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Abstract

We present a method for obtaining unbiased signal estimates in the presence of a significant unknown background, eliminating the
need for a parametric model for the background itself. Our approach is based on a minimal set of conditions for observation and
background estimators, which are typically satisfied in practical scenarios. To showcase the effectiveness of our method, we apply
it to simulated data from the planned dielectric axion haloscope MADMAX.
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1. Introduction

Fitting a small-amplitude signal in the presence of a large-
amplitude background is both a common and often challenging
problem. If one has a valid parametric model for both signal and
background, and the response of the experimental apparatus can
be accurately modelled as well, then a forward-modelling ap-
proach can be employed: With signal parameters θ and back-
ground parameters ϕ we can usually construct a tractable and
parameterised probability distribution pobs

θ,ϕ (X) that models the
probability of observing a specific realisation of X. The com-
bination of such a distribution with some actual observed data
results in a likelihood function, and so all the common tools
of frequentist and (with priors on signal and noise) Bayesian
statistics can be brought to bear. If, however, a parametric
model is only available for the signal, but not for the back-
ground, the situation is less straightforward.

In some cases it is possible to describe the background fairly
accurately with a flexible empirical function. The resulting fit
of signal and background is then bias-free. This approach does,
however, add a potentially large number of nuisance parame-
ters, depending on the complexity of the background and the
dimensionality of the data. As a result, the numerical cost of
the fit can increase substantially and achieving fit convergence
can be a challenge. Also, it’s often not easy to ensure that such
an empirical function will indeed cover all possible background
shapes.

Alternatively, one can use a parameter-free background filter,
equivalent to subtracting a parameter-free background estimate
from the observation. Unfortunately, such an estimator is typi-
cally affected by the presence of a signal, resp. such a filter does
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alter the signal to some degree. As a result, a subsequent signal
estimate will be biased unless additional measures are taken to
correct for this.

This issue does, for example, arise in the context of ax-
ion haloscope experiments. These aim to detect a small, lo-
calised axion signal on top of a dominating radio-frequency
background. This background is determined by the system re-
sponse and characteristics of the radio-frequency receiver chain
of the haloscope experiment. As the wavelengths of interest are
comparable to the size of the system, it is exceedingly difficult
to model this background ab-initio.

Often Savitzky-Golay or similar filters are used to non-
parametrically subtract the background while simultaneously
retaining potential signals [1, 2]. But such a background filter
also affects the signal, changing its amplitude and shape. This
leads to a bias if signal parameters are inferred directly from
the filter output. A common method to correct for this bias uses
simulated pseudo-experiments [3] to estimate the filter-induced
distortion of the signal on an ensemble-level. In an axion con-
text this has so far only been done to correct the bias on the total
signal power [4, 5], but not regarding axion parameters coupled
to the signal shape. Recent efforts to improve upon the standard
analysis pipeline exist [1, 6], but do not tackle this effect.

In this work we demonstrate an approach that does use
parameter-free background filters but still yields inherently un-
biased signal estimates. We explain the general principle of our
approach in Sec. 2. In Sec. 3 we demonstrate the approach by
applying it to a physics example in context of the dielectric ax-
ion haloscope MADMAX [7–10] using Savitzky-Golay filters
as background estimators. We conclude in Sec. 4.

2. General Approach
While the approach described here is fairly generic, we do

require a few condition to be fulfilled in order to gain unbiased
signal estimates:
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• The expected value E(X) of the experimental observation
X can be written as linear combination of a signal S and a
background B:

E(X) = S + B. (1)

• The response of the experiment, i.e., the measure of proba-
bility pobs(X) of observing an outcome X, can be modelled
with sufficient accuracy by a tractable probability distribu-
tion that is parameterised by its expectation E(X):

pobs
E(X)(X) = pobs

S+B(X). (2)

If so, then we can also split the observation X into signal
plus background S +B and noise N and write pobs (without
loss of generality) as

pobs
S+B(X) = pnoise

S+B (N), (3)

with
X = E(X) + N = S + B + N (4)

and E(N) = 0.

