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Modeling non-planar coils in a full-scale stellarator
M. Backmeyer, N. Riva, M. Lyly, A. Halbach, and V. Lahtinen

Abstract—Design and modeling of a stellarator fusion reactor is
a multidisciplinary effort that requires a tight integration between
simulation of highly nonlinear multi-physics and representation
of non-planar complex geometries. The critical current calcu-
lation and the design of the mechanical structures are among
the most crucial aspects as they set size, cost, and time to
build the stellarator. Because of the asymmetric and non-planar
nature of its components the modeling of such figures of merit
needs to be carried out at large scale, without the possibility
of taking advantage of any particular symmetry. In this work
we develop a three-dimensional model for the analysis of the
magnetic field and forces, necessary for such considerations,
for complex coil geometries, such as stellarators, where a two-
dimensional approach can not provide accurate analyses and
verification of assumptions. Moreover, this method can quickly
generate a large amount of critical modeling data (e.g. Lorentz
load, displacement and stresses) that could be integrated into a
workflow for coil design optimization based on machine learning
or other recent optimization tools.

Index Terms—fusion, stellarator, simulation, DDM, non-planar
geometry

I. INTRODUCTION

THE most advanced approach for nuclear fusion involves
using toroidal magnetic confinement systems, specifically

Tokamaks and Stellarators. Both systems use magnetic fields
to confine the plasma. In both Tokamaks and Stellarators,
particles can drift off course and hit the chamber walls due
to the inhomogeneous magnetic field. In Tokamaks one set of
coils generates a toroidal field, a central solenoid operated
in pulsed mode induces a toroidal current in the plasma,
and a third set of coils generates an outer poloidal field
that shapes and positions the plasma. The combination of
the field components result in a twisted magnetic field that
confines the particles in the plasma. Stellarators confine the
plasma by means of non-planar coils only, eliminating the
need for the solenoid/transformer. This allows Stellarators
to operate without plasma disruption (typically problematic
for Tokamaks) and in a steady state for continuous energy
production [1], [2]. For the stellarator coil optimization in the
design process, it is crucial to have an accurate simulation
of the magnetic field and loads on the coils to meet physics
requirements and engineering constraints. Therefore, Finite
Element Modeling (FEM) tools are mandatory to analyze the
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electro-magneto-thermal and mechanical response of a high-
temperature superconductor (HTS) non-planar coil [3] and
predict its safe-operation behavior. Even with an accurate
knowledge of the coil geometry, it is challenging to predict
its performance accurately. Not only too large Lorentz loads
can damage the tape and reduce the coil’s performance [4],
but excessive deformation of the coil systems can lead to a
poor performance of the plasma confinement itself [5].
The non-planarity of stellarator coils, may require to solve full
scale three-dimensional (3D) FEM problems with much larger
number of degrees of freedom with respect to Tokamaks due
to the absence of trivial symmetries (such as the axisymmetric
one in tokamaks) [6]. The computational limit with sequential
computing or even loop-level parallelism is quickly reached.
In this work we present the analysis of the magnetic field and
Lorentz loads of a full-scale stellarator based on the Helias-3
configuration [7], [8] using the domain-decomposition meth-
ods (DDM) which leads to short computation times and high
accuracy. This is a continuation of our previous work, where
we introduced Quanscient Allsolve, a custom cloud-
based simulation tool in the context of DDM-accelerated
quench and AC loss simulations [9].

Computational times of large and complex FEM scale mod-
els in the order of minutes could enable the use of Artificial
Intelligence (AI) tools to corroborate and perform generative
design to optimize the mechanical structures.

In section II we describe the procedure to obtain the coil
orientations , briefly mention the formulation and describe
the utilized custom DDM tool. In section III, we present
our results, compared to results using COMSOL, and a mesh
sensitivity study. Finally, in section III we draw conclusions.

