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We derive the equations of quantum mechanics and quantum thermodynamics from the assump-
tion that a quantum system can be described by an underlying classical system of particles. Each
component φj of the wave vector is understood as a stochastic complex variable whose real and
imaginary parts are proportional to the coordinate and momentum associated to a degree of free-
dom of the underlying classical system. From the classical stochastic equations of motion, we derive
a general equation for the covariance matrix of the wave vector which turns out to be of the Lindblad
type. When the noise changes only the phase of φj , the Schrödinger and the quantum Liouville
equation are obtained. The component ψj of the wave vector obeying the Schrödinger equation is
related to stochastic wave vector by |ψj |

2 = 〈|φj |
2〉.

I. INTRODUCTION

A distinguishing feature of quantum mechanics [1–8]
is its formulation in terms of an unobservable: the wave
function. The presence of unobservables in a theory does
not make it unscientific, as long as they lead to observ-
ables, that is, to quantities that can be observed or mea-
sured experimentally [9]. Any scientific theory has un-
observables to a greater or lesser extent. Significant ex-
amples are the epicycles of Ptolemy, the aether of New-
ton, and the luminiferous aether of Maxwell. Much less
obvious examples are the concepts of time reversibility,
causality, homogeneity of time and homogeneity of space.
The unobservable of quantum mechanics was present in
its very beginning when Schrödinger formulated his equa-
tion in terms of the wave function. Although the wave
function is an unobservable it leads through this equation
to the observable spectral lines of hydrogen.

The question that we address here concerns the possi-
bility of the formulation of quantum mechanics an unob-
servable other than the wave function. Specifically, the
unobservable that we consider here to describe a quan-
tum system is a system of particles obeying the classical
equations of motion [10–13], which we call the underlying
system to avoid confusion with a real system described
by classical mechanics.

The standard formulation of quantum mechanics pos-
tulates that the quantum states are represented by wave
vectors belonging to a complex vector space, the Hilbert
space. In contrast, classical mechanics is represented in
the Hamilton formulation by canonical variables belong-
ing to a real vector space, the phase space. Thus a classi-
cal approach to quantum mechanics, requires a formula-
tion of classical mechanics in terms of complex canonical
variables.

The possibility of using complex variables to express
the classical Hamilton equations of motion was pointed
out by Lanczos [10] who showed that a pair of complex
conjugate variables is also a pair of canonical variables.
The formulation of the quantum equation of motion by
a classical Hamilton equation in complex variables was
given by Strocchi [14]. In his formulation a complex
canonical variable is identified as a component φj , which

obeys the complex Hamilton equation associated to the
Hamiltonian function H, identified as the mean value

H =
∑
j

φ∗jHjkφk (1)

of the Hamilton operator H .
An equivalent approach was proposed by Heslot [15]

but instead of using a complex Hamilton equation, he
shows that the real and imaginary parts of the wave func-
tions are a pair of real classical canonical variables obey-
ing the real standard Hamilton equation. The classical
representation was then analyzed and explored by several
authors [16–19].
A essential aspect of the classical representation con-

cerns the norm of the wave vector,

N =
∑
j

φ∗jφj , (2)

which is a quantity conserved by the Hamilton equa-
tions of motion associated to the classical Hamiltonian
(1). This is a nice property since according the wave
vector should be normalized at all times. However, the
conservation property does not determine the value of
the norm. Therefore we should postulate that the norm
has the same value for any possible trajectory in phase
space as this is a basic postulate of quantum mechanics.
More precisely, among all sectors of the phase space de-
termined by distinct values of the norm, we must select
just one of them. As we shall see, the one to be selected
is connected to the Planck constant.
Quantum mechanics is understood as having a proba-

bilistic character. However this character is not clearly
manifested in the usual representation. For instance, no
variable is considered to be a random variable. The prob-
abilistic character is a consequence of the standard inter-
pretation of quantum mechanics [20–22] which introduces
probability in an ad-hoc and a posteriori manner by the
proposition that the square of the absolute value of the
wave function is a probability.
Here we introduce the probabilistic character in an ex-

plicit and a priori form by turnig φj into a stochastic
variable. This is accomplished by transforming the equa-
tion of motion into a stochastic equation through the
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addition of a noise term in the Hamilton equations of
motion [23–26]. The noise transforms the trajectories in
the complex phase space into stochastic trajectories, and
it is set up in such a way as to preserve the norm given
by (2) along any stochastic trajectory.
The noise changes in general the absolute value and the

phase of φk. A meaningful result of our analysis is that
the Schrödinger and the quantum Liouville equations are
obtained through noises that change the phase but not
the absolute value of φk. This type of noise also makes
each term of the norm constant. If the noise changes both
the phase and the absolute value of φk then we reach the
quantum thermodynamic equation which turns out to be
the Lindblad equation for open system [27–30].
The quantum thermodynamic equation is the central

equation of the quantum thermodynamics that we de-
velop here. Based on this equation we derive the first
law of thermodynamics and the second law of thermody-
namics. This is accomplished by defining the quantum
entropy and the quantum entropy production. The sec-
ond law of thermodynamics is obtained by demonstrating
that the entropy production is nonnegative. To demon-
strate this proposition we use a reasoning similar to that
employed by Spohn [31] which in turn was based on a
theorem of Lieb [32].