• We have a parameter-free, unbiased and effective back-
ground estimator fbg, i.e. we require it to estimate the
background faithfully (relative to possible signals ampli-
tudes and length-scales):

fbg(B) ≈ B e.g. |B − fbg(B)| ≪ |ampl(S )| (5)

and we require it to suppress noise effectively (relative to
the noise level):

fbg(N) ≈ 0 e.g. | fbg(N)| ≪
√

var(N) (6)

Less formally, B − fbg(B) must not be allowed to mimic a
signal and X − fbg(X) must have approximately the same
noise as X.

• The background estimator is linear:

fbg(S + B + N) = fbg(S ) + fbg(B + N) (7)

• The background estimator does not reconstruct non-zero
signals perfectly:

S , 0 =⇒ fbg(S ) , S , (8)

so that background removal does not completely eliminate
signals. But crucially, we do not require the signal to be
invariant under background removal, that means we allow
for S − fbg(S ) , S .

• The possible shapes of the signal S are known and so S can
be parameterised by signal parameters θ and expressed as
a tractable S θ.

The first two requirements here are usually satisfied in signal-
plus-background inference scenarios anyway. The central re-
quirements are the existence of an unbiased, effective and lin-

ear background estimator and a tractable parameterisation of
the signal shape.

Note that the domain of S and B may be different than the
domain of X. If, e.g., pobs

S+B is Poissonian, then the domain of S
and B would be Rn but the domain of the observation X would
be Nn

0. However, addition/subtraction of values B, S and X must
be mathematically well-defined, and the background estimator
must be applicable to the domain of B and S as well the domain
of X. In practice this is typically the case, though.

Under these conditions, we can now construct a forward
model of the experiment without having a parameterised back-
ground model. To do this, we make the background estimator
fbg a (virtual) part of the experiment.1 We replace our original
observation X by a virtual observation (X′, B̂):

X′ ≡ X − fbg(X)

B̂ ≡ fbg(X).
(9)

We also define
S ′θ ≡ S θ − fbg(S θ). (10)

Due to the linearity (Eq. 7), unbiased nature (Eq. 5) and effec-
tiveness (Eq. 6) of the background estimator we can approxi-
mate X as

X = X′ + fbg(X)
= X′ + fbg(B + N) + fbg(S )
≈ X′ + B + fbg(S )

(11)

and so (due to Eq. 4) then approximate N as

N = X − S − B

≈ X′ + B + fbg(S ) − S − B

= X′ − S ′θ.
(12)

Now we can write an approximate but unbiased statistical
model pobs

θ (X′) for X′ that is independent of the unknown back-
ground B and that is parameterised only by the signal parame-
ters θ:

pobs
θ (X′) = pobs

S θ+B(X)

≈ pnoise
S ′θ+B̂

(
X′ − S ′θ

)
.

(13)

So if our background estimator is accurate enough, then given
an actual observation X we also have a good approximation for
the likelihood function of the signal parameters:

LX′ (θ) ≈ pnoise
S ′θ+B̂

(
X′ − S ′θ

)
. (14)

Now we can apply common statistical tools to infer the signal
parameters θ based on observations X.

Note that in any given scenario one must carefully verify
that the chosen background estimator fbg is indeed unbiased
(Eq. 5) compared to the expected signals, and that is also effec-
tive (Eq. 6) in suppressing the observed noise. If the signal and
background fluctuate on similar length- resp. frequency-scales,

1In a Bayesian context, one can also think of fbg as a hyperparameter.
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it may be impossible to satisfy Eq. 5 without violating Eq. 8,
which would result in complete loss of sensitivity. While we
assume that no parameterisation of the background is available,
its general properties, like relevant length, time or frequency
scales can typically be determined. So it will usually be possi-
ble to check that Eq. 5 is fulfilled.

This also means that this method is not necessarily suitable
for detecting arbitrarily small signals. It is difficult to ensure
that B− fbg(B) cannot partially match any allowed signal shape
if the signal amplitude is allowed to approach zero - which
could potentially result in falsely detecting a signal. As long
as the allowed signal shapes are somewhat constrained, though,
this failure should be detectable during goodness-of-fit checks.

