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Abstract
We reconsider the renormalization of scalar mass and point out that the quantum correction

to the physical observable, as opposed to the bare parameter, of a renormalizable operator, is

technically insensitive to ultraviolet physics and independent of the regularization scheme. It is

expressed as the difference in the same quantities at different energy scales, maintaining the same

asymptotics. Thus, any sensible regularization cancels out the divergences, including the quadratic

ones, and yields the same finite corrections. To this end, we first show that the vacuum polarization

of quantum electrodynamics is independent of the regularization scheme and a gauge-dependent

quadratic divergence is canceled in the observable. We then calculate the quantum correction

to the Higgs mass squared by the top-quark loop. It is again finite and regularization-scheme

independent. For large external momentum, the correction of the pole mass-squared is dominated

by power running, resulting in an order of 1 percent correction. In particular, the effect of heavy

fields on the scalar mass correction is suppressed.
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To address the problem of infinity arising from the radiative corrections in quantum field

theory, we need to focus on what we can observe. A bare parameter in the Lagrangian is

not an observable, because interactions modify it, without which we cannot probe it. We

always observe a combination of a bare parameter and its corrections, which is inevitably a

function of the energy scale. In quantum field theory, such correction gives rise to divergence

since we include virtual particles with the energy-momentum up to infinity to preserve the

necessary symmetry for calculation. However, the divergent correction from virtual particles

to an unobservable bare parameter gives us a wrong impression; we have to convert it into

observable one.

An observable can be given as a difference of the corrected quantities between different

energy scales, which does not include the bare parameter. In this letter, we show that the

divergent parts are canceled in the observable, regardless of the regularization scheme that

quantifies the divergence, yielding only finite observables. We take two examples: First, we

consider the electric charge corrected by the self-energy of the photon that contains illusory

quadratic divergence. Then, we calculate the correction to a scalar mass, for which it is

believed that there is a fundamental quadratic divergence.

Consider a photon described by the propagator in the Feynman gauge,

∆0
µν(q

2) =
−igµν
q2 + iϵ

. (1)

In what follows, we omit the Feynman prescription iϵ. Letting one-particle-irreducible self-

energy iΠµ
ν(q

2), we can only detect the sum of its powers

∆′µ
ν(q

2) =
−iδµν
q2

+
−iδµρ
q2

[iΠρ
σ(q

2)]
−iδσν
q2

+ . . .

= −i[q2δνµ − Πν
µ(q

2)]−1.

(2)

We do not assume the usual pole at q2 = 0; we consider a nontriviality Πµ
ν(0) ̸= 0 that

arises from quadratic divergence due to improper regularization.

In Πµ
ν(q

2), the term proportional to qµqν depends on the choice of the gauge, so we may

neglect them for the moment and consider the component proportional to gµν

Πµ
ν(q

2) ≡ Πµ
ν(0) + δµν q

2Π(q2) + (gauge terms). (3)

Then, the self-energy is truly a function of the Lorentz-invariant quantity q2 and essentially

the index structure becomes that of identity. For this, we need the Ward–Takahashi identity

[1] that we cannot formally use at this moment, but we justify it later in Eq. (16). We are

going to care about the divergent term not obeying it.

First, we question whether it is possible to observe the bare parameter. To understand

this, let us take a reference point, where the propagator becomes

q2 → 0 : ∆′µ
ν(q

2) → −i

[
q2δνµ − Πν

µ(0)− q2
dΠν

µ

d(q2)
(0)

]−1

. (4)
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In the case we have a pole at q2 = 0, the corresponding residue makes undesirable normal-

ization. The field renormalization can absorb it

Z3µ
ν ≡

[
δµν − dΠµ

ν

d(q2)
(0)

]−1

, Aµ(x) →
√
Z3µ

ν
Aν(x), (5)

for which we understand that the square root of the matrix has positive entries. This is

possible because we cannot observe Aµ(x) directly. Here, this process is meaningful when

there is a pole at q2 = 0, or Πµ
ν(0) = 0, but the renormalization (5) is always possible.