II. STOCHASTIC EQUATION OF MOTION

A. Underlying classical system

The underlying system consists of a classical system
with n degrees of freedom. Each degree of freedom cor-
responds to a pair of canonical variables qi and pi, and
the Hamilton equations of motion are

dqi
dt

=
∂H
∂pi

,
dpi
dt

= −∂H
∂qi

, (3)

which determine trajectories in the 2n dimensional phase
space, which is the vector space spanned by the canonical
variables. The Hamiltonian function is assumed to be of
the form

H =
1

2m

∑
j

p2j +
1

2

∑
jk

Kjkqjqk, (4)

which corresponds to a collection of n particles of mass
m interacting harmonically. The coefficients Kjk are the
entries of a n × n matrix K with positive eigenvalues.
Using the notations q and p for the column matrices with
elements qj and pj, respectively, we write

H =
1

2m
pTp+

1

2
qTKq. (5)

We perform a canonical transformation to write the
Hamiltonian function in a more symmetric form in which
it becomes invariant by the exchange of the coordinate

and momentum of a pair of canonically conjugate vari-
ables. Taking into account that K is Hermitian with
nonnegative eigenvalues we may define the matrix Ω =
K1/2/

√
m. It has nonnegative eigenvalues and is Hermi-

tian. The canonical transformation q → x and p → y is
defined by

x = (mΩ)1/2q y = (mΩ)−1/2p, (6)

and the Hamiltonian function becomes

H =
1

2
yTΩy +

1

2
xTΩx,

and we see that H is invariant by the exchange of x and
y. In an explicit form,

H =
1

2

∑
jk

Ωjk(xjxk + yjyk), (7)

and the Hamilton equations of motion becomes

dxi
dt

=
∂H
∂yi

,
dyi
dt

= −∂H
∂xi

. (8)

Let us define the quantity

I =
1

2

∑
j

(x2j + y2j ). (9)

It follows from the Hamilton equations that I is a con-
stant of the motion, a property that allows us to divide
the phase space in sectors, each one corresponding to a
given value of I. We then postulate that the only possible
motions of the underlying system are those correspond-
ing to a defined value I. This value is denoted by µ,

1

2

∑
j

(x2j + y2j ) = µ. (10)

The constant µ has the physical dimension of
(energy×time) and it will be seen that µ is to be identi-
fied as the Planck constant. This postulate is the crucial
step toward quantization within the present approach.
It enables the appearance in the classical underlying sys-
tem of the characteristic quantum properties such as the
quantization of energy and the zero point of energy.
One can show that I is an adiabatic invariant [33],

that is, a slow change of the parameters of the Hamilto-
nian will change H but not I. This result connects the
adiabatic invariance with quantization, an idea advanced
by Ehrenfest which lead to the old quantum mechanics.
The distinction between the approach of Ehrenfest from
ours lies in his use of the invariant as connected to the
motion of one quantum particle as if the particle itself
was a classical particle.
In fact I is not constant only in adiabatic changes but

it is universally constant. Let us suppose that H is time
dependent, that is, Ωjk depends on time. In this case H
is not a constant of motion because

dH
dt

=
1

2

∑
jk

dΩjk

dt
(xjxk + yjyk), (11)
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but

dI
dt

= 0 (12)

This result allows to say that I remains forever with the
same value given at the initial time, even if H is time
dependent.

B. Classical dynamics in complex variables

The Hamilton equations of motion are written in terms
of a set of 2n complex variables φj and φ∗j , j = 1, . . . , n,
obtained by the transformation

φj =
1√
2µ

(xj + iyj), φ∗j =
1√
2µ

(xj − iyj). (13)

Using this transformation, we see that the expression (10)
becomes ∑

j

φ∗jφj = 1, (14)

which expresses the postulate introduced above in terms
of the complex variables.
The peculiar transformation from real to complex vari-

ables are canonical transformation leading to the follow-
ing Hamilton equation of motion in complex variables

dφj
dt

=
1

iµ

∂H
∂φ∗j

,
dφ∗j
dt

= − 1

iµ

∂H
∂φj

, (15)

where H is the real bilinear function

H =
∑
jk

Hjkφ
∗
jφk, (16)

obtained from (7), where Hjk = µ(Ωjk + Ωkj)/2, and
are the entries of a n × n Hermitian matrix H , that is,
H∗

jk = Hkj , with positive eigenvalues. We remark that
the complex variables φj and φ

∗
j are dimensionless, which

justifies the presence of the constant µ in the equations
of motion.
The complex conjugate variables φj and φ∗j are con-

sidered to be independent variables because their real
and imaginary parts are proportional to the coordinate qj
and to the momentum pj , which are independent. From
the peculiar transformation above they also form a pair
of canonically conjugate variables as is manifest in the
equation of motion (15).
From the Hamilton equations of motion (15), the time

evolution of a state function F is

dF
dt

= {F ,H}, (17)

where the term in the right-hand side is the Poisson
brackets defined by

{F ,H} =
∑
j

(
∂F
∂φj

∂H
∂φ∗j

− ∂H
∂φj

∂F
∂φ∗j

), (18)

If we replace F by the norm of φ, defined by

N =
∑
j

φ∗jφj , (19)

we see that

{N ,H} = 0, (20)

which means that the norm is preserved along a trajec-
tory in the complex vector space.
The value of N cannot be arbitrary. In accordance

with the postulate introduced above and expressed by
equation (14), it should be equal to the unity. Using
this result and writing the axes corresponding to a pair
of canonical conjugate variables of the phase space as
related to a complex variable φj , then the phase space
becomes equivalent to a Hilbert space, which is a vector
space with normalized vectors.
The form (16) of the Hamiltonian allows us to write

the Hamilton equations in the form

dφj
dt

=
1

iµ

∑
k

Hjkφk. (21)

Equivalently, we may write equation (21) in the vector
form

iµ
dφ

dt
= Hφ. (22)

If we set µ = h̄ and identify φ as the quantum state
vector, we see that it is identical to the quantum equation
that gives the time evolution of the state vector φ, or the
Schrödinger equation.