In the following we demonstrate our approach on a specific
use case, in combination with Bayesian parameter inference,
but the method is valid in general under the conditions listed
above.

3. Application to an Axion Haloscope

We use (simulated) example data of the planned axion halo-
scope MADMAX to show the effectiveness of our approach in
a practical setting, using Savitzky-Golay filters as background
estimators.

3.1. The MADMAX Experiment
Axions play a crucial role in the standard Peccei-Quinn so-

lution to the strong CP problem [11–15]. At the same time

they can also be produced non-thermally in the early universe
in abundances that make them a viable dark matter candidate
[16–18]. It is possible to detect them with earth-based experi-
ments probing their couplings to different standard model parti-
cles, e.g. [19–26], most commonly the axion-to-photon couling
gaγ.

If they make up a sizeable fraction of a homogeneous dark
matter halo [27–29], axion haloscopes like ADMX [30–34],
ORGAN [35], HAYSTAC [36–38] or MADMAX [7–10] have
the capability of detecting or excluding axions in certain regions
of the axion mass (ma), gaγ parameter space. MADMAX will
achieve this by placing a metallic mirror and several movable
dielectric disks in a dipole magnetic field. The Primakoff effect
leads to the emission of radio-frequency photons at the surfaces
of these disks, the energy of which depends on the axion mass.
These emissions are coherent due to typically very small masses
(MADMAX will be sensitive around ∼ 100 µeV) of the cold
axions and correspondingly huge deBroglie wavelengths of a
scale bigger than the size of the experiment. The photons can
interfere constructively and be resonantly enhanced by strate-
gically placing the disks. Through adjusting disk positions, the
signal enhancement can be shifted to a different frequency, i.e.
axion mass, and a big parameter space can be covered.

The observed quantity in the MADMAX experiment is the
signal power in consecutive frequency bins in a given frequency
range. The expected signal power (spectral power density)
at a specific frequency ω adheres to the following formula:

P(ω)dω =
ρa

m2
a

g2
aγB

2
e Aβ2(ω)

qe

ℏ
×

√
2
π

v(ω)
σvvlab

exp
−v(ω)2 + v2

lab

2σ2
v

 sinh
(

v(ω)vlab

σ2
v

)
dv(ω) (15)

The first part (before the ×) determines height and position
of the signal peak. The position depends exclusively on the ma,
which we consider free in the frequency range after background
subtraction. The height depends on multiple theoretical and ex-
perimental parameters: ρa is the local axion density, which we
fix to the canonical value of ρa = 0.3 GeV cm−3, effectively
assuming homogeneous dark matter made exclusively out of
axions. We also fix the experimental parameters external mag-
netic field Be = 10 T and disk surface area A = 1 m2. The
power boost factor β2(ω) = 5 × 104 generally depends on fre-
quency, for simplicity we set it constant. We expect it to vary
only negligibly on the scale of the axion signal width. This
leaves us with the axion-photon coupling gaγ as the only free
parameter determining the integrated axion power. It depends
solely on the anomaly ratio E

N via Caγ:

gaγ =
α

2π fa
Caγ ≡

α

2π fa

∣∣∣∣∣ E
N
− 1.92

∣∣∣∣∣ . (16)

α is the electromagnetic fine structure constant and fa the
axion decay constant, which is linearly related to the axion mass
[39]. In general one should combine the prior knowledge for all

parameters mentioned above, however we will only consider
the most general available anomaly ratio expectation for QCD
axion models for now [40, 41].

