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High-dimensional entanglement has been shown to provide significant advantages in quantum
communication. One of its most promising implementations is available in the time-domain routinely
produced in spontaneous parametric down-conversion (SPDC). While advantageous in the sense that
only a single detector channel is needed locally, it is notoriously hard to analyze, especially in an
assumption-free manner that is required for quantum key distribution applications. We develop the
first complete analysis of high-dimensional entanglement in the polarization-time-domain and show
how to efficiently certify relevant density matrix elements and security parameters for Quantum Key
Distribution (QKD). In addition to putting past experiments on rigorous footing, we also develop
a physical noise model and propose a novel setup that can further enhance the noise resistance of
free-space quantum communication.

I. INTRODUCTION

Quantum entanglement is the defining feature of quan-
tum mechanics. It serves as the main resource for the
envisioned “quantum internet” [1], which enables novel
communication protocols such as super-dense coding [2],
quantum teleportation [3], and, notably, Quantum Key
Distribution (QKD) [4, 5]. QKD allows two remote par-
ties to establish secret keys, even in the presence of an
eavesdropper having access to unlimited computational
resources. The keys obtained then can be used in any
broader cryptographic setting, such as encrypting secret
messages. The main technical challenge in building a
robust large-scale quantum network is the unavoidable
exponential signal loss introduced by optical fibers [6].
In contrast to classical information, unknown quantum
states cannot be copied [7]; therefore, signal amplifica-
tion by means of repeaters is impossible for quantum sig-
nals. One could resort to building quantum repeaters
based on entanglement swapping, however, existing re-
peater designs are very far from being practical [8]. An
alternative approach to overcome the exponential loss in
optical fibers is satellite-based Quantum Key Distribu-
tion. This method allows the connection of two distant
communicating sites on Earth through links with sub-
stantially reduced loss, benefiting from signal loss scal-
ing only quadratically with the distance. Unfortunately,
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satellite-earth links are inherently vulnerable to outside
noise, entering the measurement devices from the chan-
nel, hence basically limited to nighttime operations (see
Refs. [9–15] for recent advances to extend the operation
time towards daylight operations by mainly experimental
adaptations). This severely limits the practicality of such
systems. In particular, for long-distance satellite links,
this presents a heavy reduction of potential links and
up-times. High-Dimensional (HD) entanglement [14, 16–
23] has proven to enhance background noise resistance
[24] in entanglement-distribution tasks, with HD entan-
glement in the time-domain [25] being its most promis-
ing implementation for free-space applications. Previous
work has successfully demonstrated the feasibility and
advantages of HD entanglement in entanglement distri-
bution and QKD [22, 26, 27], but analyses have been
rather heuristic and have relied on assumptions on the
source-state that are not compatible with the security re-
quirements of QKD. In this work, we provide a rigorous
and clean theoretical analysis of a high-dimensional inter-
ferometry setup and show how it can be used to harness
entanglement in the polarization-time domain for QKD.
We develop a realistic noise model and propose an al-
tered scheme that is experimentally simpler and removes
assumptions on the entangled state present in previous
work. An additional benefit of the proposed setup is an
improved noise tolerance by a factor of almost two. This
theoretically shifts operation hours from dawn to daytime
without relying on substantial technological innovations,
marking an important step towards full daytime opera-
tions.
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FIG. 1. Sketch of the setup analyzed. A photon source prepares entangled photons and sends them to two identical labs. Each
of the labs is equipped with a polarizing filter which can be either inserted (Protocol 1) or removed (Protocol 2). Then an
η : 1 − η beamsplitter allows a choice between two measurements, followed by a time-resolving photon detector, which allows
measuring the arrival time of incoming photons (TOA). In the second measurement setup, two polarizing beamsplitters (PBSs)
and two mirrors allow the superposition of neighboring time-bins. Finally, a half-wave plate (HWP) that can be either inserted
or removed together with another PBS and two time-resolving photon detectors (SPD) allow us to perform Time-Superposition
(TSUP) measurements. Furthermore, both labs are connected via a classical channel, allowing authenticated classical messages
to be exchanged.

II. SETUP DESCRIPTION & ANALYSIS

The HD-QKD setup analyzed is built upon two identi-
cal measurement devices, which are placed in the commu-
nicating parties’ labs, as well as an entangled photon pair
source, which can be placed either in one of the parties’
labs or in the middle and does not need to be trusted.
For the present work, we assume the photon source is
being placed in Alice’s lab. However, we want to stress
that our method applies to both scenarios.

We define the parties’ time-reference points via syn-
chronized coincidence windows which will henceforth be
called ’time-frames’. If the source is placed in one of
the parties’ labs, the delay in arrival time in compari-
son to the lab of the second party is accounted for, i.e.,
the time-reference points of detection are brought into
agreement. The source produces general polarized, time-
entangled photon pairs in (HPol ⊗HTime)

⊗2,
∣∣Ψideal

target
〉
:=∑

pA,pB∈{H,V}
∫∞
0

Ψ(pA, pB , t) |pA, pB , t, t⟩ dµ(t), where
µ(t) is some appropriate measure. Here, HPol is a two-
dimensional Hilbert space representing the polarization
degree of freedom, while, in principle, we require an
infinite-dimensional Hilbert space HTime to represent the
temporal degree of freedom. However, any realistic time-
resolving photon measurement discretizes the temporal
degree of freedom into detection events of finitely many
time-bins.
Let us call T > 0, chosen such that ∀pA, pB ∈ {H,V} :
Ψ(pA, pB , t) is almost constant in [t0, t0 +T ] for some t0,

time-frame length and let d be the number of time-bins.
Consequently, the length of a single time-bin is given by
tB := T

d . Hence, effectively, we require a d-dimensional
Hilbert space HT to capture the temporal aspects of the
photons under consideration. Then, our effective target
state reads

∣∣Ψeff
target

〉
:=

∑
pA,pB∈{H,V}

cpA,pB
|pA, pB⟩ ⊗

1√
d

d−1∑
k=0

|kk⟩ , (1)

where cpA,pB
∈ C with

∑
pA,pB

|cpA,pB
|2 = 1. The shares

of the photon pair are transmitted to Alice and Bob,
respectively.

Each of their labs is equipped with a measurement
setup described in Figure 1, where incoming photons pass
an η : 1−η beamsplitter, which, with probability η, allows
them to measure the Time-of-Arrival (TOA), and with
probability 1 − η the Temporal-Superposition (TSUP)
of neighboring time-bins. We note that the same mea-
surements can also be realized with active choice instead
of the beamsplitter, such that both measurements are
performed with only two detectors. For simplicity, we
discuss the passive choice setup, however, the following
analysis is also valid for active basis choice. The first arm
of this setup consists of a simple time-resolving photon
detector to capture the arrival time of incoming photons.
In the second arm, two polarizing beamsplitters (PBSs)
and two mirrors build a Franson interferometer [28], al-
lowing to superpose two (not necessarily neighboring)
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time-bins. Finally, a half-wave plate (HWP) that can be
either inserted or removed, together with another PBS
and two time-resolving photon detectors (SPD) perform
TSUP measurements.

For what follows, we adjust the long arm of the Fran-
son interferometer such that it causes a delay by one
time-bin, i.e., vertically polarized light with time-stamp
i− 1 meets horizontally polarized light with time-stamp
i. While a possible basis for HPol is given by {|H⟩ , |V⟩},
consisting of vectors corresponding to horizontally and
vertically polarized photons, a basis of HT is given by
the “time-bin states” {|n⟩}d−1

n=0. This allows us to define
the time-shift operation by its action on basis states, T̂ :
HT → HT , |n⟩ 7→ |n+ 1⟩ and the phase-shift operator
Q̂ϕ : HPol⊗HT → HPol⊗HT , |p, n⟩ → eiϕ |p, n⟩. Having
introduced this notation, we can start to describe the ac-
tion of the measurement setup. Let ρAB ∈ D

(
HA ⊗HB

)
be the joint quantum state that enters Alice’s and Bob’s
lab. The action of the TOA measurement setup on this
state is straightforward, as a detection event at time i
simply corresponds to a projection of the incoming state
onto |i⟩. Thus, the corresponding measurement operator
for Alice and Bob respectively reads

MA/B(i) = 1Pol ⊗ |i⟩⟨i| . (2)

It remains to find the corresponding operators for TSUP
measurements. We show in Appendix A that the unitary
representing the action of the TSUP measurement setup
is given by

Û := |HH⟩⟨HH| ⊗ 1T ⊗ 1T + |HV⟩⟨HV| ⊗ 1T ⊗ Q̂ϕT̂

+ |VH⟩⟨VH| ⊗ Q̂ϕT̂ ⊗ 1T + |VV⟩⟨VV| ⊗ Q̂ϕT̂ ⊗ Q̂ϕT̂ .

