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SU(2)L triplet scalar as the origin of the 95GeV excess?
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We explore the possibility that an SU(2)L triplet scalar with hypercharge Y = 0 is the origin of
the 95GeV diphoton excess. For a small mixing angle with the Standard Model Higgs, its neutral
component has naturally a sizable branching ratio to γγ such that its Drell-Yan production via
pp → W ∗ → HH± is sufficient to obtain the desired signal strength, where H± is the charged
Higgs component of the triplet. The predictions of this setup are: 1) The γγ signal has a pT
spectrum different from gluon fusion but similar to associated production. 2) Photons are produced
in association with tau leptons and jets, but generally do not fall into the vector-boson fusion
category. 3) The existence of a charged Higgs with mH± ≈(95±5)GeV leading to σ(pp → ττνν) ≈
0.4 pb, which is of the same level as the current limit and can be discovered with Run 3 data. 4) A
positive definite shift in the W mass as suggested by the current global electroweak fit.

I. INTRODUCTION

The Standard Model (SM) is the currently accepted
theoretical description of the known constituents and in-
teraction of matter. It has been successfully tested in
precision experiments [1–3] and the Brout-Englert-Higgs
boson [4–7], the last missing piece, was finally discovered
in 2012 at CERN [8–10]. In fact, this 125GeV particle
has properties consistent with the ones predicted by the
SM [11–15]. However, this does not exclude the exis-
tence of additional scalar bosons, as long as their role in
electroweak symmetry breaking is subleading and their
production cross sections are smaller than the ones of
the SM-like Higgs [16, 17].

The minimality of the SM Higgs sector, i.e. the exis-
tence of a single SU(2)L doublet scalar that simultane-
ously gives mass to the electroweak (EW) gauge bosons
and all fermions, is not guaranteed by any theoretical
principle or symmetry. A plethora of such extensions
have been proposed in the literature, including the ad-
dition of SU(2)L singlets [18–20], doublets [21–25] and
triplets [26–31].

While Large Hadron Collider (LHC) searches for new
particles did not lead to any discovery (yet), there are
interesting hints for new scalar bosons [32]. In particu-
lar, CMS [33–35] searches hint toward a neutral scalar
H decaying into two photons at 95GeV. This is com-
patible with the latest ATLAS result [36] and supported
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by Z-strahlung with H → bb̄ at LEP [37], as well as
by ττ [35] and WW [38–40] searches. In fact, combining
these channels results in a global significance of 3.8σ [41].
So far, explanations of the 95GeV excesses in terms

of SU(2)L singlets and/or SU(2)L doublets were pro-
posed in the literature [42–67], which all respect custodial
symmetry at tree-level. For higher dimensional SU(2)L
representations, the measurement of the ρ-parameter re-
stricts the vacuum expectation value (VEV) of the new
scalar to be ≲ O(1)GeV [3] and except for the SU(2)L
triplet with hypercharge Y = 0 multiply charged scalars
at the same mass scale are unavoidable which is prob-
lematic with respect to LHC searches [68–71].1 It is well
known that this field provides a positive definite shift in
the W mass (with respect to the SM prediction) [80–91],
as motivated by the current global electroweak fit [92–94]
(driven by the CDF II result [95]). However, its collider
phenomenology has been barely studied. In this article,
we study the viability of Y = 0 triplet as an alternative
in addressing the hints for a ≈95GeV scalar.

II. PHENOMENOLOGY

The SM extended with an SU(2)L triplet scalar with
hypercharge 0, is commonly referred to as the ∆SM [96–
103]. It contains an additional charged scalar H± and a

1 For small mass-splitting among the SU(2)L components, LHC
searches for multiply charged scalars would exclude scenarios
with a neutral Higgs with a mass around ∼ 95GeV [72, 73].
However, nondegenerate scenarios, with the heavier multiply
charged Higgses decaying into (off-shell) neutral Higgses and W -
bosons, could still be consistent with the LHC searches [74–77].
The phenomenology of such mass spectra has been studied in
Refs. [78, 79].
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neutral oneH which acquires a vacuum expectation value
v∆ in the process of spontaneous symmetry breaking. Im-
portantly, without mixing H couples only to W bosons
at tree-level, while the CP -even mixing angle α induces
couplings to SM fermions. Furthermore, charged Higgs
loops modify both h → γγ and H → γγ. A detailed
description of the model is provided in the Appendix.