The second part of Eq. 15 determines the shape of the sig-
nal peak. The frequency ω at which the axion can be detected
depends on its total energy, so axions with different relative ve-
locities v(ω) with respect to the laboratory can be detected at
different frequencies. The relationship can be calculated by
equating the photon energy with the relativistic energy of the
axions yielding

v(ω) =


√

1 −
(

mac2

ωh

)2
if ωh > mac2

0 else
. (17)

The dark matter velocities are assumed to follow a Maxwell-
Boltzmann distribution with velocity dispersion σv = 218 ±
6 km s−1 [42]. Earth is moving through the dark matter halo
with a relative velocity of vlab = 242 km s−1 with significant
seasonal variation [43]. Because we do not want to consider
seasonal variations here, we move this variation into the error of
the dark matter velocity distribution and model it as a Gaussian.
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Basically, the second part of Eq. 15 is the probability density
function of a Maxwellian velocity distribution boosted by vlab.
To obtain the observable integrated power in a frequency bin
we have to integrate the above formula over one bin.

This signal sits on top of a dominant background determined
by the exact characteristics of the MADMAX receiver chain.
The drop off both at low and high frequencies is caused by the
bandpass filter employed. The variations seen in grey in Fig. 1
are exceedingly difficult to model ab-initio: Multiple compo-
nents in the whole system act as correlated noise sources, the
emissions of which interfere with all other sources due to the
reflectivity of the system and a big coherence length at the mi-
crowave frequencies used. While all of these emissions can in
theory be estimated, propagation of uncertainties in every single
one of them would introduce errors in the background model of
a much bigger scale than the axion signal power or the statisti-
cal noise on top of the background.

A challenging but possible way to remove the background
could be to make each measurement with the magnet turned
off (no axion peak visible), the magnet turned on (axion sig-
nal visible) and subtracting the two afterwards. However, the
radio-frequency interference conditions in the experiment can
be slightly different if the magnet is turned on. This can po-
tentially affect the background. Additionally even the slight-
est time-instability of the system between the times at which
the measurements with and without magnetic field are con-
duced, even on levels of the noise component, would spoil this
method, while it just adds a small contribution to the uncertainty
when constructing a background estimator from the measure-
ment with a magnetic field. With our approach, the only crucial
requirement is that the background must not include fluctua-
tions of the same width in frequency space as the axion signal.

3.2. Savitzky-Golay Filters

As stated above, obtaining a parametric background model
for MADMAX data is likely not feasible. We thus have to rely
on a non-parametric background estimator, suitable candidates
being Savitzky-Golay filters.

Savitzky-Golay (SG) filters are a well-established [44, 45,
45–47], and powerful smoothing technique often used for re-
ducing noise in evenly spaced data while preserving the un-
derlying smooth features [48]. The filter works by fitting low-
degree polynomials to overlapping windows of data points us-
ing the method of least squares. The output of the filter is the
value of the fitted polynomial at the central point of each win-
dow. The parameters of the filter are the windows length and
degree of the polynomials. If these are chosen well for the given
data, then SG filters can often suppress higher-frequency noise
substantially while preserving the lower-frequency shape of the
input. Improved versions and alternatives to SG filters have
been proposed [49], but in our example use case we find that
classical SG filters perform well.

An SG filter can be expressed compactly using matrices.
Given a data vector X of length N, we can construct a smoothed

version fbg(X) using a convolution with the filter coefficients C:

fbg(X) = X ∗C. (18)

The filter coefficients C can be found by solving a linear least-
squares problem. Let A be a matrix of size M×(n+1), where M
is the (odd) window size and n is the polynomial degree. Each
element of A is defined as:

Ai j =

(
i −

M − 1
2

) j

, (19)

where i = 0, 1, ...,M − 1 and j = 0, 1, ..., n. We can find the
filter coefficients C by solving the following linear least-squares
problem:

C = (AT A)−1AT (20)

The first row of the resulting matrix C contains the filter coeffi-
cients. Note that these coefficients are computed only once for
a given window size and polynomial degree and can be used
to filter the entire data vector X, effectively circumventing the
fitting problem and resulting in high numerical performance.

SG filters are applied by convolving the filter coefficients C
and the input data vector X. They are therefore inherently linear
by construction and satisfy Eq. 7.

By applying the SG filter to the axion haloscope data, we sep-
arate the axion signal and noise from the background, which has
lower frequency characteristics. We do this without construct-
ing a parametric model for the background. But as the signal,
in contrast to the noise, is positive and not zero-symmetric, a
fraction of the signal becomes part of the background estimate.
This normally results in a bias that needs to be corrected.

