆ is the cofactor of F , and that F ⋆(x)n(x) is the vector
pointing in the direction of n(x), with intensity being the ratio between an
infinitesimal surface element placed at x in the reference configuration and
the area of its image under the deformation y.

We next evaluate (127) for small departures from the reference state. To
begin with, we observe that

F ⋆n = det(F + n⊗ n)n. (128)

One way to verify (128) is as follows. Let a and b two tangent vectors
in the reference configuration such that n = a × b. Then, F a and Fb
are tangent to S and are linearly independent, since F is injective. Thus,
F ⋆n = F ⋆(a× b) = F a×Fb is parallel to n. Also, for F̃ = F +n⊗n, we
have F̃ n = n, F̃ a = F a, and F̃b = Fb. Since F ⋆n is parallel to n, we have
F ⋆n = (n · F ⋆n)n. Moreover, n · F ⋆n = n · F a× Fb = F̃ n · F̃ a× F̃b =

det(F̃ )(n · a× b) = det(F + n⊗ n), whence (128).
Now, we can use (99) and (100) to write det(F +n⊗n) = det(P+n⊗

n+ ε∇ 1
u+ (n−n)⊗n) = det(I + ε∇ 1

u+ (n−n)⊗n) = det(I + ε(∇ 1
u+

ϕ⊗n)+o(ε))
.
= 1+εtr(∇ 1

u) = 1+εP ·∇ 1
u = 1+εP · (∇ 1

v+
1
w∇n+n⊗∇ 1

w)

= 1 + ε(div
1
v + 2

1
w/R); thus,

det(F + n⊗ n)
.
= 1 + ε

(
div

1
v + 2

1
w

R

)
. (129)

Moreover, recalling again (100)–(102) and using (124), we find that n
.
=

n+ ε(−∇ 1
u⊤n) = n+ ε(−∇ 1

w +∇n
1
v), whence

n
.
= n+ ε

(
−∇ 1

w +
1

R

1
v
)
. (130)

By combining (127)–(130) we obtain b
.
= b̊ + ε

1

b where b̊ is given by (122)

and
1

b = p
(
div

1
v+2

1
w/R

)
n+ p

(
−∇ 1

w+
1
v/R

)
−hϱ

1
u′′. Accordingly, the force

increment in (98) is

b = ε
1

b = p
(
divv + 2

w

R

)
n+ p

(
−∇w +

1

R
v
)
− hϱw′′n− hϱv′′. (131)
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9.3. Incremental equilibrium equations: the case of null bending moment
We now write the incremental equilibrium equations (95) specialized to

the case when the shell does not resist bending. We have from (131) that
the tangential component of the force increment b is

Pb = −ϱhv′′ − p∇w +
p

R
v. (132)

Furthermore, recalling that b̊ is parallel to n, and observing that both ∇nv
and ∇w are orthogonal to n, we have from (131),

n · b+ b̊ · (∇nv −∇w) = p div v + 2p
w

R
− hϱv′′. (133)

Moreover, by (123),

N̊ · (∇∇w −∇n∇v − v.∇∇n) =
pR

2
P ·

(
∇∇w − 1

R
P∇v − 1

R
v∇P

)
=
p

2
R∆w − p

2
divv. (134)

Here we have used the relation P ·(v∇P) = 0. Indeed, given a tangent vector
a, we have (v∇P)a = −(v · ∇na)n = (n⊗∇nv)a. Thus, v∇P = n⊗∇nv.
Therefore, P · (v∇P) = P ·n⊗∇nv = Pn ·∇n⊤v = 0. By (132), (133), and
(134), the equilibrium equations (95) with M = 0 take the form:

PdivN− p∇w +
p

R
v = hϱv′′,

−∇n ·N+
p

2
R∆w +

p

2
divv + 2p

w

R
= hϱw′′.

(135)

We next employ the constitutive equations (96), with M = 0, together with
the definitions (97) yield

N =
pR

2
∇v + µh(P∇v +∇v⊤P) + λ̃h(divv)P

+
(pR

2
+ 2(µ+ λ̃)h

)w
R
P+

pR

2
n⊗∇w, (136)

where we have introduced
λ̃ =

2µλ

2µ+ λ
. (137)

29



We use the standard notation

∆v = div∇v (138)

to denote the Laplacian of v. It is shown in Appendix A.6 that the following
identities hold:

Pdiv(P∇v) = P∆v +
1

R2
v,

Pdiv(∇v⊤P) = ∇divv +
1

R2
v,

Pdiv((divv)P) = ∇divv,

Pdiv
(w
R
P
)
=

1

R
∇w,

Pdiv(n⊗∇w) = 1

R
∇w.

(139)

Using (136) and (139), we can write:

PdivN =
(p
2
+ µ

h

R

)
RP∆v + (µ+ λ̃)

h

R
(R∇divv)

+
(
p+ 2(µ+ λ̃)

h

R

)
∇w + 2µ

h

R

v

R
. (140)

Furthermore,

−∇n ·N = − 1

R
P ·N = −

(p
2
+2(µ+ λ̃)

h

R

)
divv−

(
p+4(µ+ λ̃)

h

R

)w
R
. (141)

We note that, since b̊ is parallel to n, the last term on the right-hand side of
the second of (95) vanishes.

By making use of (136)–(141), the equilibrium equations (135) take the
form( h

R
µ+

p

2

)(
RP∆v + 2

v

R

)
+
h

R
(µ+ λ̃)∇

(
Rdivv + 2w

)
= ϱhv′′,

p

2

(
R∆w + 2

w

R

)
− 2

h

R
(µ+ λ̃)

(
divv + 2

w

R

)
= ϱhw′′.