(3)

Note that the interferometer is followed by an half-wave
plate that rotates the plane of polarization by π

4 , mapping
|H⟩ to |D⟩ and |V⟩ to |A⟩. This finally allows us to find
the ‘effective measurement’ performed on the input state
ρAB , i.e., if Mk denotes the measurement performed on
the state ρout after passing the TSUP setup (but before
the detectors), we aim for M̃k :=

∣∣∣Ψ̃k

〉〈
Ψ̃k

∣∣∣ such that

Tr
[
ρABM̃k

]
=Tr [ρoutMk] = Tr

[
ÛρABÛ

†Mk

]
(4)

=Tr
[
ρABÛ

†MkÛ
]
. (5)

Let a, b ∈ {1, 2} label Alice’s and Bob’s de-
tectors and denote by i and j their respec-
tive time-stamps. Then, we obtain the effec-
tive measurement operators M̃a,b(i, j, ϕ

A, ϕB) =∣∣∣Ψ̃a,b(i, j, ϕ
A, ϕB)

〉〈
Ψ̃a,b(i, j, ϕ

A, ϕB)
∣∣∣,∣∣∣Ψ̃1,1(i, j, ϕ

A, ϕB)
〉
:=Û† |DD, i, j⟩

=
∣∣∣Ψ̃1(i, ϕ

A)
〉
⊗
∣∣∣Ψ̃1(j, ϕ

B)
〉
,

(6)

∣∣∣Ψ̃1,2(i, j, ϕ
A, ϕB)

〉
:=Û† |DA, i, j⟩

=
∣∣∣Ψ̃1(i, ϕ

A)
〉
⊗
∣∣∣Ψ̃2(j, ϕ

B)
〉
,

(7)

∣∣∣Ψ̃2,1(i, j, ϕ
A, ϕB)

〉
:=Û† |AD, i, j⟩

=
∣∣∣Ψ̃2(i, ϕ

A)
〉
⊗
∣∣∣Ψ̃1(j, ϕ

B)
〉
,

(8)

∣∣∣Ψ̃2,2(i, j, ϕ
A, ϕB)

〉
:=Û† |AA, i, j⟩

=
∣∣∣Ψ̃2(i, ϕ

A)
〉
⊗
∣∣∣Ψ̃2(j, ϕ

B)
〉
,

(9)

where we defined∣∣∣Ψ̃x(i, ϕ)
〉
:=

1√
2

(
|H, i⟩+ (−1)x−1e−iϕ |V, i− 1⟩

)
,

(10)
for x ∈ {1, 2}. To ease notation, we define
M̃A

a (i, ϕA) :=
∣∣∣Ψ̃a(i, ϕ

A)
〉〈

Ψ̃a(i, ϕ
A)
∣∣∣ and M̃B

b (j, ϕB) :=∣∣∣Ψ̃b(j, ϕ
B)
〉〈

Ψ̃b(j, ϕ
B)
∣∣∣, for a, b ∈ {1, 2} indicating which

detector clicks and i, j ∈ {0, ..., d− 1} marking the time-
stamps on each side. These measurements with time-
stamp i correspond to positive operator-valued measure
(POVM) elements associated with the detection time of
a photon emitted at time ti that traveled the short inter-
ferometer path, or, equivalently, with the detection time
of a photon emitted at time ti − 1 that traveled the long
interferometer path.

Over the course of their experiment, Alice and Bob
each measure either in the TOA or in the TSUP setting,
recording clicks with time-stamps that are stored in dif-
ferent coincidence-click matrices. Let a, b ∈ {1, 2} label
Alice’s and Bob’s detectors and denote by i and j their
respective time-stamps. Depending on which measure-
ment (TOA or TSUP) they chose, we obtain four pos-
sible measurement combinations that are stored in four
different kinds of coincidence-click matrices. Note that
we only need to label which detector clicked if a TSUP
measurement was performed, as clicks in TOA do not
discriminate polarization. In what follows, we use the
following notation. If both measured the time of arrival,
the corresponding coincidence-click element is TT(i, j)
and if both measured temporal superposition, the corre-
sponding coincidence-click element is given by SSa,b(i, j),
where a and b indicate which detector clicked. Since Alice
and Bob each have two detectors for that case, we obtain
four SS coincidence-click matrices in total. We follow
the same naming convention for those rounds where Alice
and Bob chose different measurements: if Alice measured
TOA while Bob measured TSUP, we denote the corre-
sponding coincidence-click element by TSb(i, j), while for
the opposite case where Alice measured TSUP and Bob
TOA it reads STa(i, j), with two matrices for each of
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the cases. Based on the performed measurements, the
coincidence-click matrix elements obtained by the present
setup read

TT(i, j) := Tr
[
ρAB

(
1
⊗2
Pol ⊗ |i, j⟩⟨i, j|

)]
(11)

SSa,b(i, j, ϕ
A, ϕB) := Tr

[
ρABM̃a,b(i, j, ϕ

A, ϕB)
]

(12)

TSb(i, j, ϕ
B) := Tr

[
ρAB

(
(1Pol ⊗ |i⟩⟨i|)⊗ M̃b

(
j, ϕB

))]
(13)

STa(i, j, ϕ
A) := Tr

[
ρAB

(
M̃a(i, ϕ

A)⊗ (1Pol ⊗ |j⟩⟨j|)
)]

.

(14)

III. PROBLEM AND SOLUTION

In general, Alice and Bob obtain a quantum state ρ ∈
D
(
(HPol ⊗HT )

⊗2
)
. Both record time-stamped clicks

and correlate the ones within the temporal margin of
the time-frame as coincidence-click matrices CC(i, j) :=
#Clicks per frame in time-bin i and j which leads to the
four different kinds of coincidence-click matrices given in
Eqs. (11) - (14).

While we can choose the state prepared by the source,
the state Alice and Bob receive (or only Bob receives, in
case the source is located in Alice’s lab) is unknown, as in
QKD, the channel connecting Alice and Bob is assumed
to be fully under the control of an eavesdropper, called
Eve. By performing measurements, Alice and Bob aim
to certify that the temporal part of their shared state is
entangled and decoupled from Eve’s part.

In general, the interpretation of the measurements and
their meaning for the time part of the density matrix de-
pends on the polarization degree of freedom of the state
Alice and Bob receive. A common approach so far has
been to assume (a) that temporal and polarization de-
grees of freedom are actually independent of each other,
ρ = ρPol ⊗ρT , or (b) that the polarization degree of free-
dom does not change while the photons travel through
the quantum channel. The assumed perfect knowledge
of the polarization degree of freedom has allowed us to
directly interpret the measurements’ effect on the time
part of the density matrix. Alternatively, one could lift
assumption (b) by performing state tomography of the
polarization density matrix by adding and using an ad-
ditional measurement arm at the cost of losing a certain
fraction of the signals and making the analysis signifi-
cantly more complicated.

In what follows, we propose a solution that simulta-
neously removes both assumptions (a) and (b) while, as
a beneficial side-effect, improving the noise resistance of
the setup and easing the practical complexity of the ex-
periment significantly. As shown in Figure 1, we sug-
gest adding an additional polarization filter set to let D-
polarized photons pass at the entrance of both Alice’s and
Bob’s lab before the signal meets the first beamsplitter
and tune the source to produce D-polarized photon pairs.

Thus, compared to earlier setups [27], we require only one
time-resolving photon detector in the TOA measurement
(and do not need an additional measurement arm to per-
form state tomography, as required under (b)). While
this simple modification eases the experimental setup
considerably, by forcing Alice’s and Bob’s joint state to
be |DD⟩⟨DD| ⊗ ρT after the polarization filters, we are
able to go without any assumptions about the internal
structure of the state that enters the lab and without
requiring that only the time part is manipulated while
passing the quantum channel. Furthermore, we expect
our proposed protocol to be more favorable in the finite-
size regime as we need to account for finite-size effects
for fewer measurements.

IV. QUANTUM KEY DISTRIBUTION

Having clarified the setup (see Figure 1), let us now
detail the proposed High-Dimensional (HD) Discrete-
Variable (DV) Quantum Key Distribution (QKD) pro-
tocol. Therefore, Alice and Bob execute the following
protocol.

1) State Preparation— A source generates photon
pairs entangled in polarization and time

∣∣ΨP1
target

〉
:= |DD⟩ ⊗ 1√

d

d−1∑
k=0

|kk⟩ , (15)

and sends them to Alice and Bob.

2) Measurement— Alice and Bob each perform ei-
ther a TOA or a TSUP measurement, depending on
independent random bits PA/B ∈ {0, 1}. This step
can be implemented passively via a beamsplitter.

