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Exploring the Boundaries of Semi-Supervised
Facial Expression Recognition using

In-Distribution, Out-of-Distribution, and
Unconstrained Data

Shuvendu Roy, Student Member, IEEE, and Ali Etemad, Senior Member, IEEE

Abstract—Deep learning-based methods have been the key driving force behind much of the recent success of facial expression
recognition (FER) systems. However, the need for large amounts of labelled data remains a challenge. Semi-supervised learning offers
a way to overcome this limitation, allowing models to learn from a small amount of labelled data along with a large unlabelled dataset.
While semi-supervised learning has shown promise in FER, most current methods from general computer vision literature have not
been explored in the context of FER. In this work, we present a comprehensive study on 11 of the most recent semi-supervised
methods, in the context of FER, namely Pi-model, Pseudo-label, Mean Teacher, VAT, UDA, MixMatch, ReMixMatch, FlexMatch,
CoMatch, and CCSSL. Our investigation covers semi-supervised learning from in-distribution, out-of-distribution, unconstrained, and
very small unlabelled data. Our evaluation includes five FER datasets plus one large face dataset for unconstrained learning. Our
results demonstrate that FixMatch consistently achieves better performance on in-distribution unlabelled data, while ReMixMatch
stands out among all methods for out-of-distribution, unconstrained, and scarce unlabelled data scenarios. Another significant
observation is that with an equal number of labelled samples, semi-supervised learning delivers a considerable improvement over
supervised learning, regardless of whether the unlabelled data is in-distribution, out-of-distribution, or unconstrained. We also conduct
sensitivity analyses on critical hyper-parameters for the two best methods of each setting. To facilitate reproducibility and further
development, we make our code publicly available at: github.com/ShuvenduRoy/SSL FER OOD.

Index Terms—Facial expression recognition, semi-supervised learning, in-distribution, out-of-distribution, unconstrained.

✦

1 INTRODUCTION

Facial Expression Recognition (FER) [1], [2] is a critical
application of computer vision that enables computers to
identify and understand human expressions, with appli-
cations ranging from health care [3], [4], [5] to intelligent
vehicles [6]. Deep learning methods have been the driving
force behind most of the recent successes in FER. However,
one of the major barriers to further improvement of deep
learning-based FER is the need for large-scale labelled data.
To this end, semi-supervised learning (SSL) has shown
immense promise as a solution for improving performance
while leveraging minimal supervision.

To tackle the problem of label scarcity, semi-supervised
methods learn from a small amount of labelled data in
conjunction with large amounts of unlabelled data. De-
pending on the relationship between the unlabelled and
labelled data, there are three well-established forms of SSL:
in-distribution (ID) [7], [8], [9], [10], [11], out-of-distribution
(OOD) [12], [13], and unconstrained [14], [15] SSL. The ID
SSL category assumes that the unlabelled data comes from
the same distribution as the labelled data. However, in a
practical application, this assumption is hard to satisfy or
verify when collecting a sizeable unlabelled dataset. Conse-
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Fig. 1: Semi-supervised FER under ID, OOD, and uncon-
strained unlabelled data scenarios.

quently, more recent works have shifted focus toward more
realistic data scenarios, including OOD and unconstrained
SSL, that offer greater flexibility and potential for real-
world applications. In OOD SSL, the unlabelled set contains
samples from the same classes as the labelled set but comes
from a different source and, therefore, has a different data
distribution. On the other hand, unconstrained SSL assumes
(1) that the unlabelled data is OOD, and (2) that the unla-
beled set can contain samples that belong to classes that are
not necessarily the same as those in the labelled set. This
makes the unconstrained setting the most practical scenario
for collecting large amounts of unlabelled data and scaling
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up semi-supervised learning [14].
In the context of FER, we identify the following open

research problems regarding SSL: (1) While a few prior
studies have explored the ID SSL in the context of FER, no
prior works have explored the OOD SSL or unconstrained
SSL in FER. (2) Many recent prominent methods originally
proposed in general computer vision literature have not
been explored in this context. In our recent work [16], we
investigated and benchmarked the performance of several
popular semi-supervised learning methods for FER. How-
ever, our previous study only focused on the ID SSL.

In this paper, we extend our previous study [16] by
exploring semi-supervised FER under more realistic data
settings, including OOD and unconstrained unlabeled data.
Furthermore, we also report the performance of ID SSL
with a small unlabelled set. We also expand the scope of
our study by including a few of the more recent semi-
supervised methods. More specifically, we study 11 recent
semi-supervised approaches, namely Pi-model [17], Pseudo-
label [7], Mean Teacher [18], VAT [8], UDA [9], MixMatch
[19], ReMixMatch [11], FlexMatch [20], CoMatch [21], and
CCSSL [22]. We conduct extensive experiments for different
unlabelled set configurations using five public FER datasets,
namely FER13 [23], RAF-DB [24], AffectNet [25], KDEF
[26], and DDCF [27], along with a non-FER dataset for the
unconstrained data, namely CelebA [28]. Figure 1 depicts
an overview of our study on semi-supervised learning
from different unlabelled set configurations. Findings from
these experiments suggest that FixMatch performs the best
among the 11 semi-supervised methods for conventional ID
semi-supervised learning, but it performs poorly in other
challenging settings. For both OOD and unconstrained un-
labelled data, ReMixMatch exhibits the best performance.
ReMixMatch also outperforms other methods in the low-
data scenario. We also show hyper-parameter sensitivity
studies for each of these semi-supervised settings to further
boost performance.

Our contributions in this work are four-fold:

• We present a comprehensive and extensive study on
11 recent semi-supervised methods for FER and their
comparison to fully supervised learning using six
public datasets.

• We compare the performance of all methods under
various data scenarios where the unlabelled data is
ID, OOD, unconstrained, or very small.

• Our study finds that FixMatch consistently exhibits
the best performance for ID unlabelled data, while
ReMixMatch is the top-performing approach for
OOD, unconstrained, and scarce unlabelled data.
We also find that semi-supervised learning improves
performance over supervised learning in all the
tested scenarios.

• We make our code publicly available for quick re-
producibility and further developments in this field:
github.com/ShuvenduRoy/SSL FER OOD.

2 RELATED WORK

In this section, we review the existing literature on semi-
supervised learning from two main perspectives that are

relevant to our work: (a) with ID data, (b) with OOD data,
and (c) semi-supervised methods used specifically for FER.

2.1 ID SSL

In recent years, there has been an increasing interest in the
literature on semi-supervised learning due to its potential
for training large models with small amounts of labelled
data. Most of these methods have been demonstrated to
perform well on unlabelled data that come from the same
distribution as the labelled set. The existing literature on
semi-supervised learning can broadly be divided into two
categories: entropy minimization [7], [29] and consistency
regularization [8], [9], [18].