(142)

The structure of (142) is straightforward. The left-hand side of each equation
comprises two terms, each one being the product of a coefficient — dependent
on both the properties of the shell and the pressure — and a term which
consists in the action of differential operators on the normal and tangential
components of the displacement field, and which vanishes for infinitesimal
rigid displacements.
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9.4. Coordinate expression for axisimmetric motions.
Using a system of spherical coordinates (θ, ϕ) described in Appendix A.5,

we represent a time-dependent axisymmetric displacement field u(θ, ϕ, t) as
the sum

u(θ, ϕ, t) = v(θ, ϕ, t) + w(θ, t)n(θ) (143)

of a normal component w(θ, t)n(θ) and a tangential component

v(θ, ϕ, t) = v⟨θ⟩(θ, t)a⟨θ⟩(θ), (144)

where a⟨θ⟩(θ) is the first element of the physical basis.
Using the results from Appendix A.5 concerning the coordinate represen-

tation of the differential operators ∆, ∇div, div, and ∇, and recalling also
(85), we find that the first of the equations of motion (142) has only one
nontrivial component, namely, that in the direction of a⟨θ⟩:

Eh

R2(1− ν2)

(∂2v⟨θ⟩
∂θ2

+
∂

∂θ
(cot θv⟨θ⟩) + (1− ν)v⟨θ⟩ + (1 + ν)

∂w

∂θ

)
+
p

2

( 2

R

∂w

∂θ
+ cot(θ)

∂v⟨θ⟩
∂θ

+
∂2v⟨θ⟩
∂θ2

− (csc(θ))2v⟨θ⟩

)
= ρhv′′⟨θ⟩. (145)

We also find that the second equation takes the form

− Eh

(1− ν)R2

(
v′⟨θ⟩ + cotθ v⟨θ⟩ + 2w

)
+

p

2R

(∂2w
∂θ2

+ cotθ
∂w

∂θ
+ 2w

)
= ρhw′′.

(146)
For p = 0, (145) and (146) coincide, respectively, with (1) and (2) of Kuo
et al. (2015). However, the extra terms arising from p are different from those
obtained by Kuo et al. (2015). In particular, in our formulation the initial
pre-stress also affects the tangential motion of the shell. However, the extra
contribution of the normal component of the displacement that appears in
our equations of motion coincides with that in the corresponding equations
of Kuo et al. (2015).

9.5. Solutions using vector spherical harmonics
We divide both sides of (142) by µ and we introduce the dimensionless

parameters H = h/R, P = p/µ, Λ = λ̃/µ = 2λ/(2µ + λ) = 2ν/(1 − ν) ∈
[−1, 2]. Here ν ∈ [−1, 1/2] is the Poisson ratio. We also introduce the
rescaled displacements w = w/R, v = v/R, as well as the rescaled coordinates
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x = x/R and the rescaled time t = t
√
ρhR/µ. Dropping overbars, and

dividing both sides by H we arrive at the following system:(
1 +

1

2

P

H

)
(P∆v + 2v) + (1 + Λ)∇(divv + 2w) = v′′,

1

2

P

H
(∆w + 2w)− 2(1 + Λ)(divv + 2w) = w′′.

(147)

We represent the unknowns w and v as

v(x, t) =
∑
n≥1

∑
−n≤m≤n

vbnm(t)bnm(x) + vcmn(t)cmn(x) + c.c.,

w(x, t) =
∑
n≥0

∑
−n≤m≤n

wnm(t)Ynm(x) + c.c.,
(148)

where Ynm(x) are the complex spherical harmonics and bnm(x) and cnm(x)
are the complex vector spherical harmonics vector spherical harmonics on
the unit sphere. The symbol c.c. stands for complex conjugate.

Spherical harmonics are a classical tool of mathematical physics. Their
definition may be found, for example, in Morse and Feshbach (1999). For
the purposes of the present paper, it suffices to recall that the set {Ynm, n ≥
0,−n ≤ m ≤ m} is an orthonormal (with respect to the L2 scalar product),
complete system on the unit sphere, and its elements are eigenfunctions of
the Laplace operator:

−∆Ynm = s2nYnm, sn =
√
n(n+ 1). (149)

For n ≥ 1 and −n ≤ m ≤ n, the vector spherical harmonics bnm, and cnm
can be defined on the unit sphere by:

bnm =
1

sn
∇Ynm, cnm = n× bnm. (150)

Both bnm and cnm are tangential vector fields. These fields satisfy:

div bnm = −snmYnm, div cnm = 0, (151)

along with
−P∆bnm = s2nbnm, −P∆cnm = s2ncnm, (152)

Comprehensive discussions of vector spherical harmonics and their applica-
tions may be found in Barrera et al. (1985), Morse and Feshbach (1999),
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and Quartapelle and Verri (1995). Our notation follows more closely Quar-
tapelle and Verri (1995). We advise the reader that Quartapelle and Verri
(1995) define spherical harmonics and vector spherical harmonics over the
entirety of Euclidean point space E . We also remark that our definition of
cnm, although equivalent when the domain of definition is the unit sphere, is
different from that given in Quartapelle and Verri (1995).