Steps 1) and 2) are repeated N -times, where N is as-
sumed to be very large.

3) Announcement & Sifting— Alice and Bob pub-
licly announce their measurement choices for ev-
ery round via the classical channel and sift rounds
where they have performed different measurements.

4) Parameter Estimation & Key Generation—
Next, they disclose some of their results from mea-
surements of each basis to perform statistical tests.
If the tests are passed, they use the TOA measure-
ments to create a common raw key by performing
a key map, where logical bit-values are assigned to
the measurement results. Otherwise, they abort
the protocol and start again at step 1).

5) Error-correction & Privacy Amplification—
By means of classical algorithms Alice and Bob rec-
oncile their raw keys and perform privacy ampli-
fication to eliminate the potential eavesdropper’s
knowledge about the key.
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We take our proposed protocol (‘Protocol 1’) as an exam-
ple to illustrate our method and compare it to a protocol
used in earlier work [22, 27], which relied on assumptions
(a) and (b) discussed in the previous section. For this
protocol (‘Protocol 2’), the source is set to prepare

∣∣ΨP2
target

〉
:=

|HH⟩+ |VV⟩√
2

⊗ 1√
d

d−1∑
k=0

|kk⟩ , (16)

and the polarization filters at the entrance of both Alice’s
and Bob’s labs are removed. Note that the rates reported
for this protocol are only upper bounds, while the key
rates we report for Protocol 1 are reliable lower bounds.

Let us start with the discussion of Protocol 1. By con-
struction, independently of what happens to the quan-
tum signal while traveling through the quantum chan-
nel, Alice’s and Bob’s joint quantum state ρAB reads
|DD⟩⟨DD|⊗ρT , where ρT is an arbitrary quantum state in
D(H⊗2

T ). We apply Eqs. (11) - (14) to relate coincidence-
click matrix elements with density matrix elements. For
the TOA measurements, it follows directly that the
coincidence-clicks correspond to the diagonal entries of
the time-density matrix,

TT(i, j) = ⟨i, j|ρT |i, j⟩ . (17)

For the TSUP measurements, using the D/A represen-
tation from Eq. (10), we obtain

SS1,1(i, j) =
1

4
⟨i+, j + |ρT |i+, j+⟩ , (18)

SS1,2(i, j) =
1

4
⟨i+, j − |ρT |i+, j−⟩ , (19)

SS2,1(i, j) =
1

4
⟨i−, j + |ρT |i−, j+⟩ , (20)

SS2,2(i, j) =
1

4
⟨i−, j − |ρT |i−, j−⟩ , (21)

where i, j ∈ {1, 2, . . . , d − 1} and |i±⟩ := |i⟩±|i−1⟩√
2

, i.e.,
we set ϕA = ϕB = 0. To ease notation, we omitted the
arguments ϕA and ϕB . Note that these click events have
a direct physical interpretation. If on both sides detector
1 clicks, this means both have measured a positive phase
between two neighboring time-bins labeled by i and j,
while clicks of detector 2 on both sides indicate a nega-
tive phase. If opposite detectors click, this indicates that
they have measured different phases between neighboring
time-bins.

Finally, the mismatched measurements yield

TS1(i, j) =
1

2
⟨i, j + |ρT |i, j+⟩ , (22)

TS2(i, j) =
1

2
⟨i, j − |ρT |i, j−⟩ , (23)

ST1(i, j) =
1

2
⟨i+, j|ρT |i+, j⟩ , (24)

ST2(i, j) =
1

2
⟨i−, j|ρT |i−, j⟩ . (25)

For ease of presentation, we assume now that d is even
in what follows, in order to explain how these click ma-
trices can be interpreted. We want to emphasize that our
method is not limited to this case and that this choice
is solely made for illustration purposes and generalizes
straight-forwardly to arbitrary dimensions.

Note that the right-hand sides of the click equations are
composed of matrix elements of the time-density matrix.
It can be seen directly that the TOA clicks (TT) already
correspond to a POVM,

MP1
0 := {|i, j⟩⟨i, j|}d−1

i,j=0 , (26)

giving rise to a basis B0 := BA
0 ⊗ BB

0 , where BA/B
0 :=

{|i⟩}d−1
i=0 spans single time-bin subspaces. The corre-

sponding ‘basis-click matrix’ reads

CMP1
0
(i, j) := TT(i, j), (27)

where we use the natural order {|0⟩ , |1⟩ , . . . , |d− 1⟩}.
In contrast, the TSUP measurements can even be used

to construct two POVM measurements. For the first
of the two corresponding bases, B1 := BA

1 ⊗ BB
1 , no-

tice that |i±⟩ for fixed i spans two-dimensional time-
bin subspaces. Thus, we first consider odd i and ob-
tain BA/B

1 := {|(2k − 1)±⟩}
d
2

k=1 as a basis for Alice’s, re-
spectively Bob’s, d-dimensional temporal Hilbert space.
Consequently, a short calculation shows that

MP1
1 := {|i+, j+⟩⟨i+, j+| , |i+, j−⟩⟨i+, j−| ,

|i−, j+⟩⟨i−, j+| , |i−, j−⟩⟨i−, j−|}i,j odd
(28)

forms another POVM, induced by the bases BA/B
1 on

Alice’s and Bob’s side, respectively. The corresponding
click-matrix reads

CMP1
1

:= 4


SS1,1(1,1) SS1,2(1,1) SS1,1(1,3) SS1,2(1,3) ... SS1,1(1,d−1) SS1,2(1,d−1)
SS2,1(1,1) SS2,2(1,1) SS2,1(1,3) SS2,2(1,3) ... SS2,1(1,d−1) SS2,2(1,d−1)
SS1,1(3,1) SS1,2(3,1) SS1,1(3,3) SS1,2(3,3) ... SS1,1(3,d−1) SS1,2(3,d−1)
SS2,1(3,1) SS2,2(3,1) SS2,1(3,3) SS2,2(3,3) ... SS2,1(3,d−1) SS2,2(3,d−1)

...
...

...
...

. . .
...

...
SS1,1(d−1,1) SS1,2(d−1,1) SS1,1(d−1,3) SS1,2(d−1,3) ... SS1,1(d−1,d−1) SS1,2(d−1,d−1)
SS2,1(d−1,1) SS2,2(d−1,1) SS2,1(d−1,3) SS2,2(d−1,3) ... SS2,1(d−1,d−1) SS2,2(d−1,d−1)

 , (29)
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where we have ordered the basis vectors
{|1+⟩ , |1−⟩ , |3+⟩ , |3−⟩ , . . . , |(d− 1)+⟩ , |(d− 1)−⟩}.

Finally, for the last basis, B2 := BA
2 ⊗BB

2 , we consider
even i. Based on our measurement setup we are not able
to directly measure elements spanning the boundary sub-
spaces span{|0⟩} and span{|d− 1⟩} in the TSUP basis
with even i and hence need to substitute them by combi-
nations of elements where the parties have used different
measurements (so, the TS- and ST-clicks). We obtain
BA/B
2 := {|(2k)±⟩}

d
2−1

k=1 ∪ {|0⟩ , |d− 1⟩}. This translation

of projective measurements resulting in coincidence-click
matrices to POVM elements on only the temporal Hilbert
space allows us now to normalize the click matrices cor-
rectly. We obtain for the third POVM

MP1
2 := {|i±, j±⟩⟨i±, j±|} i,j>0,

even
∪ {|i, j±⟩⟨i, j±|} i∈{0,d−1}

j>0, even

∪ {|i±, j⟩⟨i±, j|} i>0, even
j∈{0,d−1}

∪ {|i, j⟩⟨i, j|}i,j∈{0,d−1} .

(30)

The corresponding click-matrix reads

CMP1
2

:=



TT(0,0) 2TS1(0,2) 2TS2(0,2) 2TS1(0,4) 2TS2(0,4) ... 2TS2(0,d−2) TT(0,d−1)
2ST1(2,0) 4SS1,1(2,2) 4SS1,2(2,2) 4SS1,1(2,4) 4SS1,2(2,4) ... 4SS1,2(2,d−2) 2ST1(2,d−1)
2ST2(2,0) 4SS2,1(2,2) 4SS2,2(2,2) 4SS2,1(2,4) 4SS2,2(2,4) ... 4SS2,2(2,d−2) 2ST2(2,d−1)
2ST1(4,0) 4SS1,1(4,2) 4SS1,2(4,2) 4SS1,1(4,4) 4SS1,2(4,4) ... 4SS1,1(4,d−2) 2ST1(4,d−1)
2ST2(4,0) 4SS2,1(4,2) 4SS2,2(4,2) 4SS2,1(4,4) 4SS2,2(4,4) ... 4SS2,2(4,d−2) 2ST2(4,d−1)

...
...