Entropy minimization-based methods learn by predict-
ing the pseudo-labels of unlabelled samples with low en-
tropy. Pseudo-label [7] was one of the first works in this
direction, where the pseudo-labels for unlabelled samples
are predicted and added to the labelled set if their en-
tropy is low. Noisy-Student [29] generates these pseudo-
labels with a pre-trained encoder, while Meta Pseudo-label
[30] uses a teacher network to update the pseudo-labels
based on the student network’s performance. In contrast,
consistency regularization-based methods aim to generate
consistent predictions for different perturbations of the same
input. Pi-model [17] was one of the first works in this
direction, where two augmentations of an unlabelled image
are forced to generate the same class prediction. Virtual
adversarial training (VAT) [8] replaces the augmentation
with adversarial perturbations and enforces consistency on
the predictions. Unsupervised domain adaptation (UDA)
[9] shows that replacing simple augmentations with hard
augmentations [31], [32] could bring significant improve-
ment to semi-supervised methods. Since then, most of the
semi-supervised methods have used some form of hard
augmentation in their pipeline.

Another line of work combines these two prominent ap-
proaches into the same framework. For example, MixMatch
[19] enforces consistency on two perturbations (generated
with MixUp [33]) and optimizes for lower entropy in the
predictions. ReMixMatch [11] improves upon MixMatch by
introducing two new concepts: augmentation anchoring and
distribution alignment. Another hybrid method is FixMatch
[10], which has gained tremendous success because of its
simplicity while achieving state-of-the-art results in various
domains. FixMatch learns by predicting the pseudo-labels
for unlabelled images from its weak augmentation and uses
them as ground truth for the hard augmentation of the same
image if the confidence of the prediction is higher than a
threshold. Several improvements have been made to Fix-
Match since its introduction, such as FlexMatch [20], which
introduces the curriculum concept to adjust the threshold
for different classes dynamically, and CoMatch [21], which
introduces an extra contrastive loss term guided by the
predicted pseudo-labels.

2.2 OOD and Unconstrained SSL

Since collecting a large amount of ID unlabelled data is
difficult in practice, some recent semi-supervised methods
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Fig. 2: Overview of the semi-supervised learning methods explored in this study. Here, Augi, S. Aug, W. Aug and MixUp
refer to the ith augmentation of the input x, a strongly augmented image, a weekly augmented image, and an augmented
image with MixUp operation. Consistency Regularization is different across methods, as defined in Eqs. 1, 2, 4, and 5 for
Pi-Model, Mean Teacher, UDA, and VAT, respectively. EMA refers to the exponential moving average. Adv. Per. refers to
adversarial perturbation. H(p, q) is the cross-entropy loss. Dist. Align is the distribution alignment concept introduced in
ReMixMatch. Curriculum pseudo-labels are generated by the concept of adaptive threshold in FlexMatch. Mem. Smooth P.
labelling is the concept of memory-smoothed pseudo-labels introduced in CoMatch.

have focused on learning from OOD [12], [13] or uncon-
strained unlabelled data [14], [15]. In OOD SSL [12], [13],
[22], samples in the unlabelled set belong to the same classes
as the labelled set but come from a different source and,
therefore, have a different data distribution. In some of
the earlier works [12], the main idea was to incorporate
an OOD detection module to identify and remove OOD
samples from the unlabelled set, effectively focusing on
learning from the ID unlabelled data. Finally, unconstrained
SSL assumes that the unlabeled data are out-of-distribution
relative to the labelled set. Additionally, this data is not
necessarily limited to the classes present in the labelled set.
CCSSL [22] proposed a method that uses class information
from the labelled set along with contrastive learning to ef-
fectively learn from unconstrained unlabelled data. AuxMix
[15] combined self-supervised learning with a novel en-
tropy maximization technique to learn the representations
from the unconstrained unlabelled data. UnMixMatch [14]
employed hard augmentation (RandAugMix) for learning
from labelled data, coupling it with contrastive learning and

a rotation prediction task for learning from unconstrained
unlabelled data.

2.3 Semi-supervised FER

Besides our previous work, which focused on benchmarking
the most commonly used semi-supervised methods for FER
[16], there are few other studies in this area. For instance,
[34] investigated the use of Deep Belief Networks for semi-
supervised FER and found that they produced a relative
improvement over supervised methods. In [35], a Bayesian
network was proposed for semi-supervised FER. More re-
cently, [36] proposed an entropy-minimization method for
semi-supervised FER, which introduced an adaptive confi-
dence margin concept to partition the unlabelled data based
on the confidence of pseudo-labels. The method was then
trained on low- and high-confidence predictions separately.
Furthermore, [36] explored the use of multi-modal data
to learn from audio-visual signals in a semi-supervised
setting. Progressive Teacher (PT) [37] introduced the concept
of identifying and selecting useful samples for supervised
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learning, along with a consistency loss on the unlabelled
data. To address class distribution mismatch between la-
belled and unlabelled data, Rethink-Self-SSL [38] introduced
a clustering concept that leveraged intra-cluster and inter-
cluster distances to accurately identify out-of-distribution
data. To mitigate the impact of false pseudo-labels on model
performance, CFRN [39] introduced a feature dropout and
emphasis module, enhancing its ability to discriminate be-
tween features effectively.

3 METHOD

In this section, we first discuss the problem setup for semi-
supervised learning. This is followed by an overview of 11
semi-supervised methods explored in this study.

3.1 Problem Setup for Semi-supervised Learning

Let be given a small labelled set Dl = {(xl
i, y

l
i)}Ni=1, where

N is the total number of samples and their corresponding
class labels, and a large unlabelled set Du = {(xu

i )}Mi=1,
where M is the total number of unlabelled samples and
M ≫ N . Accordingly, semi-supervised learning aims to
learn from labelled set Dl in a supervised setting while
utilizing the unlabelled set Du in an unsupervised setting
to learn a better representation of the data. The performance
is validated on a separate validation set Dv = {(xi, yi)}Vi=1.
There is no overlap between the sample in labelled, unla-
belled, and validation sets, i.e., Dl ∩Du ∩Dv = ∅.

3.2 Semi-Supervised Methods

3.2.1 Pi-Model
Pi-Model [17] is one of the earliest and most popular
consistency regularization-based semi-supervised methods.
While learning from the labelled samples in a supervised
setting, Pi-model learns from the unlabelled set with a
consistency regularization term. More specifically, it applies
two augmentations on an unlabelled image and forces their
predictions to be similar. Pi-Model also uses dropout and
random max-pooling to add stochastic behaviour to the pre-
dictions. A schematic diagram of the Pi-Model is presented
in Figure 2a. The consistency regularization loss of Pi-Model
is represented as

Ex∈Dl
R(f(θ, τ1(x)), f(θ, τ2(x))), (1)

where τ1 and τ2 are two sample transformations applied to
an unlabelled sample x, f is the model, and θ represents the
parameters of f .