Substituting (148) into (147), invoking (150)–(152) and using the orthog-
onality of spherical harmonics and vector spherical harmonics, we find that
that w00 solves

d2w00

dt2
=

(P
H

− 4(1 + Λ)
)
w00. (153)

For P/H < 4(1+Λ), the solutions of (153) are oscillatory motions describing
isotropic expansion and contraction. For P/H > 4(1 + Λ) solutions increase
exponentially in time, a behaviour that is the hallmark of the instability of
the reference state. This indicates that internal pressure can indeed foster
instability. Indeed, as the shell expands, the pressure per unit reference area
increases, which in turn pushes the shell further outwards.

For n ≥ 1 and −n ≤ m ≤ n, the coefficients wmn(t), vbmn(t) solve the
following system of differential equations:

d2vbmn

dt2
=

((
1 +

1

2

P

H

)
(2− s2n)− (1 + Λ)s2n

)
vbmn + 2(1 + Λ)snwmn,

d2wmn

dt2
= 2(1 + Λ)snv

b
mn +

(P
H

− 1

2

P

H
s2n − 4(1 + Λ)

)
wmn.

(154)

Moreover, vcmn(t) solves:

d2vcmn

dt2
=

(P
H

−
(1
2

P

H
+ 1

)
s2n + 2

)
vcmn. (155)

System (154) can be written, in compact form,

d2

dt2
unm(t) = Anunm(t), (156)

where umn = (vbmn, wmn)
⊤ and

An=


(
1 +

1

2

P

H

)
(2− s2n)− (1 + Λ)s2n 2(1 + Λ)sn

2(1 + Λ)sn
1

2

P

H
(2− s2n)− 4(1 + Λ)

 .

(157)
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For n = 1 and −1 ≤ m ≤ 1, the vector spherical harmonics cnm are infinites-
imal rotations about an axis going through the origin, and (155) reduces to
d2vcnm(t)/dt

2 = 0. Likewise, for n = 1, (157) reduces to

A0 =

(
−2(1 + Λ) 2

√
2(1 + Λ)

2
√
2(1 + Λ) −4(1 + Λ)

)
, (158)

which is singular matrix, with eigenvalues and −6(1 + Λ), 0. A pair of
corresponding eigenvectors is, in the same order, (1,−

√
2)⊤ and (1, 1/

√
2)⊤.

The eigenvector corresponding to the null eigenvalue describes a translation
with constant velocity. In particular, the null eigenvector corresponds to
solutions of the form

v(x, t) = (a0 + b0t)b1m(x), w(x, t) =
1√
2
(a0 + b0t)Y1m(x)n (159)

with m = −1, 0, 1. In particular, m = 0 corresponds to translations parallel
to the polar axis, whereas linear combinations of solutions with m = −1, and
m = 1 generate translations in the equatorial direction. We next compute:

tr(An) = − (4 + n(n+ 1))Λ− 2n(n+ 1)− 2 + (2− n(n+ 1))P ,

det(An) =
1

4

(
n2 + n− 2

)
+ 16 + (4 + 4n(1 + n))P + (−2 + n(1 + n))P 2

+ (16 + (8 + 2n(1 + n))P )Λ. (160)

Note that Λ = 2ν/(1 − ν) is an increasing function of ν, ranging from −1
(for ν = −1) to 2 (for ν = 0.5). For these extreme values, and for P ≥ 0, the
trace of An is negative, while the determinant of An is positive. Since both
the trace and the determinant of An are linear functions of Λ, we conclude
that when P is positive the eigenvalues of An are negative for n ≥ 2.

9.6. Case of non-vanishing bending moment
It is not difficult to to include bending moments in our analysis. For a

spherical geometry, the constitutive equation (96) for M takes the form:

M =
h3

12

[
2µ

(
− P∇∇w +

1

R
(P∇v +∇v⊤P) +

w

R2
P
)

+ λ̃
(
−∆w +

2

R
divv + 2

w

R2

)
P
]
. (161)
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To deduce the equilibrium equations we observe that, compared to the case
when M = 0, the presence of the bending moment affects the first equilibrium
equation of (95) through the presence of the additional term

2

R
P divM =

1

6

(
h

R

)3 [
−(2µ+ λ̃)∇

(
R2∆w + 2

w

R

)
+2(µ+ λ̃)∇(R div v + 2w) +2µ

(
RP∆v + 2

v

R

)]
. (162)

Likewise, in the second of the equilibrium equations (95) the contribution
from the bending moment is

divPdivM− 1

R2
P ·M

=
1

12

(
h

R

)3 [
(2µ+ λ̃)

(
−R3∆∆w

)
+ 2µR2 div (P∆v)

+2(µ+ λ̃)R2∆div v − 4(2µ+ λ̃)
w

R

]
+

1

6

(
h

R

)3

(µ+ 2λ̃)
(
R∆w + 2

w

R

)
− 1

3

(
h

R

)3

λ̃
(
div v + 2

w

R

)
. (163)

Thus, the equilibrium equations (142) are replaced by( h
R
µ
(
1 +

1

3

( h
R

)2)
+
p

2

)(
RP∆v + 2

v

R

)
+
h

R
(µ+ λ̃)

(
1 +

1

3

( h
R

)2)
∇
(
Rdivv + 2w

)
− 1

6

( h
R

)3

(2µ+ λ̃)∇(R2∆w + 2w) = ϱhv′′,

1

12

( h
R

)3[
(2µ+ λ̃)(−R3∆∆w) + 2µR2 div(P∆v)