A. Perturbative unitarity and vacuum stability

The ∆SM parameter space can be constrained by vac-
uum stability and perturbative unitarity. The region be-
tween the red lines in Fig. 1 is allowed by both criteria
and the explicit calculation of the constraints is given in
the Appendix.

B. W mass

The latest ATLAS update of mW = 80.360(16) [104]
(superseding the 2017 result [105]) as well as the LHCb
result mW = 80.354(32) [106] are significantly smaller
compared to mW = 80.4335(94)GeV obtained by
CDF II. When combined with D0 [95] and LEP [107], this
lead to a naive global average of mW = 80.406(7)GeV.
Because there is considerable tension between these mea-
surements (χ2/dof = 4.3), we inflate the error on mW to
0.015GeV to get a conservative average of [90]2

mcomb
W = (80.406± 0.015)GeV. (1)

Comparing this with the SM prediction of
mSM

W = 80.3499(56)GeV [3, 92, 108–114], with
mt = 172.5(0.7)GeV [3], the discrepancy of 56MeV
amounts to 3.7σ. If we disregarded the CDF II result,
we find an average of

m
comb (w/o CDF II)
W = (80.372± 0.010)GeV, (2)

which corresponds to a discrepancy of 22MeV (2.2σ).

In the ∆SM, we have

m2
W =

g2

4
(v2 + 4v2∆), m2

Z =
g2

4 cos θ2W
v2. (3)

Therefore, v∆ of a few GeV can easily alter the mW pre-
diction in the desired direction. As such, mcomb

W requires

v∆ = 4.60+0.58
−0.66 GeV, while m

comb (w/o CDF II)
W requires

v∆ = 2.89+0.59
−0.75 GeV.

C. SM Higgs signal strength

Through the quartic interactions H± contributes to
the diphoton decay rate of the SM Higgs h (see Fig. 2
left). The corresponding signal strength, with respect
to the SM one, is given by

µh,γγ = Γh→γγ/Γ
SM
h→γγ = |κ2

γ | , (4)

with

κγ ≈ cosα+
AhH±H∓v

2m2
H±

β0
H

(
4m2

H±
m2

h

)
4

3
β
1/2
H

(
4m2

t

m2
h

)
+ β1

H

(
4m2

W

m2
h

) ,
(5)

and the loop functions [115] are given in Appendix.
Combining the most recent measurements of

CMS [116] and ATLAS [117], µCMS
h,γγ = 1.12+0.09

−0.09

and µATLAS
h,γγ = 1.04+0.10

−0.09, respectively, we get the
weighted average

µexp
h,γγ = 1.08+0.07

−0.06. (6)

The resulting preferred regions at the 1σ and 2σ level are
shown in blue in Fig. 1.
While the h → γγ signal strength is the most pre-

cise measured one, it is affected by h-H mixing and
the H±-loop contribution so that cancellations occur.
Therefore, the second-best measured SM Higgs signal
h → ZZ∗ [118, 119] provides a complementary constraint
of [3]

µexp
h,ZZ∗ = 1.02± 0.08 , (7)

which, to a very good approximation, is only sensitive to
the mixing angle α. The region on the right of the solid
vertical line in Fig. 1 is compatible with µexp

h,ZZ∗ at the
1σ level.

D. diphoton excess

While nearly all relevant decay modes of H can be
obtained from a rescaling of the widths of a SM-like Higgs
with a mass of 95GeV by multiplying with sin2 α, the
decay H → WW ∗ is already generated at tree-level via
v∆ and H → γγ receives loop contributions from the
charged Higgs as well as from W loops:3

2 This naive average agrees well with the one obtained in a sophis-
ticated fit performed by HEPfit [92] prior to the ATLAS update.