...
...

...
. . .

...
2ST2(d−2,0) 4SS2,1(d−2,2) 4SS2,2(d−2,2) 4SS2,1(d−2,4) 4SS2,2(d−2,4) ... 2SS2,2(d−2,d−2) 2ST2(d−2,d−1)
TT(d−1,0) 2TS1(d−1,2) 2TS2(d−1,2) 2TS1(d−1,4) 2TS2(d−1,4) ... 2TS2(d−1,d−2) TT(d−1,d−1)

, (31)

where the order of the basis vectors is
{|0⟩ , |2+⟩ |2−⟩ , . . . , |(d− 2)+⟩ , |(d− 2)−⟩ , |d− 1⟩}.
Note that the different weight factors ensure the correct
normalization of the click-matrix. Finally, we want to
emphasize the importance of the overlap between the
subspaces spanned by B1 and B2, which allows us to
certify high-dimensional entanglement.

For comparison, we conduct a similar analysis for Pro-
tocol 2 under the assumption that the polarization degree
of freedom is known. Therefore, the rates reported for
this protocol represent only upper bounds on the secure
key rate. For details, we refer the reader to Appendix B.

V. NOISE MODEL

Entangled photons are produced by the source and
then travel through a (free-space) quantum channel be-
fore entering imperfect detection devices, where they
cause clicks. In this section, we physically model how
various physical processes influence the coincidence-click
matrices used to calculate key rates for our setup. Simi-
larly to Refs. [26] and [29], besides loss — i.e., the process
that a photon coming from the source is lost on its way
to the detectors — we identify two main origins of noise,
i.e., processes that add photons, hence detector clicks.
While photons are traveling through the free-space chan-
nel, some of the photons may scatter on molecules present
in the direct line between the source and the detector.
Thus, the probability of losing a photon increases with
increasing distance between sender and receiver and is
given by a probability of photon loss PA

loss (for the chan-
nel between Alice and the source) and PB

loss (for the chan-
nel between Bob and the source). Due to imperfections

in the detection process, not all incoming photons cause
a detector click. We measure the click probability for a
given photon by a number ηD ∈ [0, 1], called the detec-
tion efficiency. For simplicity we assume that the detector
efficiency is the same for all the detectors in our setup.

Next, let us turn to processes that insert photons to our
setup that do not originate from the source. The main
source of this type of noise is environmental photons (like
those coming from the Sun) being detected. Besides that,
detector imperfections sometimes cause clicks even if no
photons are present. Such clicks are called dark counts
and we measure this effect as dark count rate (in dark
counts per second).

We provide a detailed derivation of our noise model
in Appendix C and give here only the key ideas. Due
to the independent nature of all processes described, it
is reasonable to model both the photon pair production
and the dark counts as well as environmental photons
as Poisson-distributed quantities. The pair production
rate, the dark count rate, etc. are then simply given by
the expectation of the corresponding Poisson-distributed
random variable. Again, motivated by the independent
nature of all sources of noise, we aim to quantify the
influence of noise by one single parameter, the isotropic
noise parameter such that

ρ(v) = v |Ψtarget⟩⟨Ψtarget|+ (1− v)
1

d2
1d2×d2 , (32)

where v = PGood
PCC(1,1) . Here, PGood denotes the probability

that a coincidence-click is caused by a photon pair orig-
inating from the source, while PCC(1, 1) is the probabil-
ity for one coincidence-click. In Appendix C, we derive
expressions for PGood and PCC(1, 1) for both protocols.
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In what follows, we assume that the source is placed in
Alice’s lab, which is in line with the practical implemen-
tation of entanglement-based QKD setups, such as the
free-space link between Vienna and Bisamberg [22, 27].
Thus, Alice’s share of the entangled photon pair is not
subject to channel loss (PA

loss = 0) and does not experi-
ence noise due to environmental photons.

Note that we do not consider detector jitter in our
noise model. This is an effect, in which the time of
arrival of photons is mislabeled due to the clock impreci-
sion. One would expect that the effect of detector jitter
on the observed key rate of protocols is non-negligible,
especially for higher values of d, which are obtained by
making the time-bins rather short. While this is true
for the time frame and time-bin definition presented in
this manuscript, in practical implementations, one can
mitigate this effect by using non-neighboring time-bins
to define the time-frames, as discussed in [27]. In partic-
ular, a d-dimensional time-frame is defined as a collection
of d non-neighboring time-bins that are separated by
time intervals equal to the interferometer delay, which
is typically much larger than the length of a time-bin.
Defining the frames in this way makes mislabelling due
to jitter very likely to produce two single-click events
in non-matched time-frames, which are then discarded
as single-click events. This reduction in error, however
comes at the cost of reduced coincidence rate, therefore
optimal key rate per coincidence and optimal key rate
per second are typically not achieved for the same local
dimension. Finally, defining time-frames in this way
does not affect the analysis of the protocol and we have
opted for a more traditional time-frames definition in
this manuscript for simplicity.

VI. NUMERICAL METHOD

The asymptotic secure key rate R∞ of a QKD proto-
col is lower-bounded by the Devetak-Winter bound [30],

which reads

R∞ ≥ S(A|E)−H(A|B), (33)

where S(A|E) is the conditional von Neumann entropy of
Alice’s key register given Eve’s quantum register, quan-
tifying the amount of information not known by Eve,
and H(A|B) is the Shannon entropy between Alice’s
and Bob’s raw key, representing the amount of infor-
mation leaked during the error-correction phase of the
protocol. While the latter quantity is accessible from
the observed statistics, to obtain the first, we have to
minimize over all quantum states ρABE compatible with
Alice’s and Bob’s observations. Therefore, we use a
method developed in Ref. [31] that exploits a semi-
definite program (SDP) hierarchy converging to the first
term in the Devetak-Winter formula. The first term can
be rewritten by means of the quantum relative entropy
D(ρ||σ) := Tr [ρ log(ρ)]−Tr [ρ log(σ)] for density matrices
ρ and σ and reads

S(A|E) = −D (ρÃE ||1A ⊗ ρE) , (34)

where ρÃE :=
∑

a |a⟩⟨a| ⊗ TrAB [(|a⟩⟨a| ⊗ 1BE)ρABE ].
Following Ref. [32] one then can obtain a convergent se-
quence of semi-definite programs for the quantum relative
entropy using Gauß-Radau quadrature. We implement
this numerical method and solve semi-definite programs
(SDP) with Gauß-Radau parameter m = 10, to find lower
bounds on the secure key rate for protocol 1 (and up-
per bounds for protocol 2). Experimental observations
then serve as constraints for this semi-definite program.
Hence, the optimization for our particular problem reads

min
σ,{ζa

i ,η
a
i ,θ

a
i }a,i

cm +

m∑
i=1

d−1∑
a=0

wi

ti log(2)
Tr
[
(|a⟩⟨a| ⊗ 1B)

(
ζai + ζai

† + (1− ti)η
a
i

)
+ tiθ

a
i

]
s.t.

Tr [σ] = 1,

∀a, i : Γ1
a,i :=

(
σ ζai
ζai

† ηai

)
≥ 0,

∀a, i : Γ2
a,i :=

(
σ ζai

†

ζai θai

)
≥ 0,

∀k : Tr [Ekσ] = fk,

(35)

where we defined Θ(M) := TrE
[
ρABE(1AB ⊗M⊤

E )
]

and set
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σ := Θ(1) (36)
ζai := Θ(Za

i ) (37)

ηai := Θ(Za
i
†Za

i ) (38)

θa := Θ(Za
i Z

a
i
†) (39)

and the Za
i are arbitrary complex matrices. Furthermore

cm :=
∑m

i=1
wi

ti log(2)
, where the wi > 0,

∑
i wi = 1, wm =

1
m2 are Gauß-Radau weights and ti ∈ (0, 1], tm = 1. For
more details we refer interested readers to Ref. [31].

The constraints of the form Tr [Ekσ] = fk are due
to our experimental observations, i.e., the operators Ek

are chosen from {MPz
0 ,MPz

1 ,MPz
2 } and the correspond-

ing scalar right-hand sides fk are given by the matrices
CMPz

0
, CMPz

1
and CMPz

2
, where z ∈ {1, 2} selects be-

tween the two protocols we consider (see Section IV and
Appendix B).