+ 2(µ+ λ̃)R2∆div v − 4(2µ+ λ̃)
w

R

]
+
(p
2
+

1

6

( h
R

)3

(µ+ 2λ̃)
)(
R∆w + 2

w

R

)
−

(
2
h

R
(µ+ λ̃) +

1

3

( h
R

)3

λ̃
)(

divv + 2
w

R

)
= ϱhw′′. (164)
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By performing the same adimensionalisation that led to (147), we arrive at(
1 +

1

2

P

H
+

1

3
H2

)
(P∆v + 2v) + (1 + Λ)

(
1 +

1

3
H2

)
∇(divv + 2w)

− 1

6
H2(2 + Λ)∇(∆w + 2w) = v′′,

1

12
H2

(
(2 + Λ)(−∆∆w + 2div(P∆v) + 2(1 + Λ)∆div v − 4(2 + Λ)w

)
+
(1
2

P

H
+

1

6
H2(1 + 2Λ)

)
(∆w + 2w)

−
(
2(1 + Λ) +

1

3
H2Λ

)
(divv + 2w) = w′′. (165)

Instead of (156) we now have

d2

dt2
un(t) = (An +H2Bn)un(t), (166)

where An is the matrix defined in (157), and where

Bn =


1

3
(2(1− s2n)− s2nΛ)

sn
6
(2s2n + (2 + s2n)Λ)

sn
6
(2s2n + (2 + s2n)Λ) − 1

12
(2(2 + s2n + s4n) + (2 + s2n)

2)Λ.

 . (167)

For a spherical shell to be considered “thin”, the thickness h should be at least
one order of magnitude smaller than the radius R, which means that the cor-
rection associated to bending terms is two orders of magnitude smaller than
that from the membrane terms. This is in agreement with Kuo et al. (2015),
where it has been observed that the contribution from bending moments is
negigible.
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Appendix

A.1 Toolbox
Given a smooth tensor field v on S, we define the gradient of v as the

unique superficial tensor field ∇v such that, for every x ∈ S,

∇v(x)γ ′(0) =
d

ds

∣∣∣∣
s=0

v(γ(s)) (168)

for every smooth curve γ : R → S such that γ(0) = x. Notice that, in
particular

∇x = P, (169)

where P(x) = I − n(x) ⊗ n(x) is the orthogonal projection on the tangent
space TxS.

If v is a tangential vector field, we define the divergence of v as

divv = P · ∇v. (170)

Given a smooth part P of S, let nP be the tangent unit vector on ∂P that
points away from the interior of P . For v a smooth tangential vector field,

S

P

S

v

nP

Figure 2: A surface S with a part P, the field nP perpendicular to ∂P (thick lines), and
the tangential vector field v (thin lines).

we shall make use of the following identity:∫
∂P

v · nP =

∫
P
div v. (171)
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To define the divergence of a tangential tensor field we first consider a
tensor field of the form a⊗v where a is a constant vector and v is a tangential
vector field, and we define:

div(a⊗ v) = (divv)a (172)

For any such field, we have∫
∂P

(a⊗ v)nP =
(∫

∂P
v ·nP

)
a =

(∫
P
divv

)
a =

∫
P
(divv)a =

∫
P
div(a⊗ v).

(173)
The above identity carries over to arbitrary tangential tensor fields, since each
such field can be decomposed into a linear combination of dyadic products
between constant vectors and tangential tensor fields. One way to obtain
such decomposition is to fix an orthonormal basis ei, i = 1, 2, 3 for TE .
Then I =

∑3
i=1 ei ⊗ ei and hence T =

∑3
i=1 ei ⊗ T⊤ei =

∑
i ei ⊗ v(i) with

v(i) = T⊤ei. Then, by linearity, we obtain∫
∂P

T nP =

∫
P
divT . (174)

We observe from (172) that div(a⊗ v) = (∇v · P)a = ∇(a⊗ v)P (here the
third-order tensor ∇(a⊗v) is regarded as a linear mapping from second-order
tensors into vectors). Again, by linearity, we have

divT = ∇T : P, (175)

and, or every constant vector field a,

a · divT = div(T⊤a). (176)

In particular, if σ is a scalar field, then a · div(σT ) = div(σT⊤a) = ∇σ ·
(T⊤a) + σ div(T⊤a) = a · (T∇σ + σ divT ). Hence,

div(σT ) = T∇σ + σ divT . (177)

If v is a vector field, then div(T⊤v) = ∇(T⊤v) : P = ∇T : (v ⊗ P) +
(T⊤∇v) : P, whence

div(T⊤v) = divT · v + T : ∇v. (178)
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Given two second-order tensor fields A and B, and a constant vector a, we
have a · div(AB) = div(B⊤A⊤a) = B : ∇(A⊤a) + A⊤a · divB = ∇A :
(a⊗B) + a · (A divB) = a · (∇A : B +A divB), whence

div(AB) = ∇A : B +A divB. (179)

The previous definitions and the identities can easily be generalized to tensor
fields of arbitrary order. In particular, if T is a third-order tensor field, then,
regarding T at each point as a linear map of vectors into second-order tensors,
we define the divergence of T by requiring that, for every constant second-
order tensor A,

A : divT = div(A : T), (180)

where A : T is the unique vector field v such that (A : T) · a = A · (Ta) for
every constant vector a. Consider in particular the third-order tensor field
T = v ⊗ T where v is a vector field and T is a tangential tensor field. Then

div(v ⊗ T ) = ∇v T⊤ + v ⊗ divT . (181)

A.2 Proof of the part-wise equilibrium equations (22)
Starting from (21), we have∫