C. Norm preserving noise

We now assume that φ follows a stochastic equation
of motion which is the Hamilton equations supplemented
by a noise term,

dφj
dt

=
1

iµ

∑
jk

Hjkφk,+ζj , (23)

where ζj is a complex white noise, that is, its real and
imaginary parts are white noises, and also depends on φ
and φ∗. The noise will be set up in such a way that the
norm N is preserved along the stochastic trajectory in
the complex vector space.
As it stands equation (23) has no precise meaning. To

give it a precise meaning, we discretize the time in inter-
vals τ and write the stochastic equation of motion in a
discretized form. Let ∆φj be the increment in φj when
the time increases from t to t + τ . Then the discretized
version of equation (23) is assumed to be

∆φj =
τ

iµ

∑
k

Hjkφk + i
√
τ
∑
k

Gjkφk − τ

2

∑
k

Kjkφk,

(24)
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where Gjk are independent random variables, which we
consider to be the elements of a n × n matrix G, with
zero mean, 〈Gjk〉 = 0, and covariances

〈G∗
jkGℓm〉 = 2γjk,ℓm. (25)

from which follows the property γ∗jk,ℓm = γℓm,jk. The
quantities Kjk are related to Gjk and will be found by
imposing the conservation of the norm. The elements
Gjk and Kjk are understood as the entries of two n× n
matrices G and K, respectively.
It is convenient to introduce a n2 × n2 matrix Γ with

elements Γrs which are related to γjk,ℓ,m. The index r
has a one-to-one correspondence to (jk) and s has a one-
to-one correspondence to (ℓm). Using this convention,
set Γrs = γr,s, or

Γrs = 〈G∗
rGs〉. (26)

From this relation it follows that Γ is a Hermitian matrix,
Γ∗
rs = Γsr. Being Hermitian, Γ can be diagonalized by

a unitary transformation. Denoting by Υ the n2 × n2

matrix that diagonalizes Γ then Υ†ΓΥ is diagonal and
its elements λr are the eigenvalues of Γ. They are given
by

λr =
∑
s′s

Υ†
rs′Γs′sΥsr. (27)

Using (26),

λr =
∑
s′s

Υ†
rs′〈G∗

s′Gs〉Υsr = 〈|
∑
s

GsΥsr|2〉, (28)

and we see that λr ≥ 0, that is the eigenvalues of the
Hermitian matrix Γ are nonnegative, or in other words,
Γ is a positive semi-definite matrix.
Let us determine the increment in the norm N due to

a change ∆φj in the dynamic variables. It is given by

∆N =
∑
j

(∆φ∗jφj + φ∗j∆φj +∆φ∗j∆φj). (29)

Replacing ∆φj in this equation, we find up to terms of
order τ

∆N = i
√
τ
∑
jk

(Gjk −G∗
kj)φ

∗
jφk

−τ
2

∑
jk

(Kjk +K∗
kj)φ

∗
jφk + τ

∑
jk

(G†G)jkφ
∗
jφk. (30)

The terms containing Hjk vanish identically due to the
Hermitian property H∗

jk = Hkj . Choosing

K = G†G, (31)

which is the sought relation betweenK and G, and which
we assume from now on, then the last two summations
on the right-hand side of (30) vanish and

∆N = i
√
τ
∑
jk

φ∗j (G−G†)jkφk. (32)

If G† = G then the increment vanishes and the norm N
is strictly constant along the stochastic trajectory. If this
condition is not imposed, the increment in the norm will
still vanish but in the average, that is, 〈∆N〉 = 0. The
stochastic equation of motion (24) defines a Markovian
stochastic dynamics which determines stochastic trajec-
tories of φ in the vector space.

III. FUNDAMENTAL EQUATION

A. Probability density distribution

As the trajectories in the vector space are stochastic,
we may ask for the probability of the occurrence of each
trajectory. In the following we determine the equation
that gives the time evolution of the probability density
distribution P(φ, φ∗, t) of φ and φ∗ at time t. We start
by considering an arbitrary state function F of φ and φ∗

of the bilinear type

F =
∑
jk

Fjkφ
∗
jφk, (33)

where Fjk are understood as the complex entries of a
n×n matrix F . The increment ∆F of such a function is
given by

∆F =
∑
j

∂F
∂φj

∆φj +
∑
j

∂F
∂φ∗j

∆φ∗j

+
∑
jk

∂2F
∂φj∂φ∗k

∆φj∆φ
∗
k. (34)

Replacing ∆φj in this equation we find up to terms of
order τ

∆F =
τ

iµ
{F ,H}+ i

√
τ
∑
jk

(
∂F
∂φj

Gjkφk − ∂F
∂φ∗k

G∗
kjφ

∗
j )

−τ
2

∑
jk

(
∂F
∂φj

Kjkφk +
∂F
∂φ∗k

K∗
kjφ

∗
j )

+τ
∑
jkℓm

∂2F
∂φj∂φ∗k

GjℓG
∗
kmφℓφ

∗
m. (35)

Taking the average of both sides of equation (35), the
term proportional to

√
τ vanishes. After that, we divide

what is left by τ to reach the result

d

dt
〈F〉 = 1

iµ
〈{F ,H}〉 −

∑
jkℓ

γℓj,ℓk(〈φk
∂F
∂φj

〉+ 〈φ∗j
∂F
∂φ∗k

〉)

+2
∑
jkℓm

γkm,jℓ〈φℓφ∗m
∂2F

∂φj∂φ∗k
〉. (36)



5

where here the average are taken over the probability
density distribution P , that is, the average 〈F〉 of F is

〈F〉 =
∫

FPdφdφ∗. (37)

Taking into account that F is an arbitrary function,
we reach the equation for the time evolution of the prob-
ability distribution P , which is

∂P
∂t

=
1

iµ
{H,P}+

∑
jkℓ

γℓj,ℓk(
∂φkP
∂φj

+
∂φ∗jP
∂φ∗k

)

+2
∑
jkℓm

γkm,jℓ
∂2φℓφ

∗
mP

∂φj∂φ∗k
. (38)

To reach this equation we bear in mind that the averages
in (36) are integrals in the complex vector space of the
type (37). The expressions in (38) are found performing
appropriate integrals by parts and considering that P
vanishes rapidly at the boundaries of integration. The
equation (38) is recognized as a Fokker-Planck-Kramers
equation [23–26], in several complex variables.