3.2.2 Mean Teacher
Mean Teacher [18] is another consistency regularization-
based semi-supervised method that is built upon Pi-model.
However, Mean-teacher differs in the way it generates em-
beddings of two augmented samples. Instead of utilizing the
online encoder (trainable encoder) to make the prediction
for both images, Mean-teacher uses an exponential moving
average (EMA) encoder to generate a prediction for the
second image. This EMA of the student model is referred to
as the teacher model, while the online encoder is called the
student model. So, the Mean-teacher learns from unlabelled

Angry Disgust

AffectNet

Fear Happy Neutral Sad Surprised

FER13

RAF-DB

Fig. 3: Sample images from three main FER datasets: FER13,
RAF-DB, and AffectNet.

data by enforcing consistency between the predictions of
the teacher and student models on two augmentations of
the same sample through a regularization loss. A diagram
demonstrating the Mean teacher method is presented in
Figure 2b. The consistency regularization loss for Mean
Teacher can be expressed as:

Ex∈Du
R(f(θ, τ1(x)), f(EMA(θ), τ2(x))), (2)

where EMA(θ) is the parameters of the teacher model.
Finally, the weight update operation of the teacher model
with an exponential moving average is formulated as:

θ′ = mθ′ + (1−m)θ, (3)

where m is a momentum coefficient.

3.2.3 UDA
UDA [9] is also based on the consistency regularization
concept. The basic idea of UDA is similar to Pi-model but
shows a large improvement in performance, only replacing
the augmentation module. UDA replaces the usual aug-
mentation module with advanced augmentation methods
like AutoAugment [40], and RandAugment [31], resulting
in dynamic and diverse sample augmentations. Figure 2c
shows an overview of the UDA method. The consistency
regularization loss of UDA can be expressed as:

Ex∈Du
R(f(θ, x), f(θ, τ(x))), (4)

where τ represents hard augmentations.

3.2.4 VAT
VAT [8] is similar to the Pi-model and UDA in terms of its
regularization concept. However, instead of regularizing the
embeddings of two augmented versions of the same sample,
VAT uses adversarial perturbation as a different form of
augmentation of the input sample. The overview of VAT
is depicted in Figure 2d. The consistency regularization loss
of VAT can be expressed as follows:

Ex∈Du
R(f(θ, x), f(θ, γadv(x))), (5)

where γadv is the adversarial perturbation operation.

3.2.5 Pseudo-label
The Pseudo-label method, introduced in [7], is an entropy
minimization-based method that presents a simple yet ef-
fective semi-supervised solution. Pseudo-label involves pre-
dicting the class probabilities for each of the unlabelled
samples, which act as pseudo-labels for those images. If
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the confidence of the prediction is high (low entropy), the
pseudo-label of the unlabelled sample is treated as a label to
train alongside labelled data. This pseudo-labelling concept
has been used as a basis for several of the current state-
of-the-art methods. A visual illustration of the Pseudo-label
method is depicted in Figure 2e. The loss function of the
Pseudo-label method is expressed as:

L = L(yli, f(θ, xl
i)) + λL(yui , f(θ, xu

i )), (6)

where yui is the predicted pseudo-label for an unlabelled
sample xu

i , and λ is a coefficient to balance the weight of
two loss terms.

3.2.6 MixMatch
MixMatch [19] is a semi-supervised method of the hy-
brid category that combines the concept of consistency
regularization and entropy minimization. Similar to the
entropy-based methods, MixMatch aims to generate low
entropy predictions on the unlabelled data and also enforces
consistency in its predictions similar to consistency-based
methods. The novel component of MixMatch is the MixUp
operation (an interpolation function) on labelled and un-
labelled samples to generate mixed samples. Both entropy
minimization and consistency regularization operations are
applied to the mixed samples. The MixUp operation can be
represented as:

x′ = αxl + (1− α)xu, (7)

where xl and xu are input samples from the labelled and
unlabelled set, and α is the weight factor that balances
the labelled and unlabelled components in the generated
sample. MixMatch uses a beta distribution to randomly
sample the value for alpha.

Another key innovation of MixMatch is the use of multi-
ple augmentations on the unlabelled set and averaging the
predictions on the augmented samples to generate the final
prediction for that unlabelled sample. Let d′l and d′u be a
batch of labelled and unlabelled samples after the MixUp
operation. The MixMatch loss can be represented as:

Ll =
1

|d′l|
∑

x,y∈d′
l

H(y, f(x, θ)), (8)

Lu =
1

C|d′u|
∑

x′,y′∈d′
u

∥y′ − f(x, θ)∥22, (9)

L = Ll + λLu. (10)

where H(.) is the cross-entropy loss, C is the total number
of classes, and λ is the weight factor between the supervised
and unsupervised loss terms. Figure 2f shows a visual
illustration of the MixMatch method.

3.2.7 ReMixMatch
ReMixMatch [11] is a modified version of MixMatch that
incorporates two new concepts: distribution alignment and
augmentation anchoring. The former aims to ensure that
the predictions made on the unlabelled data align with
the distribution of the predictions on the labelled data.
Augmentation anchoring replaces the consistency regular-
ization of MixMatch and focuses on making the repre-
sentation of strongly augmented samples similar to those

of weakly augmented samples. This technique compares
one weakly augmented sample against multiple strongly
augmented samples. ReMixMatch also introduces a new
strong augmentation method called CTAugment, which is
more suitable in semi-supervised learning settings. Figure
2h provides a visual representation of the ReMixMatch.

3.2.8 FixMatch
FixMatch [10] is another hybrid semi-supervised learning
method that shows impressive performance in many ap-
plications. For an unlabelled sample, FixMatch first applies
weak augmentations and generates a prediction. FixMatch
then considers this as a pseudo-label for a hard augmenta-
tion of the same sample if the confidence of this pseudo-
label is beyond a threshold. Standard shift and flip aug-
mentations are utilized for the weak augmentation module
of FixMatch. FixMatch explores RandAugment [31] and
CTAugment [11] as the hard augmentation module. The
unsupervised loss of FixMatch can be represented as:

Lu =
1

|du|
∑
x∈du

1(max(q) ≥ τ) H(q̂, f(A(x), θ)) (11)

where, τ is the threshold, q is the prediction on the weakly
augmented sample, and q̂ = arg max(q). A visual illustra-
tion of FixMatch is depicted in Figure 2h.

3.2.9 FlexMatch
FlexMatch [20] proposes an improvement over FixMatch
with a curriculum learning concept for the threshold param-
eter. Rather than using a fixed τ for all classes, FlexMatch
updates a class-specific threshold based on the learning
status of that class. FlexMatch uses per-class accuracy as
an indicator of the learning status of that class, which is
calculated as:

α(c) =
∑
n

1(max(q) ≥ τ) 1(argmax(q)) = c), (12)

where n is the number of samples. A schematic diagram of
FlexMatch is shown in Figure 2i.

3.2.10 CoMatch
CoMatch [21] introduces a graph contrastive learning con-
cept built on Fixmatch. CoMatch jointly learns two represen-
tations of data that interact and improve with each other:
class probabilities and low-dimensional embeddings. To
reduce the errors in the predicted pseudo-labels, CoMatch
uses the concept of memory-smoothed pseudo-labels, where
label predictions are refined by considering similar data
points in the embedding space. To learn better task-specific
representations, CoMatch uses contrastive learning to en-
courage similar embeddings for samples with the same
label. The Concept of CoMatch is depicted in Figure 2j.

