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Abstract—To promote viral marketing, major social platforms
(e.g., Facebook Marketplace and Pinduoduo) repeatedly select
and invite different users (as seeds) in online social networks
to share fresh information about a product or service with
their friends. Thereby, we are motivated to optimize a multi-
stage seeding process of viral marketing in social networks,
and adopt the recent notions of the peak and the average age
of information (AoI) to measure the timeliness of promotion
information received by network users. Our problem is different
from the literature on information diffusion in social networks,
which limits to one-time seeding and overlooks AoI dynamics
or information replacement over time. As a critical step, we
manage to develop closed-form expressions that characterize
and trace AoI dynamics over any social network. For the peak
AoI problem, we first prove the NP-hardness of our multi-
stage seeding problem by a highly non-straightforward reduction
from the dominating set problem, and then present a new
polynomial-time algorithm that achieves good approximation
guarantees (e.g., less than 2 for linear network topology). To
minimize the average AoI, we also prove that our problem is
NP-hard by properly reducing it from the set cover problem.
Benefiting from our two-sided bound analysis on the average
AoI objective, we build up a new framework for approximation
analysis and link our problem to a much simplified sum-distance
minimization problem. This intriguing connection inspires us to
develop another polynomial-time algorithm that achieves a good
approximation guarantee. Additionally, our theoretical results are
well corroborated by experiments on a real social network.

Index Terms—Age of information, social network, multi-stage
seeding, NP-hardness, approximation algorithms

I. INTRODUCTION

TODAY, omnipresent online social networks (e.g., Face-
book and WeChat) have revolutionized the way that

people interact and share information, creating viral marketing
opportunities for social commerce platforms (e.g., Facebook
Marketplace and Pinduoduo) [2], [3]. Pinduoduo, for example,
promotes its products by selecting and inviting its users to push
and share promotion information via their WeChat accounts
[4], and these users are well motivated to share with their
friends to earn free products and coupons [5]. As promotion
information becomes outdated over time, Pinduoduo periodi-
cally selects different users as seeds to update promotions to
their friends and friends’ friends in the social network timely.
Thereby, we are motivated to optimize a practical multi-
stage seeding process of viral marketing to keep promotion
information that is received by users in social networks as
fresh as possible.

To evaluate information freshness from receivers’ perspec-
tives, age of information (AoI), which is coined in [6], is
widely adopted as a standard performance metric in the
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literature [7]–[11]. AoI measures the time elapsed since the
latest information reached its intended user. In the literature,
most AoI works either study broadcasting networks where
a base station sends time-sensitive information to its clients
(e.g., [10], [12]–[14]), or focus on monitoring networks where
clients coordinate to transmit their collected information to
the base station timely (e.g., [15]–[17]). In the context of
broadcasting networks, Hsu et al. [10] proposed an MDP-
based scheduling algorithm to minimize the long-run average
AoI for noiseless channels, and Kadota et al. [13] minimized
the expected weighted sum AoI of the clients for unreliable
channels via transmission scheduling. In the context of mon-
itoring networks, Tripathi et al. [18] studied a mobile agent’s
randomized trajectory to mine the data from ground terminals
and optimize average AoI. In [7], Tripathi et al. further studied
the correlation among multiple coupled sources and provided
an approximation solution for minimizing the weighted-sum
average AoI. Besides average AoI, peak AoI also emerges
as another important measure that quantifies the worst case
AoI in a fair manner [11], [18]. In priority queueing systems
where a data source sends updates to a single processor, Xu
and Gautam [11] derived closed-form expressions of the peak
AoI, which further allow for analyzing the effects of specific
service strategies. It is clear that prior AoI literature does not
study fresh information diffusion in a general social network
or optimize any seeding strategies over time.

Additionally, recent works [19], [20] consider the version
age metric to assess information freshness in gossip networks,
where each update at the source is treated as a version
change and the version age indicates how many versions the
information at the monitor is outdated. Unlike the original
AoI metric, the version age of a monitor remains unchanged
in between the version changes at the source. These studies
typically consider a single source that is predefined and focus
on characterizing the version age in various network structures
(e.g., ring and fully connected networks [19] and community-
like network [20] where receiver nodes are grouped into
equal-sized clusters). In contrast, our work aims to develop
a multi-round seeding strategy to minimize either peak AoI
(for full market coverage) or the average AoI (for spreading
promotions to the majority of users), which better aligns with
viral marketing’s goal of increasing the likelihood of users’
purchasing promoted products or services.

Our multi-stage seeding problem is also different from
the traditional social network literature about information
diffusion, which only limits to one-time seeding and overlooks
AoI dynamics or information replacement over time. When
information diffusion meets social networks, Bakshy et al. [21]
found through their extensive field experiments that users are
likely to spread information via social networks. Lu et al. [22]
proposed heuristic algorithms that achieve good performances
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in certain scenarios. Ioannidis et al. [23] studied the problem of
dynamic content dissemination in a complete contact (social)
graph among users. Yet our social graph is not restricted to
being complete and our problem needs to consider the AoI
process of each node over the entire time horizon, rather than
only at the final moment. These factors make our problem and
analysis more intricate. For a more comprehensive understand-
ing of social information diffusion, we refer interested readers
to survey works [24], [25]. The most related classical problem
to ours is the NP-hard social influence maximization (SIM)
problem [26], which seeks a subset S ⊆ V of cardinality
k at a time to maximize the influence spread function σ(S)
of the given social graph G = (V,E). The submodularity of
the objective function yields an approximation ratio of around
1 − 1

e [26], [27], where e is the base of natural logarithm.
However, SIM overlooks multi-round seeding and information
propagation within the social network (where new information
replaces outdated one) and fails to account for the information
freshness experienced by users due to dynamic updates. These
simplify both the algorithm design and approximation analysis
there. Other related works include the k-median [28] and
the k-center problems [22], [29]. For symmetric [30] and
asymmetric [29] graphs, the k-center problem achieves an
approximation of a constant and an iterated logarithm of the
number of nodes, respectively. Since different sequences of
dynamically selected seeds make a huge difference in our AoI
problem, all the above approximation algorithms and results
turn out to be infeasible for our problem.

Our key novelty and main contributions are outlined below.

• Optimizing the Age of Information Diffusion on Social
Networks via Multi-stage Seeding Process. To the best
of our knowledge, our work is the first to model and
optimize a multi-stage information seeding process on
social networks. We practically allow fresh information
to replace any outdated information during the network
diffusion, and our multi-stage seeding process over any
social network topology makes it intricate to trace the
network AoI dynamics. By considering two distinct ob-
jectives, i.e., the peak and the average AoI of the network,
we comprehensively study the dynamic optimization
problem.

• Closed-form Characterization of AoI Tracing and NP-
hardness Proofs. As a critical step, we successfully derive
closed-form expressions that trace the average and the
peak AoI objectives of any social network, respectively,
which is highly non-trivial due to the dynamics in the
multi-stage seeding process. By non-trivial reductions
from the dominating set and set cover problems, respec-
tively, we prove that both of our problems for peak and
average AoI minimization are NP-hard.

• Fast Algorithm for peak AoI minimization with Provable
Approximation Guarantee. By focusing on a fine-tuned
set of seed candidates along the social graph diameter,
we design a new polynomial-time algorithm that guaran-
tees good approximations as compared to the optimum.
Particularly, our algorithm is proven to achieve an ap-
proximation of less than 2 for linear network topology.

Fig. 1. An illustrative example of the viral marketing system where the time
gap between two consecutive seeding timestamps is ∆ = 2. Here, we consider
three rounds of seeding as (s1, s2, s3) = (v5, v7, v3) to dynamically choose
users 5, 7, 3 at time t1 = 1, t2 = 3 and t3 = 5 for information diffusion.

For a general network topology, we equivalently reduce it
to a special histogram structure and analytically provide
a provable approximation guarantee.

• Fast Algorithm for average AoI minimization with Prov-
able Approximation Guarantee. As the average AoI ex-
plicitly takes into account every user’s AoI dynamics, it is
more involved to optimize. We further provide two-sided
bound analysis to build up a new framework for average
AoI approximation analysis. This enables us to link our
problem to a remarkably simplified sum-distance min-
imization problem and helps design a polynomial-time
algorithm that achieves a good approximation guarantee.
Finally, we validate our theoretical results via extensive
experiments on a realistic social network.

The rest of this paper is organized as follows. Section II
gives the system model and problem statement. In Section III,
we derive closed-form expressions of our objectives and prove
the NP-hardness of our problem. Section IV and Section V
provide our algorithm design and approximation guarantee
for our minimization problem under the peak and average
AoI objectives, respectively. Finally, our simulation results are
summarized in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a budget-aware viral marketing platform (e.g.,
Facebook Marketplace and Pinduoduo) that periodically se-
lects one user as a seed in each of k seeding rounds to
dynamically diffuse the latest promotion updates over the
social network. In other words, a new seed is selected in each
round to propagate the updated promotion through the social
network, allowing fresher promotions to replace older ones at
each node. Fig. 1 displays the system configuration.

Formally, we model the social network as an undirected and
connected graph G = (V,E), where a node v ∈ V represents
a distinctive user in the network and an edge (vi, vj) ∈ E
tells a social connection between two users vi and vj to
share messages. Suppose the network involves n users and m
social connections, i.e., |V | = n and |E| = m. We consider
discretely slotted time horizon of T slots and index current
time by t ∈ {0, 1, ..., T}.

Denote Sk = (s1, ..., sk) as the sequence of k seeds
that the platform dynamically selects from V to diffuse the
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latest promotion information within the time horizon. Since
many viral marketing promotions are practically scheduled in
a periodic way [31], we denote the time gap between any
two consecutive promotion updates as ∆. That is, at each
timestamp tj = (j−1)·∆+1 with j ∈ {1, ..., k}, the platform
selects a user as a seed for viral marketing. Table I summarizes
the key notation of this paper.

Now, we introduce the process of social information diffu-
sion and our AoI models under multi-stage seeding. Without
loss of generality, we normalize the minimum AoI value to one
representing the smallest age of information, as in [7], [32].
For any user vi ∈ V at time t, its real-time AoI is denoted as
A(vi, t) and evolves as follows.

1) When t = 0, the AoI of each user vi ∈ V is denoted
to be a constant A0, i.e., A(vi, 0) = A0. Note that we
can easily extend our solution to different initial ages,
which will be shown via our experiments in Section VI.

2) At timestamp tj when the j-th seed sj is selected
as the source to propagate the j-th latest promotion
information, the AoI of sj drops to 1 immediately,
i.e., A(sj , tj) = 1. This means that at time tj , the
j-th promotion at seed sj is the freshest among all
promotions propagated up to that time.

3) Each seed node will disseminate the new promotion to
its neighbors in the social network [21]. Upon receiving
the update, each neighbor will then propagate the infor-
mation to her own neighbors, and this process continues.
For ease of exposition, we suppose that information
dissemination through each social connection (i.e., edge)
consumes a normalized unit of time.

4) At any given time, if a node receives multiple informa-
tion updates from its neighbors, it takes the freshest one
and updates its AoI accordingly to align with the age of
the taken information; otherwise, the AoI of the node
will increase linearly over time.

Let us consider an illustrative example of information diffusion
and AoI evolution in Figure 1: user 5 is firstly selected as a
seed at timestamp t1 = 1, resulting in its AoI to be A(v5, t1) =
1 (i.e., user 5’s AoI at time t1 is updated to 1). The updated
information in green (which is from seed user 5) will reach
user 5’s social neighbors (i.e., users 1, 4, 6, 9) after a unit time
slot, and the AoI of these neighbor users will be updated to two
(which is the age of the green information at time 2) at time
t1 +1 = 2. User 5’s social neighbors will further disseminate
the information to their neighbors accordingly. Furthermore,
when some new information reaches a node, the node will
replace its old information with the new one. For instance,
at time t1 + 2 = 3, the green information will reach user
7 by disseminating from user 6. In the meantime of t2 =
1+∆ = 3, user 7 is selected as a new seed to disseminate the
new information in blue. Consequently, user 7 will replace its
green information with the blue one, yielding A(v7, t2) = 1.

Due to the complexity of our multi-stage seeding process
and the social network topology, directly tracing and analyz-
ing the interrelated AoI dynamics among network nodes is
challenging. To address this, we propose a new method that
accurately tracks the AoI dynamics of each network node in

TABLE I
KEY NOTATION IN THIS PAPER.

Notation Physical meaning
n ≜ |V | The order of G or overall user number.
m ≜ |E| The edge size of G or overall social connections.
dist(u, v) The shortest distance between nodes u and v in G.
diam(G) The diameter of the graph G or diameter path.
T Time horizon considered in this paper.
k Number of seeds to be selected within T slots.
∆ Time gap between consecutive seeding time.
ti The ith timestamp to select the ith seed.
si The ith seed which is selected at timestamp ti.
Si ≜ (s1, ..., si) The first i selected seeds.
A(vi, t) The real-time AoI of a node vi ∈ V at time t.

closed form later in Section III. Before that, we proceed with
problem formulations.