B. Master equation

The fundamental equation (38) was derived above con-
sidering a discrete time stochastic equation of motion and
then taking the continuous time limit. Here we consider
another derivation of the fundamental equation by con-
sidering a continuous time equation of motion but dis-
cretized variables φ and φ∗. To simplify the notation we
write ϕ in the place of (φ, φ∗) and consider the following
Kolmogorov equation, or master equation,

d

dt
P(ϕ) =

∑
ϕ′

{W (ϕ, ϕ′)P(ϕ′)−W (ϕ′, ϕ)P(ϕ)}, (39)

where W (ϕ′, ϕ) are the entries of a stochastic matrix W .
A stochastic matrix holds two properties: 1) the off diag-
onal entries W (ϕ′, ϕ) are nonnegative and represent the
probability rate of the transition ϕ→ ϕ′, and 2) it holds
the property

∑
ϕ

W (ϕ, ϕ′) = 0. (40)

From these two properties, it follows from the Perron-
Frobenius theorem that P(ϕ, t) ≥ 0 if at the initial time
it holds this property, and it is normalized at all times,

∑
ϕ

P(ϕ, t) = 1. (41)

It is more convenient to construct the backward Kol-
mogorov equation, or adjoint master equation,

d

dt
Q(ϕ) =

∑
ϕ′

W (ϕ, ϕ′){Q(ϕ′)−Q(ϕ)}. (42)

We consider three types of transitions. The first is
defined by

φj → φ′j = φj +
ε

iµ
Hjℓφℓ, (43)

φ∗k → φ′∗k = φ∗k − ε

iµ
Hmkφ

∗
m, (44)

and occurs with rate one. The contribution of this tran-
sition to the right-hand side of equation (42) is given by
the expression

1

iµ

∑
jℓ

{Hjℓφℓ
∂P
∂φj

−Hℓjφ
∗
ℓ

∂P
∂φ∗j

}. (45)

The second type is defined by

φj → φ′j = φj ± i
√
εgjℓφℓ, (46)

φ∗k → φ′∗k = φ∗k ∓ i
√
εg∗kmφ

∗
m, (47)

and occurs with transition rate αℓm,jk ≥ 0, which holds
the property

αℓm,jk = αmℓ,kj . (48)

The contribution of this transition to the right-hand side
of equation (42) is given by the expression

2
∑
jkℓm

αℓm,jk
∂2Q

∂φj∂φ∗k
gjℓφℓg

∗
kmφ

∗
m, (49)

which is real due to the property (48).
The third type is defined by

φj → φ′j = φj −
1

2
εg∗ℓjgℓkφk, (50)

φ∗k → φ′∗k = φ∗k − 1

2
εg∗ℓjgℓkφ

∗
j , (51)

occurring with rate αkj,ℓℓ ≥ 0. The contribution of this
transition to the right-hand side of equation (42) is given
by the expression

−
∑
ℓ

αkj,ℓℓg
∗
ℓjgℓk{

∂Q
∂φj

φk +
∂Q
∂φ∗k

φ∗j},

which is real due to the property (48).
Replacing the expressions obtained above in the right-

hand side of equation (42), it becomes identical to the
adjoint equation (36), if we set

γkm,jℓ = αℓm,jkgjℓg
∗
km. (52)

Taking into account that γkm,jℓ is the covariance
〈G∗

kmGjℓ〉, then the random variables Gjk must obey the
relation

〈G∗
kmGjℓ〉 = αℓm,jkgjℓg

∗
km. (53)

This is accomplished if the absolute value of Gjk is a
random variable but not its phase. Indeed, if we write
Gjk = Rjke

iajk then

〈G∗
kmGjℓ〉 = 〈RkmRjℓ〉e−iakmeiajℓ , (54)

which is of the form (53).
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C. Central equation

Equation (38) that governs the time evolution of the
probability density distribution P(φ, φ∗) is the fun-
damental equation of the present stochastic approach.
From this equation we derive the equation for the time
evolution of any bilinear state function such as th covari-
ances ρjk = 〈φjφ∗k〉 of the stochastic variables φj . The
equation that give the time evolution of ρjk is obtained
from (38) but we may as well use the equation (36) by
replacing F by φjφ

∗
k. The result is

d

dt
ρjk =

1

iµ

∑
ℓ

(Hjℓρℓk − ρjℓHℓk)

−
∑
ℓm

(γmj,mℓρℓk + ρjℓγmℓ,mk) + 2
∑
ℓm

γkm,jℓρℓm. (55)

Once this equation is solved, the average 〈F〉 of a bilinear
function F is obtained by

〈F〉 =
∑
jk

Fjkρkj . (56)