3.2.11 CCSSL
Finally, CCSSL [22] is also built on FixMatch, and deals
with the confirmation bias of pseudo-labels to improve
performance on OOD unlabelled data. Unlike traditional
pseudo-labelling approaches, CCSSL separates data into in-
distribution and out-of-distribution categories. It then ap-
plies class-wise clustering to maintain efficient learning for
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Fig. 4: Examples of hard augmentations.

known categories in the in-distribution data, while employ-
ing image-level contrastive learning on out-of-distribution
data. Overall, CCSSL is designed as an add-on that can
be easily integrated with existing pseudo-labeling methods,
enhancing their effectiveness and making them more appli-
cable in diverse real-world scenarios. The CCSSL method is
illustrated in Figure 2k.

4 EXPERIMENTS

In this section, we first provide details of the datasets used
in this study. Following this, we present the experimen-
tal setup employed for the semi-supervised FER experi-
ments. Finally, we present the main results for all the semi-
supervised settings.

4.1 Datasets
In this study, we utilize a total of six datasets to conduct
the Facial Expression Recognition (FER) experiments. For
the main results, we use three datasets: FER13 [23], RAF-DB
[41], and AffectNet [25]. In addition, for the experiments on
unconstrained FER, we use the CelebA [28] dataset. Finally,
for the FER experiments on limited data, we use the KDEF
[26] and DDCF [27] datasets. Below, we provide a brief
description of each dataset used in this study. Some samples
from these datasets are shown in Figure 3.

FER13 [23] is a widely used dataset for FER that contains
over 28.7K images of 7 emotions (anger, disgust, fear, happi-
ness, sadness, surprise, and neutral). The images have been
collected from the internet and resized to 48×48 pixels.

RAF-DB [41] is a dataset for FER that contains around
15K images, with 12K images for training and 3K used for
testing. This dataset has been annotated by 315 annotators,
with each image annotated by around 40 annotators.

AffectNet [25] is a large-scale dataset for FER that con-
tains around 284K images of 8 emotions (anger, contempt,
disgust, fear, happiness, sadness, surprise, and neutral). This
dataset has also been collected from the internet, and the
images are of relatively high resolution.

CelebA [28] is a large-scale dataset of faces with aourd
202K images. This dataset does not necessarily contain im-
ages of expressive faces, and the images are also collected
from the internet and are of relatively high resolution.

KDEF [26] is a small dataset for FER that contains images
of 7 emotions, which have been captured in lab conditions.
This dataset contains a total of approximately 5K images.
The images are of relatively high resolution and have been
captured from different angles.

DDCF [27] is another small dataset for FER that contains
images of 8 emotions, which have been captured in lab
conditions. There are nearly 6.5K images in this dataset.
The images are of relatively high resolution and have been
collected from different angles.

4.2 Implementation details
For a fair comparison between all the methods, we use the
same encoder and training protocol. For the encoder, we
use ResNet-50 [42]. All the experiments are reported for dif-
ferent numbers of labelled samples. For this, we randomly
sample N = n × C images and their corresponding labels
from the labelled set Dl, where C is the number of classes,
and n is the number of samples per class. Specifically,
we present all results for n ∈ {10, 25, 100, 250}. For all
experiments, we report the average accuracy and standard
deviations over three runs on different seeds. Following [10],
we sample different random splits of data with different
seeds.

We follow the implementation details of the original
methods for method-specific parameters. For instance, we
use a confidence cut-off value of 0.95 for FixMatch, a moving
average weight of 0.999 for Mean-teacher, and a temperature
value of 0.5 for methods that utilize sharpening distribution.
For training, we use 220 iterations with a batch size of 64 and
SGD optimizer with a learning rate of 0.03, a momentum of
0.9, and a cosine learning rate decay scheduler.

In many recent semi-supervised methods, data augmen-
tations are proven to be an essential component. In this
context, a hard augmentation refers to a sequence of aug-
mentations applied to a sample that results in an augmented
sample that is visually distinguishable from the original
input. In contrast, weak augmentation refers to a single
or very low number of augmentations (≤ 2) applied to an
input sample which does not change the sample drastically.
Among the various hard augmentation modules mentioned
in the literature, RandAugment [31] is the most commonly
used one. This technique involves defining a sequence (up
to 14) of augmentations that can be applied to an image,
such as random crops, flips, and colour distortion. Then,
a random subset of these augmentations is selected and
applied to the image. We provide some examples of the
augmentations used in RandAugment in Figure 4.

4.3 Semi-supervised FER with ID unlabelled data
4.3.1 Setup
This section presents the main result of 11 semi-supervised
learning approaches on the FER13, RAF-DB, and AffectNet
datasets for ID FER. As previously mentioned, the results
are presented for 10, 25, 100, and 250 labelled samples
for each emotion class. The remaining samples from each
dataset are treated as unlabelled sets.

4.3.2 Performance
The main results for ID semi-supervised learning are pre-
sented in Table 1, which also includes the average accu-
racy across all settings (4 data splits of 3 datasets) for an
overall understanding of the performance of each method.
In summary, FixMatch appears to be the most successful
semi-supervised method for ID data, as it outperforms other
methods on 7 out of 12 settings and achieves the second-
best result on the other two settings. FixMatch achieves
an average accuracy of 53.41% across all settings, with a
maximum standard deviation of 2.5% on FER-13 with 10
labelled samples per class. The second-best method, Mix-
Match, achieves an average accuracy of 47.88%, which is
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TABLE 1: The performance of different semi-supervised methods with ID unlabelled data on FER13, RAF-DB, and
AffectNet, when 10, 25, 100, and 250 labelled samples per class are used for training.

FER13 RAF-DB AffectNet Avg. Acc

Method / m 10 labels 25 labels 100 labels 250 labels 10 labels 25 labels 100 labels 250 labels 10 labels 25 labels 100 labels 250 labels

Π-model [17] 37.09±3.7 40.87±2.5 50.66±1.8 56.42±1.4 39.86±3.1 50.97±2.5 63.98±1.1 71.15±0.8 24.17±4.2 25.37±3.8 31.24±3.4 32.40±2.1 43.68
Pseudo-label [7] 32.79±3.9 36.04±2.7 49.21±1.9 54.88±1.5 58.31±3.5 39.11±2.6 54.07±1.7 67.40±0.9 18.00±4.4 21.05±3.0 33.05±3.6 37.37±2.3 41.77
Mean Teacher [18] 45.21±2.6 55.14±1.8 52.17±1.6 58.06±1.3 62.05±2.9 45.17±2.3 45.57±1.8 76.85±0.5 19.54±3.9 20.21±3.1 20.80±2.8 44.05±1.1 45.40
VAT [8] 24.95±3.8 55.22±2.0 51.55±1.7 55.64±1.4 63.10±3.1 45.82±2.4 62.05±1.5 59.45±1.0 17.68±4.3 35.02±3.4 37.68±3.0 37.92±2.0 45.50
UDA [9] 46.72±2.7 49.89±1.9 50.62±1.6 60.68±1.2 46.87±3.0 53.15±2.4 58.86±1.6 60.82±1.0 27.42±4.1 32.16±3.2 37.25±2.8 37.64±1.8 46.84
MixMatch [19] 45.69±2.6 46.41±1.8 55.73±1.5 58.27±1.2 36.34±3.2 43.12±2.5 64.14±1.0 73.66±0.4 30.80±3.0 32.40±3.1 39.77±2.7 48.31±1.6 47.88
ReMixMatch [11] 41.07±2.8 43.25±1.5 44.62±1.3 57.49±1.0 37.35±3.3 42.56±2.1 42.86±1.5 61.70±0.8 29.28±3.2 33.54±2.5 41.60±1.6 46.51±1.4 43.48
FixMatch [10] 47.88±2.5 49.90±1.7 59.46±1.0 62.20±0.5 63.25±1.0 52.44±2.2 64.34±0.9 75.51±0.3 30.08±1.9 38.31±1.2 46.37±1.0 51.25±0.6 53.41
FlexMatch [20] 39.77±2.5 42.88±1.7 51.14±1.3 56.06±1.0 40.51±3.0 42.67±2.1 50.75±1.5 61.70±0.8 17.20±4.1 19.80±3.0 22.34±2.6 29.83±1.7 39.55
CoMatch [21] 40.24±2.7 49.04±1.9 54.97±1.6 59.47±1.2 40.04±3.1 52.59±2.4 68.05±1.1 73.46±0.6 21.23±4.2 23.54±3.2 27.45±2.8 30.31±1.9 45.03
CCSSL [22] 40.23±2.8 45.36±1.8 57.01±1.4 61.77±1.0 50.59±2.8 51.30±2.2 63.79±1.4 74.93±0.7 16.89±4.3 21.34±3.1 24.46±2.7 28.94±1.8 44.71