∂P
SnP∧(y−o) = −2skw

∫
∂P

((y−o)⊗S)nP = −2skw

∫
P
div((y−o).⊗S)

(182)
Using the identity (181), we obtain

div((y − o)⊗ S) = ∇yS⊤ + (y − o)⊗ divS. (183)

Thus, ∫
∂P

SnP ∧ (y − o) = 2skw

∫
P

(
S∇y⊤ + divS ⊗ (y − o)

)
=

∫
P

(
divS ∧ (y − o) + 2skw(S∇y⊤)

)
. (184)

A similar calculation shows that∫
∂P

MnP ∧ d =

∫
P

(
divM ∧ d+ 2skw(M∇d⊤)

)
. (185)
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A.3 Cordinate systems
To compare our results with the literature based on coordinates, we pro-

vide in this subsection some tools for the conversion of our coordinate-free
notation into the coordinate-based notation.

We assume that the surface S can be parametrized through a smooth
map x̂ : Σ → S, where Σ is a domain of R2. Thus, the typical point x on S
can be written as

x = x̂(ζ1, ζ2). (186)

We require the function x̂ to be invertible, and we denote by

x 7→ (ζ̃1(x), ζ̃2(x)) (187)

its inverse. Every field w defined on S can be regarded both as a function of
x and of the coordinates (ζ1, ζ2): we use a superposed hat in the former case,
and a superposed tilde in the latter. Thus, we write w = w̃(x) = ŵ(ζ1, ζ2).
To simplify the notation, we will omit hats and tildes in formulas where the
context allows for clear interpretation.

We introduce the covariant basis

aα =
∂x

∂ζα
= x,α, α = 1, 2, (188)

and the physical basis a⟨α⟩ = aα/|aα|. If the coordinates ζα are dimensionless,
then

[aα] = Length, [a⟨α⟩] = 1, (189)

i.e., the vectors of the covariant basis have dimension of length, whereas
the vectors of the physical basis are dimensionless. We observe that since
aα,β = x,αβ = x,βα we have

aα,β = aβ,α. (190)

The unit normal n is given by

n = a−1a1 × a2, a = |a1 × a2|. (191)

We define the contravariant basis by

aα = ∇ζα, α = 1, 2. (192)

The contravariant basis is related to the covariant basis by the relation

a1 = − n× a2
n · a1 × a2

, a2 =
n× a1

n · a1 × a2
, (193)
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and has the property that
aα · aβ = δβα. (194)

Again, if the coordinates are dimensionless, then the elements of the con-
travariant basis have dimensions of reciprocal of a length:

[aα] = Length−1. (195)

By taking the surface gradient of both sides of the equation x = x̂(ζ̃1(x), ζ̃2(x))
and by noting that ∇x = P, we obtain, by the chain rule,

P = aα ⊗ aα. (196)

Here and in what follows we use the Einstein convention for repeated indices,
with Greek letters ranging from 1 to 2. In particular, it follows from (196)
that if v is a tangential field, then the components of v in the covariant basis
can be obtained by scalar multiplication with the elements of the covariant
basis, viz.

v = Pv = (v · aα)aα = vαaα, vα = v · aα. (197)

The quantities vα are called contravariant components of v, and should not
confused with the physical components v⟨α⟩, which appear in the representa-
tion:

v = v⟨α⟩a⟨α⟩. (198)

A further application of the chain rule yields

∇w =
∑
α=1,2

∂w

∂ζα
∇ζα = w,αa

α. (199)

Likewise, for v a vector field,

∇v = v,α ⊗ aα. (200)

Thus, if v is a tangential vector field, then by (170) we have divv = P · (v,α⊗
aα) = Pv,α · aα = v,α · Paα, since P = P⊤, and hence

div v = v,α · aα. (201)

Furthermore, introducing the Christoffel symbols

Γβ
αγ = aα,γ · aβ, (202)
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we can write
v,α = (vβaβ),α = (vβ,α + vγΓβ

αγ)aβ. (203)

Therefore, on setting
vβ|α = Γβ

αγv
γ, (204)

we obtain the following expression for the surface divergence:

div v = vα|α. (205)

An alternative expression is

div v =
1√
a
(
√
avα),α, (206)

where a has been defined in (191). To verify (206), we recall that aα,β =
x,αβ = aα,β, and we use (193), we obtain

1

a
(avα),α =

1√
a
(a1,α × a2 · n)vα +

1√
a
(a1 × a2,α · n vα) + vα,α

=
1√
a
(aα,1 × a2 · n)vα +

1√
a
(a1 × aα,2 · n)vα + vα,α

=
(
aα,1 ·

a2 × n√
a

)
vα +

(
aα,2 ·

n× a1√
a

)
vα + vα,α

= (aα,1 · a1)vα + (aα,2 · a2)vα + (aα · aβ)vα,β
= (aα,β · aβ)vα + (aα · aβ)vα,β = (vαaα),β · aβ

= v,β · aβ, (207)

as required.
One can also check that if T is a tensor field of any order, then

divT = T ,αa
α. (208)

In particular, we can easily recover (181) by computing

div(v ⊗ T ) = (v ⊗ T ),α ⊗ aα = v,α ⊗ T aα + v ⊗ divT . (209)

and by observing that v,α ⊗ T aα = (v,α ⊗ aα)T⊤ = ∇vT⊤.