Equation (55) is the central equation of the present
approach and is the most general form of an equation for
the covariance ρjk that can be derived from a noise that
is linear in φj and which conserves in the average the
norm of φj . The coefficients γℓj,km are not arbitrary. As
mentioned above, γ∗ℓj,km = γkm,ℓj and the eigenvalues of

the n2×n2 matrix with elements γℓj,km are nonnegative.
The central equation (55) can be written in matrix

form as follows. We first define the covariance matrix ρ
as the n×nmatrix with elements ρjk. Then we introduce
n× n matrices Ajk whose entries are all zero except the
entry at row j and column k which equals 1. Notice that
Ajk is not an entry of a matrix but denotes one of a
collection of n2 matrices. Their entries are denoted by

Ajk
ℓm and are given by

Ajk
ℓm = δjℓδkm. (57)

The matrices Ajk form a complete basis for the expansion
of any n × n matrix. For instance, in terms of this set
the matrix ρ has the expansion

ρ =
∑
jk

ρjkA
jk. (58)

In terms of the basis matrices, the central equation
(55) becomes

dρ

dt
=

1

iµ
[H, ρ]

+
∑
jkℓm

γjk,ℓm(2AℓmρAjk†−Ajk†Aℓmρ−ρAjk†Aℓm), (59)

where [H, ρ] = Hρ − ρH stands for the commutation
between the matrices H and ρ.
Using (56), the average of 〈F〉 of a bilinear state func-

tion F is determined from ρ by

〈F〉 = TrFρ. (60)

The matrix ρ holds the following properties. It is a
Hermitian matrix with unit trace,

Trρ = 1, (61)

and is a semi-positive definite matrix, which means that
its eigenvalues are non-negative. These properties, which
allow us to call ρ a density matrix, follow from the defi-
nition of ρ as a covariance matrix, that is,

ρjk =

∫
φjφ

∗
kPdφdφ∗, (62)

and from the properties of the distribution density which
are P ≥ 0 and normalization,∫

Pdφdφ∗ = 1. (63)

The Hermitian property ρ∗jk = ρkj follows from (62). As
ρ is Hermitian its eigenvalues are real. To show that
the eigenvalues are nonnegative it suffices to consider a
transformation that diagonalizes ρ and use this transfor-
mation to change the variables φj to new variables φ′j .
Taking into account that ρjk = 〈φjφ∗k〉 then 〈φ′jφ′∗k 〉 will
be diagonal and coincides with the eigenvalues pj of ρ.
Therefore, pj = 〈φ′jφ′∗j 〉 ≥ 0.
The fundamental equation was construct in such a way

that the norm was conserved in the average, which means
that

〈N〉 =
∑
j

ρjj (64)

is constant. Choosing this constant to be equal to unity,
then Trρ = 1. Alternatively, it follows from equation
(59) that dTrρ/dt = 0. The semi-definite property of
ρ is also preserved at all times because at any time ρjk
keeps being a covariance.
The above properties are valid as long as P conserves

the properties of a probability density distribution stated
above. But this is indeed the case as we have demon-
strated above.
The equation (59) is formally identical to the quantum

master equation [27, 28] introduced by Lindblad [29] and
by Gorini, Kossakowski, and Sudarshan [30], describing
the time evolution of a density matrix of a quantum open
system. The distinguish feature between them is that
equation (59) was obtained by considering that ρ is a
covariance matrix. Of course, as we have shown above,
it turned out to be a density matrix.
It is worth considering the time evolution of the aver-

age χj = 〈φj〉. From (36) we find

dχj

dt
=

1

iµ

∑
k

Hjkχk −
1

2

∑
k

γjkχk, (65)

where γjk = 〈Kjk〉.
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IV. QUANTUM MECHANICS

The noise defined by the last two terms of (24) changes
the variable φj by changing both the phase θj and the
absolute value rj of φj = rje

iθj . However, if the noise is
of the type given by the equation

∆φj = (i
√
τξ − τ

2
γ)φj , (66)

where ξ is a random variable with zero mean and variance
γ, then the noise still changes the phase θj but not the
absolute value of φj . To show this result it suffices to
write this equation in the equivalent form

φ′j = ei
√
τγξφj , (67)

where φ′j = φj +∆φj . This result shows that φ
∗
jφj = r2j

is invariant and the norm N is conserved in the strict
sense.
The noise defined by the expression (66) corresponds

to set 2γjℓ,km = γδjℓδkm. The equation (36) reduces to

d

dt
〈F〉 = 1

iµ
〈{F ,H}〉

−1

2
γ
∑
j

〈φj
∂F
∂φj

+ φ∗j
∂F
∂φ∗j

〉+ γ
∑
jk

〈φjφ∗k
∂2F

∂φj∂φ∗k
〉, (68)

and the fundamental equation (38) becomes

dP

dt
=

1

iµ
{H,P}

+
γ

2

∑
j

(
∂φjP

∂φj
+
∂φ∗jP

∂φ∗j
) + γ

∑
jk

∂2φjφ
∗
kP

∂φj∂φ∗k
, (69)

which reduces to the simpler form

∂P

∂t
=

1

iµ
{P,H}+ γ2

∑
jk

∂2P

∂θj∂θk
. (70)

In this case the equation (55) becomes

d

dt
ρjk =

1

iµ

∑
ℓ

(Hjℓρℓk − ρjℓHℓk), (71)

which can be written in the matrix form as

dρ

dt
=

1

iµ
[H, ρ], (72)

which is the quantum Liouville equation, if we set µ = h̄.
The equation (65) for χj becomes

dχj

dt
=

1

iµ

∑
k

Hjkχk − 1

2
γχj . (73)