VII. RESULTS

We illustrate our method under the realistic noise
model we derived (see Section V and Appendix C), tak-
ing photon losses, background noise induced by solar
photons, detector inefficiencies, and dark counts into ac-
count. Recall that in Protocol 1, the source prepares the
state

|Ψ1⟩ = |DD⟩ ⊗ 1√
d

d−1∑
k=0

|kk⟩ , (40)

and Alice and Bob each add a polarization filter, which is
set to D, right after the photon enters their respective lab,
such that they are aligned on polarization of the target
state. Consequently, as outlined earlier, the state after
the polarization filter has the form ρAB = |DD⟩⟨DD|⊗ρT .
We wish to highlight that neither the form of the polar-
ization part nor the tensor product structure are mere
assumptions, as they are enforced by the filter. This al-
lows a direct and clean analysis of the QKD setup with-
out any additional, unjustified assumptions. For com-
parison, we also consider a second protocol, which was
already discussed in earlier works [22, 27]. There, the
source produces the target state

|Ψ2⟩ =
|HH⟩+ |VV⟩√

2
⊗ 1√

d

d−1∑
k=0

|kk⟩ . (41)

The original motivation to consider a QKD protocol
where a state with maximally entangled polarization de-
gree of freedom (DOF) (41) is distributed, was to im-
plement a postselection free Franson interferometer. In
other words, in case of noiseless polarization propagation
through the channel, Alice’s and Bob’s photons would
always take the same path (long-long or short-short)
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FIG. 2. Lower bounds on the secure key rate for Protocol 1
(solid) and upper bounds on the secure key rate for Protocol 2
(dashed) for various dimensions as a function of the solar pho-
ton rate. We set the time-frame length to T = 5.4×10−9s and
the probability of channel loss to 99.7%, which corresponds to
25.2 dB loss. Furthermore, we assume a detection efficiency
of 90% as well as a dark count rate of 100/s. Finally, we set
the pair production rate to 0.1/T , which corresponds to ap-
proximately 18.5× 106 photons per second.

through the Franson interferometer, thus decreasing the
number of coincidences that are not directly useful to
witness entanglement. Such a setup, however, leads to
some experimental restrictions. First of all, one cannot
put any polarization filter in the entry of Alice’s respec-
tively Bob’s lab. In addition, one also needs to enforce
certain restrictions on the capability of the adversary,
which is undesirable in adversarial scenarios. Namely, ei-
ther one has to assume that (a) the polarization remains
unchanged over the channel (which is a very strong as-
sumption as one would expect noise to primarily affect
the polarization-degree of freedom) and still forms a ten-
sor product with the time part,

ρAB = |HH⟩⟨HH|+|HH⟩⟨VV|+|VV⟩⟨HH|+|VV⟩⟨VV|
2 ⊗ ρT , (42)

or (b) the received state has at least tensor-product struc-
ture, ρAB = ρPol ⊗ ρT (also an unjustified assumption),
where ρPol might have changed over the channel, and
needs to be determined by performing additional tomog-
raphy in the polarization degree of freedom. Assump-
tion (b) is technically weaker than assumption (a), but,
it is also much harder to analyze because a change in
the polarization would lead to different overall measure-
ments implemented by the Franson interferometer. In
this case one would hope that the implemented tomog-
raphy reveals a high fidelity of the polarization DOF to
the maximally entangled state so that the postselection
free property would still be present and contribute to the
overall key rate. Since this assumption was used in the
existing literature [22], we decided to use it for compar-
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ison. We refer to a protocol with entangled polarization
and assumption (a) as Protocol 2 and label Protocol 1 as
our new results with polarization prepared in the |DD⟩
state and polarization filters in both measurement appa-
ratuses. We emphasize that this leads to a comparison
of a lower bound on the secure key rate of Protocol 1
with an upper bound for Protocol 2. Besides allowing
a clean and rigorous analysis without any assumptions,
we intuitively expect the additional polarization filter to
increase the resistance against solar photons, which are
the main source of noise in free-space and satellite QKD
applications, as half of the unpolarized solar photons are
blocked, while (in the ideal case) none or (in reality) only
a small fraction of the source photons are.

For our simulations, we used specific parameter values
in accordance with the Free-Space Link experiment be-
tween Vienna and Bisamberg [22, 27]. The length of a
time-frame was set to T0 := 5.4× 10−9s, the dark count
rate to 100/s, the detection efficiency to ηD = 90%,
the channel loss to Ploss = 99.7%, corresponding to a
loss of 25.2dB, and the pair production rate to 0.1 per
time-frame, corresponding to roughly 18.5 MHz repeti-
tion rate. Further, consistent with the experiments that
inspired our work, we assume that the photon source is
located in Alice’s lab. In Figure 2, we present secure key
rates for Protocol 1 and compare them to upper bounds
on the secure key rate for Protocol 2 for time dimensions
of d = 2, 4, 6, 8, 10 and 12. This means we keep the time-
frame size T fixed while changing the number of time-bins
d. It is common to plot secure key rates over the error
rate which is related to the visibility via 1 − v − 1−v

d .
However, depending on the particular noise model, the
visibility may be a function of the dimension and pro-
tocol specifics and, therefore, is a suboptimal measure
to compare different dimensions. Thus, we have chosen
to compare the protocols and various dimensions as a
function of the solar photon rate, which, in our opinion,
provides a fair and practical comparison.

We note that one should not directly read the values
for different dimensions d as the optimal performance
for QKD implementations at different dimensions in gen-
eral. For such a comparison, one would need to optimize
the photon pair production and the time-frame size for
each value of d for the largest achievable key rate per
second, which is dependent on many parameters beyond
the scope of this work. In Figure 3, we compare the
performance of our protocol with BBM92 regarding loss.
Therefore, we keep all system parameters the same as in
Figure 2, but vary the photon loss probability and plot
curves for different solar photon rates. Again, we employ
the noise model presented in Appendix C to relate phys-
ical parameters to click matrices and we derive the com-
parison key rates for the BBM92 protocol using the fact
that our Protocol 1 reduces to the BBM92 protocol if two
time-bins are used in a single frame. Technically, this case
is a special case of our protocol, as we envision choosing
the optimal dimension dynamically depending on back-
ground noise and loss. To keep the comparison mean-

ingful, we always compare a situation where the photon
pair production rate, the solar photon rate, and the clock
precision (bin size) are the same and vary the probability
of loss. This means we compare Protocol 1 with frame-
size fixed to T = 5.4 × 10−9 and local dimension d to a
BBM92 protocol with the same bin size and local dimen-
sion 2 (i.e., the frame size of the BBM92 protocol is equal
to T/(d/2). This comparison is meaningful, as we assume
that the source brightness is at a point that saturates the
detectors on one side of a free-space link and cannot be in-
creased anymore. In Figure 3 we present key rate curves
comparing Protocol 1 for d = 8 with BBM92 for solar
photon rate nsol ∈ {102, 104}. One can observe that our
protocol outperforms BBM92 in lower loss regions up to
approximately 39dB. In particular, our protocol outper-
forms BBM92 also when the loss is approximately 25dB,
(which is consistent with the experiment reported in Ref.
[22] and the loss in LEO satellite scenarios [33]) and the
background solar photon rate is set to 104 per second,
which is roughly consistent with the light conditions at
sunrise (see Ref. [22]). However, we also see that the re-
gion where Protocol 1 outperforms BBM92 shrinks with
increasing background photon rate.

Lastly, we note that we assume ideal one-way error cor-
rection [34] and we leave performance optimizations and
examination of alternative reconciliation routines [35–37]
for future work. Our new protocol (Protocol 1) consis-
tently exhibits significantly higher key rates, even com-
pared to the upper bound for the existing protocol (Pro-
tocol 2), especially as the number of solar photons in-
creases. Additionally, Protocol 1 demonstrates tolerance
to nearly twice as many solar photons per second as Pro-
tocol 2. It is crucial to reiterate that the curves presented
for Protocol 2 rely on unjustified assumptions (see our
earlier discussion), serving as mere upper bounds, while
the analysis of Protocol 1 avoids these assumptions, of-
fering reliable lower bounds, which is the main point of
our paper.