TABLE 2: Comparison between fully-supervised learning
and semi-supervised learning with ID unlabelled data.

Supervised Semi-sup. (best)

Dataset 250/class All data 250/class All data

FER13 53.58±1.1 64.57±0.9 62.20±0.5 65.15±0.5

RAF-DB 65.87±1.0 80.47±0.7 76.85±0.5 81.75±0.4

AffectNet 40.28±1.2 54.91±1.0 51.25±0.6 55.56±0.5

a considerable 5.53% drop in performance compared to Fix-
Match. Therefore, we can conclude that FixMatch is the most
robust semi-supervised method for FER with ID unlabelled
data.

4.3.3 Sensitivity study

All the experiments shown in the table above were con-
ducted using default parameters for each algorithm, as
reported in the original papers. In this subsection, we
present a sensitivity study on the key hyper-parameters
of the two best-performing methods in order to improve
FER performance further. Figure 5 displays this study on
the Pcutoff and λ values for FixMatch, as well as the α and
λ values for MixMatch. In the FixMatch, the Pcutoff value
determines the confidence threshold at which a predicted
pseudo-label is considered as the label for an unlabelled
image. The results shown in Figure 5a indicate that the
best accuracy is achieved for a Pcutoff value of 0.95 for all
datasets, which is consistent with the original FixMatch
method. The λ value balances the weight of supervised and
unsupervised loss in FixMatch. We conduct an experiment
on λ (Figure 5b) and find that the optimal value varies
for different datasets. While AffectNet and RAF-DB show
better results for relatively smaller values of λ (1.0 and
0.5, respectively), FER13 achieves the best performance with
higher values of λ, specifically 5.0. In the MixMatch method,
α is the mixing coefficient used in the MixUp operation. The
experiment on α (Figure 5c) indicates that higher values
of α generally produce better results for all datasets, with
the best performance obtained with α = 0.9. Finally, in
the experiment on the λ value of MixMatch (Figure 5d), we
observe improvements for larger values of λ, with the best
accuracy achieved when λ is set to 100 for all three datasets.
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Fig. 5: Sensitivity study of various parameters for two of the
best semi-supervised methods on ID unlabelled data.

4.3.4 Discussion

Table 2 provides a summary of the best results obtained
for each dataset using 250 labels per class and compares
the performances with fully supervised training with an
equal amount of labelled samples. Additionally, the table
shows the results obtained with fully supervised learning
using all the data, including their labels from the original
dataset. For FER13, the semi-supervised method achieves
an 8.83% improvement over fully supervised training with
the same amount of labelled data (250 labels per class, for
a total of 1750 out of 28K images) and is only 2.16% lower
than fully supervised training with all labelled data (28K
images). Similarly, for RAF-DB, the semi-supervised method
obtains a 10.98% improvement over fully supervised train-
ing with an equal amount of labelled samples (250 labels
per class, for a total of 1750 out of 12k images) and is only
3.62% lower than fully supervised training with all samples
being labelled (12K images). Finally, for AffectNet, the semi-
supervised method achieves a 10.98% improvement over the
fully supervised training with the same amount of labelled
data (250 labels per class, for a total of, 1750 out of 284k
images) and is only 3.66% lower than the fully supervised
training with all labelled data. Based on this summary,
we can conclude that semi-supervised methods are able
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TABLE 3: The performance of different semi-supervised methods with OOD unlabelled data on FER13 and RAF-DB, when
10, 25, 100, and 250 labelled samples per class are used for training.

FER13 RAF-DB Avg. Acc.

Method / m 10 labels 25 labels 100 labels 250 labels 10 labels 25 labels 100 labels 250 labels

Pi-Model [17] 24.71±3.8 29.02±2.6 43.63±1.9 53.58±1.1 38.62±3.1 39.73±2.5 46.81±1.7 66.53±0.6 42.83
Mean Teacher [18] 25.16±2.8 27.61±1.9 47.90±1.6 54.82±1.0 38.62±2.5 37.65±2.0 52.09±1.5 65.45±0.7 43.66
VAT [8] 23.95±3.1 28.49±2.0 43.37±1.7 52.98±1.1 38.62±2.6 38.85±2.1 49.58±1.6 61.60±0.9 42.18
Pseudo-label [7] 24.09±3.0 36.04±1.8 47.20±1.5 53.23±1.0 38.62±2.6 38.62±2.0 49.84±1.6 63.17±0.8 43.85
UDA [9] 27.60±2.7 38.20±1.6 52.16±1.4 56.13±1.0 39.37±2.9 41.79±2.3 60.95±1.3 65.71±0.7 47.74
MixMatch [19] 31.64±2.6 37.66±1.7 49.68±1.2 56.39±0.9 43.02±2.0 51.14±1.6 63.04±1.1 70.37±0.5 50.37
ReMixMatch [11] 33.31±1.9 44.15±1.2 53.15±1.0 58.48±0.8 48.37±1.1 58.47±0.9 67.47±0.5 74.87±0.5 54.73
FixMatch [10] 29.60±2.5 38.98±1.6 52.44±1.1 57.40±0.8 23.99±2.8 45.86±1.9 61.15±1.2 64.80±0.6 46.78
FlexMatch [20] 31.89±2.1 41.0±1.4 50.43±1.2 56.17±0.8 46.87±1.2 53.16±1.0 69.59±0.5 72.59±0.3 52.71
CCSSL [22] 30.05±2.3 39.09±1.5 53.32±1.1 57.77±0.7 47.82±1.1 56.52±0.9 69.33±0.5 69.07±0.3 52.87

TABLE 4: Comparison between fully-supervised learning
and semi-supervised learning with OOD unlabelled data.

Supervised Semi-sup.