We examine two optimization objectives comprehensively,
focusing on fairness and efficiency: the peak and the average
AoI, both of which are evaluated over the time horizon [0, T ].

The peak AoI of the network Apeak is defined as

Apeak = max
vi∈V
{Apeak

i }, (1)

in which Apeak
i ≜ max

t∈[0,T ]
{A(vi, t)} denotes the peak AoI of

node vi ∈ V over the time horizon.
The average AoI of the network Aavg is defined as

Aave =
1

n

∑
vi∈V

Aave
i , (2)

where Aave
i ≜ 1

T

∫ T

t=0
A(vi, t)dt denotes the average AoI of

node vi ∈ V over the time horizon.
Accordingly, we aim to minimize the following two objec-

tives via multi-stage seeding with (s1, ..., sk), respectively:
Objective 1: Peak AoI Minimization Objective:

min
(s1,...,sk)

max
vi∈V

max
0≤t≤T

{A(vi, t)}. (3)

Objective 2: Average AoI Minimization Objective:

min
(s1,...,sk)

∑
vi∈V

∫ T

t=0
A(vi, t)dt

n · T
. (4)

Remark II.1. To boost revenue, a viral marketing platform
typically seeks to expose users to more promotions earlier,
thereby increasing the likelihood of purchasing promoted
products or services [33]. In this context, our peak and
average AoI objectives (3)-(4) align well with the common
goal of viral marketing platforms to maximize revenue for
two reasons: First, a smaller AoI for a particular user at any
given time directly indicates that the user has received the
updated promotion, which the platform prefers to be spread
to the public over outdated ones; Second, a smaller AoI for a
particular user at any given time also indicates that the user
has received more promotions through the social network.

In this paper, we aim at tractable algorithms that guarantee
good peak/average AoI performance in the worst-case sce-
nario, which is evaluated via a standard metric approximation
ratio. Given an instance I(G,T,∆, A0) of the problem, let
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Apeak
ALG(I) and Apeak

OPT(I) represent the peak AoI performance
generated by our algorithm (ALG) and an optimal solution
(OPT), respectively, for the same instance I . The approxima-
tion ratio of our algorithm ALG for the peak AoI minimization
problem in (3), denoted as γpeak

ALG, is defined as the supremum
of the ratio of ALG’s peak AoI over OPT’s peak AoI among
all possible instances I , i.e.,

γpeak
ALG = sup

I(G,∆)

Apeak
ALG(I)

Apeak
OPT(I)

. (5)

Denote Aavg
ALG(I) and Aavg

OPT(I) as the average AoIs generated
by ALG and OPT, respectively, for the same instance I .
Similar to (5), the approximation ratio for the average AoI
minimization problem in (4) is defined as

γavg
ALG = sup

I(G,∆)

Aavg
ALG(I)

Aavg
OPT(I)

. (6)

Then, our aim is to pursue fast (polynomial-time) algorithms
that guarantee good approximation ratios of small (5) and (6)
for the two problems (3) and (4), respectively.

Since the AoI optimization objectives in problems (3) and
(4) have not yet been quantified, our first critical step is
to quantify AoI objectives in the next section. Following
that, we will provide a theoretical foundation by proving the
NP-hardness of our problems and designing approximation
algorithms.

III. AOI TRACING AND NP-HARDNESS

To derive the exact AoI objective expressions necessary for
analyzing problems (3) and (4), we must consider the real-
time AoI dynamics of each node. Based on our information
diffusion model described in Section II, the AoI A(vi, t) of
a node vi ∈ V drops only when vi is updated by some of
its neighbors with fresher information at time t, and increases
linearly otherwise. Note that, at any given time, the real-time
AoI of all nodes holding the same information remains the
same. This implies that the age of any updated information
can be traced back to the seed of that information.

Hence, it is crucial to determine which seed in Sk =
(s1, ..., sk) contributes to the decrease of node vi’ AoI at
time t. Specifically, any such seed, say sx, satisfies the follow-
ing two conditions (7)-(8). First, the information update from
seed sx reaches vi exactly at time t = tx+dist(sx, vi), where
dist(sx, vi) represents the shortest time required to propagate
the x-th promotion information to node vi. According to our
model in Section II, this duration dist(sx, vi) is numerically
equal to the shortest distance between nodes sx and vi in
the social graph G. This leads to the following condition
(7), which holds since dist(sx, vi) ≥ 0, implying that sx is
selected no later than time t.

1 ≤ tx ≤ t. (7)

Second, the new information propagated from seed sx must be
fresher than any prior information that vi has received before
time (t− 1), which results in the following condition (8).

1 + t− tx ≤ A(vi, t− 1). (8)

Since multiple seeds may simultaneously meet the conditions
(7)-(8) at time t, we define the following set Ω(vi, t) to
summarize all such seeds that could lead to vi’s information
update at time t:

Ω(vi, t)

≜ {sx|1 ≤ tx ≤ t, t− tx = dist(vi, sx) ≤ A(vi, t− 1)− 1}.

In light of Ω(vi, t), we can trace and formulate vi’s AoI
over time [0, T ] directly by the following Lemma III.1, where
user vi will update its AoI at time t by the freshest information
it receives up to time t.

Lemma III.1. Given Sk = s1, ..., sk as the set of selected
seeds, the following holds, where Ω specifies Ω(vi, ⌊t⌋):

A(vi, t) =
A(vi, 0) + t, if t ∈ [0, 1),

min
sx∈Ω
{1 + dist(vi, sx)}+ t− ⌊t⌋ , if Ω ̸= ∅, t ∈ [1, T ],

A(vi, ⌊t⌋ − 1) + 1 + t− ⌊t⌋ , if Ω = ∅, t ∈ [1, T ].

Although Lemma III.1 provides some insights into the AoI
evolution over network and time domains, it cannot be directly
applied to estimate either peak AoI (3) or the average AoI (4).
To identify the specific time points at which vi’s AoI drops,
we introduce the following definition of discontinuity points
for each node vi.

Definition III.2 (Discontinuity point). A time point t is called
a discontinuity point to node vi if Ω(vi, t) ̸= ∅. In other
words, at some time t, when Ω(vi, t) ̸= ∅, node vi will
experience a decrease in its AoI as a result of receiving a
promotion updates from some of its neighbors in Ω(vi, t).

To identify those discontinuity points of a node vi, we
have the following Lemmas III.3 and III.4 for guidance. For
convenience, we use [k] to refer to the index set {1, ..., k}.

Lemma III.3. Given the sequence Sk = (s1, ..., sk) of
dynamically selected seeds, each of vi’s discontinuity points
can be found in set {tx + dist(sx, vi)|x ∈ [k]}.

Intuitively, Lemma III.3 offers a ground set
{tx + dist(sx, vi)|x ∈ [k]} from which we can search
to find all possible discontinuity points to each user node
vi ∈ V . To precisely pin down those discontinuity points of
a node vi, let us consider two seeds, say sj and sy , where
seed sy’s information is fresher than seed sj’s and reaches
node vi earlier than sj’s diffusion. It is clear that vi will
update its AoI by sy’s information rather than sj’s. Based
on this observation, we have the following lemma to help
us identify non-discontinuity points within the ground set
{tx + dist(sx, vi)|x ∈ [k]}.

Lemma III.4. An element tj + dist(sj , vi) ∈
{tx + dist(sx, vi)|x ∈ [k]} is not vi’s discontinuity
point, if there exists some other element ty + dist(sy, vy) ∈
{tx + dist(sx, vi)|x ∈ [k]}) which satisfies ty > tj and
ty + dist(sy, vy) ≤ tj + dist(sj , vi).

Based on our Lemmas III.3 and III.4, a straightforward ap-
proach to finding all discontinuity points of each node vi ∈ V
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Algorithm 1 Discontinuity Point Finder
Data: vi ∈ V , Sk = (s1, ..., sk).
Result: discontinuity points of vi, i.e., (si1 , ..., siki

).

1: Initialize Ui ← {tx + dist(sx, vi)|x ∈ [k]}.
2: for p = 1, ..., k − 1 do
3: for q = p+ 1, ..., k do
4: if tq + dist(sq, vi) ≤ tp + dist(sp, vi) then
5: Ui ← Ui − {tp + dist(sp, vi)}.

Break.
6: end if
7: end for
8: end for

is to remove from the ground set tx + dist(sx, vi)|x ∈ [k] all
those non-discontinuity points of vi one by one. Accordingly,
we have Algorithm 1 which runs in O(k2) time due to its
dominating Steps 2-9 in its nested for-loop.

However, we find this is not sufficiently efficient. In the fol-
lowing, we propose a new Algorithm 2 that finds discontinuity
points, which are due to the conditions (7)-(8), backward-
sequentially in the {tx+dist(sx, vi)|x ∈ [k]} of Lemma III.3.
This process can be achieved by the non-nested while-loop in
Algorithm 2, which further accelerates the finding by reducing
the time complexity significantly from O(k2) to O(k).

Algorithm 2 Accelerated Discontinuity Finder
Data: vi ∈ V , Sk = {s1, ..., sk}.
Result: Stack Ui of vi’s discontinuity points.

1: Initialization. Wi ← {tx + dist(sx, vi)|x ∈ [k]}.
2: Pop(Wi, τup) and Ui ← {τup}.
3: while Wi ̸= ∅ do
4: Pop(Wi, τdown).
5: if τdown < τup then
6: Push(Ui, τdown).
7: τup ← τdown.
8: end if
9: end while

Concretely, our Algorithm 2 first initializes a stack Wi by
pushing elements {tx + dist(sx, vi)|x ∈ [k]} sequentially
in increasing order of their sub-index x, ensuring that the
top element in Wi always holds the freshest information
among all the others in Wi. Algorithm 2 maintains two stacks
Wi and Ui, which contain candidate discontinuities and de
facto discontinuities regarding user vi, respectively. Within
Wi (resp. Ui), an upper (resp. a lower) element corresponds
to a fresher information source. Moreover, the lower element
within Ui corresponds to a larger value, i.e., a later timestamp.
Since the kth information source from seed sk is the freshest
ever, its corresponding point tk + dist(sk, vi) is a de facto
discontinuity point for vi, and thus will be firstly included in
Ui, i.e., Ui ← {tk+dist(sk, vi} in Line 2 of our Algorithm 2.

In addition, Algorithm 2 also maintains two variables τup
and τdown that store the latest discontinuity point that has been
found and included in Ui and the top element in stack Wi,

Fig. 2. Illustration example of Algorithm 2, where k = 7, t1+dist(s1, vi) <
t6 + dist(s6, vi) < t2 + dist(s2, vi) < t3 + dist(s3, vi) < t7 +
dist(s7, vi) < t4 + dist(s4, vi) < t5 + dist(s5, vi).

respectively. In each iteration of its while loop, Algorithm 2
pops the top element from the latest stack Wi and assigns its
value to τdown, i.e., τdown = arg max

tx+dist(sx,vi)∈Wi

{x}. Note

that this τdown corresponds to the freshest information source
within the current Wi, which will lead to an AoI drop for vi if
it reaches vi earlier than all those previously found discontinu-
ities in Ui, which is indicated by the condition τdown < τup.
Algorithm 2 iterates until finding all discontinuity points of
vi, i.e., when Wi = ∅, which can complete in O(k)-time due
to its sole while loop. We illustrate in Fig. 2 an execution
example of Algorithm 2 for ease of understanding.

With discontinuity points returned by Algorithms 1 and 2,
we are now ready to characterize the expressions of the peak
and average AoI objectives in the following subsection.

A. Closed-Form Characterization of Peak and Average AoI
Objectives

For node vi ∈ V , let ki represent the overall number
of discontinuity points in A(vi, t) over the time horizon
[0, T ]. Denote tij as the selection timestamp of the seed
that produces the jth discontinuity point of vi (in A(vi, t)).
The set of all discontinuity points of node vi is given by
{tx + dist(sx, vi)|x ∈ {i1, ..., iki}}. We note iki = k since
the last seed sk carries the freshest promotion, resulting in a
final AoI decrease for all other nodes in the network.

By taking into account the discontinuity points of vi in {tx+
dist(sx, vi)|x ∈ {i1, ..., iki

}} in Lemma III.1, we have the
following proposition.

Proposition III.5. Given the sequence Sk = (s1, ..., sk) of
dynamically selected seeds, A(vi, t) is piece-wise over time
t ∈ [0, T ] and is given by (9) where (si1 , ..., siki

) are obtained
by running Algorithm 1 on Sk,

According to Proposition III.5, the new AoI dynamics in
(9) depends solely on discontinuity points returned by our
Algorithm 1. This enables us to precisely trace the AoI pattern
of each node. Particularly, in each time interval of (9), the
expression of A(vi, t) becomes regular, which paves the way
for us to characterize the peak and average AoI objectives
in closed-form below. Consequently, we have the following
Theorems III.6 and III.7, respectively.
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A(vi, t) =



A0 + t, if t ∈ [0, ti1 + dist(si1 , vi)),
1 + t− ti1 , if t ∈ [ti1 + dist(si1 , vi), ti2 + dist(si2 , vi)),

...
...