In terms of the renormalized gauge field, the propagator becomes, to O(q4),

∆µ
ν(q

2) = −i[q2δσµ − Πσ
µ(q

2)]−1

[
δσν − dΠσ

ν

d(q2)
(0)

]
. (6)

With the bare charge e0, the electric charge can be seen by an interaction involving

e20∆
µ
ν(q

2). An interacting field sees the effective charge e(q2) at energy q2 without knowing

what is happening inside and it recognizes the propagator ∆0µ
ν(q

2) as

e2(q2)∆0µ
ν(q

2) = e20∆
µ
ν(q

2), (7)

(dressed by a vertex function and external fermions) or,

e2(q2)δµν ≡ e20

[
δµν +

Πµ
ν(q

2)

q2
− dΠµ

ν

d(q2)
(0)

]
. (8)

Taking q2 → 0 and performing Taylor expansion, we have

q → 0 : e2(q2)δµν = e20

[
δµν +

Πµ
ν(0)

q2

]
. (9)

This enables us to remove the dependence on the bare coupling e0. Finally, the observed

charge in terms of the reference charge e2(0) is

e2(q2)δµν = e2(0)

[
δµν +

Πµ
ν(q

2)− Πµ
ν(0)

q2
− dΠµ

ν

d(q2)
(0)

]
≡ e2(0)

[
δµν +

δΠµ
ν(q

2)

q2

]
.

(10)

This means that we are only able to see the difference of the self-energy1

δΠµ
ν(q

2) = Πµ
ν(q

2)− Πµ
ν(0)− q2

dΠµ
ν

d(q2)
(0) (11)

from a certain reference point, as the charge correction, through a scattering process.

1 A technicality: To maintain the covariant form, the differentiation should be modified from q2 dΠµν

d(q2) (0) to

q2 dΠµν

d(q2) |qµqνfixed(0) + qµqν dΠµν

d(qµqν) |q2fixed(0).
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For concreteness, we calculate the one-loop correction to the self-energy due to a fermion

of mass m [2],

iΠµν
2 (q2) = −4e2

∫ 1

0

dx

∫
d4ℓ

(2π)4
1

(ℓ2 −∆)2

[
−1

2
gµνℓ2 − 2x(1− x)qµqν + gµν(m2 + x(1− x)q2)

]
,

(12)

in the Minkowski momentum ℓ, where ∆ ≡ m2 − x(1− x)q2. We used the reference charge

e2 ≡ e2(0) and the reference mass m. Instead of dimensional regularization [3] that is

known to give no quadratic divergence, let us take a simple cutoff scheme that respects little

symmetry, giving ∫
d4ℓ

(2π)4
ℓ2

(ℓ2 −∆)2
=

i

16π2

(
−Λ2 + 2∆ log

Λ2

∆
−∆

)
, (13)∫

d4ℓ

(2π)4
1

(ℓ2 −∆)2
=

i

16π2

(
log

Λ2

∆
− 1

)
, (14)

with the (Euclidianized) cutoff at −ℓ2 = Λ2.

Usually, this regularization scheme cannot respect the gauge symmetry, leading to spu-

rious quadratic divergence. However, we can only see the difference as in (11). Thus we

have2

δΠµν
2 (q2) = − e2

4π2

∫ 1

0

dx

[
1

2
gµν(Λ2 −∆)− 2x(1− x)(qµqν − gµνq2)

(
log

Λ2

∆
− 1

)
− 1

2
gµν(Λ2 −m2) + 2x(1− x)(qµqν − gµνq2)

(
log

Λ2

m2
− 1

)
− 1

2
gµνx(1− x)q2

]
= − e2

2π2
(gµνq2 − qµqν)

∫ 1

0

dxx(1− x) log
m2

m2 − x(1− x)q2
.

(15)

This is the same result as that obtained by the dimensional regularization [2].

In Πµν
2 (q2), a constant term gµνΛ2/2 is generated, which we tend to interpret as the infinite

photon mass. Of course, this is scheme-dependent and unphysical because we know that

the gauge symmetry protects the photon from being massive. Remarkably, that constant

term is absent in the observable difference δΠµν
2 (q2) in (15); quantum field theory still takes

good care of it and does give the correct observable in the end. We have a weak form of the

Ward–Takahashi identity on the observable

qµδΠ
µν
2 (q2) = qνδΠ

µν
2 (q2) = 0. (16)

This justifies the claim of unobservability of qµqν dependent terms around Eq. (3).