We remark that the equation (71) does not have the
terms corresponding to the noise. However, this does
not mean that the effect of the noise is not present. The
variable φj is still a stochastic variable which is reflecte-
din the last term of equation (73).
The equation (71) has a special type of solution which

is ρjk = ψjψ
∗
k. Replacing this form of ρ in the equation

(71), we see that it is indeed a solution as long as ψj

fulfills the equation

dψj

dt
=

1

iµ

∑
k

Hjkψk, (74)

or in matrix form

dψ

dt
=

1

iµ
Hψ, (75)

where ψ is a column matrix with elements ψj , and

ρ = ψψ†, (76)

were ψ† is a row matrix with elements ψ∗
j . A solution

of this type is called pure state and equation (75) is
identified as the Schrödinger equation, if we set µ = h̄.
We remark that ψj should not be confused with φj nor
with χj = 〈φj〉. This last quantity obeys the equation
(73) which differs from (74) by the presence of the term
−γχj/2 which makes χj to vanish in the long term.
The relation between φj and ψj is

ψjψ
∗
k = 〈φjφ∗k〉 = ρjk, (77)

and in particular

|ψj |2 = 〈|φj |2〉 = ρjj . (78)

Due to the invariance of the norm given by (64) it follows
the usual normalization of ψj ,

∑
j

|ψj |2 = 1. (79)

The average 〈F〉 given by equation (56) now reads

〈F〉 =
∑
jk

ψ∗
kFjkψj , (80)

which is the usual expression for the quantum average.

V. QUANTUM THERMODYNAMICS

A. First law of thermodynamics

We start by writing the central equation (59) in a more
convenient form as follows

dρ

dt
=

1

iµ
[H, ρ] + L, L =

∑
r

Lr (81)
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where

Lr =
1

2

∑
s

{γr,s[Asρ,Ar†] + γ′r,s[A
sρ,Ar]

+γ∗r,s[A
r, ρAs†] + γ′∗r,s[A

r†, ρAs†]}, (82)

and we are using a convention concerning the index nota-
tion defined by the replacements jk → r and ℓm→ s, and
γ′jk,ℓm = γkj,ℓm, and we remark that Lr† = Lr. Defining
the auxiliary matrices

Br =
∑
s

γrsA
s, Cr =

∑
s

γ′r,sA
s, (83)

then Lr acquires the simpler form

Lr =
1

2
{[Ar, ρBr† − Crρ]− [Ar†, Brρ− ρCr†]}. (84)

Notice that Bjk
ℓm = γjk,ℓm and Cjk

ℓm = γkj,ℓm.
From the central equation (81) we determine the equa-

tion that gives the time evolution of the average 〈F〉 =
Tr(Fρ) of a bilinear state function. It is given by

d〈F〉
dt

=
1

iµ
TrF [H, ρ] +

∑
r

TrFLr. (85)

In accordance with thermodynamics the change in the
energy E of an open system equals the heat introduced
into the system minus the work done by the system on the
environment, which is the law of conservation of energy,
or the first law of thermodynamics. The work is assumed
to be the increment in a potential V due to the external
forces. The conservation of energy is then written as

d〈E〉
dt

= Φ− d〈V〉
dt

, (86)

where Φ is the flux of heat into the system. We assume
that the Hamiltonian function H is the sum of the energy
function E and the potential V of the external forces,
H = E + V . Bearing this in mind, we write

dU

dt
= Φ, (87)

where U = 〈H〉.
To determine the expression of Φ, we calculate the left-

hand side of equation (87) using equation (85). The re-
sult for the flux is

Φ =
∑
r

Φr, (88)

where

Φr = TrHLr. (89)

Equation (87), with Φ representing the total flux of heat
into the system, expresses the conservation of energy, or
the first law of thermodynamics.

B. Second law of thermodynamics

If we wish to describe an open system regarded as a
thermodynamic system in the sense that it obeys the laws
of thermodynamics we need to introduce two quantities
which are the entropy S of the system and the flux of
entropy Ψ.
Let f(x) ≤ 0 be a decreasing and convex function of x

defined on the interval 0 ≤ x ≤ 1, and such that f(1) = 0.
We also require that xf(x) → 0 when x→ 0. An example
of f(x) holding these properties is the function − lnx.
The entropy S of the system is then defined by

S = κ
∑
j

pjf(pj), (90)

where κ is some positive constant and pj ≥ 0 are the
eigenvalues of the matrix ρ, which are subject to the con-
dition

∑
j

pj = 1, (91)

following from Trρ = 1.
Considering that 0 ≤ pj ≤ 1 it follows that S ≥ 0.

The minimum value of the entropy is S = 0 which occurs
when one of the quantities pj equals one, which is the
case of pure states. In terms of the matrix ρ, the entropy
can be written as

S = κTrρf(ρ). (92)

Deriving S with respect to time and using the central
equation (81), we find

dS

dt
= κ

∑
r

TrLrf(ρ). (93)

By calling S the entropy we wish that it describes the
thermodynamic entropy. A distinguishing property of
thermodynamic entropy is that it is not a conserved
quantity. For instance, a system that has its energy in-
creased only because of heat flow must have its entropy
increased. Therefore, the right-hand side of (93) is not
in general the entropy flux.
Concerning the entropy flux, we assume with Clau-

sius that the entropy flux is the ratio between the heat
flux and the temperature of the environment. More pre-
cisely, we assume that the total entropy flux is a sum of
entropy fluxes coming from distinct parts of the environ-
ment which are at distinct temperatures. The entropy
flux Ψr coming from the r-th part of the environment at
temperature Tr is

Ψr =
Φr

Tr
, (94)

where Φr is the heat flux coming from the r-th part which
we assume to be given by the expression (89). However,
we cannot adopt the Clausius relation in the strict sense
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because no temperature has yet been defined. But we can
still assume the Clausius relation, with the understanding
that Tr > 0 are parameters of the present approach.