1 + t− tiki−1
, if t ∈ [tiki−1

+ dist(siki−1
, vi), tiki

+ dist(siki
, vi)),

1 + t− tiki
, if t ∈ [tiki

+ dist(siki
, vi), T ].

(9)

Theorem III.6. Given the sequence Sk of dynamically se-
lected seeds, the peak AoI objective of the network can be
expressed in closed form as follows:

Apeak = max
vi∈V
{A0 + ti1 + dist(si1 , vi), 1 + T − tiki

,

max
j∈{2,...,ki}

{1 + dist(sij , vi) + tij − tij−1
}}.

(10)

Theorem III.7. Given the sequence Sk of dynamically se-
lected seeds, the average AoI objective of the network can be
expressed in closed form as follows:

Aavg =
1

nT

n∑
i=1

ki+1∑
j=1

(2Aij−1 + Λij) · Λij

2
, (11)

where

Aij =

{
A0, j = 0,

1 + dist(sij , vi) j = 1, ..., ki,
(12)

and
Λij

=

 1 + (i1 − 1) ·∆+ dist(si1 , vi), j = 1,
T − 1− (iki − 1) ·∆− dist(siki

, vi), j = ki + 1,
(ij − ij−1)∆ + dist(sij , vi)− dist(sij−1 , vi), others.

B. NP-hardness for Peak and Average AoI Minimization Prob-
lems

The above Theorems III.6 and III.7 are essential to an-
alyzing our problems (3) and (4) later in Sections IV and
V, respectively. Prior to that, we now construct a theoretical
foundation for our problems by showing that they are NP-hard
indeed.

Theorem III.8. The peak AoI minimization problem (3) is
NP-hard.

Proof. We show the NP-hardness of the peak AoI minimiza-
tion problem by a highly non-trivial reduction from the NP-
hard dominating set problem in decision version [34]. Given
an undirected graph G(V,E) and a constant integer k, the
decision version of the dominating set problem answers “yes”
if and only if there exists a subset S ⊆ V of size k such that
each node v ∈ V is either in S or is a neighbor of some s ∈ S.
For example, if we consider the graph in Fig. 1 with k = 3,
user nodes 2, 5, and 7 form a de facto dominating set.

Given an instance of the dominating set problem, we reduce
it to our peak AoI minimization problem (where we set a large
A0 = T + diam(G) and a small ∆ → 0) on the same graph
example G = (V,E) with budget k. The weight of each edge
in E is set as 1, i.e.,

dist(vx, vy) = 1, if (vx, vy) ∈ E. (13)

As we set ∆→ 0, all the k seeds could be regarded as being
selected together at time 1. As a consequence,

si1 = arg min
sj∈Sk

{tj + dist(sj , vi)} = arg min
sj∈Sk

{dist(sj , vi)},
(14)

As we set A0 = T + diam(G), Theorem III.6 further infers
that the peak AoI of the graph now depends on the first term
of (10), i.e.,

Apeak(Sk) = max
vi∈V
{A0 + ti1 + dist(si1 , vi)}. (15)

By substituting (14) into (15), we obtain

Apeak(Sk) = A0 + 1 + max
vi∈V

min
sj∈Sk

{dist(vi, sj)}. (16)

The decision version of our peak AoI problem aims to answer
whether the optimal solution is equal to or less than A0 + 2.
By applying a well-known binary search approach to solutions
for our decision problem, one can obtain in polynomial-time
a solution to our optimization problem. Reversely, given a
solution to our optimization problem, one can directly obtain
a solution to the decision problem. The above two facts reveal
the equivalence relation between the decision and optimization
versions of our AoI problem. Further, our NP-hardness can be
proved readily with the following Lemma III.9.

Lemma III.9. The dominating set problem answers “yes” iff
the decision version of our problem on the same input answers
“yes”.

Proof of Lemma III.9. We discuss two cases.
Case 1. (“⇒”) When the dominating set problem answers
“yes”, there exists a subset S′

k ⊆ V with size k such that

max
vi∈V

min
s∈S′

k

dist(s, vi) ≤ 1. (17)

By applying (17) to (16), we have Apeak ≤ A0 + 1 + 1 =
A0 + 2, telling that our AoI problem answers “yes” as well.
Case 2. (“⇐”) When our AoI problem answers “yes”, from
(16) we have that max

vi∈V
min
s∈S′

k

dist(s, vi) ≤ 1. This implies that

each node is either in set Sk or a neighbor of a node in Sk.
That is, min

s∈Sk

dist(s, v) ≤ 1 holds for each node v ∈ V , telling

that the dominating set problem answers “yes”.

Lemma III.9 concludes our proof of Theorem III.8.

For the average AoI minimization, our closed-form expres-
sion in (11) reveals the fact that each node’s AoI dynamics
truly affect the AoI objective. This makes our average AoI
minimization problem more involved in comparison to the
peak AoI minimization problem. By a subtle graph construc-
tion technique, our average AoI problem can be reduced



7

Algorithm 3 CYCLIC SEEDING for peak AoI minimization
Data: G(V,E), k.
Result: Sk = (s1, ..., sk).

1: Index nodes on diam(G) sequentially from one side to
the other in set Vdiam ≜ (v1, ..., v|diam(G)|+1).

2: From Vdiam, select a sequence of seed candidates as Ω.
3: Seed sequentially and recursively from Ω.

from the NP-hard set cover problem, yielding the following
Theorem III.10.

Theorem III.10. The average AoI minimization problem (4)
is NP-hard.

IV. PEAK AOI MINIMIZATION ALGORITHMS

To solve the NP-hard peak AoI minimization problem (3),
we propose Algorithm 3 that seeds in a round-robin way from
a fine-tuned set of candidates along the diameter path, which
indicates the shortest path between the two most distant nodes
in the social graph G and can be found in O((|V ′| + m)n)-
time by the Floyd-Warshall Algorithm [35]. In the sequel, we
simply use diameter to refer to the diameter path when the
context is clear. The rationale behind Algorithm 3’s focus on
seeding users on the diameter is twofold: first, seeding along
the diameter will directly expedite the information dissemina-
tion among nodes on the graph diameter, which usually takes
a considerable time; second, seeded users on the diameter are
able to relay information to users in other branches, thereby
improving the overall efficiency of information propagation
within the entire network.

Generally, our Algorithm 3 consists of the following three
steps, where diam(G) gives the diameter path of graph G.

Step 1. Index nodes on the diameter path diam(G) sequen-
tially from one side to the other, resulting in

Vdiam ≜ (v1, ..., v|diam(G)|+1), (18)

where |diam(G)|+1 gives the number of nodes on diam(G).
Step 2. Select from Vdiam an integer number µ of seed can-

didates, denoted as the sequence Ω ≜ (ω1, ..., ωµ) ⊆ Vdiam,
in which the value of µ and the specific locations of the
candidates in Ω will be optimized later in Proposition IV.1.

Step 3. Seed sequentially from Ω = (ω1, ..., ωµ) in the fol-
lowing round-robin manner: denote mod(x, y) as the number
of x modulo y, then, each seed si ∈ Sk with i ∈ {1, ..., k} is
selected to be ωmod(i−1,µ)+1.

As Algorithm 3 seeds in a round-robin way from a well-
designed set of seed candidates Ω, one can expect a periodic
pattern of the peak AoI dynamics Apeak(t) = max

vi∈V
A(vi, t)

after an initial time under Algorithm 3. In fact, our Theo-
rem IV.4 later demonstrates that Apeak(t) follows a periodic
pattern starting from time T1 = 1+ (µ′ − 1)∆+ ς ′, as shown
in Fig. 3. Further, our following Proposition IV.1 shows that
minimizing the peak AoI in (10) is equivalent to minimizing
T1, which is by choosing the number µ′ of selected seeds in
Step 2 of Algorithm 3.

Fig. 3. Peak AoI of Algorithm 3 in a line-type network.

Proposition IV.1. In Algorithm 3, the optimal (µ, ς) should
be chosen by solving the following problem:

min
(ς′,µ′)

T1 = 1 + (µ′ − 1)∆ + ς ′ (19)

s.t. µ′ +∆(µ′ − 1)µ′ + 2ς ′µ′ ≥ |diam(G)|+ 1, (20)

0 ≤ ς ′ < ∆, (21)
ς ′, µ′ are both integers, (22)

in which (20) ensures that all nodes on diam(G) are updated
by time T1. The optimal solution (ς, µ) to Problem (19)-(22)
is given by:

µ = (

⌊
∆− 1 +

√
∆2 + 2∆+ 4|diam(G)|∆+ 1

2∆

⌋
, (23)

and

ς =

⌈
|diam(G)|+ 1− (µ2∆− µ∆+ µ)

2µ

⌉
). (24)

In light of Proposition IV.1, the optimal solution (µ, ς) to
Problem (19)-(22) indicates that Algorithm 3 achieves the
earliest time when each node on diam(G) is updated. With
(23) and (24) in hand, we can run Algorithm 3 optimally,
finalizing the configuration of each seed candidate ωx = vζ(x)
in its Step 2 as ζ(x) = ∆(µ−x+1)2+µ−x+1+(2µ−2x+1)ς .

A. Approximation Analysis in Line-type Networks

To evaluate the approximation guarantee achieved by Algo-
rithm 3, we begin with a line-type (or linear) network topology
as defined below. This simple yet fundamental topology serves
as a basis for our approximation analysis, which will be
extended to general social networks in Section IV-B.

Definition IV.2 (Line-type social network [36], [37]). A line-
type social network consists of a set of sequentially connected
users/nodes, which resembles a line and features an adjacency
matrix as in (25).

En×n =


0 1 ... 0 0
1 0 ... 0 0
...

...
...

...
...

0 0 ... 0 1
0 0 ... 1 0

 . (25)
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Given the NP-hard nature of our peak AoI minimization
problem (3), one can hardly find an optimal solution. Instead,
we establish a lower bound approximation for the optimum
solution by the following lemma, which draws upon our
closed-form expression (10).

Lemma IV.3. In line-type social networks, an optimal solution
to the peak AoI minimization problem follows

Apeak
OPT ≥ max{A0 + ς, ⌊ξ⌋∆}+ 1 + µ∆. (26)

in which ξ =
−(1+3∆)+

√
(1+3∆)2+4∆(1+2µ∆)

2∆ .

Lemma IV.3 provides a comparison benchmark for the
approximation of our Algorithm 3, yielding the following
theorem.

Theorem IV.4. For a line-type social network of (25), Algo-
rithm 3 runs in O(mn)-time and guarantees an approximation
1+2µ∆+ς

1+µ∆+⌊ξ⌋∆ of the optimum, which is strictly smaller than 2.

Particularly, Algorithm 3 is optimal for n ≤ A2
0+A0(1−∆)

∆ .

Proof. In a line-type social network, a middle node can
disseminate information on both sides simultaneously. Next,
we will show that the peak network AoI led by our algorithm
follows a periodic pattern as depicted in Fig. 3. To start with,
we partition the time horizon [1, T ] into multiple intervals as
follows,

Ti = [1 + (i− 1)µ∆+ ς, 1 + iµ∆+ ς), (27)

for i = {1, 2, 3, ...}, i.e., [1, T ] =
⋃
i≥1

Ti. We have two cases.

Case 1. (t ∈ T1). Since Algorithm 3 selects seed si = ωi

at time 1 + (i− 1)∆, our information diffusion model yields
that the number of nodes updated by ωi at time (1+ µ∆+ ς)
follows

1 + 2[1 + µ∆+ ς − 1− (i− 1)∆] = 1 + 2(µ− i+ 1)∆ + 2ς.

Due to our seed candidates fine-tuned by Algorithm 3, we can
rewrite each seed ωµ−j (where j ∈ {0, ..., µ− 1}) as follows

ωµ−j = v∆(j+1)2+(j+1)+(2j+1)ς . (28)

As a result, at time (1+µ∆+ς), each seed ωµ−j could update
the following set of head-to-tail nodes

{v(j+1)j∆+(j+1)+2jς , ..., v(j+1)(j+2)∆+(j+1)+(2j+2)ς}, (29)

for each j ∈ {0, ..., µ− 1}.
Fig. 4 depicts the configuration of our seed candidates on

a line-type social graph, which can be interpreted as follows.
First, the X-axis of Figure 4 represents the relative locations
among seed candidates. More specifically, each black-marked
value on the X-axis indicates the position of the corresponding
node, particularly, each colored mark on the X-axis indicates
the position of the corresponding seed candidate that is fine-
tuned by our algorithm. The Y-axis of Figure 4 represents
the AoI, note that the peak AoI of each node in the same
rectangular is not larger than the AoI indicated by the height
of the corresponding rectangle. Consequently, we can tell that
the peak AoI of the network is not larger than 1 + µ∆.