47



A.3 More on the pseudo-inverse F−1.
We begin by proving that the requirements F−⊤n = 0, FF−1 = P

and F−1F = P determine a unique pseudo-inverse F−1. Suppose indeed
that there exists two tensors, say F−1 and F̃

−1
which satisfy the above

requirements. Let D = F−1 − F̃
−1

. Then D−⊤n = 0, DF = 0 and
FD = 0. From the equation DF = 0 we deduce that the null-space of
D(x) is the range of F (x), i.e., the space Ty(x)S; this fact implies that
D = a ⊗ n for some vector a. From the equation FD = 0 we deduce that
a belongs to the null space of F , and hence is parallel to the normal vector
n. Accordingly, we have D = αn ⊗ n for some scalar α. However, since
D⊤n = 0, the scalar α must necessarily vanish. Thus, we conclude that
D = 0, and hence F−1 is unique.

We next construct the pseudo-inverse at a given point x under the as-
sumption that d(x) does not belong to the tanget space Ty(x)S. To this
effect, we select two linearly-independent vectors a1 and a2 in the tangent
space at x and we let aα = F aα. We also define a3 = n and a3 = d. Next
we let (a1, a2, a3), and (a1, a2, a3) be the reciprocal bases of, respectively,
(a1, a2, a3) and (a1, a2, a3). We recall that the reciprocal bases are defined by
the requirement that ai · aj = ai · aj = δji , and can be constructed with the
formulas ai = (aj ×ak)/(ai · (aj ×ak)) for i ̸= j ̸= k. It is easy to check that
a3 = n, and that a3 = (d · n)−1n. With these definitions, the deformation
gradient can be written as F = aα ⊗ aα. Moverover, the projectors P and
P are given, respectively, by

P = aα ⊗ aα and P = aα ⊗ aα. (210)

We conclude by checking that

F−1 = aα ⊗ aα (211)

is the required pseudo-inverse. Indeed, we have F−⊤n = (aα⊗aα)n = (aα⊗
aα)a

3 = 0. Moreover, FF−1 = (aα ⊗ aα)(aβ ⊗ aβ) = (aα · aβ)(aα ⊗ aβ) =
δαβ (aα⊗aβ) = aα⊗aα = P . A similar calculation can be used to check that
F−1F = P.

A.4 Proof of the divergence identity (171).
The following proof of the divergence identity is adapted from Fried

(2021). Let tP = n× nP . Then∫
∂P

v · nP =

∫
∂P

n× v · tP . (212)
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Granted that S is smooth, there exists a neighborhood of S in which v and
n admit normally constant extensions, which we still denote by v and n,
respectively. By Stokes’ Theorem,∫

∂P
n× v · tP =

∫
P
curl(n× v) · n. (213)

We now recall that

curl(n× v) · n = ∇(n× v) · (n×), (214)

where (n×) is the unique skew-symmetric tensor such that n× a = (n×)a
for every vector a. Note that, since both v and n are constant along the
normal direction, on S the gradient operator in (214) can be taken to be the
surface gradient. Next, we write

∇(n× v) · (n×) = (n×)∇v · (n×)− (v×)∇n · (n×). (215)

As to the first term on the right-hand side of (215), we observe that (n×)2 =
−P, and we write

(n×)∇v · (n×) = ∇v · (n×)⊤(n×) = −∇v · (n×)2 = P · ∇v = div v. (216)

We now claim that the second term on the right-hand side of (215) vanishes.
Indeed, since ∇n is symmetric, and n× is skew-symmetric,

(v×)∇n · (n×) = (v×) · (n×)∇n =
1

2
(v×) ·

(
(n×)∇n−∇n(n×)

)
. (217)

Since (n×)∇n−∇n(n×) is skew-symmetric, it is equal to a× for some vector
a. On the other hand, ((n×)∇n − ∇n(n×)

)
n = 0, which implies that a

is parallel to n. Thus, we conclude that (v×)∇n · (n×) = 1
2
(v×) · (a×) =

v · a = 0, as desired.

A.5 Spherical coordinates
To compare (142) with existing results, we introduce a coordinate system

on a sphere of radius R through the parametrization

x̂(θ, ϕ) = o+R sin θ(cosϕe1 + sinϕe2) +R cos θe3, (218)

where ei, i = 1, . . . , 3 is an orthonormal basis, as shown in Fig. 3. Since

49



e3

e2

e1

ϕ

θ
n

a⟨θ⟩

a⟨ϕ⟩

x

o

Figure 3: The spherical coordinates (θ, ϕ) and the associated physical basis (a⟨θ⟩,a⟨ϕ⟩).

n(x) =
1

R
(x− o), (219)

a and since ∇x = P (cf. (169)), we have

∇n =
1

R
P, (220)

and hence
divn =

2

R
. (221)

The covariant basis is

aθ = x,θ = R cos θ(cosϕe1 + sinϕe2) +R sin θe3,

aϕ = x,ϕ = R sin θ(− sin θe1 + cos θe2).
(222)

The normal vector is

n =
aθ × aϕ
|aθ × aϕ|

=
x− o

R
= sin θ(cos θe1 + sin θe2) + cos θe3. (223)

According to (193) and (222), the contravariant basis is

aθ =
aθ
|aθ|2

=
aθ
R
, aϕ =

aϕ
|aϕ|2

=
aϕ

R2 sin2 θ
. (224)
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9.7. Formulas in the covariant basis.
Consider scalar field w. On applying (199), we write

∇w = w,θa
θ + w,ϕa

ϕ. (225)