2 See Footnote 1.
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It is interesting to compare how the dimensional regularization deals with the divergence.

It gives, to O(ϵ), ∫
ddℓ

(2π)d
ℓ2

(ℓ2 −∆)2
=

i

16π2
∆

(
4

ϵ
− 2 log∆ + c

)
, (17)∫

ddℓ

(2π)d
1

(ℓ2 −∆)2
=

i

16π2

(
2

ϵ
− log∆ + c′

)
, (18)

where 4−d ≡ ϵ. There are scheme-dependent constants c and c′, however, they are canceled

in the observable. Identifying log Λ = 1/ϵ up to a constant is identical to the above cutoff

scheme, except that the dimensional regularization neglects the quadratic divergence or

makes it logarithmic. It has a merit in that we can see the gauge invariant structure already

in Πµν
2 (q2), but this makes no difference in the observable (11).

In general, the divergences are canceled in the following way [4].

1. If a divergence does not depend on q2, the difference Πµ
ν(q

2)−Πµ
ν(0) cancels it. This

is the case for the quadratic divergence.

2. If a divergence depends on q2, then we should be able to separate it from Πµ
ν(q

2) −
Πµ

ν(0) in the limit q2 → 0, that is, the divergence is contained in the differentiation

q2 dΠ
µ
ν

d(q2)
(0). The field renormalization cancels it. This is the case for the logarithmic

divergence.

Dimensional analysis shows that this should hold true independent of the order of pertur-

bation (If we use momentum-dependent renormalized parameters as ones used in this letter,

there is no corresponding subdiagram divergence [5]). This generic feature applies to any

sensible regularization preserving good enough symmetry. In particular, we have not relied

on the gauge symmetry to remove the quadratic divergence.

The modern understanding of the cutoff Λ is the upper limit of the energy scale to which

the theory at hand is valid [6]. The ultraviolet asymptotics, or the ℓ2 integral around Λ2,

of the functions Πµ
ν(q

2) and Πµ
ν(0) are the same in the limit q2 → 0, or the accuracy is

O(q2/Λ2).

Now, we turn to the scalar mass. We have a Feynman propagator for a scalar field

D0
F =

i

p2 −m2
0

(19)

encoding the information on the bare massm0. However, this is only revealed by interactions

with other particles, which correct the bare mass

D′
F =

i

p2 −m2
0 − Σ̃(p2)

, (20)

having the same geometric sum structure by the one-particle-irreducible self-energy Σ̃(p2)

as in (2). The mass changes and becomes dependent on the external momentum p2. We
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take the pole mass mh as a reference

[p2 −m2
0 − Σ̃(p2)]p2=m2

h
= 0. (21)

This is a usual renormalization condition and corresponds to parameter fitting in the effective

field theory. Also, the residue is changed, which comes from the next leading order expansion

from Σ̃(p2) from a reference mass

p2 → m2
h :

i

p2 −m2
0 − Σ̃(p2)

→ iZ

p2 −m2
h

+O((p2 −m2
h)

2), (22)

where

Z−1 = 1− dΣ̃

dp2
(m2

h). (23)

To recover the desired one, we renormalize the field ϕ(x) →
√
Zϕ(x) as before.

To have the desired pole, we need to define the momentum-dependent mass accurately

to order of p2 −m2
h ([7], Eq. (15.56))

m2(p2) = m2
0 + Σ̃(p2)− (p2 −m2

h)
dΣ̃

dp2
(m2

h) (24)

Since the observable, the finite pole mass (21),

m2
h = m2

0 + Σ̃(m2
h),

shows that neither the bare mass m2
0 nor the correction Σ̃(p2) is finite; therefore, we do not

attempt to explain the absolute smallness of Σ̃(p2) compared to the Planck scale, employing

symmetry (the “big” hierarchy problem). Rather, we calculate the quantum correction from

m2
h, which gives us a prediction on observable mass and see whether it can consistently

remain small (the technical hierarchy problem).

In terms of the pole mass (21), we have the expression for the observable mass (24),

m2(p2) = m2
h + Σ̃(p2)− Σ̃(m2

h)− (p2 −m2
h)

dΣ̃

dp2
(m2

h)

≡ m2
h + δm2

h(p
2)

(25)

We can only measure the energy-dependent mass m2(p2) from the reference m2
h.