Fig. 4. Configuration of seed candidates in a line-type social network, where
X-axis and Y-axis indicate candidate locations and AoI at time 1 + µ∆ +
ς , respectively. Note that, at time 1 + µ∆, the AoI of users covered by a
rectangular of the same color is no more than the height of that rectangle.

Fig. 4 also illustrates that the node immediately following
the right-most node updated by seed ωµ−j is just the left-most
node updated by seed ωµ−(j−1). This implies that the family
of sets (29) are disjoint for different j ∈ {0, ..., µ − 2}. By
taking the union operation over sets (29) over different j ∈
{0, ..., µ− 2}, we observe from Fig. 4 that those head-to-tail
nodes in the following set are updated by seeds {ω2, ..., ωµ}
up to time (1 + µ∆+ ς):

{v1, ..., v(µ−1)µ∆+µ−1+(2µ−2)ς} (30)

which covers a total number ((µ−1)µ∆+µ−1+(2µ−2)ς)
of nodes. Accordingly, the remaining number of nodes that
are not updated by {ω2, ..., ωµ} follows

n− ((µ− 1)µ∆+ µ− 1 + (2µ− 2)ς)

≤ n− ((µ− 1)µ∆+ µ− 1 + (2µ− 2)ς)

= 1 + 2µ∆+ 2ς.

(31)

This implies that the seed ω1 can update all the nodes outside
those in (30). Thus, all nodes in V are updated at least once
by time (1+µ∆+ς), yielding that the peak AoI in T1 follows

Apeak ≤ A0 + 1µ∆+ µ (32)

Case 2. (t ∈
⋃
i≥2

Ti). According to Step 3 of our Algorithm 3,

there are a number µ of new seeds selected as (ω1, ω2, ..., ωµ)
in each interval Ti − ς = [1 + (i − 1)µ∆, 1 + iµ∆). To
distinguish those seeds selected from different intervals, we
further denote (ωi

1, ω
i
2, ..., ω

i
µ) as those seeds that are selected

in interval Ti−ς . By applying a similar analysis as in (29) and
(31), it can be verified that by the end of the interval Ti, all
nodes in V are updated at least once by some seed candidate
in (ωi

1, ω
i
2, ..., ω

i
µ) that are selected within Ti − ς . Since the

start time of each interval Ti is exactly the end time of the
prior interval, the AoI of each node at the start time of Ti

is no larger than the age of the oldest information (which is
disseminated from seed ωi−1

1 ) in the prior interval Ti−1. In
other words, the initial AoI of nodes in the interval Ti follows

A(vi, 1 + (i− 1)µ∆+ ς) ≤ 1 + µ∆+ ς
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Since Ti has a duration of µ∆, the peak AoI of each node
within Ti is no larger than

1 + µ∆+ ς + µ∆ = 1 + 2µ∆+ ς. (33)

By applying (33) and (26) back to (5), we have

Apeak
ALG

Apeak
OPT

≤
1 + µ∆+ ς +max{A0, µ∆}
1 + µ∆+max{A0 + ς, ξ∆}

≤
1 + 2µ∆+ ς

1 + µ∆+ ξ∆
,

(34)

where the first inequality holds by (32), (33) and Lemma IV.3.
Particularly when n ≤ A2

0+(∆+1)A0

∆ , we have

A0 ≥
−∆− 1 +

√
∆2 + (2 + 4n)∆ + 1

2
= µ∆ ≥ µ∆.

(35)
By applying (35) and the fact ξ ≤ µ to the first inequality of
(34), we meet Apeak

ALG

Apeak
OPT

=
1+µ∆+A0+ς

1+µ∆+A0+ς = 1.

In view of Theorem IV.4, the low time complexity and
approximation tell decent performances of our Algorithm 3,
which even achieves optimality for small networks.

B. Analysis Extension to General Social Networks

In general networks, social connections are more compli-
cated and AoI updates among network nodes may become
more interrelated. Note that Algorithm 3 solely seeds on the
diameter of a general graph, making its corner nodes suffer
from larger delay than its middle nodes. Besides, any social
connection between nodes outside diam(G) will evidently
accelerate our algorithm’s information diffusion and conse-
quently ameliorate our algorithm’s performance. As such,
when analyzing Algorithm 3’s worst-case performance, it is
sufficient to focus on the histogram (as defined below and
shown in Figure 5) that is reduced from a given general graph.
Our subsequent Lemma IV.6 corroborates this claim.

Fig. 5. Illustration of a histogram network structure in which nodes on the
diameter path are highlighted in orange.

Definition IV.5 (Histogram-type graph H(VH , EH)). In a
histogram-type network H(VH , EH), each node v ∈ VH

follows

min
v′∈diam(H)

dist(v′, v) ≤ min{dist(v⊥, v⊢), dist(v⊥, v⊣)},
(36)

where v⊢ and v⊣ indicate the left- and the right-most nodes
on the diameter path diam(H) of graph H , respectively, and

Algorithm 4 Graph Reducing Approach
Data: A general graph {G}.
Result: A reduced histogram graph H(VH , EH) correspond-
ing to G.

1: Find an arbitrary diameter path diam(G) (if multiple
exist) of the given graph G.

2: Let V (diam(G)) summarize those nodes that appear on
diam(G), and let W ≜ V − V (diam(G)) summarize
those nodes that do not appear on diam(G).

3: Initialization. VH = V (diam(G)), EH = E(diam(G)).
4: for vi ∈W do
5: Find v∗i ≜ arg min

v∈VH

{dist(v, vi)} (if multiple v∗i exist,

higher priority is given to a node on diam(G)).
6: Update VH = VH + {vi} and EH = EH + {(vi, v∗i )}.
7: end for

v⊥ denotes the closest node to v on diam(H), i.e., v⊥ ≜
arg min

v′∈diam(H)
dist(v′, v).

The following lemma gives insights for our subsequent
approximation analysis.

Lemma IV.6. The approximation performance of Algorithm 3
in a general social network can be effectively evaluated using
a histogram-type social network with the same diameter.

In Algorithm 4, we reduce any given general graph G to its
corresponding histogram graph H(G) with the same diameter,
while having no bearing on our approximation analysis. At
the high level, our Algorithm 4 first copies diam(G) to
H(G); then, for each node vi of G that lies outside diam(G),
Algorithm 4 finds in the current node set VH the node v∗i that
is closest to vi under graph G, and adds node vi and edge
(vi, v

∗
i ) to VH and EH of graph H(G), respectively.

Then, it becomes tractable to analyze the performance of our
Algorithm 4 for H(G). Evidently, the peak AoI produced by
Algorithm 4 in a general graph will not exceed A0+diam(G).
Considering the information diffusion among nodes on the
diameter path in a general graph, we can apply the right-
hand-side of (26) in Lemma IV.3 as a lower bound on the
optimal solution for a general graph. Thus, we obtain the
approximation guarantee for Algorithm 3 in general graphs,
as stated in Theorem IV.7.

Theorem IV.7. For the peak AoI minimization problem (3), Al-
gorithm 3 guarantee an approximation diam(G)+A0

max{A0+ς,⌊ξ⌋∆}+1+µ∆

of the optimum.

Our Theorem 3 above shows that in the worst-case scenario,
Algorithm 3 approximates the optimum about the square root
of the network diameter due to constraint (20) on µ. In other
words, the peak AoI by Algorithm 3 is guaranteed to be no
worse than O(

√
diam(G)) of the optimum in general. The

worst-case performance remains robust against variations in
other system parameters (such as A0 and ∆). In the following,
we present our solution to the average AoI minimization
problem (4).
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V. AVERAGE AOI MINIMIZATION ALGORITHMS

Unlike the peak AoI problem (3), optimizing average AoI
is more involved as it explicitly takes into account the AoI
dynamics of every user. Despite our closed-form expression
(11) of the average AoI objective in Theorem III.7, finding a
feasible solution to our problem is still challenging due to its
NP-hard combinatorial nature.

Thereby, we equivalently transform the objective in (11)
to the one in the following Proposition V.1. With this trans-
formation, we develop efficient approximation algorithms that
provide near-optimal solutions.

Proposition V.1. Given the sequence Sk = (s1, ..., sk) of
dynamically selected seeds,

Aavg = η +
1

n

∑
vi∈V

{
2A0 · [∆i1 + dist(si1 , vi)]︸ ︷︷ ︸

denoted as term 1

+ 2∆ ·
ki∑
j=1

[(ij − ij−1) · dist(sij , vi)]︸ ︷︷ ︸
denoted as term 2

+∆2
ki∑
j=1

(ij − ij−1)
2

︸ ︷︷ ︸
denoted as term 3

}
,

(37)

where i0 = 1 initially, indices in set {i1, ...iki
} are obtained

by running Algorithm 1 on Sk, and

η =
1

2T
[2A0 − 2∆A0 + T 2 + 2∆T +∆2 − 2∆

+ 2(∆− T∆−∆2)k +∆2k2].
(38)

Note that η in (38) is a constant. Then, we focus on the
other three terms in (37) and aim to rigorously lower and
upper bounding each of the three terms in (37) for further
approximation analysis, respectively. Consequently, we have
the following lemma.

Lemma V.2. Given Sk = (s1, ..., sk), the followings hold:

A0∆ ≤ A0 · [i1∆+ dist(si1 , vi)] ≤ A0∆+A0 · dist(s1, v1),

∆ ·
k∑

j=1

dist(sj , vi)

β
≤ ∆ ·

ki∑
j=1

[(ij − ij−1) · dist(sij , vi)]

≤ ∆ ·
k∑

j=1

dist(sj , vi),

(k − 1)2∆2

2ki
≤ 1

2
∆2

ki∑
j=1

(ij − ij−1)
2 ≤ (k − 1)2∆2

2
,

where β indicates the longest distance between a seed in Sk

and any node in V and is less than |diam(G)|.

Proof. Given Sk of dynamically selected seeds, we discuss the
following three cases to prove the three families of inequalities
in Lemma V.2, respectively.
Case 1. We first prove

A0∆ ≤ A0 · [i1∆+ dist(si1 , vi)] ≤ A0∆+A0 · dist(s1, v1)

Due to the fact that ti1 ≥ t1 = 1, one can easily check

A0∆ ≤ A0 · [i1∆+ dist(si1 , vi)]. (39)

Since ti1 = (i1 − 1)∆ + 1, we have the following

A0 · [i1∆+ dist(si1 , vi)]

= A0 · (∆− 1) +A0 · [ti1 + dist(si1 , vi)]
(40)

Since seed si1 leads to the first discontinuity point of node vi
at time ti1 + dist(si1 , vi), we know

ti1 + dist(si1 , vi) ≤ t1 + dist(s1, vi). (41)

By substituting (41) and t1 = 1 in (40), we get,

A0 · [i1∆+ dist(si1 , vi)] ≤ A0∆+A0 · dist(s1, v1). (42)

Case 2. We now prove that

∆ ·
k∑

j=1

dist(sj , vi)

β
≤ ∆ ·

ki∑
j=1

[(ij − ij−1) · dist(sij , vi)]

≤ ∆ ·
k∑

j=1

dist(sj , vi),

where β tells the longest distance between a seed in Sk and
any node in V and is less than diam(G).

For any seed sx that is selected in between tij and tij−1

but does not lead to a discontinuity point of vi, we have, on
one hand,

tx + dist(sx, vi) ≥ tij + dist(sij , vi)

⇔ 0 < tij − tx ≤ dist(sx, vi)− dist(sij , vi),
(43)

which further implies the following

(ij − ij−1)dist(sij , vi) ≤
ij∑

x=ij−1+1

dist(sx, vi). (44)

On the other hand, we have, by dist(sx,vi)
dist(sij ,vi)

≤ β, that

(ij − ij−1)dist(sij , vi) ≥
ij∑

x=ij−1+1

dist(sx, vi)

β
. (45)

By summing up (44) over all j ∈ {1, ..., ki}, we get

∆ ·
ki∑
j=1

[(ij − ij−1) ·dist(sij , vi)] ≤ ∆ ·
k∑

j=1

dist(sj , vi). (46)

By summing up (45) over all j, we have

∆ ·
k∑

j=1

dist(sj , vi)

β
≤ ∆ ·

ki∑
j=1

[(ij− ij−1) ·dist(sij , vi)]. (47)

Case 3. We prove in this case that

(k − 1)2∆2

2ki
≤ 1

2
∆2

ki∑
j=1

(ij − ij−1)
2 ≤ (k − 1)2∆2

2
(48)

Since ij − ij−1 ≥ 1 holds for each j ∈ {1, .., ki}, we have,
by the Cauchy-Schwarz Inequality, that

[

ki∑
j=1

(ij − ij−1)
2] · [

ki∑
j=1

12] ≥ [

ki∑
j=1

1 · (ij − ij−1)]
2. (49)
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As
ki∑
j=1

(ij − ij−1) = iki − i0 = k− 1, Inequality (49) implies

ki∑
j=1

(ij − ij−1)
2 ≥ (k − 1)2

ki
. (50)

Since x2
1 + x2

2 + · · ·+ x2
k < (x1 + x2 + · · ·+ xk)

2 holds for
every k positive numbers {x1, ..., xk}, we get

ki∑
j=1

(ij − ij−1)
2 ≤ [

ki∑
j=1

(ij − ij−1)]
2

= (iki − i0)
2 = (k − 1)2.