When applying differential operators, the resulting computations necessitate
taking the derivatives of the covariant basis vectors. For ease and clarity,
it’s advantageous to represent these derivatives as linear combinations of
the covariant basis and n. An important aspect to remember during these
calculations is that aα, being the partial derivative of x with respect to α,
obeys the symmetry condition aα,β = aβ,α. This leads to

aθ,θ · aθ = 0, aθ,θ · aϕ = 0,

aθ,ϕ · aθ = aϕ,θ · aθ = 0, aθ,ϕ · aϕ = aϕ,θ · aϕ = cot(θ),

aϕ,ϕ · aθ = − cos(θ) sin(θ), aϕ,ϕ · aϕ = 0,

(226)

and
aθ,θ · n = −R,
aθ,ϕ · n = aϕ,θ · n = 0,

aϕ,ϕ · n = −R sin2(θ).

(227)

Thus, we can write

aθ,θ = −Rn, aθ,ϕ = aϕ,θ = cot(θ)aϕ, (228)

and
aϕ,ϕ = − cos(θ) sin(θ) aθ −R sin2(θ)n. (229)

As a consequence, we have

P∇aα = aα,β ⊗ aβ = (aα,β · aγ)aγ ⊗ aβ,

divaα = aα,β · aβ.
(230)

In particular

P∇aθ = cot(θ)aϕ ⊗ aϕ, divaθ = cot(θ),

P∇aϕ = cot(θ)aϕ ⊗ aθ − cos(θ) sin(θ)aϕ ⊗ aϕ, divaϕ = − cos(θ) sin(θ),
(231)

Consider now a tangential vector field

v = vαaα. (232)
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Using (200) we find

P∇v = (vαaα),β ⊗aβ = vα,βaα ⊗ aβ + vαaα,β ⊗ aβ

= vα,βaα ⊗ aβ + vαaα,β ⊗ aβ

= vα,βaα ⊗ aβ + vγ(aγ,β · aα)aα ⊗ aβ. (233)

This, in turn, yields that the covariant derivative of v is

P∇v = vθ,θaθ ⊗ aθ + (vθ,ϕ − (cos θ sin θ) vϕ)aθ ⊗ aϕ

+ (vϕ,θ + cot(θ)vϕ)aϕ ⊗ aθ + (vϕ,ϕ + cot(θ)vθ)aϕ ⊗ aϕ. (234)

Thus, the divergence of v is

divv = P · ∇v = vθ,θ + vϕ,ϕ + cot(θ)vθ. (235)

In particular, taking v = ∇w we find

∆w =
1

R2
(w,θθ + cot(θ)w,θ + csc2(θ)w,ϕϕ). (236)

By taking the divergence of (233) we find

PdivP∇v =
1

R2
(vθ,θθ + cot(θ)(− cot(θ)vθ + vθ,θ − 2vϕ,ϕ) + csc2(θ) vθ,θθ)aθ

+
1

R2
(−vϕ + 3 cot(θ)vϕ,θ + vϕ,θθ + csc2(θ)(2 cot(θ)vϕϕ + vϕϕϕ))aϕ. (237)

Likewise, we obtain

P∆v =
1

R2
(vθ,θθ + cot(θ)(vθ,θ − 2vϕ,ϕ) + csc2(θ)(−vθ + vθ,ϕϕ)aθ

+
1

R2
(vθ,θθ + cot(θ)(vθ,θ − 2vϕ,ϕ) + csc2(θ)(vθ,ϕϕ − vθ))aϕ. (238)

9.8. Formulas in terms of physical components.
While the covariant and contravariant bases are especially useful for com-

putational purposes, it’s important to note that the components of a vectorial
or tensorial quantity in these bases do not possess the same dimensions as the
quantity in question. Consequently, it is sometimes advantageous to employ
the physical basis, which is defined as follows:

a⟨θ⟩ =
aθ
|aθ|

=
aθ
R
, , a⟨ϕ⟩ =

aϕ
|aϕ|

=
aϕ

R sin θ
. (239)
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The physical basis is related to the contravariant basis by

aθ =
a⟨θ⟩
R
, aϕ =

a⟨ϕ⟩
R sin θ

. (240)

To ease the comparison with standard formulas, we use below the ∂ notation
to denote partial derivatives. From (225) we have

∇w =
∂w

∂θ
aθ +

∂w

∂ϕ
aϕ =

1

R

∂w

∂θ
a⟨θ⟩ +

1

R sin(θ)

∂w

∂ϕ
a⟨ϕ⟩. (241)

Next, given a tangential vector field v, we introduce the physical components
v⟨θ⟩ and v⟨ϕ⟩ of v by writing

v = u⟨θ⟩a⟨θ⟩ + u⟨ϕ⟩a⟨ϕ⟩. (242)

The physical components of v, are related to the contravariant components vα
by v⟨θ⟩ = v ·a⟨θ⟩ = vθaθ ·a⟨θ⟩ = Rvθ and v⟨ϕ⟩ = v ·a⟨ϕ⟩ = vϕaϕ ·a⟨ϕ⟩ = R sin θvϕ.
Then (243) takes the form

P∇v =
1

R

∂v⟨θ⟩
∂θ

a⟨θ⟩ ⊗ a⟨θ⟩ +
1

R sin θ

(∂u⟨θ⟩
∂θ

− cos θ
∂u⟨ϕ⟩
∂ϕ

)
a⟨ϕ⟩ ⊗ a⟨θ⟩

+
1

R

(∂v⟨ϕ⟩
∂ϕ

+
cos θ

sin θ
v⟨ϕ⟩

)
a⟨ϕ⟩ ⊗ a⟨θ⟩

+
1

R sin θ

(∂v⟨ϕ⟩
∂ϕ

+ cos θ v⟨θ⟩

)
a⟨ϕ⟩ ⊗ a⟨ϕ⟩. (243)