3.3. Data Generation and Analysis

To test our bias-free signal estimation approach on the prob-
lem stated above, we simulated 1000 MADMAX-like mock-
datasets. A few of these are shown as grey lines in Fig. 1. We
then analysed these datasets with bias-free signal models that
take the effect of the background subtraction into account and
with standard signal models that do not. For our analysis we
chose a Bayesian approach, however the bias-free signal esti-
mation procedure can be applied to (and is indeed also neces-
sary for) other inference methods, e.g., a maximum likelihood
estimate of the signal parameters.

One dataset consist of 25001 data points with 2 kHz spacing.
It has three components (see Fig. 1):

• Signal. An axion signal following the shape of Eq. 15.
We assume fixed ρa and vlab and draw ma, σv and Caγ

from the prior. For Caγ we a priori exclude models with
Caγ < 0.86 to ensure that the signals have photon cou-
plings big enough to be detectable at the noise level given
below. The Caγ cutoffwas chosen such that at least 99% of
simulated signals could be reliably recovered by the anal-
ysis. This cutoff corresponds to a SNR of 2.38 for the
signal amplitude in respect to the standard deviation of the
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signal noise background

Figure 1: Components of a simulated example dataset. The upper panel shows multiple different datasets in order to visualise the variation in the simulated
backgrounds, as well as a zoom into the region of the axion signal for one of them. The three lower panels contain the three components of a dataset: The simulated
axion signal, uncorrelated noise and the background (from left to right).
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Table 1: Overview over the fixed parameters in the analysis and the priors used
for the three non-fixed parameters. fmin/max are the extremal absolute frequen-
cies at which the measurement is sensitive.

Parameter Value/ Prior

ma Uniform( fmin, fmax)
Caγ From [40, 41], excluding Caγ < 0.86
σv Normal(218, 39) [km s−1]

ρa 0.3 GeV cm−3

β2 5 × 104

vlab 242 km s−1

Be 10 T
A 1 m2

noise. So we’ll consider the scenario where an axion sig-
nal has been discovered but its quantitative properties have
not been inferred yet.

• Noise. Uncorrelated Gaussian background noise with
standard deviation σ = 5 × 10−24 W, corresponding to a
realistic integration time below two weeks assuming noise
temperatures below 10 K.

• Background. Correlated, non-thermal background. Its
shape is modelled after spectra shown in [2], as well as un-
published MADMAX testruns in 2022 and 2023, but does
not involve fits to actual datasets. We use the following
formula:

b( f ) = 10−20

erf
(

f − f0
5 MHz

) (
f0
f

)3

+ exp

− (
f − 25 MHz(1 + r1

15 )
20 MHz(1 + r2

10 )

)2
+ 4 × 10−22(1 + r3) sin

(
f + r4 f0

2.5 MHz

)
+ 5 × 10−24

[
(1 + r5) sin

(
f + r6 f0

0.25 MHz

)
+ (1 + r7) sin

(
f + r8 f0

0.1 MHz

)]
, (21)

where f0 = 4.218 MHz and f are relative frequencies
and all ri are independent random variables drawn from a
Gaussian N(µ = 0, σ = 1). The first three lines of Eq. 21
determine the large-scale shape of the background, but are
easy to distinguish from an axion signal with a FWHM
of roughly 10 kHz. We therefore introduce two sine-like
components with random phase, amplitudes of order of
the uncorrelated noise and fixed periods of 100 kHz and
250 kHz. This choice serves as a proxy for the expected,
more intricate, structure of fluctuations in physically re-
alistic scenarios. It represents a bad-case scenario where
signal extraction nevertheless remains feasible.

Tab. 1 summarises the relevant parameters for our analysis.

10 2 100

ampl(S)/B

0
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N
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r 
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101 103

ampl(S)/
√

var(N)

Figure 2: Distribution of the signal amplitude across our mock datasets, rela-
tive to the background and the noise level. Left: Signal to background ratio,
given by maximal amplitude of the signal divided by the background at that fre-
quency. Right: Signal to noise ratio, given by maximal amplitude of the signal
divided by standard deviation of the noise component. The bimodal shape of
the SNR histogram is caused by the Caγ prior the signals are sampled from.