(51)

This completes the proof.

By applying Lemma V.2 back to (37) of Proposition V.1,
we achieve a rigorous two-sided bound on the objective Aavg

as in the following theorem.

Theorem V.3. Given the sequence Sk = (s1, ..., sk) of
dynamically selected seeds, the average AoI objective (37) can
be lower and upper bounded as:

Aavg ≥ 2A0∆+
n(k − 1)2∆2∑

vi∈V

ki

+
2∆

nβ

∑
vi∈V

∑
sj∈Sk

dist(sj , vi) + η,

(52)

and

Aavg ≤ 2A0∆+ (k − 1)2∆2 +
2A0

n

∑
vi∈V

dist(s1, vi)

+
2∆

n

∑
vi∈V

∑
sj∈Sk

dist(sj , vi) + η.
(53)

Proof. To start with, one can easily verify that (52) holds read-
ily by applying the second inequalities in the three inequality
families of Lemma V.2 to Proposition V.1.

To prove (53), we apply the first inequalities in the three
inequality families of Lemma V.2 to Proposition V.1. Conse-
quently, we have

Aavg ≥2A0∆+
∑
vi∈V

(k − 1)2∆2

nki

+
2∆

nβ

∑
vi∈V

∑
sj∈Sk

dist(sj , vi) + η.

(54)

The well-known AM-GM inequality [38] admits

n∑
vi∈V

1
ki

≤

∑
vi∈V

ki

n
. (55)

By reorganizing (55), we have∑
vi∈V

1

ki
≥ n2∑

vi∈V

ki
. (56)

By plugging (56) back to (54), (53) holds readily.

Algorithm 5 k-MINISUM for average AoI minimization

Data: G = (V,E), k = T
∆ .

Result: Sk.
1: Initialize the distance matrix MG = (dist(vi, vj))n×n of

graph G and unit vector M1 = (1)n×1.
2: Compute MS ←MG ·M1.
3: Find in MS indices corresponding to the first k smallest

entries, resulting in sequence Θ.
4: Select in set V the k nodes indexed by indices of Θ

sequentially, forming Sk.

In the lower bound (52) and upper bound (53) above, we
observe a common summation term

∑
vi∈V

∑
sj∈Sk

dist(sj , vi).

This enables us to link our problem to the following Problem 1,
which is significantly simplified and can be solved efficiently.

Problem 1 (Sum-distance minimization problem). Given a
graph G(V,E), the objective is to select a subset S ⊆ V with
size k to minimize the sum distance

∑
sj∈Sk

∑
vi∈V

dist(sj , vi).

This intriguing connection discloses a tractable way for our
algorithm design and approximation analysis. In Algorithm 5,
we present our approach to minimizing Aavg. In general,
Algorithm 5 first constructs the distance matrix MG =
(dist(vi, vj))n×n that contains all pairwise shortest distances
among nodes in the social network [39]; then, according to the
sum distance of a node over all the other nodes, Algorithm 5
seeds sequentially in decreasing order of nodes’ sum distances.
Now, we further look at Algorithm 5’ average AoI in general
social networks.

Theorem V.4. For the average AoI minimization problem
(4) in general social networks, Algorithm 5 runs in O(mn ·
log logn
logn +n2· log

2 logn
logn )-time, which is strictly less than O(mn),

and outputs a multi-stage seeding Sk = (s1, ..., sk) that
generally achieves an approximation guarantee of no worse

than max

{
β + A0β

k∆ , 2A0∆+η+(k−1)2∆2

2A0∆+η+
(k−1)2∆2

k

}
.

Proof. The running time of Algorithm 5 is dominated by its
Step 1 in returning all-pairs-shortest-path (APSP) distances of
a given graph G(V,E). Thanks to the state-of-art result for
APSP [39], our Algorithm 5 totally runs in O(mn · log logn

logn +

n2 · log
2 logn
logn )-time.

Next, we prove the approximation guaranteed by Algo-
rithm 5. Denote Sk = (s1, ..., sk) and S∗

k = (s∗1, ..., s
∗
k) as

the k seeds that are dynamically-selected by Algorithm 5 and
an optimal solution, respectively. Recall that Aavg

OPT and Aavg
ALG

denote the average AoI results of an optimal solution and our
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algorithm, respectively. According to Theorem V.3, we get

Aavg
OPT ≥ 2A0∆+ η +

n(k − 1)2∆2∑
vi∈V

k∗i︸ ︷︷ ︸
denoted, for short, as Aavg

OPT|1

+
2∆

nβ

∑
vi∈V

∑
s∗j∈S∗

k

dist(s∗j , vi)︸ ︷︷ ︸
denoted, for short, as Aavg

OPT|2

,

(57)

Aavg
ALG

≤ 2A0∆+ (k − 1)2∆2 + η︸ ︷︷ ︸
denoted, for short, as Aavg

ALG|1

+
2A0

n

∑
vi∈V

dist(s1, vi) +
2∆

n

∑
vi∈V

∑
sj∈Sk

dist(sj , vi)︸ ︷︷ ︸
denoted, for short, as Aavg

ALG|2

.

(58)

By applying (57) and (58) into (6), we further obtain

Aavg
ALG

Aavg
OPT

≤
Aavg

ALG|1 +Aavg
ALG|2

Aavg
OPT|1 +Aavg

OPT|2

≤ max{
Aavg

ALG|1
Aavg

OPT|1
,
Aavg

ALG|2
Aavg

OPT|2
},

(59)

where the first inequality holds by (57) and (58), and the
second inequality is due to the fact that x1+x2

y1+y2
≤ max{x1

y1
, x2

y2
}

holds for any four positive numbers x1, y1, x2, y2. On one
hand, note that the seed set Sk selected by our Algorithm 5
also minimizes Problem 1, i.e.,∑

vi∈V

∑
sj∈Sk

dist(sj , vi) ≤
∑
vi∈V

∑
s∗j∈S∗

k

dist(s∗j , vi). (60)

Due to Step 3 of our Algorithm 5, we have on the other hand
that ∑

sj∈Sk

∑
vi∈V

dist(sj , vi) ≥ k ·
∑
vi∈V

dist(s1, vi). (61)

Considering the fact that
∑

vi∈V

dist(s1, vi) ≤
∑

vi∈V

dist(sj , vi)

holds for each sj ∈ Sk, the following which stems from (57)
and (58) holds:

Aavg
ALG|2

Aavg
OPT|2

≤
( 2A0

nk + 2∆
n ) ·

∑
vi∈V

∑
sj∈Sk

dist(sj , vi)

2∆
nβ

∑
vi∈V

∑
s∗j∈S∗

k

dist(s∗j , vi)

≤

( 2A0

nk + 2∆
n ) ·

∑
vi∈V

∑
s∗j∈S∗

k

dist(s∗j , vi)

2∆
nβ

∑
vi∈V

∑
s∗j∈S∗

k

dist(s∗j , vi)

=
A0β

k∆
+ β,

(62)

in which the first and the second inequalities are due to (61)
and (60), respectively.

Fig. 6. Social network visualization.

Since
∑

vi∈V

k∗i ≤
∑

vi∈V

k = nk, we thus have

Aavg
ALG|1

Aavg
OPT|1

≤ 2A0∆+ (k − 1)2∆2 + η

2A0∆+ η + n(k−1)2∆2∑
vi∈V

k∗
i

≤ 2A0∆+ η + (k − 1)2∆2

2A0∆+ η + (k−1)2∆2

k

(63)

By applying (62) and (63) to (59), the proof completes.

In Theorem V.4 of our average AoI result, the parameter
β in the first item of the approximation guarantee represents
the furthest distance from a selected seed to any other node
in the social network. This β is influenced by both the size
and structure of the network and the seeding budget k. The
second item in the approximation guarantee corresponds to
both the seeding budget k and the parameter η, which is
given in (38). This η is related to the time horizon T and
significantly mitigates the effect of k in the second item of the
approximation guarantee, as it appears in both the numerator
and denominator of the guarantee’s second item. On one
hand, when the network is small and the seeding budget k is
relatively large enough, the worst-case performance guarantee
above in Theorem V.4 will be dominated by the second item.
This tells that expanding the time horizon T will narrow
the gap between our algorithm’s solution and the optimum,
yielding our solution’s better approximation performance. On
the other hand, when the network is particularly large with a
small seeding budget, the worst-case performance guarantee is
dominated by its first item, which approximates the network
diameter divided by the seed budget, i.e., |diam|

k . This tells our
algorithm’s decent approximation performance even for large
networks.

VI. EXPERIMENTS

In this section, we empirically evaluate our algorithms by
experiments on a real data set of Facebook social circles [40],
[41]. In the following implementation, we consider the typical
100 users with their IDs {1, 2, ..., 100} in the original data set
[40], [41], from which we remove some isolated users that
have no bearing on our experimental results. Consequently,
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Fig. 7. Histogram graph H(G) reduced by Algorithm 4 on G in Figure 6.

our social network G(V,E) is visualized in Fig. 6, where the
diameter path diam(G) is highlighted in thick red. All of our
implementations are conducted in Matlab R2022A.

Since it is NP-hard to find optimal Apeak
OPT and Aavg

OPT, we are
inspired by Theorems III.6 and 10 to apply the following lower
bounds LBpeak and LBavg as our algorithms’ comparison
benchmarks, respectively:

LBpeak = A0 + 1 +
1

n(n− 1)

∑
vj∈V

∑
vi∈V−{vj}

dist(vj , vi)

≤ A0 + 1 + max
vi,vj∈V

{dist(vj , vi)}

(10)

≤ Apeak
OPT.

(64)

LBavg = 2A0∆+ η +
(k − 1)2∆2

k
+

2∆P1(G)

n · |diam(G)|
(52)

≤ Aavg
OPT,

(65)

where η refers to (38) and

P1(G) ≜ min
V ′⊆V,|V ′|=k

∑
vi∈V

∑
vj∈V ′

dist(vi, vj)

indicates the optimum of the sum-distance minimization prob-
lem in Problem 1 on graph G. It is important to note that both
LBpeak and LBavg are independent of how an optimal solution
seeds, since they are general lower bounds on our peak and
average AoI objectives.

For peak AoI minimization, we implement our Algorithm 3
with different settings of the seeding interval ∆ = 1 and
∆ = 2, respectively, and vary the time horizon till T = 80
time slots. To start with, we present, in Figure 7, the histogram
graph that our Algorithm 4 reduces from the input social
network in Figure 6. Our experimental results are presented in
Fig. 8. Recall (23) in our Proposition IV.1 that µ decreases as
∆ increases, i.e., our Algorithm 3 selects fewer candidates
on diam(G) as seeding interval ∆ enlarges. This implies
that larger ∆ will induce a larger peak AoI approximation
in our Algorithm 3, as illustrated in Fig. 8. The reason for the

Fig. 8. Peak AoI performance ratio
A

peak
ALG

LBpeak
.

Fig. 9. Average AoI performance
A

avg
ALG

LBavg
.

early drop in Fig. 8 is two-fold: first, our benchmark LBpeak

is chosen as a constant value that is smaller than Apeak
OPT;

second, our algorithm could achieve better performance when
the overall seed number k increases in an early stage. As k
exceeds a threshold of 20 here, our empirical peak AoI ratio
stabilizes at approximately 1.6 for ∆ = 1 and 1.4 for ∆ = 2.
This validates our theoretical finding as aforementioned in
Section IV that Algorithm 3 results in a periodic pattern in
its peak AoI dynamics.

To further evaluate our algorithm, in Fig. 8, we also compare
our Algorithm 3 with a baseline greedy algorithm that always
seeds the node with the highest AoI in each seeding round.
Our experimental results here demonstrate that Algorithm 3
consistently outperforms the greedy approach, as the latter fails
to exploit the network connectivity to effectively reduce nodes’
AoI in the long run.

For average AoI minimization, we not only evaluate our
solutions under constant initial age A0 as modeled in Sec-
tion II, but also extend to a more general setting where
users’ different initial ages are randomly generated with the
mean equal to the constant A0. We test our Algorithm 5 by
varying the time horizon till T = 80 time slots and present
corresponding experimental results in Fig. 9, by comparing
with the optimum’s lower bound (65) in a ratio. Regardless of
random or deterministic A0 distribution for each user, Fig. 9
shows that our Algorithm 5’s empirical average AoI ratio is
small and close to one, revealing Algorithm 5’s near-optimal
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Fig. 10. Peak AoI
A

peak
ALG

LBpeak
under Algorithm 3 and average AoI

A
avg
ALG

LBavg
under

Algorithm 5 v.s. the total number k of seeding rounds under heterogeneous
propagation delays.