It has the same structure as the photon self-energy (11), canceling quadratic and loga-

rithmic divergences, which is scheme-independent. This is similar to the on-shell renormal-

ization; however here, we do not use counterterms and the mass slides whenever we include

a correction.

The self-energy Σ̃(p2) contains the contributions from various fields at various orders of

perturbations. The largest contribution comes from the one-loop amplitude of the top quark

([2], Eq. (10.33))

−iΣ̃t
2(p

2) = −2y2tNc

∫ 1

0

dx

∫
d4ℓ

(2π)4
ℓ2 − x(1− x)p2 +m2

t

(ℓ2 + x(1− x)p2 −m2
t )

2
, (26)
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FIG. 1. The correction to the Higgs mass squared from the top quark loop, as a function of the

relativistic energy
√
p2. We use mh = 125.4,mt = 173, all in GeV, and yt = 1. For large p2, the

power running becomes dominant and the correction is relatively large. For
√
p2 = 250GeV, the

mass correction is δm2
h = −181.78GeV2 or −1.156%.

where yt is the diagonalized top quark Yukawa coupling, Nc = 3 is the number of colors

[8] and mt is the top quark mass. This quantity is divergent, but we can observe only the

difference in (25). Note that the contribution from the top-quark loop Σ̃t
2(p

2) can account

for the matching (21) to accuracy O(y2t ).

Using any of the above regularizations, we obtain the mass correction

δm2
h(p

2) = − 3y2t
16π2

[
p2 −m2

h + 6

∫ 1

0

dx(m2
t − x(1− x)p2) log

m2
t − x(1− x)p2

m2
t − x(1− x)m2

h

]
+O(y3t ),

(27)

which is finite; it is free of the divergent quantity Λ and expressed in terms of the finite

parameters m2
t and m2

h.

Note that the scalar mass shows power running in p2, which we regard as the sliding

scale. Because the chiral symmetry does not protect it, a significant correction is possible.

The mass correction is real for p2 < 4m2
t , above which the Higgs decays to a top pair.

The momentum is not extended to an arbitrarily high scale and the top quark is the “new

physics.”

We plot the correction to the Higgs mass squared for typical parameters in Fig. 1.

Now, we clarify the technical hierarchy problem. First, the cutoff dependence is small.

The use of a bare parameter gives us an illusory dependence on Λ. A quadratic divergence in

Σ̃(p2) in the cutoff scheme is canceled. The loop correction should not be scheme-dependent.

There is no miraculous cancellation of ultraviolet scale dependence between the bare parame-

ter and the correcting self-energy as in (24). An equivalent description is in (25), where there
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is the cancellation of the same quantities at two different scales, to accuracyO((p2−m2
h)/Λ

2).

The cutoff Λ used in the regularization can also be regarded as the upper bound of the en-

ergy scale, e.g.,
√

p2 in (25), to which the description of the Higgs field in the Standard

Model is valid [6]. We can match new physics parameters, for instance, the mass of a heavy

field, to the parameters at Λ. In the above Higgs mass correction (27), the dependence of

the Λ is canceled to accuracy O((p2−m2
h)/Λ

2). The mass correction is not sensitive to high

energy cutoff to this accuracy.

Secondly, the contribution from heavy fields is suppressed. The mass correction formula

(27) shows exemplar features of the decoupling [9]. In the Standard Model, the top quark

mass and the Yukawa coupling are proportionally relatedmt ∝ yt. However, we may formally

regard them as independent and treat the top quark as a heavy fermion at high, e.g. the

Grand Unification, scale. Then, the mass correction (27) is suppressed as

δm2
h(p

2) ≃ −3y2t (p
2 −m2

h)
2

16π2

[
1

10m2
t

+
p2 + 2m2

h

140m4
t

+ . . .

]
, (28)

and this fermion decouples for mt ≫ 1. The decoupling also occurs for an additional heavy

scalar [10].

To conclude, the loop corrections to the scalar mass-squared from other fields are in-

sensitive to the new physics parameter and are suppressed if they are very heavy. This

supports the rationale for the smallness of m2
h against quantum corrections. The essence of

renormalization lies in the energy dependence of a physical parameter, which arises from a

finite correction from finite parameters.
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