The signals in our example application are small in the sense
that the median of their signal to background ratios (SBR) is at
0.016. Fig. 2 shows the SBRs and signal to noise ratios (SNRs)
for our mock datasets, represented by signal amplitude divided
by background at the signal frequency and signal amplitude di-
vided by noise standard deviation respectively.

We filter the data consisting of these three components with
a fourth-order SG filter of a width of 221 data points, cutting
away the first and last 110 data points due to boundary effects
of the filter. Subtracting the filtered from the raw data removes
the third, correlated background component almost completely,
but also slightly distorts the signal shape, as shown below. The
parameters of the SG fit were chosen to yield a good reduction
of the background while leaving signal and noise almost un-
changed. The exact choice of SG parameters does not affect the
validity of our approach. On the contrary: While the parameter
bias induced by previous approaches depends on filter parame-
ters, our bias-free inference is independent of them, as long as
the SG filter is compatible with the background (see Sec. 2).

We use Eq. 15 integrated over the frequency bins as the sig-
nal model for our Gaussian likelihood. As standard deviation
we take the amplitude of the uncorrelated noise, which is un-
known in realistic scenarios and therefore has to be inferred
from the data. If we would simply take the standard deviation
of the background reduced data, the presence of a signal would
lead to a slight bias for the noise towards higher values. To
prevent the signal from biasing our noise-level estimation we
first use the SG filter to remove a background estimate from the
data. Then we partition each spectrum into three frequency re-
gions of equal size (roughly 8333 bins). Because the width of
each of these regions is much bigger than that of the localised
filtered signal, it can only be present in up to two of the regions
simultaneously. We select the region with the smallest standard
deviation for our noise-level estimation. This removes the bias
caused by the presence of the signal. In our test case the inferred
noise level has a negligible difference compared to the ground
truth. This procedure works only if the background filter is un-
biased and the noise level of the residuals is constant, which we
verified for our test case. In some applications relative residuals
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Figure 3: Effect of using a bias-free signal model on the fit on the data. 68% central posterior predictive intervals for the bias-free and biased fit are plotted in red
and blue respectively. Top Left: Data after background reduction via SG filter and biased fit without SG filter applied. Bottom Left: Same data and bias-free fit
with SG filter applied. Top Right: Signal and noise components of the data as well as biased and bias-free peak-fit without applying an SG filter. Bottom Right:
Deviation of posterior predictive of bias-free and biased peak-fit from the true signal (”residual”) compared to noise component of the data. The peak-fits in all
panels have been performed on background reduced data as shown in the left panels. The data components shown in the right panels are for comparison only.
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Figure 4: Validation of the chosen SG filter parameters in terms of background
estimation and noise removal. Left: Deviation between filtered and unfiltered
true backgrounds for all data points normalised to the signal amplitude for each
mock dataset (see Eq. 5). Right: Comparison between the filtered noise for
all data points and the standard deviation of the unfiltered noise component for
each mock dataset (see Eq. 6).

might need to be used, especially for frequency dependent N or
if background oscillations depend on its absolute magnitude.

For Monte Carlo analysis we use the Reactive Nested Sam-
pling algorithm [50–52] via the Bayesian Analysis Toolkit in
Julia (BAT.jl) [53].

3.4. Requirement Validation

Sec. 2 states several requirements for our method to be ap-
plicable. This subsection will show that they are all fulfilled in
our example use case.

The first two requirements are fulfilled by construction of our
mock datasets. The red curve in Fig. 3 (bottom left panel) cor-
responds to S − fbg(S ) and clearly shows, that it is not equal
to zero everywhere. We also already presented a parameterisa-
tion of S in Sec. 3.1. It remains to be shown that Eqs. 5 and
6 approximately hold, which hinges on the choice of SG filter
parameters.