Replacing the expression for the heat flux given by
(89) in (94), we find the desired expression for the flux of
entropy coming from the r-th part of the environment,

Ψr =
1

Tr
TrHLr. (95)

The total flux of entropy is

Ψ =
∑
r

Ψr. (96)

The right-hand side of (93) must be the sum of the
entropy flux Ψ from the environment and another term
corresponding to the creation of entropy which is the rate
of entropy production Π within the system, defined by

dS

dt
= Π+Ψ, (97)

From this relation we determine Π using the expressions
of the flux of entropy Ψ and dS/dt. Before that, we define
ρr through the relation

βrH = f(ρr) + cr, (98)

where cr is such that Trρr = 1, and βr = 1/κTr. From
this relation and equation (95) we may write Ψr as

Ψr = κTrLrf(ρr), (99)

where the constant Cr has disappeared because TrLr =
0. Subtracting (99) from (93), we find

Π = κ
∑
r

TrLr{f(ρ)− f(ρr)}. (100)

According to Clausius the increase in the entropy S of
a system is larger than or equal to the entropy flux Ψ
into the system,

dS

dt
≥ Ψ, (101)

which constitutes the second law of thermodynamics.
Taking into account the equality (97), the Clausius ex-
pression (101) of the second law can be written in the
equivalent form

Π ≥ 0. (102)

In the following, we will demonstrate this inequality prov-
ing thus the Clausius expression for the second law of
thermodynamics.

C. Positivity of the entropy production

To show that Π ≥ 0, we demonstrate that each term
of the summation in (100) is nonnegative, that is, we
demonstrate that Πr ≥ 0,

Πr = κTrLr(ρ){f(ρ)− f(ρr)}, (103)

and Lr is given by (84).
Our procedure is to show (a) that Πr is a convex func-

tion of the eigenvalues pℓ of ρ, and (b) that Πr is bounded
from below at ρ = ρr, in which case Πr = 0. If the first
proposition is demonstrated, then the second proposi-
tion can be met if ρ = ρr is a double zero of Πr which
amounts to say that Lr vanishes when ρ = ρr. This con-
dition leads consistently to the vanishing of Ψr as well.
The vanishing of Lr is fulfilled by demanding that

Brρr = ρrCr†, (104)

which we assume from now on. As Br and Cr are defined
in terms of γr,s and ρr depends on Tr, this condition
establishes a relation between the correlations γr,s and
the parameter Tr.
To show that Πr is convex it suffices to show that

Rr = TrLr(ρ)f(ρ) (105)

is convex because Lr(ρ) is linear in ρ. We provide the
demonstration of convexity of Rr for the case in which
L(ρ) has a diagonal form, which is equivalent to express
Lr(ρ) as

Lr =
λr
2
{[Ar, [ρ,Ar†]] + [Ar†, [ρ,Ar]]}, (106)

in which case

Rr = λrℜTr{[f,Ar†ρ]Ar + [f,Arρ]Ar†}. (107)

Next, we consider the following term of Rr,

Tr[f,Aρ]A†, (108)

where for simplicity we have dropped the index of Ar,
and we observe that it is the limit when ε → 0 of the
expression

1

ε
Tr{eεfAρ e−εfA† −AρA†}. (109)

The expression (108) is convex if the first term of (109) is
convex as the second term is linear in ρ. To see that this
is the case it suffices to write it in the following symmetric
form

Tr{(eεf/2Aρ1/2e−εf/2)(e−εf/2ρ1/2A†eεf/2}. (110)

In the general case, instead of terms of the type (108),
we face terms of the type

Tr[f,Arρ]Br†, (111)
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which is equal to
∑
s

γ∗rsTr[f,A
rρ]As†. (112)

We then expand Ar in another basis set A′s in such a
way that the expression (112) becomes diagonal in A′s,
that is,

∑
s

λsTr[f,A
′sρ]A′s†. (113)

Now each of the terms of the summation is similar to
(108) and we may apply the same reasoning above to
show that it is convex. This concludes the demonstration
that Πr ≥ 0 and Π ≥ 0.

VI. FOKKER-PLANCK-KRAMERS

STRUCTURE

A. Fluctuation and dissipation

The classical Fokker-Planck-Kramers (FPK) equation
describes a massive particle under the action of a con-
servative force plus, a dissipative force, and a fluctuating
force [23, 26]. These forces give rise to three terms in the
equation which are the Hamiltonian part, the dissipative
part, and the fluctuation part. In the following we show
that the central equation has a similar structure and can
thus be understood as the quantum version of the FPK
equation.
From the expressions (81) and (84), the central equa-

tion can be written in the form

iµ
dρ

dt
= [H, ρ]−

∑
r

[Ar, Jr†], (114)

where Jr is the current, given by

Jr = iµ(Brρ− ρCr†). (115)

Defining Dr = Br† − Cr, the current becomes

Jr = iµ(Dr†ρ− [ρ, Cr†]). (116)

Replacing it in (114), the central equation, it acquires
the form

iµ
dρ

dt
= [H, ρ] + iµ

∑
r

[Ar, ρDr†]− iµ
∑
r

[Ar, [Cr, ρ]],

(117)
which has the form of the FPK equation. The three terms
on the right-hand side are respectively, the Hamiltonian
part, the dissipative part, and the fluctuation part.
Using the relation (104), we find the following form for

the term related to the dissipation,

Dr = (ρr)−1Crρr − Cr. (118)

Therefore, the equation (114) can be set up if we are
given Cr and ρr.