3 Only Zγ also receives an additional direct contribution from the
W loop, which is already present for sinα = 0, but the corre-
sponding branching ratio is negligibly small.
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FIG. 1. Preferred regions (1σ and 2σ) by the h → γγ signal strength (blue) and the 95GeV H → γγ excess (green) in the
α−∆m plane for the two values of v∆ corresponding to the two mW benchmark points. The region between the two red lines
is allowed by vacuum stability and perturbative unitarity. The dashed vertical line indicates the region preferred by the LEP
measurement of Z+(H → bb), and the region to the right of the solid vertical line is preferred by the h → ZZ∗ signal strength
at 1σ level.

Γ(H → γγ) ≈ α2
emg

2
2m

3
H

1024π3m2
W

∣∣∣∣−4

3
sinαβ

1/2
H

(
4m2

t

m2
H

)
+

(
− sinα+

4v∆
v

cosα

)
β1
H

(
4m2

W

m2
H

)
+

AHH±H∓v

2m2
H±

β0
H

(
4m2

H±

m2
H

)∣∣∣∣2 .
(8)

Here, αem at q2 = 0 numerically approximates well the
NLO QED corrections.

For a small mixing angle α, H is mainly produced
via the Drell-Yan (DY) process pp → W ∗ → H±H (see
Fig. 2 right) with a leading order (LO) cross section of
1.77 pb for mH± ≈ mH = 95GeV. While the QCD cor-
rections have not been estimated so far for the ∆SM, it
is obvious that they pertain dominantly to the hadronic
ends of the processes and are thus expected to be the
same as for sleptons or SU(2)L triplet leptons. The lat-
ter has been calculated in Ref. [120], resulting in a cor-
rection factor of 1.15, by which we naively rescale the LO
cross section (computed with MadGraph5aMC@NLO [121])
to obtain ≈ 2 pb. In addition, H is also produced via
gluon-gluon fusion (ggF) and vector boson fusion (VBF)
processes through the mixing with h. The corresponding
cross section is calculated by multiplying the production
cross section of a SM-like 95GeV Higgs by α2. Neglect-
ing the subdominant contribution from VBF, and using
σ[pp → h(95)] ≈ 68 pb [122–132], we thus have

σ[pp → H → γγ] ≈ Br[H → γγ]×
(
2 + 68α2

)
pb. (9)

Normalizing the signal strength to the one of a hypo-
thetical SM-like Higgs with the same mass [122], we find

numerically

µH,γγ ≈ (21.5 + 719α2)× Br[H → γγ]. (10)

This has to be compared to the combination of the CMS
and ATLAS analyses of a low mass γγ searches of [65]4

µexp
H,γγ = 0.27+0.10

−0.09 . (11)

The resulting preferred regions are shown in green in
Fig. 1.5.

4 Note that the signal strength of H is normalized with respect
to an SM-like Higgs with the same mass. While the latter is
mainly produced via ggF and VBF processes, the former is dom-
inantly produced via the DY process pp → W ∗ → H±H while
the other production modes are too a good approximation only
induced via the mixing with h. Note that, while in the limit
of zero mixing between the SM Higgs and the triplet Higgs, H
is fermiophobic, this region in parameter space is, contrary to
the setup of Ref. [133], not excluded due to the charged Higgs
contribution to H → γγ. Furthermore, for α ̸= 0, couplings to
fermions are induced.

5 Note that our model has similarities with one of the “square”
benchmark scenarios of Ref. [44], where the 95GeV excess was
studied in the context of the type-I two-Higgs-doublet model.
There, in the fermiophobic limit, pp → W±∗ → H±H is the
dominant production mode. However, the model in Ref. [44]
predicts an additional pseudoscalar with ≈ 80GeV while the
Higgs potential allows for more freedom than our setup.
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FIG. 2. Feynman diagrams showing the modification of h → γγ (left), the DY processes pp → Z∗, γ∗ → H+H− → τ+τ−νν̄
(middle) and pp → W ∗ → H±H0 (right).