VIII. DISCUSSION

Previous works have successfully demonstrated the dis-
tribution and certification of high-dimensional entangle-
ment. While certain assumptions are suitable for these
scenarios, in order to utilize high-dimensional entan-
glement for quantum key distribution, one requires an
assumption-free analysis of the measurement setups used.
In this work, we discuss assumptions present in previous
works and suggest a simple modification of the measure-
ment setup that helps to remove those assumptions. Our
main contribution is a clean and rigorous analysis of a
modified measurement setup, suitable not only for high-
dimensional entanglement distribution but also for high-
dimensional quantum key distribution. We also develop
a realistic noise model for free-space QKD links, taking
external factors such as solar light, atmospheric chan-
nel loss, and imperfections of the measurement devices,



10

0 10 20 30 40 50 60

Channel loss (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100
A

sy
m

pt
ot

ic
 k

ey
 r

at
e 

(in
 b

its
 p

er
 p

ai
r 

pr
od

uc
ed

)

Protocol 1, d = 8, nsol = 102

Protocol 1, d = 8, nsol = 104

BBM92,T0/4, nsol = 102

BBM92,T0/4, nsol = 104

FIG. 3. Comparison of Protocol 1 (solid lines) for d = 8
with the corresponding key rates obtained for BBM92 (dashed
lines) for solar photon rates of nsol ∈ {102, 104}.

such as dark counts and detector inefficiencies, into ac-
count. Then, we apply a numerical security proof method
to calculate lower bounds on the asymptotic secure key
rate under the noise model developed. For comparison,
we also consider a previously used measurement setup,
that relies on certain assumptions that are not compat-
ible with the requirements of QKD. Therefore, rates re-
ported for that setup are only upper bounds. Neverthe-
less, our analysis shows that the rigorous lower bounds
obtained for our proposed setup outperform the upper
bounds obtained for the previous setup relying on unjus-
tified assumptions both in terms of key rate and noise
tolerance. Additionally, our modification simplifies the
experimental setup significantly. We also compare our

proposed protocol to BBM92 and observe better perfor-
mance w.r.t. loss for relevant loss regimes.

Given that the unmodified setup (within the frame of
mentioned assumptions) was able to transmit key during
early daytime in summer [22] in urban atmospheric con-
ditions, this seemingly modest increase of a factor of al-
most 2 in solar photons is actually a significant advance
towards a full-day operation. Technical improvements
such as sharper frequency filters and adaptive optics to
correct for atmospheric turbulences are expected to im-
prove key rate and noise tolerance further (see, for ex-
ample, the experimental improvements in Refs. [9–15]).
While the key rates presented are asymptotic, we antici-
pate that the advantages of our new protocol will become
even more pronounced in the finite-size regime due to our
simplified setup, which necessitates fewer measurements.
The experimental simplicity of our proposal (only one
interferometer needs to be stabilized), together with the
results of our analysis, guides a practical path toward full-
day satellite QKD. Besides a detailed finite-size analysis,
interesting future directions include finding rapidly com-
putable quantifiers instead of numerical SDPs, required
to employ online adaptive subspace postselection, which
can increase noise tolerance further [26, 38].
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Appendix A: Analysis of the Franson Setup

In what follows, we derive the measurement operators for Time-Superposition measurements in more detail than
in the main part.

Denote by x and y the horizontal and vertical input ports of a polarizing beamsplitter, respectively, and by x′ and
y′ the corresponding outputs. Note that in our setup, the first beamsplitter has only one input port and the second
beamsplitter has only one output port. Then, the action of a PBS is given by the unitary

ÛPBS = (|H⟩⟨H| ⊗ 1T ⊗ |x′⟩⟨x|+ |H⟩⟨V| ⊗ 1T ⊗ |x′⟩⟨y|+ |V⟩⟨H| ⊗ 1T ⊗ |y′⟩⟨x|+ |V⟩⟨V| ⊗ 1T ⊗ |y′⟩⟨y|) . (A1)

According to the description of our measurement setup above, only those parts in the upper y′-part experience a time
as well as a phase shift. Thus, let

T̂y := 1Pol ⊗ 1T ⊗ |x′⟩⟨x′|+ 1Pol ⊗ T̂ ⊗ |y′⟩⟨y′| (A2)

Q̂y := 1Pol ⊗ 1T ⊗ |x′⟩⟨x′|+ Q̂ϕ ⊗ |y′⟩⟨y′| (A3)

be the operators describing these shifts. They allow us to describe the action of the whole setup by applying them
one after another in the correct order

ÛI := ÛPBSQ̂yT̂yÛPBS. (A4)

As the output of the first PBS is directed to the input of the second PBS, we simply write (x′, y′) for the input ports
of the second PBS, while we proceed with (x′′, y′′) for its outputs. We obtain

ÛI =
(
|H⟩⟨H| ⊗ 1T + |V⟩⟨V| ⊗ Q̂ϕT̂

)
⊗ |x′′⟩⟨x|+

(
|H⟩⟨H| ⊗ Q̂ϕT̂ + |V⟩⟨V| ⊗ 1T

)
⊗ |y′′⟩⟨y| . (A5)

Note that in our case, input y is empty, so effectively, we only need to consider the first term – horizontally polarized
states pass the interferometer untouched while vertically polarized states experience a time as well as a phase shift.
As we put our measurement devices in the output port x′′ of the interferometer, we can drop the register x′′ for ease
of notation.

Finally, we obtain the unitary operator representing the action of the whole interferometer setup on Alice’s and
Bob’s joint state ρAB ,

Û := ÛI ⊗ ÛI

= |HH⟩⟨HH| ⊗ 1T ⊗ 1T + |HV⟩⟨HV| ⊗ 1T ⊗ Q̂ϕT̂ + |VH⟩⟨VH| ⊗ Q̂ϕT̂ ⊗ 1T + |VV⟩⟨VV| ⊗ Q̂ϕT̂ ⊗ Q̂ϕT̂ .
(A6)

The interferometer is followed by a half-wave plate and another polarizing beamsplitter, followed by two detectors,
one in each arm of the PBS such that the right detector measures horizontally polarized photons, while the upper
detector measures vertically polarized photons. However, the half-wave plate rotates the plane of polarization as
UHWP |H⟩ = |D⟩ and UHWP |V⟩ = |A⟩, i.e., it allows us to measure diagonally polarized photons in the right arm and
antidiagonally polarized photons in the upper arm. The corresponding measurements project onto |D, i⟩ and |A, i⟩
respectively. This can be used to derive the effective measurements, as carried out in the main part of this manuscript.

Appendix B: Analysis of Protocol 2

Finally, we turn to the second protocol where the target state is |Ψtarget⟩ = |HH⟩+|VV⟩√
2

⊗ 1√
d

∑d−1
k=0 |kk⟩. Unlike in

Protocol 1, there is no polarization filter, so we have to assume that the polarization remains unchanged when the state
passes the quantum channel. Thus, Alice’s and Bob’s shared state reads ρAB = |HH⟩⟨HH|+|HH⟩⟨VV|+|VV⟩⟨HH|+|VV⟩⟨VV|

2 ⊗
ρT . As for Protocol 1, it follows directly that the coincidence-clicks for the TOA measurements correspond to the
diagonal entries of the time-density matrix,

TT(i, j) = ⟨i, j|ρT |i, j⟩ . (B1)

Applying Eq. (12) to ρAB yields

SS1,1(i, j) =
1

8
(⟨i+, j + |ρT |i+, j+⟩+ ⟨i+, j + |ρT |i−, j−⟩+ ⟨i−, j − |ρT |i+, j+⟩+ ⟨i−, j − |ρT |i−, j−⟩) (B2)

= SS2,2(i, j), (B3)

SS1,2(i, j) =
1

8
(⟨i+, j − |ρT |i+, j−⟩+ ⟨i+, j − |ρT |i−, j+⟩+ ⟨i−, j + |ρT |i+, j−⟩+ ⟨i−, j + |ρT |i−, j+⟩) (B4)

= SS2,1(i, j). (B5)
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As SS1,1(i, j) and SS2,2(i, j) as well as SS1,2(i, j) and SS2,1(i, j) are equal, we can combine those elements respectively
into ’same phase‘ and ’opposite phase‘ clicks,

SSs(i, j) := SS1,1(i, j) + SS2,2(i, j) (B6)
SSo(i, j) := SS1,2(i, j) + SS2,1(i, j). (B7)

For the mismatched measurements, we obtain from Eqs. (13)-(14)

TS1(i, j) =
1

2
⟨i, j + |ρT |i, j+⟩ , (B8)

TS2(i, j) =
1

2
⟨i, j − |ρT |i, j−⟩ , (B9)

ST1(i, j) =
1

2
⟨i+, j|ρT |i+, j⟩ , (B10)

ST2(i, j) =
1

2
⟨i−, j|ρT |i−, j⟩ . (B11)

As for Protocol 1, one can see immediately that

MP1
0 := {|i, j⟩⟨i, j|}d−1

i,j=0 (B12)

forms a POVM induced by the bases BA/B
0 on Alice’s and Bob’s side respectively with corresponding click-matrix

CMP1
0
(i, j) := TT(i, j), (B13)

where we have chosen the natural order {|0⟩ , |1⟩ , ..., |d− 1⟩}. Next, we aim to find a second POVM, which requires
some preparations. From the definitions made in Eqs. (B6) and (B7), it follows directly that

SSs(i, j) =
1

2
Tr
[
ρT
∣∣ΦA,B

s (i, j)
〉〈
ΦA,B

s (i, j)
∣∣] (B14)

SSo(i, j) =
1

2
Tr
[
ρT
∣∣ΦA,B

o (i, j)
〉〈
ΦA,B

o (i, j)
∣∣] , (B15)

with ∣∣ΦA,B
s (i, j)

〉
:=

1√
2
(|i+, j+⟩+ |i−, j−⟩) , (B16)∣∣ΦA,B

o (i, j)
〉
:=

1√
2
(|i+, j−⟩+ |i−, j+⟩) . (B17)

A short calculation shows that∣∣ΦA,B
s (i, j)

〉〈
ΦA,B

s (i, j)
∣∣+ ∣∣ΦA,B

o (i, j)
〉〈
ΦA,B

o (i, j)
∣∣ = |i, j⟩⟨i, j|+ |i− 1, j − 1⟩⟨i− 1, j − 1|

and

|i, j+⟩⟨i, j+|+ |i, j−⟩⟨i, j−| = |i, j⟩⟨i, j|+ |i, j − 1⟩⟨i, j − 1|
|i+, j⟩⟨i+, j|+ |i−, j⟩⟨i−, j| = |i, j⟩⟨i, j|+ |i− 1, j⟩⟨i− 1, j| .