B. Detailed balance

The stationary solution ρst of the central equation
(114) is determined by

[H, ρst]−
∑
r

[Ar, Jr†(ρst)] = 0. (119)

Depending on the covariances of the independent ran-
dom variables, that is, on Br and Cr, the stationary
solution may in addition obey a detailed balance condi-
tion. Denoting in this case the stationary solution by
ρe, the detailed balance condition is equivalent to say
that each term of (119) vanishes, that is, [H, ρe] = 0 and
Jr†(ρe) = 0, or

Brρe = ρeCr†. (120)

for all r, which is the expression of the detailed balance
condition. This solution is understood as describing the
thermodynamic equilibrium, understood as the state de-
void of currents.
We remark that the detailed balance condition (120)

should not be confused with the relation (104) between
Br and Cr†. If we use relation (104), the detailed balance
condition is just ρe = ρr, for all r. Bearing in mind that
the expression of ρr for distinct r has the same form
given by equation (98), differing only on the parameter
Tr, we see that the detailed balance condition occurs if
all the parameters Tr = T are equal. In this case we may
identify the common value T as the temperature of the
system and the ρe is given by βH = f(ρe) + c, or

ρe = f−1(βH − c), (121)

where f−1 is the function inverse of f . We recall that
the function f is related to the entropy by S = κTrf(ρ).
If f = − lnx, in which case the entropy is given by

S = −κTrρ ln ρ, then f−1 = e−x and

ρe =
1

Z
e−βH , (122)

where β = 1/κT , which is the Gibbs equilibrium state
for a system at a temperature T .

C. Non-equilibrium stationary states

Writing Lr in terms of the current Jr, the expression
for the heat flux Φr, the entropy flux Ψr = Φr/Tr, and
the rate of entropy Πr are given by

Φr =
1

iµ
TrJr†[Ar, H ], (123)

Ψr =
κ

iµ
TrJr†[Ar, f(ρr)], (124)

Πr =
κ

iµ
TrJr†[Ar, f(ρ)− f(ρr)]. (125)
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The total heat flux, the total entropy flux and the total
entropy rate are are

Φ =
∑
r

Φr, (126)

Ψ =
∑
r

Ψr =
∑
r

1

Tr
Φr, (127)

Π =
∑
r

Πr . (128)

In the stationary state Φ and Π+Ψ vanish. If in addi-
tion the thermodynamic equilibrium is established, which
occurs if all Tr are equal, then all currents Jr vanish. In
this case Φr, Ψr, and Πr as well as Π and Ψ also vanish.
If the stationary state is not an equilibrium state, which
occurs if at least of Tr is distinct from the others, then
at least one of the currents Jr are nonzero. In this case,
Π and Ψ are nonzero, although their sum vanishes. As
Π ≥ 0, then in the nonequilibrium stationary state

Π = −Ψ > 0. (129)

D. Examples

We have proposed a quantum FPK equations which
was obtained through the canonical quantization [34].
For a system of quantum particles of mass m the quan-
tum FPK equation reads [34]

ih̄
∂ρ

∂t
= [H, ρ] +

1

2

∑
j

γj [xj , ρgj + g†jρ]

+
γjm

ih̄βj

∑
j

[xj , [xj , ρ]], (130)

where xj represents the position of particle j, and

gj = − m

ih̄βj
(eβjHxje

−βjH − xj).

We see that this equation has the form of equation (104)
if we set µ = h̄, Aj = xj ,

Cj =
γjm

h̄2βj
xj , and Dj =

γjgj
2ih̄

. (131)

The expansion of gj gives

gj = pj +
βj
2!
[H, pj ] +

β2

j

3!
[H, [H, pj ]] + . . . (132)

where pj is the momentum of particle j. As gj is related
to dissipation we see that the quantum friction is not
generally proportional to the momentum as is the case
of the classical case, as is manifest in the classical FKP
equation.

For bosons the canonical quantization leads to the fol-
lowing equation [35, 36]

ih̄
∂ρ

∂t
= [H, ρ] + iγj

∑
j

{[aj, ρg†j ]− [a†j , gjρ]}

− iγj
βj

∑
j

{[aj, [a†j , ρ]] + [a†j, [aj , ρ]]}, (133)

where aj and a†j represent, respectively, the annihilation
and creation of a boson in a one-particle state labeled by
the index j, and

gj =
1

βj
(e−βjHjaje

βjHj − aj). (134)

Again we see that this equation has the form of equation
(104), if we set µ = h̄, Aj = aj ,

Cj =
γj
h̄βj

aj, and Dj =
γj
h̄
gj .

VII. CONCLUSION

We have derived the equations of quantum mechan-
ics and quantum thermodynamics from the assumption
that a quantum system can be described by an underlying
classical system of particles. Each component φj of the
wave vector φis understood as a complex variable whose
real and imaginary parts are proportional to the coordi-
nate and momentum associated to a degree of freedom of
the underlying classical system. The equation of motion
is considered to be a stochastic equation so that φj is a
stochastic variable. This result leads us to conclude that
the density matrix ρ obeying either the quantum Liou-
ville or the Lindblad equation is the covariance matrix
associated to the random wave vector φ. In this sense
the present approach gives a meaning to the off-diagonal
terms of ρ.
The understanding of the wave vector φ as a stochastic

variable and ρ as its covariance matrix allows an inter-
pretation of quantum mechanics other than the standard
interpretation [20–22]. As the trajectory in the Hilbert
space are stochastic the present approach may fit the con-
sistent history interpretation of quantum mechanics [8]
since the several trajectories are possible, each one oc-
curring with a certain probability. The present approach
is also in accordance with the standard interpretation if
we bear in mind that Trρ = 1, which means that ρii can
be interpreted as a probability.
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