The divergence of v is then

divv =
1

R

∂v⟨θ⟩
∂θ

+
1

R sin θ

(∂v⟨ϕ⟩
∂ϕ

+ cos θ v⟨θ⟩

)
. (244)

We finally compute

PdivP∇v =
1

R2

[∂v⟨θ⟩
∂θ2

+
cos(θ)

sin(θ)

(
− cos(θ)

sin(θ)
v⟨θ⟩ +

∂v⟨θ⟩
∂θ

− 2

sin2(θ)

∂v⟨θ⟩
∂ϕ

)
+

1

sin2(θ)

∂2v⟨θ⟩
∂ϕ2

]
a⟨θ⟩

+
1

R2

[
− cos2(θ)

sin2(θ)
v⟨ϕ⟩ +

cos(θ)

sin(θ)

∂v⟨ϕ⟩
∂θ

+
1

sin2(θ)

(
2 cos(θ)

v⟨θ⟩
∂ϕ

+
∂2v⟨ϕ⟩
∂ϕ2

)]
a⟨ϕ⟩, (245)
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and

P∆v =
1

R2

[∂2v⟨θ⟩
∂θ2

+
cos(θ)

sin(θ)

∂v⟨θ⟩
∂θ

− 1

sin2(θ)

(∂2v⟨θ⟩
∂ϕ2

+ 2 cos(θ)
∂v⟨ϕ⟩
∂ϕ

+ v⟨θ⟩

)]
a⟨θ⟩

+
1

R2

[∂2v⟨ϕ⟩
∂θ2

+
cos(θ)

sin(θ)

∂v⟨ϕ⟩
∂θ

+
1

sin2(θ)

(∂2v⟨ϕ⟩
∂ϕ2

+ 2 cos(θ)
∂v⟨θ⟩
∂ϕ

− v⟨ϕ⟩

)]
a⟨ϕ⟩. (246)

A.6 Proof of the identities (139)
Proof of (139)1. We write

P div(P∇v) = P div(∇v)− P div(n⊗ n∇v)

= P∆v − P div(n⊗∇v⊤n). (247)

Then, since n ·v = 0 and ∇n = P/R, we obtain ∇v⊤n = ∇(n ·v)−∇n⊤v =
v/R. Thus, we get P div(n⊗∇v⊤n) div(n⊗ v) = n div v+∇nv = v/R, as
desired.

Proof of (139)1. We use (208) and (200) to write

P div(∇v⊤P) = P(∇v⊤),αa
α = P(aβ ⊗ v,β),αa

α +∇v⊤ divP

= (v,βα · aα)aβ + (v,β · aα)Paβ,α − (divn)∇v⊤n, (248)

where divP = − div(n ⊗ n) = −(divn)n − ∇nn = −(divn)n. Then, we
notice that

∇(div v) = (v,β · aβ),αaα = (v,βα · aβ)aα + (v,β · aβ,α)aα

= (v,βα · aα)aβ + (v,β · aα,β)aβ. (249)

Thus,

P div(P∇v⊤)−∇(div v) = (v,β ·aα)Paβ,α−(v,β ·aα,β)aβ−(divn)∇v⊤n. (250)

Now, recalling that P = aγ ⊗aγ and using the identity aβ,α ·aγ = −aβ ·aγ,α =
−aβ · aα,γ, which follows from (190) and (194), we find

(v,β · aα)Paβ,α = (v,β · aα)(aγ ⊗ aγ)a
β
,α = (v,β · aα)(aβ,α · aγ)aγ

= (v,β · aα)(aβ,γ · aα)aγ = (v,β · (aα ⊗ aα)a
β
,γ)a

γ

= (v,β · Paβ,γ)aγ = (v,β · Paβ,α)aα

= (v,β · aβ,α)aα − (v,β · (n⊗ n)aβ,α)a
α. (251)
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Moreover, since ∇n = ∇n⊤,

−(v,β · (n⊗ n)aβ,α)a
α = −(n · v,β)(n · aβ,α)aα = (n · v,β)(n,α · aβ)aα

= ∇n⊤∇v⊤n = −∇n∇nv. (252)

By combining (250), (251), and (252), we obtain

P div(P∇v⊤)−∇(div v) = −∇n2v − (divn)∇v⊤n

= −∇n2v + (P : ∇n)∇nv. (253)

Recalling (cf. (220) and (221)) that, for a spherical surface, ∇n = (1/R)P
and divn = 2/R, we obtain,

P div(P∇v⊤)−∇(div v) = − 1

R2
Pv +

2

R2
Pv =

1

R2
v, (254)

as required.

Proof of (139)3,4,5. First, we notice that

P divP = −P div(n⊗ n) = −P((divn)n+∇nn) = 0. (255)

Then, using (177), we obtain, for every scalar σ,

P div(σP) = P∇σ + σP divP = P∇σ. (256)

Now, (139)3,4 are arrived at by letting σ = div v and σ = w/R, respectively.
Finally, to verify (139)5 we use again (220) to compute

P div(n⊗∇w) = ∆wPn+ P∇n∇w =
1

R
P∇w =

1

R
∇w. (257)
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