Fig. 11. Average AoI
A

avg
ALG

LBavg
and peak AoI

A
peak
ALG

LBpeak
v.s. different number of

per-round seeds under a total number of 10 seeding rounds.

performance in practical scenarios. As seed number k or
time horizon T increases with more information updates, the
performance gap between our Algorithm 5 and the optimum
(bound) further narrows, as indicated by the decreasing ratio.
This also corroborates our theoretical findings in Theorem
V.4 as aforementioned in Section V. Moreover, Fig. 9 also
shows that our algorithm performs even better as ∆ increases
(at least in a small range), since larger ∆ creates more
opportunities for us to chase the optimal average AoI (i.e.,
Aavg

OPT ) by disseminating more nodes in each seeding interval.
Overall, Fig. 9 has demonstrated the near-optimal performance
of our Algorithm 5 for average AoI minimization since its
empirical performance ratio is only slightly larger than one
(which indicates the optimum). In fact, our algorithm’s real
performance could even be better since the performance ratio
in Fig. 9 applies the lower bound (65) of the optimum as its
denominator.

Additionally, in Fig. 10 and Fig. 11, we further evaluate the
performances of our algorithms (developed under the uniform
propagation setting) in generalized settings, including the
heterogeneous propagation delays between connected nodes
and the varying per-round seed budgets (i.e., the number of
nodes seeded per round).

When propagation delays between connected nodes are non-
uniform, the social network can be deemed weighted, with
edge weights representing the varying propagation delay along

each social connection. In this implementation, edge weights
for each round are randomly selected from the set {1, 2, 3},
reflecting the incomplete knowledge of our algorithms regard-
ing the network topology. Also, we vary the total number of
seeding rounds, k, from 10 to 80. Fig. 10 presents our results.
Compared to Figures 8 and 9, which depict the uniform delay
setting, Fig. 10 demonstrates that our algorithms remain robust
under varying propagation delays as they continue to exhibit
similarly decent ratio performances relative to the optimum.

In another generalized setting where multiple nodes can
be seeded in each round of promotion updates, we vary the
number of per-round seeds from 1 to 6 and consider 10
seeding rounds in total. Thanks to the round-robin approach
our algorithms use for seeding from a well-designed sequence
of candidates, they can readily adapt to this generalized setting.
Our experimental results are presented in Fig. 11. As the
number of per-round seeds increases, the total number of
seeds after the fixed 10 seeding rounds increases. Similar to
our earlier experimental results in Fig. 8, which varies the
number of seeding rounds (with one seed per round), our
Fig. 11 also demonstrates that both our algorithms’ average
and peak AoI exhibit improvements as the number of per-
round seeds increases. Particularly, our peak AoI gradually
stays at approximately 1.6 times the optimal value while our
average AoI converges even more closely to the optimal value,
which is around 1.3. Considering Fig. 11 and our earlier Fig. 8
together, we further find that our algorithms perform better
with a higher total number of seeds.

VII. CONCLUDING REMARKS

To the best of our knowledge, we initiate the theoretical
study of optimizing information diffusion on social networks
with a multi-stage seeding process. By considering a coupling
metric bridging age of information (AoI) and approximation
analysis, we comprehensively study two objectives (i.e., the
peak and average AoI of the network) of the problem and
prove that both are NP-hard. As a critical step, we first
manage to derive closed-form expressions that trace the AoI
dynamics of the network, which is highly non-trivial due to
a multi-stage seeding process and the involved topology of
a general social network. By focusing on a fine-tuned set
of seed candidates on the diameter path, we design a fast
algorithm that guarantees decent approximations as compared
to the optimum for the peak AoI minimization problem. To
minimize the average AoI, we develop a new framework
that allows for algorithm design and approximation analysis,
which benefits from our rigorous two-sided bound analysis
on the average AoI objective. Our framework enables us to
achieve a polynomial-time algorithm that guarantees a good
approximation. Additionally, our theoretical findings are well
corroborated by extensive experiments conducted on a real
social network.
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distribution of content updates over a mobile social network,” in IEEE
INFOCOM 2009. IEEE, 2009, pp. 1422–1430.

[24] A. Bartal and K. M. Jagodnik, “Role-aware information spread in online
social networks,” Entropy, vol. 23, no. 11, p. 1542, 2021.

[25] S. Banerjee, M. Jenamani, and D. K. Pratihar, “A survey on influence
maximization in a social network,” Knowledge and Information Systems,
vol. 62, no. 9, pp. 3417–3455, 2020.

[26] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2003, pp. 137–146.

[27] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—i,” Mathe-
matical programming, vol. 14, no. 1, pp. 265–294, 1978.

[28] V. Cohen-Addad, A. Gupta, L. Hu, H. Oh, and D. Saulpic, “An improved
local search algorithm for k-median,” in Proceedings of the 2022 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2022,
pp. 1556–1612.

[29] R. Panigrahy and S. Vishwanathan, “An o(log ∗ n) approximation
algorithm for the asymmetricp-center problem,” Journal of Algorithms,
vol. 27, no. 2, pp. 259–268, 1998.

[30] D. S. Hochbaum and D. B. Shmoys, “A best possible heuristic for the
k-center problem,” Mathematics of operations research, vol. 10, no. 2,
pp. 180–184, 1985.

[31] V. Raja, “The study of e-commerce service systems in global viral
marketing strategy,” Available at SSRN 2190787, 2012.

[32] X. Wang and L. Duan, “Dynamic pricing and mean field analysis for
controlling age of information,” IEEE/ACM Transactions on Networking,
vol. 30, no. 6, pp. 2588–2600, 2022.

[33] K. L. Ailawadi, B. A. Harlam, J. Cesar, and D. Trounce, “Promotion
profitability for a retailer: the role of promotion, brand, category, and
store characteristics,” Journal of Marketing Research, vol. 43, no. 4, pp.
518–535, 2006.

[34] M. R. Garey and D. S. Johnson, Computers and intractability. freeman
San Francisco, 1979, vol. 174.

[35] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[36] M. J. Krawczyk, L. Muchnik, A. Mańka-Krasoń, and K. Kułakowski,
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APPENDIX

A. Proof of Lemma III.1
Proof. Recall that the AoI of each node vi will increase
linearly in each time slot [t, t + 1) for t = {0, ..., T − 1},
see our model of AoI evolution in Section II. Given the set
Sx of dynamically selected seed nodes, we now discuss in the
following the AoI of a node vi at an integer time point t, i.e.,
A(vi, t). Since A(vi, 0) = A0, we only need to discuss the
AoI of vi at time t ∈ {1, ..., T − 1}. Accordingly, we discuss
the following two cases.
Case 1. Ω(vi, t) is empty.

Since no seed is available to update vi at time t, the AoI
of vi will increase linearly based on A(vi, t− 1), i.e.,

A(vi, t) = A(vi, t− 1) + 1. (66)

Case 2. Ω(vi, t) is not empty.
There exist seeds from set Ω(vi, t) that update de facto the

AoI of vi at time t. Further, A(vi, t) will be updated by the
freshest information up to time t. Accordingly, we have

A(vi, t) = min
sx∈Ω
{1 + t− tx} = min

sx∈Ω
{1 + dist(vi, sx)}, (67)

where the second equation is due to the fact that t = tx +
dist(sx, vi). In summary, we have the AoI of vi at an arbitrary
integer time point t as follows:
A(vi, t)

=


A0, if t = 0,

A(vi, t− 1) + 1, if t ≥ 1 and Ω(vi, t) = ∅,
min

sx∈Ω(vi,t)
{1 + dist(vi, sx)}, if t ≥ 1 and Ω(vi, t) ̸= ∅.

(68)

Furthermore, at an arbitrary time t, A(vi, t) (i.e., the AoI of an
arbitrary node vi) can be written as shown in Lemma III.1.

B. Missed Proof in Lemma III.3
Proof. Note that, within the time horizon [0, T ], A(vi, t) drops
only when vi is updated its AoI by some seed. Since each seed
sx ∈ Sk is selected at timestamp tx and the AoI of vi takes
unit time to disseminate along each edge, vi would be updated
by sx at time tx + dist(sx, vi). This further implies that any
discontinuity point of vi can be found in the following set

{tx + dist(sx, vi)|x ∈ 1, ..., k}. (69)

This concludes the proof.

C. Missed Proof in Lemma III.4
Proof. According to Definition 1, we know that a time point
tj + dist(sj , vi) is not a discontinuity point if

Ω(vi, tj + dist(sj , vi)) = ∅. (70)

Since 1 ≤ tj < tj + dist(sj , vi), we further have

Ω(vi, tj + dist(sj , vi)) = ∅
⇒ dist(vi, sj) ≥ A(vi, tj + dist(sj , vi)− 1)

⇒ 1 + dist(vi, sj)︸ ︷︷ ︸
AoI of sj at tj+dist(sj ,vi)

≥ A(vi, tj + dist(sj , vi)− 1) + 1︸ ︷︷ ︸
AoI of some other source at tj+dist(sj ,vi)

.

(71)

implying that there exists a seed node, denoted as sy , that is
selected later than sj but diffuses its information to vi no later
than time tj + dist(sj , vi), i.e.,

ty > tj and ty + dist(sy, vi) ≤ tj + dist(sj , vi). (72)

This completes our proof.

D. Missed Proof in Theorem III.6

Proof. Given Sk of selected seeds, we first discuss the peak
AoI of an arbitrary node vi ∈ V . By Proposition III.5, we
know that the A(vi, t) achieves a supremum at the right-
endpoint in each of the following time intervals, respectively.

[0, ti1 + dist(si1 , vi)),

[ti1 + dist(si1 , vi), ti2 + dist(si2 , vi))

, ...,

[tiki−1
+ dist(siki−1

, vi), tiki
+ dist(siki

, vi)),

[tiki
++dist(siki

, vi), T ].

(73)

With this insight, we further get

Apeak
i

= sup
t∈[0,T ]

{A(vi, t)}

= max{ max
j∈{1,...,ki}

{A(vi, tij + dist(sij , vi))}, A(vi, T )}.

(74)

By substituting (74) back to (1), the Apeak over the time
horizon [0, T ] can be expressed as follows

Apeak = max
vi∈V
{Apeak

i } = (10), (75)

in which the second equation is due to Equation (9).

E. Missed Proof in Theorem III.7

Proof. According to (2), we have

Aavg =
1

nT

∑
vi∈V

∫ T

t=0

A(vi, t)dt. (76)

Note that A(vi, t) is a non-negative piece-wise function over
the whole time horizon [0, T ]. Given Sk of dynamically
selected seeds, we first look at the average AoI of a node
vi ∈ V . To this end, we partition the horizon [0, T ] into the
following three intervals

[0, ti1 + dist(si1 , vi)),

[ti1 + dist(si1 , vi), tiki
+ dist(siki

, vi)),

[tiki
+ dist(siki

, vi), T ].

(77)

Due to Proposition III.5, we now take integrals of function
A(vi, t) over the three intervals above in the above (77),
respectively:

ti1+dist(si1 ,vi)∫
t=0

A(vi, t)dt

=
(ti1 + dist(si1 , vi)) · (2A0 + ti1 + dist(si1 , vi))

2
,

(78)
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and
tiki

+dist(sik ,vi)∫
t=ti1+dist(si1 ,vi)

A(vi, t)dt

=

iki∑
j=2

(2 + 2 · dist(sij−1
, vi) + Λij) · Λij

2
,

(79)

where for Λij = tij − tij−1
+ dist(sij , vi) − dist(sij−1

, vi)
holds for each j ∈ {2, ..., ki}, and∫ T

t=tiki
+dist(siki

,vi)

A(vi, t)dt

=
(T − tiki

− dist(siki
, vi)) · (3 + 2 · dist(siki

, vi))

2
.

(80)

By applying (78),(79), and (80) to Equation (76), the
average AoI of the network follows

Aavg

=
1

nT

∑
vi∈V

∫ T

t=0

A(vi, t)dt

=
1

nT

∑
vi∈V

ki+1∑
j=1

(2Aij−1 + Λij) · Λij

2
,

(81)

in which Aij and Λij refer to Equation (12) and Theorem
III.7, respectively. This completes the proof.

F. Missed Proof in Theorem III.10

Proof. The NP-hardness of the average AoI minimization
problem is shown by a reduction from the well-known NP-
hard set cover problem. Given a ground set U = {u1, ..., uq}
of q elements and a collection U = {U1, ..., Up} of p subsets
of U , the set cover problem aims to find k (< p) subsets from
U such that their union is equal to U . Given an instance of
the set cover problem, we construct a graph of our problem
by the following steps, where we set T = 3 and ∆→ 0.

• Step 1. Construct a set V1 of q nodes that correspond to
those q elements in the ground set U , respectively. Please
refer to the top row of circles in Fig. 12.

• Step 2. Construct a set V2 of p nodes that correspond to
those p subsets in U , respectively. Please refer to those
rectangles in the middle of Fig. 12.