We consider the SG filter to be a good background estimator
if |B − fbg(B)| ≪ |ampl(S )| and to be efficient at removing the
noise component if | fbg(N)| ≪

√
var(N). Fig. 4 shows the dis-

tribution for both of these conditions using an SG filter with a
width of 221 data points and polynomial order 4 on our mock
datasets.

Fig. 4, left panel, demonstrates the chosen SG filter to be
an excellent background estimator with practically all residuals
being below 5 × 10−4 of the signal amplitude.

The SG filter applied to noise retains the Gaussian behaviour
of our noise component, but reduces its standard deviation to
0.13
√

var(N), so by almost one order of magnitude, as can be
seen in Fig. 4, right panel.

Our chosen SG parameters therefore represent a filter that
fulfils all requirements listed in Sec. 2.

3.5. Results

Fig. 3 shows the result for one of the datasets. We demon-
strate the effect of the bias-free vs biased method qualitatively
using 68 percentile central posterior intervals. When the stan-
dard signal model is used to fit the signal peak (Fig. 3, top left),
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Figure 5: Reduced chi-square distributions for all mock datasets, obtained from
fits using the standard biased method (blue) as well as our bias-free method
(red). The reduced chi-square was calculated for the posterior median using the
inferred noise level as described above and only in a range of 350 data points
around the known signal frequency, because only in this region are pronounced
differences between the biased an our bias free method to be expected.

the effect of the background removal via SG filter cannot be
modelled. Due to the presence of the signal, the background
around the signal is overestimated, leading to a systematic de-
crease in signal height and adjacent data points below the base-
line. A peak-fit is perfectly capable of fitting this modified sig-
nal, but cannot fit the surrounding data points - and therefore
does not retain the true signal parameters. We will see this in
the following.

The bottom-left plot in Fig. 3 shows the same, but with a bias-
free fit on the signal peak that takes the effect of SG filtering into
account. We obtain a good fit over the whole frequency range,
which displays the characteristic effect of an SG filter on the
signal. Unbiased signal parameters can be obtained based on
this fit, as Fig. 3, top right shows. The actual, non-filtered and
background free signal peak is fitted well by the posterior pre-
dictive central interval of the bias-free peak-fit on which no SG
filter has been applied. The standard, biased peak-fit however
underestimates signal height and width. This underestimation
is made more visible in Fig. 3, bottom right, where the devia-
tion relative to the true signal is shown in comparison with the
noise level, both for the biased and the bias-free peak-fit. While
the 68 percentile of the bias-free fit includes the true signal over
almost the full frequency range, the standard, biased fit displays
significant deviation.

As a first quality-of-fit check, we show a histogram of re-
duced chi-square values for all mock datasets in Fig. 5. The
distribution of chi-square values for our bias-free method is
compatible with unity (1.005 ± 0.08). For the biased method,
however, we observe a distribution of chi-square values sys-
tematically above one. While most datasets display reasonably
good χ2

red ∈ [0.8, 1.5], some reduced chi-square values exceed
even the upper bound of Fig. 5, indicating extremely bad fits.

To further asses the quality of our fits, we perform Bayesian
coverage testing and show that the Bayesian posterior are com-
patible with the true parameter values, but only when using our
bias-free approach. From a frequentist perspective, repeating an
unbiased analysis multiple times should lead to the true signal
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Figure 6: Distribution of the posterior quantile bin in which the true signal
parameter resides, for the three parameters. The red curves show the bias-free
parameter inference, the blue curves show the biased one. For 1000 mock-
datasets and 10 quantile bins 100 ± 10 cases are expected for each bin, which
is shown as the green dashed region. The width of the green band corresponds
to the expected statistical fluctuation. The distribution of the parameters in our
bias-free approach shows no significant deviations from the expectation. For the
standard, biased approach, we observe a significant and systematic shift away
from the true signal parameters. In this case almost all true signal parameters
reside in the first or last quantile of the posterior distribution.

Table 2: Coverage properties of the Bayesian credible intervals: The table
shows the percentage of cases in which true signal parameter resides in the
68% (resp. 95% and 99.7%) posterior credible interval, for each of the three
free fit parameters.