Dataset All data ID/250 ID/250 OOD/250 OOD/All

FER13 64.57±0.9 53.58±1.1 62.20±0.5 58.48±0.8 70.40±0.4

RAF-DB 80.47±0.7 65.87±1.0 76.85±0.5 74.87±0.5 83.73±0.2

to achieve a significant improvement over fully supervised
training with the same amount of labelled data, and can
achieve comparable performance to fully supervised train-
ing on large amounts of labelled samples. Finally, we show
the results for using all the labelled data along with ID
unlabelled data. While the unlabelled set is the same size
as the labelled set, training in a semi-supervised setting
provides improvement over fully-supervised learning.
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Fig. 6: Sensitivity study of various parameters for two of the
best semi-supervised methods on OOD unlabelled data.

4.4 Semi-supervised FER with OOD unlabelled data
4.4.1 Setup
In this section, we present the results of OOD semi-
supervised learning. In this setting, the unlabelled data con-
sists of images belonging to the same expression categories

as the labelled data but originating from different sources
and therefore having a different distribution. Specifically, we
use a pre-defined number of samples (10, 25, 100, or 250 la-
belled samples per class) from the training set of FER-13 and
RAF-DB as the labelled data and the complete training set
(images without labels) of AffectNet as unlabelled (OOD)
data. The accuracy is reported on the validation set of the
FER-13 and RAF-DB datasets, respectively.

4.4.2 Performance
The performance of different semi-supervised methods with
OOD unlabelled data are presented in Table 3. We can
draw two key observations from this table. Firstly, we can
observe a significant drop in the performance of all methods
compared to when ID unlabelled data are used. These
findings are consistent with previous works in the OOD
semi-supervised literature [43], [44]. For instance, in our
study, we find that FixMatch achieves a 62.20% accuracy on
FER-13 (250 labels) with ID unlabelled data, but this drops
to 57.4% when OOD data are utilized. The performance
drop is even more substantial with smaller labelled set sizes.
For example, when only 10 samples per class are available
on FER-13, the FixMatch performance drops from 47.88%
to only 29.6%. The second observation is that the best-
performing method is different for OOD semi-supervised
learning. While FixMatch and MixMatch were the top two
methods for ID semi-supervised learning, ReMixMatch, and
CCSSL are the top two methods for OOD semi-supervised
learning. Both of these methods perform significantly better
than FixMatch.

4.4.3 Sensitivity study
Next, we conduct a sensitivity analysis on the two best-
performing methods, ReMixMatch and CCSSL, for OOD
semi-supervised learning. Since these methods were origi-
nally designed for ID semi-supervised learning in general
computer vision applications, it is crucial to explore their
performance for different hyperparameters under the OOD
setting. Figure 6 presents the results of this study. We
examine the impact of α and λ for ReMixMatch and Pcutoff
and λ for CCSSL. In the experiment with ReMixMatch’s α
values (Figure 6a), we discover that the best results for both
datasets are achieved with a value of 0.75, which is also
the default in the original ReMixMatch paper. We also find
that the optimal value for λ was 1.0 for both datasets. In
the experiments on CCSSL’s Pcutoff value (Figure 6c), we
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TABLE 5: The performance of different semi-supervised methods with unconstrained unlabelled data on FER13, RAF-DB,
and AffectNet, when 10, 25, 100, and 250 labelled samples per class are used for training.

FER13 RAF-DB AffectNet Avg. Acc

Method / m 10 labels 25 labels 100 labels 250 labels 10 labels 25 labels 100 labels 250 labels 10 labels 25 labels 100 labels 250 labels

Pi-Model [17] 22.28±3.8 27.03±2.5 44.96±1.5 54.79±1.0 38.62±3.1 38.62±3.0 52.18±1.5 65.74±0.6 18.00±4.3 18.74±3.2 19.66±2.8 35.57±1.7 36.35
Mean Teacher [18] 24.88±3.0 29.77±2.0 43.66±1.6 53.22±1.1 36.18±3.1 38.62±2.9 50.59±1.6 66.49±0.6 17.69±4.3 19.11±3.1 21.34±2.7 38.34±1.4 36.66
VAT [8] 21.94±3.0 30.05±2.0 43.56±1.6 52.42±1.1 38.62±3.1 41.17±2.5 51.76±1.6 62.32±0.8 17.86±3.3 19.23±3.1 20.89±2.7 26.34±1.8 35.51
Pseudo-label [7] 23.36±3.0 33.51±1.8 47.70±1.5 53.57±1.0 38.62±3.1 37.45±2.0 49.54±1.6 63.40±0.8 17.29±3.3 19.54±3.0 21.06±2.6 24.03±1.7 35.76
UDA [9] 24.88±2.9 33.99±1.8 49.40±1.4 52.97±1.0 27.05±3.0 43.94±1.9 52.41±1.5 62.87±0.7 16.91±3.9 17.60±3.0 28.31±1.9 33.14±1.6 36.96
MixMatch [19] 31.43±2.7 39.44±1.7 51.99±1.2 56.26±0.9 42.37±1.1 50.52±0.9 60.01±0.5 68.84±0.4 25.14±3.0 26.26±2.0 33.40±1.6 39.23±1.2 43.74
ReMixMatch [11] 32.49±2.3 42.05±1.4 52.83±1.1 58.04±0.8 49.15±1.0 54.60±0.8 64.50±0.5 70.70±0.5 26.29±2.7 29.23±1.8 37.31±1.4 40.40±1.0 46.47
FixMatch [10] 26.58±2.6 35.16±1.7 49.29±1.3 54.30±1.0 33.41±2.9 39.99±1.9 52.93±1.4 60.59±0.7 15.77±3.9 17.23±3.0 28.46±1.9 31.23±1.6 37.08
FlexMatch [20] 25.42±2.7 37.21±1.7 50.21±1.3 54.83±1.0 36.86±2.8 49.45±1.8 59.62±1.2 64.05±0.7 24.40±3.3 28.06±1.8 32.26±1.7 36.74±1.2 41.59
CoMatch [21] 33.01±2.6 40.90±1.6 50.67±1.3 55.83±1.0 27.95±3.0 32.53±2.0 64.11±1.1 68.17±0.6 23.40±3.4 27.50±2.0 32.33±1.8 35.79±1.3 41.02
CCSSL [22] 24.69±2.8 39.51±1.7 51.14±1.3 55.63±1.0 31.32±2.9 47.26±1.8 55.25±1.3 61.90±0.7 16.51±2.3 25.11±1.9 25.00±1.7 33.71±1.3 38.92

TABLE 6: Comparison between fully-supervised learning
and semi-supervised learning with unconstrained unla-
belled data.

Supervised Semi-sup.

Dataset All data ID/250 ID/250 Unc./250 Unc./All

FER13 64.57±0.9 53.58±1.1 62.20±0.5 58.04±0.8 70.50±0.4

RAF-DB 80.47±0.7 65.87±1.0 76.85±0.5 70.70±0.5 82.75±0.2

AffectNet 54.91±1.0 40.28±1.2 51.25±0.6 40.40±1.0 57.65±0.6

observe that lower values of this parameter yields better
results. Specifically, RAF-DB produces the best result with
a value of 0.5, while FER13 achieves the best result with a
value of 0.75. Finally, for λ values (Fig 6d), we obtain the
best accuracy for different values for RAF-DB and FER13
datasets, with 1.0 and 0.25 respectively.