Next, we combine those measurement operators and obtain

d−1∑
i,j=1

(∣∣ΦA,B
s (i, j)

〉〈
ΦA,B

s (i, j)
∣∣+ ∣∣ΦA,B

o (i, j)
〉〈
ΦA,B

o (i, j)
∣∣)

+

d−1∑
j=1

(|0, j+⟩⟨0, j+|+ |0, j−⟩⟨0, j−|+ |d− 1, j+⟩⟨d− 1, j+|+ |d− 1, j−⟩⟨d− 1, j−|)

+

d−1∑
i=1

(|i+, 0⟩⟨i+, 0|+ |i−, 0⟩⟨i−, 0|+ |i+, d− 1⟩⟨i+, d− 1|+ |i−, d− 1⟩⟨i−, d− 1|)

+ (1d2×d2 − |00⟩⟨00| − |d− 1, d− 1⟩⟨d− 1, d− 1|)
=31d2×d2 .
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Thus, after scaling all elements by 1
3 , we obtain the second POVM,

MP2
1 :=

{
1

3
(1d2×d2 − |00⟩⟨00| − |d− 1, d− 1⟩⟨d− 1, d− 1|) , 1

3

∣∣ΦA,B
s (i, j)

〉〈
ΦA,B

s (i, j)
∣∣ , 1

3

∣∣ΦA,B
o (i, j)

〉〈
ΦA,B

o (i, j)
∣∣ ,

1

3
|0, j+⟩⟨0, j+| , 1

3
|0, j−⟩⟨0, j−| , 1

3
|d− 1, j+⟩⟨d− 1, j+| , 1

3
|d− 1, j+⟩⟨d− 1, j+| ,

1

3
|i+, 0⟩⟨i+, 0| , 1

3
|i−, 0⟩⟨i−, 0| , 1

3
|i+, d− 1⟩⟨i+, d− 1| , 1

3
|i−, d− 1⟩⟨i−, d− 1|

}d−1

i,j=1

.

(B18)
Consequently, taking both the renormalization by 1

3 and Eqs. (B6) - (B11) into account, the corresponding clicks are
normalized as follows,

1 =
1

3
(1− TT(0, 0)− TT(d− 1, d− 1)) +

2

3

d−1∑
i,j=1

(SSs(i, j) + SSo(i, j))

+
2

3

d−1∑
j=1

(TS1(0, j) + TS2(0, j) + TS1(d− 1, j) + TS2(d− 1, j))

+
2

3

d−1∑
i=1

(ST1(i, 0) + ST2(i, 0) + ST1(i, d− 1) + ST2(i, d− 1)) .

(B19)

As we have already used the clicks from the computational basis measurement (TT-clicks), we do not expect any
contribution to the key rates from these clicks. Since they simply introduce redundant constraints into our semi-
definite program, we can remove those elements/clicks when we formulate the SDP as long as we account for them
during normalization.

In contrast to Protocol 1, we have already exhausted our measurements so that we cannot build a third POVM.

Appendix C: Details regarding the noise model

As already mentioned in the main text, we have to consider various origins of noise. In particular, there are noise
effects due to the interaction of the photons with the environment, mainly photons coming from the Sun, and due to
the imperfect channels and detectors, so we take into account four different kinds of imperfections:

(1) Channel loss: Photons might get lost on the way from the source to the labs.

(2) Detection inefficiency: Due to detection inefficiencies, incoming photons cause a click with probability ηD ∈ [0, 1].

(3) Environmental photons: Photons coming from the residual environment (like those coming from the Sun) can
cause clicks.

(4) Dark counts: Imperfections of the detectors can cause clicks even in the absence of photons.

Let Pprod(n) be the probability distribution of n polarized photon pairs produced by the source per time-frame, let
PA

loss and PB
loss denote the probabilities for source photons to get lost on their way from the source to Alice’s and Bob’s

lab, respectively, and let ηA and ηB be the detection efficiency parameters of Alice’s and Bob’s detectors respectively.
The probability that the environment, including the Sun, produces n (unpolarized) photons per time-frame on Alice’s
side is given by PA

env(n) and on Bob’s side by PB
env(n). In case the incoming photons pass a polarization filter that is

aligned with the polarization produced by the source (Protocol 1), on average, half of the (unpolarized) environmental
photons are blocked. Moreover, for each of the detectors, n dark counts per time-frame may occur with a probability
of Pdark(n). These considerations yield:

• The probability that n photon pairs are produced per time-frame T is given by Pprod(n).

• Some photons get lost, so the probability of having b1 (respectively b2) photons left for Alice and Bob after the
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lossy channel is given by

PA
1 (b1) =

∞∑
i=b1

Pprod(i)(1− PA
loss)

b1P i−b1
loss

(
i

b1

)
,

PB
1 (b2) =

∞∑
i=b2

Pprod(i)(1− PB
loss)

b2P i−b2
loss

(
i

b2

)

respectively. These remaining photons are still polarized.

• The probability of q sunlight and further environmental photons being produced within one time-frame T on
Alice’s and Bob’s side is PA

env(q) and PB
env(q), respectively.

• When the photons pass the polarization filter (which is placed only in Protocol 1), photons coming from the
source remain mainly untouched, while half of the photons stemming from the Sun get blocked. Therefore, the
probabilities that e1 (respectively e2) environmental photons pass Alice’s and Bob’s PBS are given by

P ′A
env(e1) =

∞∑
j=e1

PA
env(j)

(
1

2

)e1 (
1− 1

2

)j−e1 ( j

e1

)
=

∞∑
j=e1

(
j

e1

)(
1

2

)j

PA
env(j),

P ′B
env(e2) =

∞∑
j=e2

(
j

e2

)(
1

2

)j

PB
env(j)

respectively.

• Now the environmental photons are combined with the photons coming from the source. The probability of
having f1 photons in Alice’s lab after the polarization filter therefore is given by

PA
2 (f1) =

f1∑
l=0

PA
1 (l)P ′A

env(f1 − l)

=

f1∑
l=0

∞∑
i=l

Pprod(i)(1− PA
loss)

l(PA
loss)

(i−l)

(
i

l

) ∞∑
j=f1−l

(
j

f1 − l

)(
1

2

)j

PA
env(j)

=

f1∑
l=0

∞∑
i=l

∞∑
j=f1−l

(
i

l

)(
j

f1 − l

)
Pprod(i)P

A
env(j)(1− PA

loss)
l(PA

loss)
(i−l)

(
1

2

)j

and similarly for Bob the probability of having f2 photons in his lab after the filter is

PB
2 (f2) =

f2∑
l=0

∞∑
i=l

∞∑
j=f2−l

(
i

l

)(
j

f2 − l

)
Pprod(i)P

B
env(j)(1− PB

loss)
l(PB

loss)
(i−l)

(
1

2

)j

.