• Step 3. For each ux ∈ V1 and each Uy ∈ V2, an edge
(ux, Uy) is constructed if ux ∈ Uy . Accordingly, we
obtain our first edge set as E1.

• Step 4. Find, in the current graph G(V1 ∪ V2, E1), the
maximum degree of a node of V1, which is denoted as

α = max
ux∈V1

{deg(ux)}. (82)

For each Uy ∈ V2, we construct a set {vy1 , ..., v
y
α+1} of

(α + 1) dummy nodes that correspond to Uy
1. Accord-

1Intuitively, these dummy nodes ensures that an optimal solution of our
problem only seeds from V2, which further ensures our solution to be one
to the set cover problem. A formal discussion regarding this is given later in
Proposition A.1.

Fig. 12. The graph converted from the set cover problem.

ingly, we obtain another node set V3 consisting of all the
dummy nodes, i.e.,

V3 ≜ ∪
j∈[p]
{vj1, ..., v

j
α+1}

.
• Step 5. For each Uy ∈ V2 and each v ∈ V3, we construct

an edge (Uy, v). Accordingly, we have another edge set
E2.

By the five steps above, we obtain our graph as
G(V1 ∪ V2 ∪ V3, E1 ∪ E2). Fig. 12 illustrates an
example of our graph construction that is converted
from the set cover problem (where U = {u1, u2, ...., u5},
U = {{u1, u3, u5}, {u2, u4}, {u3, u5}}, and k = 2).

Now, we consider the average AoI of our graph G(V1∪V2∪
V3, E1 ∪E2). Since ∆→ 0, the k seeds could be regarded to
be selected together, implying by Lemma III.3 that the AoI of
each node in G(V1 ∪ V2 ∪ V3, E1 ∪ E2) drops at most once
in the time horizon [0, 3). For ease of exposition, we partition
nodes in the graph into the following types according to their
average AoI (as per Theorem III.6).

• Nodes of type one refer to those seed nodes that share a
common average AoI as A0+A0+1

2 + (1+3)·2
2 = A0+4.5.

Clearly, there are k nodes of type one.
• Nodes of type two refer to those non-seed nodes that have

at least one neighbor node selected as a seed, i.e., type-
two nodes share a common average AoI as 2A0 + 4.5.
Totally, there are are |NG(Sk)| nodes of type two.

• Nodes of type three refer to those non-seed nodes that
have no neighbor node selected as a seed. That is, type-
three nodes share a common average AoI as 3A0 + 4.5.
Totally, the number of type three nodes is

q + (α+ 2) · p− k − |NG(Sk)|. (83)

By Theorem III.7, we further have

Aavg

=
4.5(2p+ pα+ q) +A0(6p+ 3αp+ 3q − 2k − |NG(Sk)|)

3q + 3pα+ 6p

=
(9 + 4.5α+ 6A0 + 3αA0)p+ (4.5 + 3A0)q

3q + 3pα+ 6p

− 2A0k +A0 · |NG(Sk)|
3q + 3pα+ 6p

= C1 − C2 · |NG(Sk)|,
(84)

in which

C1 =
(9 + 4.5α+ 6A0 + 3αA0)p+ (4.5 + 3A0)q − 2A0k

3q + 3pα+ 6p
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and C2 = A0

3q+3pα+6p > 0 are both constant. The following
proposition characterizes an optimal solution of ours.

Proposition A.1. In our average AoI minimization problem
(that is converted from the set cover problem), an optimal
solution only seeds in V2.

Proof of Proposition A.1. For the sake of contradiction, sup-
pose that there exists an optimal solution that seeds some sj
which is not in V2, i.e., sj ∈ V1∪V3. For analytical tractability,
we denote V2 ≜ V2−V2∩Sk as the set of nodes in V2 that are
not selected as seeds. Note that p > k, which tells V2 ̸= ∅.
Denote the set of nodes in V2 that are associated with vj as

Ṽ2(vj) ≜ {Ux ∈ V2|(Ux, vj) ∈ E1 ∪ E2}. (85)

Below, we discuss two cases.
Case 1. (There exists a node in the intersection Ṽ2(vj) ∩ V2,
say Ux, that is associated with vj but not selected as a seed)

By seeding Ux as the j-th seed sj instead, we know
|NG(Sk)| does not decrease since the Ux is the only neighbor
of the old sj .
Case 2. (Ṽ2(vj) ∩ V2 = ∅)

According to the pigeonhole principle, we know that there
exists at least one node in V 2, say Uy , such that none of its
corresponding nodes in {vy1 , ..., v

y
α+1} is selected as a seed.

By seeding Uy as sj , Further, we know that |NG(Sk)| increase
by at least one, which is because

deg(vj) ≤ α < α+ 1 = deg(Uy)

where deg(v) indicates the number of edges that are incident
to a vertex v. Hence, according to (84), we know that the
average AoI of the network will increase when replacing a
seed outside V2 by someone in V2.

This concludes the proof.

With Proposition A.1, Equation (84) is equivalent to

Aavg = C1 − C2 · [(α+ 1) · k + |NG(Sk) ∪ V1|] (86)

Since C2 = C1 − C2 · k · (α + 1) in (86) is a constant, Aavg

decreases linearly with |NG(Sk) ∪ V1| (which indicates the
number of nodes in V1 that are associated with at least one
selected node in V2). Hence,

arg min
Sk⊆V1∪V2∪V3,|Sk|=k

Aavg(Sk)

= arg max
Sk⊆V1∪V2∪V3,|Sk|=k

|NG(Sk) ∪ V1|,
(87)

indicating that an optimal solution to our problem is exactly
an optimal solution to the given set cover problem.

G. Missed Proof in Proposition IV.1

Proof. Intuitively, Problem (19)-(22) in Proposition IV.1 tries
to minimize the earliest time (denoted as T1) when all nodes
on the diameter path diam(G) is updated.

Suppose, w.l.o.g., that T1 = 1 + (µ′ − 1)∆ + ς ′, where µ′

and ς ′ are integers and 0 ≤ ς ′ ≤ ∆− 1. This also implies that
there are µ′ seeds selected before time T1 to diffuse promotion
information.

We note that, by fine-tuning the allocations of seed candi-
dates on the diameter path diam(G), it could be guaranteed
that different seeds (among those selected by time T1) will
diffuse their information to different user nodes on diam(G)
by time T1. That is, we can manage to ensure that nodes on
diam(G) that are updated by different seeds by time T1 are
disjoint, which is discussed in Proposition IV.1 and later in
this proof.

Next, we proceed with showing the feasibility of Problem
(19)-(22), followed by which we will show the optimality of
our solution (µ, ς) as presented in (23) and (24), respectively.

Problem Feasibility. Since our algorithm only seeds on
diam(G), it is clear that each seed could update nodes on
its both sides simultaneously. Thereby, by time T1, each of
the first µ′ seeds, say si, could update the following number
of nodes.

1︸︷︷︸
i.e., itself

+ 2[(µ′ − i)∆ + ς ′]︸ ︷︷ ︸
i.e., new nodes on diameter

(88)

By summing up (88) over those µ′ seeds (that are selected by
time T1), we have the overall number of nodes updated by
those µ′ seeds as follows

µ′∑
i=1

(
1 + 2[(µ′ − i)∆ + ς ′]

)

=

µ′∑
j=1

(
1 + 2(j − 1)∆ + 2ς ′

)
= µ′ +∆(µ′ − 1)µ′ + 2ς ′µ′

(89)

in which the first equation is by letting µ′ − i = j − 1. This
implies our constraint (20), which guarantees that all nodes
on diam(G) are updated by time T1.

Solution Optimality: by relaxing constraint (22) to allow
µ′ and ς to be real number, one can easily find an optimal
solution as

(µ∗, ς∗) = (
∆− 1 +

√
∆2 + 2∆+ 4|diam(G)|∆+ 1

2∆
, 0)

(90)
Further, by applying a rounding technique on (90), we get an
optimal solution to the original Problem (19)-(22) as in (23)
and (24).

Finally, by carefully select seed candidate as ωx = vζ(x)
where sub-index of each ωx follows

ζ(x) = ∆(µ− x+ 1)2 + µ− x+ 1 + (2µ− 2x+ 1)ς.

we could guarantee that nodes updated by different seeds by
time T1 = 1 + (µ− 1)∆ + σ do not overlap. This completes
the proof.

H. Missed Proof in Lemma IV.3

Proof. We will be showing that in a line-type social network,
the peak AoI Apeak of any solution (including the optimal
solution) follows

Apeak ≥ max{A0 + ς, ξ∆}+ 1 + µ∆,
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where

ξ =
−(1 + 3∆) +

√
((1 + 3∆))2 + 4∆(1 + 2µ∆)

2∆
.

To this end, we first prove the following Lemma A.2.

Lemma A.2. A line-type social network yields Apeak
OPT ≥ 1 +

A0 + µ∆+ ς .

Proof of Lemma A.2. To prove Lemma A.2, it suffices to
show that, in a line-type network, the time when every node
is updated at least once is not earlier than (1 + µ∆ + ς).
Denote T1 as the earliest time when each node on a line-
type social network is updated at least once. In a line-type
social network, each seed could update nodes on both sides
simultaneously. Before time 1+µ∆, there are at most µ seeds
Sµ = {s1, ..., sµ} selected to disseminate information updates.
By time 1 + µ∆, each seed si ∈ Sµ could update at most
1+2∆·(µ+1−i) nodes including si itself. Totally, the number
of nodes that seeds in Sµ could update by time 1 + µ∆ can
be written as

µ∑
i=1

1 + 2∆(µ+ 1− i)

= µ+∆(µ+ 1)µ

≤ µ+∆(µ+ 1)µ

= n.

(91)

in which the last equation is due to (23).
On the other hand, we know that there are µ seeds in Sµ =

{s1, ..., sµ} selected by time 1+µ∆. Accordingly, the number
of nodes that seeds in Sµ update by time 1 + µ∆ follows

µ∑
i=1

1 + 2∆(µ+ 1− i)

= µ+∆(µ+ 1)µ

≥ µ+∆(µ+ 1)µ

= n.

(92)

By (91) and (92), we know that

T1 ∈ [1 + µ∆, 1 + µ∆]. (93)

To further figure out the exact T1, we discuss two cases.
Case 1. µ is an integer.

Then, µ = µ = µ, yielding that T1 = 1 + µ∆. Since
µ+∆(µ+ 1)µ = n, we have

ς =

⌈
n− (µ∆+ 1)(µ+ 1)

2(µ+ 1)

⌉
= 0. (94)

In other words, T1 = 1 + µ∆+ ς .
Case 2. µ is not an integer.

We have
µ∑

i=1

1 + 2∆(µ + 1 − i) < n, implying that T1 >

1 + µ∆. This tells that there are µ + 1 seeds Sµ+1 selected
by time T1. By time 1 + µ∆+ ς , each seed si ∈ Sµ+1 could
update at most 1 + 2[(µ + 1 − i)∆ + ς] nodes, including si
itself. Then, we know, on one hand, that the number of nodes

that seeds in Sµ+1 could update by time 1 + µ∆+ ς can be
written as

µ+1∑
i=1

1 + 2[(µ+ 1− i)∆ + ς]

= µ+ 1 + 2ς(1 + µ) + ∆(µ+ 1)µ

≤ µ+ 1 + 2ς(1 + µ) + ∆(µ+ 1)µ = n.

(95)

On the other hand, by time 1 + µ∆+ ς , the number of nodes
that seeds in Sµ+1 could update can be written as

µ+1∑
i=1

1 + 2[(µ+ 1− i)∆ + ς]

= µ+ 1 + 2ς(1 + µ) + ∆(µ+ 1)µ

≥ µ+ 1 + 2ς(1 + µ) + ∆(µ+ 1)µ = n.

(96)

To update every node in a line-type network at least once, (95)
and (96) tells the earliest time is

T1 = 1 + µ∆+ ς. (97)

Therefore, we have

Apeak ≥ max
vi∈V
{A0 + T1} ≥ A0 + 1 + µ∆+ ς, (98)

in which the first inequality holds by Theorem III.6. Lemma
A.2 holds readily.

Further, we will be showing that Apeak ≥ 1 + µ∆ + ξ∆.
Denote, for ease of exposition, num≥x

t and num≤x
t as the

number of nodes whose AoI at time t are no less than and
no more than x, respectively. Particularly, numx

t denotes the
number of nodes whose AoI at time t are exactly x. To prove
Lemma IV.3, we have the following lemma to serve as a key
ingredient.

Lemma A.3. At time 1 + µ∆, any solution to our peak AoI
minimization problem admits

• num1+i∆
1+µ∆ ≤ 1 + 2i∆ holds for any i ∈ {1, ..., µ},

• num
≥1+(µ−j)∆

1+µ∆ ≥ (j+1)(1+2∆µ− j∆) holds for any
j ∈ {0, ..., µ− 1}.