E. Zbb, WW and ττ

While Br[H → WW ] is large for a very small mixing
angle α, the resulting effect in γγ would be too high if one
aims at the central value of the cross section of Ref. [40].
Therefore, α cannot be too small, and it is possible to
explain the Zbb excess of LEP which requires

µexp
bb =

σexp (e+e− → ZH)

σSM (e+e− → ZH)
Br
(
H → bb̄

)
= 0.117± 0.057.

(12)
For tau decays, the central values of the signal strength
µexp
ττ = 1.2±0.5 cannot be fully explained, which is a gen-

eral feature of most SM extensions addressing the 95GeV
excess [58], the error is too large to draw a conclusion
here.

F. pp → H+H− → τ+τ−νν̄

The charged Higgs in general dominantly decays to
τν. Therefore, its pair production and subsequent de-
cays, i.e. pp → Z∗, γ∗ → H+H− → τ+τ−νν̄ (see
Fig. 2 middle), leads to a collider signature searched
for in the context of supersymmetric tau partners [134–
137]. While CMS [136] provides an upper bound on
the cross section and observes a weaker limit than ex-
pected, ATLAS [137] observes a stronger limit than ex-
pected but does not provide a bound on the total cross
section. Since both bounds deviate from the expected
limit by ≈ 1σ level, but in opposite directions, we will
thus use the expected limit on the cross section pro-
vided by CMS [136] of 0.34+0.24

−0.12 pb. Using once more
MadGraph5aMC@NLO at LO, we find a production cross
section of 0.86 pb which we again multiply by a factor
1.15 [120, 138] to include NLO QCD effects. Taking into
account that CMS and ATLAS assume a 100% branch-
ing ratio of the stau to tau and neutralino, while we have
Br[H± → τ±ντ ] ≈ 0.66 ± 0.03 [122, 139–153]6, a cross

6 Since in our case the branching ratio is dominated by τν and cs,
the error on Br[H± → cs] is dominating the error of Br[H± →
τ±ντ ].

section of ≈ 0.44± 0.03 pb is predicted. This is in slight
tension with the 95% exclusion limit.
Let us therefore consider the option to reduce

Br[H± → τν] by increasing the mass splitting ∆m such
that Br[H± → HW ∗] becomes sizable:7

Γ(H± → HW ∗) =
9g4mH±

512π3
λ2
HH±WG

(
m2

H

m2
H±

,
m2

W

m2
H±

)
,

(13)

where λHH±W = 2 cosα cosβ − sinα sinβ, and the loop
function G(x, y) is given in the Appendix.
As one can see in Sec. 3 in the Appendix, choosing

v∆ = 0.86GeV as a benchmark point, allows for a small
region in parameter space with sizable mass splitting,
that is allowed by the vacuum stability and perturbative
unitarity8 as well as compatible with h → γγ, ZZ∗, H →
γγ and Zbb. Note that this scenario predicts a small
positive shift in the W mass.

III. CONCLUSIONS AND OUTLOOK

In summary, the predictions if the neutral component
of the SU(2)L triplet with hypercharge 0 is the origin of
the 95GeV excess are:

• LHC Run 3 shows a stau-like excess.

• Positive shift in the W mass.

• H is produced in association with jets and τ lep-
tons.

• A charged Higgs with a mass below ≈ 100GeV
which could be very well studied at future e+e−

colliders [154–157].

7 Note that Br[H± → H∗W ] is much smaller such that it can be
neglected.

8 Note that, for sizeable α, the requirements of vacuum stability
and perturbative unitarity dictate that ∆m ≈ 22α− 3.75 GeV.
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FIG. 3. Transverse momentum normalized to the invariant
mass of the photon pair system for different production mech-
anisms of a 95GeV scalar H: VH (orange), ggF (green), DY
production in the triplet model (blue).