Coverage biased Coverage bias-free
68% 95% 99.7% 68% 95% 99.7%

ma 0.241 0.405 0.589 0.690 0.945 0.994
Caγ 0.055 0.131 0.426 0.643 0.925 0.993
σv 0.141 0.25 0.387 0.669 0.946 0.992
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Figure 7: Posterior and prior probability density for signal parameter Caγ for a
mock dataset with no simulated axion present. The prior extends far beyond the
region shown for Caγ > 2. As expected, the posterior is compatible with a no-
signal hypothesis, sets an upper limit on Caγ, and shows no gain of information
in respect to the prior at low values.

parameters being uniformly distributed over all marginal pos-
terior quantiles. As we do have access to the ground truth of
the signal parameters (using simulated data), and as we have
1000 equivalent mock-datasets at our disposal, we can verify
our Bayesian results in this manner. The outcome is shown in
Fig. 6. The standard, biased peak-fit that does not take the effect
of the SG filter into account systematically underestimates Caγ

and σv. It also shifts the axion mass to slightly larger values.
The bias-free fit, in comparison, shows no significant deviation
from the expected uniform distribution. A more standard test
to quantify coverage is given in Tab. 2. With the standard bi-
ased method, only a small fraction of true signal parameters lies
within the 68%, 95% or 99.7% credible intervals of the poste-
rior, whereas the coverage for our bias-free method is close to
the expected values.

Fig. 7 shows the prior and posterior distributions for a sim-
ulated dataset with no axion present. The probability density
of the posterior is clearly severely suppressed for Caγ > 1.5,
which hints at the limit setting potential of a MADMAX-like
experiment with parameters as chosen above. Below Caγ < 1.4
posterior and prior follow similar distributions, no information
has been gained. The Caγ posterior is therefore compatible with
a no-axion scenario, as expected.

Positive statistical fluctuations in several adjacent bins can
potentially mimic faint signals in scenarios with no detectable
axion present. To avoid erroneous detections in these scenarios
it is crucial to not underestimate the noise level implemented
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in the likelihood and to design a statistically sound detection
criterion. The latter is a highly relevant question on its own
right, but requires extensive validation and is beyond the scope
of the present paper. For this reason we a priori assume Caγ >
0.86 in our mock dataset, corresponding to detectable signal
strengths in the present analysis (compare Tab. 1). One could,
however, reasonably assume that the inclusion of the presented
approach could improve the sensitivity of detection procedure,
as the modified signal model will more closely resemble the
respective features in the data. We leave the exploration of this
for future work.

4. Summary

We present a method to fit small-amplitude signals on top of
an unparameterised background in an unbiased fashion. The
method is based on fairly weak assumptions about the problem,
making it applicable in a wide variety of scenarios: we mainly
require the existence of an unbiased and linear background es-
timator and an a-priori parameterisation of the signal. This en-
ables us to virtually incorporate the background estimator into
the measurement process and reduces the problem to modelling
a background-free signal in the presence of symmetric noise,
i.e., noise that has an expectation value of zero.

To evaluate the method in a practical real-world application,
we applied it to signal estimation on simulated data for the
planned MADMAX axion haloscope. The MADMAX experi-
ment aims to detect a small, peaked axion dark matter signal in
the presence of a challenging radio-frequency background that
is difficult to model from first principles, so it is a suitable can-
didate for the presented approach. For 1000 MADMAX-like
mock datasets we used Savitzky-Golay filters as background es-
timators and inferred the signal parameter in a Bayesian fashion
using nested sampling. The results verify the bias-free approach
presented here empirically and show that the signal parameter
estimates are indeed unbiased. The true signal parameters are
within the 68% central posterior predictive limits almost ev-
erywhere and the deviations of inferred parameters from the
ground truth fall within the range of expected statistical fluctu-
ations.

For comparison, we performed the signal parameter estima-
tion in the standard, biased fashion. Here the results do indeed
show significant systematic deviations of the inferred signal pa-
rameters from the ground truth. The bias free method is thus
both effective and necessary.
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