4.4.4 Discussion
Table 4 summarizes the results of semi-supervised FER
using OOD unlabelled data and compares them to both
fully-supervised and semi-supervised methods with ID un-
labelled data. All results are shown for 250 labelled samples
per class. We observe a drop in performance of 1.98% and
3.72% for RAF-DB and FER13 datasets, respectively, com-
pared to ID semi-supervised learning. However, the perfor-
mance of semi-supervised learning with OOD unlabelled
samples is still better than fully-supervised learning by 9.0%
and 4.9% for the two datasets, respectively. Therefore, we
can conclude that learning with the presence of OOD data is
still a better choice than relying on a fully supervised setting
alone when presented with limited labelled data. Finally, we
find that using all the labelled data along with the OOD
unlabelled data provides considerable improvement (5.83%
and 3.26% for FER-13 and RAF-DB) over fully supervised
learning with all the labelled data.

4.5 Semi-supervised FER with unconstrained unla-
belled data

4.5.1 Setup
In this section, we present the results of semi-supervised
FER using unconstrained unlabelled data, which is consid-
ered the most challenging setting for semi-supervised learn-
ing. Here, the unlabelled data are obtained from a different
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Fig. 7: Sensitivity study of various parameters for two of the
best semi-supervised methods on unconstrained unlabelled
data.

source than the labelled data and do not necessarily contain
images of known classes. In unconstrained semi-supervised
learning, we use a pre-defined number of samples (10, 25,
100, or 250 labelled samples per class) from the training set
of FER-13, RAF-DB, and AffectNet as the labelled data and
complete training set of AffectNet (do not contain labels) as
unlabelled data. The accuracy is reported on the validation
set of the FER-13, RAF-DB, and AffectNet, respectively.

4.5.2 Performance
Table 5 shows the results of different semi-supervised meth-
ods with unconstrained unlabelled data. We make the fol-
lowing two observations from this table. Firstly, The best-
performing method on unconstrained unlabelled data is
similar to that of the OOD setting. Again, ReMixMatch
achieves the best average results compared to the other
methods. However, the second-best method is different
from the OOD setting (CCSSL), and is now MixMatch.
The performance of the rest of the methods is significantly
lower than these two methods. Secondly, the performance
of semi-supervised methods is much lower than training
with ID data but not too far away from OOD data. For
example, the performance of ReMixMatch on FER-13 with
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just 10 labelled samples on unconstrained unlabelled data
is 8.58% lower than training with ID labelled data, but only
0.82% lower than on OOD data. This indicates that for FER,
unconstrained unlabelled data can result in competitive
semi-supervised performance to OOD samples. This is an
important finding since it is more convenient, practical, and
economical to collect large unconstrained unlabelled data
than ID data or even OOD data of expressive faces.
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Fig. 8: Sensitivity study of various parameters for two of the
best semi-supervised methods on small unlabelled data.

4.5.3 Sensitivity Study

Next, we present a sensitivity study on the main hyper-
parameters of the two best methods for unconstrained semi-
supervised learning (ReMixMatch and MixMatch). The re-
sults are presented in Figure 7.

The first experiment on ReMixMatch’s α values shows
that different datasets have different optimal values. Specif-
ically, the optimal values for RAF-DB, FER13, and AffectNet
are 0.5, 0.75, and 0.1, respectively (Figure 7a). Similarly,
optimal values for λ experiments are different for each
dataset (Figure 7b). In this case, the optimal values for RAF-
DB, FER13, and AffectNet are 2.0, 1.0, and 2.0, respectively.
MixMatch experiments follow a similar pattern of having
different optimal values. For α, the best values are 0.5, 0.75,
and 0.1 (Figure 7c), and for λ (Figure 7d), the optimal values
are 0.5, 2.0, and 0.5 for RAF-DB, FER13, and AffectNet,
respectively. In conclusion, hyper-parameters are generally
specific to each dataset when learning from unconstrained
unlabelled data.

4.5.4 Discussion

Table 6 summarizes the results of learning from uncon-
strained unlabelled data. The key takeaway from this table is
that although semi-supervised learning with unconstrained
data achieves lower performance compared to ID semi-
supervised learning, it still outperforms fully supervised
learning when an equal number of labelled samples are
used. For instance, FER13 achieves an accuracy of 53.58%
with fully supervised learning, while the same dataset

reaches 58.04% accuracy through the utilization of semi-
supervised learning with unconstrained unlabelled data.
We also report the results for using the whole dataset as
the labelled data, and unconstrained unlabelled data. The
results from this study show that using semi-supervised
learning with unconstrained unlabelled data considerably
improves performance over fully-supervised learning. Here,
the improvements are 5.93%, 2.28%, and 2.73% for FER-13,
RAF-DB, and AffectNet, respectively.

4.6 Semi-supervised FER with small ID unlabelled data

4.6.1 Setup

In this section, we discuss the results of semi-supervised
learning with small ID unlabelled data. While gathering
substantial quantities of unlabelled ID data can pose chal-
lenges, obtaining a smaller set of unlabelled ID data might
be more feasible in some cases. Consequently, we also
conduct experiments with small but ID unlabelled data
for completeness. To this end, we utilize small datasets
collected in lab environments. More specifically, we conduct
the experiments on KDEF [26] and DDCF [27] datasets, and
present the results for a similar number of labelled samples
as in previous experiments, with the remaining samples
being used as the unlabelled set. Performances are reported
on the validation set of the corresponding datasets.

4.6.2 Performance

Table 7 shows the main results of different semi-supervised
methods in this setting. ReMixMatch again performs the
best across all methods. With ID data in this setting, Fix-
Match again performs well and shows the second-best av-
erage accuracy. The average accuracy for ReMixMatch and
FixMatch are 73.09% and 71.76%, respectively.

4.6.3 Sensitivity study

We also analyze the sensitivity of the two best-performing
methods, ReMixMatch and FixMatch, in this setting. Figure
8 illustrates the results of this study. The experiment on the
α parameter of ReMixMatch (Figure 8a) shows that higher
values lead to better accuracy. The optimal values are found
to be 0.9 and 0.75 for DDCF and KDEF datasets, respectively.
Similarly, for the λ parameter (Figure 8b), the best results are
obtained for 0.9 and 2.0 for DDCF and KDEF datasets. On
the other hand, the experiments on FixMatch reveal that the
default parameters of the original FixMatch yield the best
accuracy for both datasets. Specifically, a Pcutoff value of 0.95
(Figure 8c) and a λ value of 1.0 (Figure 8d) achieve the best
performances.

4.7 General discussions

In this section, we provide a discussion on some of our key
observations. More specifically, we present a comparison
between different unlabelled settings of SSL, a comparison
to supervised learning, and a few insights for improving
SSL for FER.
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TABLE 7: The performance of different semi-supervised methods with small unlabelled data on KDEF and DDCF, when
10, 25, 100, and 250 labelled samples per class are used for training.