• A significantly broader pT spectrum of the dipho-
ton system compared to ggF, as shown in Fig. 3.9
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Appendix A: The Model

The SM supplemented by a SU(2)L triplet scalar with
hypercharge 0, is commonly referred to as the ∆SM [96–
103]. The scalar sector consists of the SM doublet Φ, and

9 While this information is currently not available, it can be used
in future analyses as a discriminator. To compare the pT of
the diphoton system of the ∆SM to the SM, we generated 100k
events at NLO using MadGraph5aMC@NLO with the parton shower
performed by Pythia8.3 [158] and the detector simulation for
the CMS detector [34], carried out with Delphes [159]. The UFO
model file at NLO of the ∆SM was built using FeynRules [160–
162] and to increase the efficiency of the simulation, the decay of
H to a photon pair was forced using MadSpin [163].

the triplet ∆:

Φ =

(
ϕ+

ϕ0

)
, ∆ =

1

2

(
δ0

√
2δ+√

2δ− −δ0

)
, (A1)

with δ0 being real and δ− = (δ+)∗. The covariant deriva-
tive for SU(2)L is fixed, in the usual conventions, by the
generators, i.e. Tk = σk

2 for the doublet, with σk being
the Pauli matrices. This then fixes the structure con-
stants fijk = iϵijk and the covariant derivative in the
adjoint representation for the triplet is

Dµ∆ = ∂µ∆− ig2

[σk

2
W k

µ , ∆
]
, (A2)

where the square bracket stands for the commutator.
Note that therefore the SU(2)L gauge boson interactions
with the triplet are a factor of 2 higher than for a doublet.
Since the triplet cannot have direct couplings to quarks

or leptons, the scalar potential

V = −µ2
ΦΦ

†Φ+
λΦ

4

(
Φ†Φ

)2 − µ2
∆Tr

(
∆†∆

)
(A3)

+
λ∆

4

[
Tr
(
∆†∆

)]2
+ µΦ†∆Φ+ λΦ∆Φ

†ΦTr
(
∆†∆

)
,

describes its remaining interactions. Note that Eq. (A3)
has a global O(4)H × O(3)∆ symmetry softly broken by
the µ-term. After electroweak symmetry breaking, ϕ0

and δ0 acquire the VEVs ⟨
√
2ϕ0⟩ = v ≈ 246GeV and

⟨δ0⟩ = v∆. The minimization conditions

µ2
Φ = −µ

v∆
2

+
1

4
v2λΦ +

1

2
λΦ∆v

2
∆,

µ2
∆ = −µ

v2

4v∆
+

1

2
v2λΦ∆ +

1

4
λ∆v

2
∆,

(A4)

can then be used to eliminate µ2
Φ and µ2

∆ in terms of the
other parameters of Eq. (A3). The scalar mass matrices,
in the bases (ϕ+, δ+) and (Re(ϕ0), δ0), are

M2
± = µ

(
v∆

v
2

v
2

v2

4v∆

)
,

M2
0 =

(
λΦ

v2

2 λΦ∆vv∆ − µ v
2

λΦ∆vv∆ − µv
2 λ∆

v2
∆

2 + µ v2

4v∆

)
.

(A5)

The resulting mass eigenstates, in addition to Im(ϕ0), are

G± = cos ζ ϕ± + sin ζ δ± ,

H± = − sin ζ ϕ± + cos ζ δ± ,

h = cosα Re(ϕ0) + sinα δ0 ,

H = − sinα Re(ϕ0) + cosα δ0 ,

(A6)

with the CP-even and charged Higgs mixing angles

tan 2α =
4vv∆ (2λΦ∆v∆ − µ)

2λΦv2v∆ − 2λ∆v3∆ − µv2
, tan ζ = −2

v∆
v

.

(A7)
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The massless states G± and Im(ϕ0) are the would-be
Goldstone bosons, eaten by the W+ and Z. Among the
massive states, h is identified as the 125GeV (SM-like)
Higgs, and H and H± are the triplet-like neutral and
charged scalars with masses

m2
H = λ∆

v2∆
2

+ µ
v2

4v∆
− tanα

(
λΦ∆v∆ − µ

2

)
v ,

m2
H± = µ

v2 + 4v2∆
4v∆

.