Proof of Lemma A.3. To begin with, one can easily find that,
at time 1 + µ∆, a node with AoI (1 + i∆) is updated by the
(µ+1− i)th selected seed instead of any of the following set

{Sµ, ..., Sµ+1−i}. (99)

Up to time 1 + µ∆, note that the (µ+ 1− i)th selected seed
could update at most 1+2i∆ nodes, including the seed itself.
This implies, for any i ∈ {1, ..., µ}, that

num1+i∆
1+µ∆ ≤ 1 + 2i∆. (100)

Due to Lemma A.2, there are still some nodes that are not
updated by time 1 + µ∆, yielding

num
A0+1+µ∆

1+µ∆ > 0, (101)

which tells that the AoI of those nodes at time 1+µ∆ becomes
A0 + 1 + µ∆.
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For each j ∈ {0, ..., µ− 1}, we have

num
≥1+(µ−j)∆

1+µ∆

= n− num
≤1+(µ−j−1)∆

1+µ∆

= n−
µ−j−1∑
i=1

num1+i∆
1+µ∆

≥ n− [µ− j − 1 + ∆(µ− j − 1)(µ− j)]

≥ n− [µ− j − 1 + ∆(µ− j − 1)(µ− j]

= j + 1 + 2∆[(j + 1)µ− j(j + 1)

2
]

≥ j + 1 + 2∆[(j + 1)µ− j(j + 1)

2
]

= (j + 1)(1 + 2∆µ− j∆),

(102)

in which the first two equations hold because, at time 1+µ∆,
the AoI of any node can be found in {1 +∆, 1 + 2∆, ..., 1 +
µ∆, A0 + 1 + µ∆}, the third equation holds by µ + (µ2 +
µ)∆ = n, the first inequality holds by (100), and the last
two inequalities hold since µ ≥ µ. This concludes Lemma
A.3.

Now, we proceed with proving Lemma IV.3. Denote Φ as
the set of nodes whose AoI is no less than 1 + µ∆ at time
1 + µ∆. We look at the earliest time (denoted as T2) when
each node is updated at least twice. Clearly, T2 is strictly larger
than time 1+µ∆. By time T2, suppose there are y new seeds
that are selected after time T1, implying by our model that
T2 ∈ [1 + (y + µ)∆, 1 + (1 + y + µ)∆). In other words, the
peak AoI in time period [1 + µ∆, T2] follows

Apeak ≥ 1 + (µ+ y)∆. (103)

Due to Lemma A.3, we have

|Φ| = num
≥1+(µ)∆

1+µ∆ ≥ 1 + 2∆µ. (104)

Observe, in Φ, that there are at least 1 + 2∆µ nodes that are
head-to-tail connected. Besides being updated by those new
seeds selected in the time window [1 + µ∆, T2], nodes in Φ
could also be updated by other nodes with smaller AoI than
(1 + µ∆) at the time (1 + µ∆). This implies

2ξ∆+

ξ∑
i=1

(1 + 2i∆)

= (2∆ + 1)ξ +∆(ξ + 1)ξ

≥ (2∆ + 1)ξ +∆(ξ + 1)ξ = 1 + 2µ∆,

(105)

and

2ξ∆+

ξ∑
i=1

(1 + 2i∆)

= (2∆ + 1)ξ +∆(ξ + 1)ξ

≤ (2∆ + 1)ξ +∆(ξ + 1)ξ = 1 + 2µ∆.

(106)

Hence, at time 1 + (µ + ξ)∆, there are still some node in Φ
that has not been updated since time 1 + µ∆, i.e.,

Apeak
OPT ≥ 1 + (µ+ ξ)∆. (107)

Together with Lemma A.2, we have

Apeak
OPT ≥ max{A0 + ς, ξ∆}+ 1 + µ∆. (108)

This completes proving Lemma IV.3.

I. Missed Proof in Lemma IV.6

Proof. To prove this lemma, it suffices to show that Algo-
rithm 3 performance on any given graph G is no better than the
performance on its corresponding histogram-type graph H(G).
In view of Theorem IV.7 and Figure 5, Algorithm 3 indeed
reduces edges that connect those nodes outside the diameter
diam(G), which highly decelerates the information diffusion
since Algorithm 3 only seeds on its diameter diam(G). This
concludes the proof readily.

J. Missed Proof in Theorem IV.7

We first prove one part of the theorem as summarized in
the following lemma.

Lemma A.4. Algorithm 4 reduces a general graph G(V,E)
to a histogram-type H(G) = (VH , EH).

Proof of Lemma A.4. To start with, the initialization step of
Algorithm 4 tells us that diam(G) still remains a diameter
path in the histogram-type graph H(G). Further, with the for-
loop of Algorithm 4, it is easy to verify that every node in
the given graph G(V,E) is included in the node set of the
histogram-type graph H(G), i.e., VH = V .

Denote v⊢ and v⊣ denote the left- and the right-most nodes
on the path diam(G), respectively. For each node v ∈ V ,
denote v⊥ as the node on diam(G) closest to v. Then,
Inequality (36) holds readily as otherwise, it will contradict
the fact that diam(G) is the diameter of both G and H(G).
This proves the lemma.

Then, our approximation holds steadily with Lemmas IV.3
and IV.6. For formatting purposes, our remaining appendices
can be found on the following page.

K. Missed Proof in Proposition V.1

Proof. To prove Proposition V.1, we first give the following
lemma

Lemma A.5. Given Sk of selected seeds, we have

Aavg
i =η +

A0

T
[∆i1 + dist(si1 , vi)]

+
1

T

ki∑
j=1

[∆ · dist(sij , vi) · (ij − ij−1)]

+
1

T

ki∑
j=1

[0.5∆2 · (ij − ij−1)
2]

(109)

where Ui = {tij + dist(sij , vi)|ij ∈ {i1, ..., iki}} can be
obtained by Algorithm 1, i0 = 1, and

η =
1

2T
[2A0 − 2A0∆+∆2 − 2∆ + 2k∆− 2k∆2 + k2∆2]

+
T

2
+ (1− k)∆

(110)
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ki∑
j=2

(2Aij−1 + Λij) · Λij

= [2 + (i2 − i1)∆ + dist(si2 , vi) + dist(si1 , vi)] · [(i2 − i1)∆ + dist(si2 , vi)− dist(si1 , vi)]︸ ︷︷ ︸
i.e., (2Ai1+Λi2)·Λi2

+ [2 + (i3 − i2)∆ + dist(si3 , vi) + dist(si2 , vi)] · [(i3 − i2)∆ + dist(si3 , vi)− dist(si2 , vi)]︸ ︷︷ ︸
i.e., (2Ai2+Λi3)·Λi3

+

...
+ [2 + (iki

− iki−1)∆ + dist(siki
, vi) + dist(siki−1

, vi)] · [(iki
− iki−1)∆ + dist(siki

, vi)− dist(siki−1
, vi)]︸ ︷︷ ︸

i.e., (2Aiki−1+Λiki
)·Λiki

= 2[(i2 − i1)∆ + dist(si2 , vi)− dist(si1 , vi)]︸ ︷︷ ︸
denoted as P21

+ [(i2 − i1)
2∆2 + 2(i2 − i1)dist(si2 , vi)∆]︸ ︷︷ ︸

denoted as P22

+ dist2(si2 , vi)− dist2(si1 , vi)︸ ︷︷ ︸
denoted as P23

+ 2[(i3 − i2)∆ + dist(si3 , vi)− dist(si2 , vi)]︸ ︷︷ ︸
denoted as P31

+ [(i3 − i2)
2∆2 + 2(i3 − i2)dist(si3 , vi)∆]︸ ︷︷ ︸

denoted as P32

+ dist2(si3 , vi)− dist2(si2 , vi)︸ ︷︷ ︸
denoted as P33

...

+ 2[(iki
− iki−1)∆ + dist(siki

, vi)− dist(siki
−1, vi)]︸ ︷︷ ︸

denoted as Pki1

+ [(iki
− iki−1)

2∆2 + 2(iki
− iki−1)dist(siki

, vi)∆]︸ ︷︷ ︸
denoted as Pki2

+ dist2(siki
, vi)− dist2(siki−1

, vi)︸ ︷︷ ︸
denoted as Pki3

= 2[(iki
− i1)∆ + dist(siki

, vi)− dist(si1 , vi)]︸ ︷︷ ︸
=
∑ki

j=2 Pj1

+

ki∑
j=2

[(ij − ij−1)
2∆2 + 2∆(ij − ij−1)dist(sij , vi)]︸ ︷︷ ︸

=
∑ki

j=2 Pj2

+ dist2(siki
, vi)− dist2(si1 , vi)︸ ︷︷ ︸
=
∑ki

j=2 Pj3

.

(111)

In the following, we first prove Lemma A.5, after which we
will show that Proposition V.1 holds readily. We first consider

the
ki∑
j=2

(2Aij−1+Λij) ·Λij as analyzed in (111). Then, we can

obtain
ki+1∑
j=1

(2Aij−1 + Λij) · Λij as analyzed in (112), which

further implies Aavg
i as discussed in (113). Due to formatting

reasons, (112) and (113) are given on the following page.
This concludes the proof of Lemma A.5. In the following,
we continue to prove Proposition V.1.

With Lemma A.5 at hand, we have Proposition V.1 by
summing up (109) over user nodes in V , which inspires the
social commerce network to select its best ∆ as discussed in
the following remark.
Remark A.6. Note that η is independent of Sk and vi.
Accordingly, 2T ·η is a constant AoI among each node vi ∈ V ,
which is also independent of the selection of Sk. Due to
Equation (110), we have

η ∝ (1− k)2∆2 + 2∆(T −A0 − 1 + k − Tk)

Thereby, we have ∆ = A0

(k−1)2 +
T−1
(k−1) minimizes the common

area of η, given A0, k and T .
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ki+1∑
j=1

(2Aij−1 + Λij) · Λij

= [2A0 + 1 + (i1 − 1)∆ + dist(si1 , vi)][1 + (i1 − 1)∆ + dist(si1 , vi)]︸ ︷︷ ︸
i.e., (2Ai0+Λi1)·Λi1

+ 2[(iki
− i1)∆ + dist(siki

, vi)− dist(si1 , vi)] +

ki∑
j=2

[(ij − ij−1)
2∆2 + 2∆(ij − ij−1)dist(sij , vi)] + dist2(siki

, vi)− dist2(si1 , vi)︸ ︷︷ ︸
i.e.,

∑ki
j=2(2Aij−1+Λij)·Λij

+ [T + 1− (iki
− 1)∆ + dist(siki

, vi)] · [T − 1− (iki
− 1)∆− dist(siki

, vi)]︸ ︷︷ ︸
i.e., (2Aiki

+Λiki+1)·Λiki+1

= 2A0 + 2A0∆i1 − 2A0∆+ 2A0dist(si1 , vi)︸ ︷︷ ︸
denoted as Q11

+[1 + (i1 − 1)∆]2 + 2(1 + i1∆−∆)dist(si1 , vi)︸ ︷︷ ︸
denoted as Q12

+ dist2(si1 , vi)︸ ︷︷ ︸
denoted as Q21

+ 2(iki
− i1)∆ + 2[dist(siki

, vi)− dist(si1 , vi)]︸ ︷︷ ︸
denoted as Q13

+

ki∑
j=2

(ij − ij−1)
2∆2 +

ki∑
j=2

2∆(ij − ij−1)dist(sij , vi)︸ ︷︷ ︸
denoted as Q14

+ dist2(siki
, vi)− dist2(si1 , vi)︸ ︷︷ ︸

denoted as Q22

+ T 2 − 2T (iki
− 1)∆ + (iki

− 1)2∆2 − 1−2dist(siki
, vi)︸ ︷︷ ︸

denoted as Q15

−dist2(siki
, vi)︸ ︷︷ ︸

denoted as Q23

= 2A0 · dist(si1 , vi) +
ki∑
j=1

2∆(ij − ij−1) · dist(sij , vi)︸ ︷︷ ︸
i.e.,

∑5
x=1 Q1x

+

3∑
j=1

Q2j︸ ︷︷ ︸
equal to 0

+2A0 − 2∆A0 + T 2 + 2∆T +∆2 − 2∆︸ ︷︷ ︸
i.e., a constant

+ 2A0∆i1 + 2(∆− T∆−∆2)iki
+∆2i2ki

+∆2
ki∑
j=1

(ij − ij−1)
2

(112)

Aavg
i =

1

2T

ki+1∑
j=1

(2Aij−1 + Λij) · Λij

=
1

2T
[2A0 − 2∆A0 + T 2 + 2∆T +∆2 − 2∆ + 2(∆− T∆−∆2)k +∆2k2]︸ ︷︷ ︸

i.e., a constant

+
1

2T

2A0 · [∆i1 + dist(si1 , vi)] + 2∆ ·
ki∑
j=1

[(ij − ij−1) · dist(sij , vi)] + ∆2
ki∑
j=1

(ij − ij−1)
2

 .

(113)
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