KDEF DDCF Avg. Acc

Method / m 10 labels 25 labels 100 labels 250 labels 10 labels 25 labels 100 labels 250 labels

Pi-Model [17] 31.90±2.0 58.90±1.1 85.28±0.7 94.27±0.3 19.81±2.6 30.82±1.8 77.20±0.9 88.99±0.4 60.90
Mean Teacher [18] 29.24±2.1 50.31±1.3 82.82±0.8 91.62±0.4 18.40±2.7 30.03±1.9 74.37±1.0 89.94±0.4 58.34
VAT [8] 24.54±2.2 44.79±1.4 79.75±0.9 91.21±0.7 23.58±2.5 40.57±1.8 72.01±1.1 88.99±0.5 58.18
Pseudo-label [7] 31.08±2.1 53.37±1.3 80.98±0.8 93.25±0.4 29.40±2.5 41.19±1.8 77.83±1.0 86.79±0.7 61.74
UDA [9] 36.81±1.9 46.42±1.2 88.14±0.6 97.55±0.2 30.35±2.5 80.82±0.9 86.79±0.7 93.71±0.4 70.07
MixMatch [19] 28.83±2.0 63.39±1.1 91.21±0.6 93.87±0.4 14.78±2.6 84.28±0.7 89.15±0.5 93.40±0.3 69.86
ReMixMatch [11] 29.86±1.9 67.08±1.0 93.46±0.4 97.75±0.2 25.79±2.5 85.53±0.7 89.62±0.5 95.60±0.3 73.09
FixMatch [10] 33.54±2.0 54.60±1.2 89.16±0.6 97.55±0.3 38.52±2.6 79.40±0.9 86.64±0.8 94.65±0.3 71.76
FlexMatch [20] 27.61±2.1 40.08±1.3 93.05±0.5 96.32±0.3 39.62±2.6 24.37±1.9 86.01±0.7 93.71±0.6 62.60
CoMatch [21] 21.08±2.2 52.12±1.3 85.05±0.7 92.16±0.4 44.94±2.6 63.52±1.8 87.18±0.7 90.70±0.5 67.09
CCSSL [22] 19.43±2.2 37.83±1.4 86.50±0.9 94.27±0.5 14.15±2.7 55.50±1.9 86.01±0.8 94.65±0.4 61.04
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Fig. 9: Performance for different percentages of labelled data. Red line indicates fully-supervised learning with all samples.

4.7.1 Comparing different unlabelled settings

To better understand the overall behaviour of SSL using
different categories of unlabeled data (ID vs. OOD vs.
unconstrained), we present the performance of the best-
performing method for each setting on FER-13 in Table 8.
The results demonstrate that expectedly, the highest per-
formance (62.20%) can be achieved with ID unlabelled
data when a limited number of labelled samples (250) are
available. We also observe that with limited OOD and
unconstrained unlabelled data, similar performances can be
achieved, underperforming the ID setting. Interestingly, the
results show that when the amount of unlabelled data is
considerably scaled, unconstrained unlabelled data are in
fact more beneficial for SSL, in comparison to ID unlabelled
data. Moreover, the similarity between OOD and uncon-
strained performance persists. These results indicate that
using free-living data irrespective of their potential data or
class distributions is a viable and effective approach for SSL
when sufficiently large amounts of unlabelled data can be
collected.

4.7.2 Comparison to supervised learning

To understand the impact of the amount of labelled data
on SSL, we perform a detailed analysis by using different
percentages of labelled data. As seen in Figure 9, we ex-
pectedly observe that more labelled data help the model in
learning better representations. However, the figure shows
that the added benefit of using more labelled samples de-
creases as more and more labelled samples are incorporated.
Additionally, in Figure 9, we present the performance of
fully-supervised learning (shown in the figures with a red

line) in comparison to SSL. An interesting observation from
this analysis is that irrespective of the type of unlabelled
data used, SSL always outperforms fully supervised learn-
ing given a sufficient number of labelled samples. This
further demonstrates the effectiveness of SSL with uncon-
strained/OOD data and the viability of reducing reliance
on labels given the availability of unlabelled data.

4.7.3 Insights for improving SSL

While applying existing SSL methods to FER, we noticed
that directly transferring their default setups for this pur-
pose does not yield optimal performance. To improve the
performance of existing methods, we conduct a compre-
hensive study to identify FER-specific best practices for
various aspects of the SSL methods. Furthermore, we find
the different methods perform differently in different semi-
supervised settings studied in the paper. Overall, our study
reveals the following key insights into semi-supervised
learning for FER. First, when learning from more chal-
lenging learning scenarios, such as OOD, unconstrained,
and small unlabelled data, the unsupervised loss plays a
more critical role. Thus, increasing the value of the un-
labelled loss factor (λ) improves performance. Secondly,
considering the important role of unlabeled data and ac-
knowledging that large volumes of such data can greatly
enhance performance, we foresee a new perspective toward
developing SSL for FER. Specifically, we anticipate that in-
tegrating strong unsupervised methods with small/modest
supervised frameworks can result in robust and generalized
frameworks, leading to the creation of more scalable SSL
techniques in the area.
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TABLE 8: Comparison across different settings on FER-13.

Accuracy (%)
Setup 250 labels All

No unlabelled data 53.58±1.1 64.57±0.9

SSL (ID) 62.20±0.5 65.15±0.5

SSL (OOD) 58.48±0.8 70.40±0.8

SSL (Unconstrained) 58.04±0.8 70.50±0.4

5 CONCLUSION

This research offers a comprehensive analysis of 11 semi-
supervised methods for FER. The study evaluates the per-
formance of these methods in various unlabelled data sce-
narios, including ID, OOD, unconstrained, and very small
unlabelled sets. Our primary finding is that FixMatch is the
most effective semi-supervised method for learning from ID
unlabelled data. However, for all other real-world scenarios
(OOD, unconstrained, and small set), ReMixMatch con-
sistently outperforms other semi-supervised methods. An-
other noteworthy finding is that semi-supervised learning
from any data scenario produces better results in compari-
son to fully-supervised learning from the same number of
labelled samples. When learning from an ID unlabelled set,
semi-supervised methods can produce a performance im-
provement of up to 11% over the fully-supervised method.
Although compared to ID, performance is generally lower
for both OOD and unconstrained unlabelled data, these
methods still outperform fully-supervised learning. Interest-
ingly, the unconstrained setting, despite being significantly
more challenging than ID or OOD, underperforms OOD by
only a small margin. This is a significant observation since
collecting large amounts of unconstrained unlabelled data
is considerably easier and more practical than collecting ID
or even OOD (but constrained) data. Overall, we anticipate
that this research will serve as a useful guide for further
investigation into semi-supervised learning in the context
of FER, as well as other domains. One limitation of this
study is that we primarily focused on facial expression
datasets with static images of macro-expression. Exploring
the effectiveness of semi-supervised learning for dynamic
or micro expressions remains an interesting area for fu-
ture research. While our study highlights the promise of
unconstrained unlabelled data on the overall performance
of semi-supervised FER, further investigation is needed to
understand the impact of data quality and potential biases
within such datasets.
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