(A8)

For vanishing α, m2
H± −m2

H ≃ µv∆ − λ∆v
2
∆/2, and thus

the components are nearly mass-degenerate for v∆ ≪
v. However, for large α and v∆, vacuum stability and
perturbative unitarity (see Sec. III of the main text)
allow a mass-splitting ∆m = mH± −mH of a few GeV.
In addition, the EW radiative correction induces a mass-
splitting of 160MeV–170MeV [164]. However, such a
small splitting is of little consequence as far as the LHC
phenomenology and their contribution to the electroweak
oblique parameters are concerned [82, 165].

Note that in the end, all parameters of the scalar po-
tential can be expressed in terms of the physical masses
and mixing angles and the two VEVs v and v∆. In par-
ticular, the (dimension-full) couplings of the neutral to
the charged Higgses can be written as

AhH±H∓ ≈ 1

2
λ∆v∆ sinα+ λΦ∆v cosα ,

AHH±H∓ ≈ 1

2
λ∆v∆ cosα− λΦ∆v sinα ,

(A9)

in the limit of small v∆ and mH ≈ mH± .

Appendix B: Vacuum stability and perturbative
unitarity

In the following we provide the condition necessary to
respect vacuum stability and perturbative unitarity (at
tree level). The first can be derived requiring the poten-
tial to be bounded from below, while the latter, limiting
the size of the quartic interactions, can be obtained from
2 → 2 scalar-scalar scattering10. The vacuum stability
conditions read [80, 166, 167]

λΦ > 0, λ∆ > 0,
√
2λΦ∆ +

√
λΦλ∆ > 0, (B1)

and from perturbative unitarity we obtain

|λΦ| ≤ 2κπ, |λ∆| ≤ 2κπ, |λΦ∆| ≤ κπ,

|6λΦ + 5λ∆ ±
√
(6λΦ − 5λ∆)2 + 192λ2

Φ∆| ≤ 8κπ,
(B2)

10 Note that this is valid as long as the µ parameter is not very
large, which is satisfied for a small VEV since µ ∼ v∆ ≪ v for
mH± ∼ v/2.

where κ = 16 or 8 depending on whether one chooses
|(a0)| ≤ 1 or |Re (a0)| ≤ 1

2 with a0 denoting the leading
partial wave amplitude [168]. In order to be conserva-
tive, i.e. not to exclude any potentially allowed parame-
ter space, we opt for κ = 16. Further, to ensure pertur-
bativity at all higher orders, we require all the trilinear
and quartic scalar couplings in (A3) to be smaller than
4π.11

Appendix C: One loop functions for di-photon decay

The loop functions for di-photon decay in Eq. (11) of
the main text are given as

β0
H(x) = −x [1− xf(x)] ,

β
1/2
H (x) = 2x [1 + (1− x)f(x)] ,

β1
H(x) = − [2 + 3x+ 3x(2− x)f(x)] .

(C1)

The loop function for H± → WH0 (in Eq. (20) of
main text) is given by

G(x, y) =
1

12y

[
2(−1 + x)3 − 9(−1 + x2)y + 6(−1 + x)y2

− 6(1 + x− y)y
√
−λ(x, y)

{
tan−1

(
1− x+ y√
−λ(x, y)

)

+ tan−1

(
1− x− y√
−λ(x, y)

)}
− 3

(
1 + (x− y)2 − 2y

)
y log x

]
,

with λ(x, y) = (1− x− y)2 − 4xy.

Appendix D: H± in stau searches

As to account for the slight tension with the 95% ex-
clusion limit of stau searches at the LHC, one can reduce
Br[H± → τν] by increasing the mass splitting ∆m such
that Br[H± → HW ∗] becomes sizable. In Fig. 4, we
choose v∆ = 0.86GeV as a benchmark point, which al-
lows for a small region in parameter space with sizable
mass splitting, that is allowed by the vacuum stability
and perturbative unitarity as well as compatible with
h → γγ, ZZ∗, H → γγ and Zbb. Note that this sce-
nario predicts a small positive shift in the W mass.

11 We checked numerically using Vevacious [169, 170], SPheno [171,
172] and BSMArt [173] that the inclusion of the one-loop effective
potential and meta stability has only a marginal effect on vacuum
stability and perturbative unitarity.
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