Since the source produces photon pairs, the joint probability of Alice and Bob having n1 and n2 photons
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respectively after the filter is found to be

P (n1, n2) =

∞∑
s=0

min{s,n1}∑
m1=0

min{s,n2}∑
m2=0

Pprod(s)(1− PA
loss)

m1(PA
loss)

(s−m1)

(
s

m1

)
(C1)

·(1− PB
loss)

m2(PB
loss)

(s−m2)

(
s

m2

)
P ′A

env(n1 −m1)P
′B
env(n2 −m2) (C2)

=

∞∑
s=0

min{s,n1}∑
m1=0

min{s,n2}∑
m2=0

(
s

m1

)(
s

m2

)
Pprod(s)(1− PA

loss)
m1(PA

loss)
(s−m1)(1− PB

loss)
m2(PB

loss)
(s−m2) (C3)

·
∞∑

j=n1−m1

(
j

n1 −m1

)(
1

2

)j

PA
env(j)

∞∑
k=n2−m2

(
k

n2 −m2

)(
1

2

)k

PB
env(k) (C4)

=

∞∑
s=0

min{s,n1}∑
m1=0

min{s,n2}∑
m2=0

∞∑
j=n1−m1

∞∑
k=n2−m2

(
s

m1

)(
s

m2

)(
j

n1 −m1

)(
k

n2 −m2

)
Pprod(s)P

A
env(j)P

B
env(k) (C5)

·(1− PA
loss)

m1(1− PB
loss)

m2(PA
loss)

(s−m1)(PB
loss)

(s−m2)(PA
loss)

(s−m1)(PB
loss)

(s−m2)

(
1

2

)(j+k)

. (C6)

• Next, we take dark counts and detector inefficiencies into account. As the protocol discards all the events
where there is a multiclick or no click in a time-frame, we only have to examine the case with exactly one dark
count and no genuine photon being detected or when there is no dark count, and exactly one photon causes a
detector click. This yields the probabilities for Alice and Bob each having exactly one click per time-frame in
the same time-bin when there are n1 (source or environmental) photons left on Alice’s side and n2 (source or
environmental) photons left on Bob’s side,

P (click|n1 photons) = Pdark(1)(1− ηA)
n1 + Pdark(0)(1− ηA)

(n1−1)ηA

(
n1

1

)
P (click|n2 photons) = Pdark(1)(1− ηB)

n2 + Pdark(0)(1− ηB)
(n2−1)ηB

(
n2

1

)
.

• Finally, the probability of exactly one coincidence click per time-frame in the same time-bin can be calculated
as

PTT (1, 1) :=

∞∑
n1=0

∞∑
n2=0

P (click|n1 photons)P (click|n2 photons)P (n1, n2).

All photon contributions mentioned are independent of each other and also photons from each of the origins
mentioned are produced independently of other photons of the same origin. Hence, one can model these influences
by Poisson distributions:

Pprod(n) =
(λpT )

ne−λp(T )

n!
=:

Cn
p e

−Cp

n!
, Pdark(n) =

(λdT )
ne−λd(T )

n!
=:

Cn
d e

−Cd

n!

PA
env(n) =

(λA
e T )

ne−λA
e (T )

n!
=:

(CA
e )ne−CA

e

n!
, PB

env(n) =
(λB

e T )
ne−λB

e (T )

n!
=:

(CB
e )ne−CB

e

n!

Using the distribution of PA/B
env (n), we see that P

′A/B
env (n) is distributed according to

P ′A/B
env (n) =

∞∑
k=n

(
k

n

)(
1

2

)k
(C

A/B
e )ke−CA/B

e

k!
= e−Ce,A/B

∞∑
k=n

k!

n!(k − n)!

(Ce,A/B)
k

k! · 2k

=
e−CA/B

e

n!

∞∑
k=n

(C
A/B
e )k

2k(k − n)!

j:=k−n
=

e−Ce,A/B

n!

∞∑
j=0

(C
A/B
e )j+n

2j+n · j!
=

e−CA/B
e (C

A/B
e )n

n! · 2n
∞∑
j=0

(C
A/B
e )j

2j · j!

=
e−CA/B

e

n!

(
C

A/B
e

2

)n

e
C

A/B
e
2 =

e
−C

A/B
e
2

n!

(
C

A/B
e

2

)n

.
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Plugging Ce into (C1), we obtain

P (n1, n2) =

∞∑
s=0

min{s,n1}∑
m1=0

min{s,n2}∑
m2=0

∞∑
j=n1−m1

∞∑
k=n2−m2

(
s

m1

)(
s

m2

)(
j

n1 −m1

)(
k

n2 −m2

)
Pprod(s)

(
CA

e

)j
e−CA

e

j!
(C7)

(
CB

e

)k
e−CB

e

k!
(1− PA

loss)
m1(1− PB

loss)
m2(PA

loss)
(s−m1)(PB

loss)
(s−m2)

(
1

2

)(j+k)

. (C8)

With the formulas for P
′A/B
env , this yields

P (n1, n2) = e−
(CA

e +CB
e )

2 ·
∞∑
s=0

Pprod(s) · (s!)2 ·
min{s,n1}∑

m1=0

(1− PA
loss)

m1(PA
loss)

s−m1(
CA

e

2 )n1−m1

m1!(s−m1)!(n1 −m1)!

·
min{s,n2}∑

m2=0

(1− PB
loss)

m2(PB
loss)

s−m2(
CB

e

2 )n2−m2

m2!(s−m2)!(n2 −m2)!
.

(C9)

To ease notation, we define

IA/B(s, nj) :=

min{s,nj}∑
mi=0

(1− P
A/B
loss )mj (P

A/B
loss )s−mj (

CA/B
e

2 )nj−mj

mj !(s−mj)!(nj −mj)!
, j ∈ {1, 2}.

For practical reasons, we choose Cp such that the expected number of photon pairs per time-frame is much lower than
1 so that the probability of more than one photon pair is close to zero, Pprod(s > 1) ≈ 0. We use this assumption,
that it is extremely rare that more than one photon pair is emitted by the source in one time-frame and therefore can
be neglected, also in our code for the calculation of the key rates.
Then, we obtain

IA/B(0, n) =
(C

A/B
e )n

n!
,

IA/B(1, n) =


P

A/B
loss , n = 0,

P
A/B
loss

(
C

A/B
e
2

)n

n! +
(1−P

A/B
loss )

(
C

A/B
e
2

)n−1

(n−1)! , n ∈ N+.

Consequently, we can write expression (C9) for P (n1, n2) as

P (n1, n2) = e−
CA
e +CB

e +2Cp
2

(
IA(0, n1)I

B(0, n2) + CpI
A(1, n1)I

B(1, n2)
)
.

It remains to find an expression for the probability of a ’good’ coincidence click, i.e., a click originating from two
source photons taking place in the same time-frame. This probability is given by the event that exactly one photon
pair is produced, arrives in Alice’s and Bob’s labs, and is detected while no dark counts occur and no environmental
photons meet Alice’s and Bob’s detectors,

PGood = Pprod(1)(1− PA
loss)(1− PB

loss)η
AηB(Pdark(0))

2

( ∞∑
k=0

P ′A
env(k)(1− ηA)k

)( ∞∑
k=0

P ′B
env(k)(1− ηA)k

)
.

Finally, the isotropic noise parameter is given by v = PGood
PTT(1,1) , such that

ρ(v) = v |Ψtarget⟩⟨Ψtarget|+ (1− v)
1

d2
1d2×d2 . (C10)

In what follows, we assume that the photon source is placed in Alice’s lab, which is in accordance with many
practical realizations of QKD setups, such as the Free-Space Link between Vienna and Bisamberg. This means that
Alice’s source photons experience no channel loss and that there is no noise due to environmental photons on Alice’s
side, i.e. PA

loss = 0, CA
e = 0. The indicated realistic and practical setting leads to the following simplified expressions.
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For Protocol 1 (where we place a polarization filter at the entrance of Bob’s lab), we obtain

PTT(1, 1) =
1

2
e−2Cd−Cp−

CB
e
2 ηD

·
[
Cpη

2
D

(
2 + CB

e − 2PB
loss − CB

e (1− PB
loss)ηD

)
+ C2

d
(
2 + 2Cp(1− ηD)

(
1− ηD(1− PB

loss)
))

+ CdηD
(
CB

e + Cp
(
4− 2PB

loss − 4ηD + 4PB
lossηD + CB

e (1− ηD
) (

1− (1− PB
loss)ηD

)) ] (C11)

and

PGood = Cp(1− PB
loss)η

2
De−2Cd−Cp−

CB
e
2 ηD , (C12)

while for Protocol 2, we obtain

PTT(1, 1) =e−2Cd−Cp−CeBηD

·
[
C2

d (1 + Cp) + Cd
(
CB

e + Cp
(
2 + CB

e − Cd(2− PB
loss)− PB

loss
))

ηD

+ Cp
(
1 + CB

e − PB
loss + Cd

(
Cd − 2(1 + CB

e )− CdP
B
loss + (2 + Ce,B)P

B
loss
))

η2D

+ (1− Cd)CpC
B
e (−1 + PB

loss)η
3
D

] (C13)

and

PGood = Cp(1− PB
loss)η

2
De−2Cd−Cp−CB

e ηD . (C14)

We note that this model covers all major contributions to white noise, which also represents the most dominant
sources of noise and we leave more sophisticated noise models for future work.
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