II. COMPUTATION MODEL

The stellarator geometry that will be analyzed is shown
in Figure 1 and is based on the HELIAS-3 [7], [8]. This
configuration consists of 30 coils and produces an average
magnetic field on the magnetic axis (the ”middle line” of the
plasma in Fig 1) of 8.9T. The theoretical value is calculated
using the Biot-Savart law. One of the purposes of this work
is to evaluate the Lorentz loads on the coils and use this as
an input (for future works) to design the mechanical radial
plates. Simulating in high-detail (full-turns) all the coils is
impractical and unnecessary. A possible approach is to focus
on the mechanical design of a single coil (See Figure 1 inset)
and simulate the overall magnetic field experienced by that
coil (self-field + remaining coils) where Ncoil − 1 coils are
homogenized (all the turns are considered to be homogenized
in one single turn) and the single coil of interest is simulated
in great detail. This approach allows to focus on one coil at
the time and generate data (i.e. Lorentz loads) for a reduced
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Fig. 1. The geometry of the full stellarator with a diameter of
approx. 20m.

and separate model (3D mechanical) that can be used for coil
design in an optimization workflow.

Specifically, in this work the stellarator is composed of a
total of 30 non-planar coils: 29 coils are homogenized with
rectangular cross-section and carry 13.27MA; one of the coils
only is modeled on a detailed level with 208 turns (see Figure 1
inset) and carries Iop = 63 798A (i.e. 13.27MA/208). A
magnetostatic field map study of the full-stellarator assembly
is carried out by applying the current density to each of
the 29 homogenized coil as well as to the 208 turns of the
detailed coil (see section II-A). Note that given the complex
geometry of each coil, it’s necessary to determine local curvi-
linear coordinates aligned with the coil/turn orientations via
numerical method similar to the methods utilized in [3], [10]
to introduce the current density normal to each coil. In these
works the utilized software was COMSOL, where a Curvilinear
Coordinate module (or the Coil Geometry Analysis) can be
used for this purpose. In this work we introduce a new method
based on the Laplace equations (see section II-B).
Finally, solving the problem was accelerated using Domain
Decomposition Method (DDM) on an Amazon Web Services
(AWS) cloud infrastructure suited for multiphysics DDM,
provided by Quanscient (www.quanscient.com) under the
Quanscient Allsolve software. Its distributed memory
management ensures memory requirements will not be a
bottleneck.

A. Magnetostatic A Formulation

The computational domain Ω consists of air Ωair and
conducting coils Ωcoil and is enclosed by the domain boundary
∂Ω. The well-known A-formulation is solved to find the
distribution of the the magnetic vector potential A. The
discretization of the magnetic vector potential A is carried
out using Whitney edge elements [11].

B. Curvilinear Coordinates

To introduce the current density J oriented along the cable,
the curvilinear coordinates of the cables/turns need to be

Fig. 2. Setup for the computation of the cable orientation.

determined. A local coordinate system is introduced at each
point in the cable (see Figure 2) and described by the gradients
of the three scalar potentials φ1, φ2 and φ3, i.e.

e⃗1 = ∇φ1, e⃗2 = ∇φ2, e⃗3 = ∇φ3. (1)

Exploiting the mutual orthogonality of the surfaces Γ1 and
Γ2, the scalar potential φ1 is obtained solving a Laplace
problem. It represents the solution to the boundary value
problem,

∆φ1 = 0 on Ω (2)

φ1 = 0 on Γ1 (3)

φ1 = 1 on Γ2 (4)

n · ∇φ1 = 0 on ΓN . (5)

Repeating this procedure for φ2 with interchanged boundary
conditions

φ2 =

{
0

1
on ΓN (6)

n · ∇φ2 = 0 on Γ1 and Γ2, (7)

we get with ∇φ1 and ∇φ2 two base unit vectors of the local
curvilinear coordinate system at any point of the coil. The
cross product of ∇φ1 and ∇φ2 defines the third basis vector
of the coordinate system, which is orthogonal to the cross
section and represents the direction of the current flow J

∥J∥ ,
so

∇φ1 ×∇φ2 =
J

∥J∥
. (8)

Figure 3 shows the intermediate steps of the methods on one
exemplary coil. This approach can also be used to model the
dependency of the critical current on the magnetic field orien-
tation. In that case, it is used to determine the perpendicular
and parallel field components for any tape orientation.

C. Domain Decomposition Method

The domain decomposition method (DDM) in the FEM con-
text refers to the partitioning of the computational mesh into
similarly sized pieces that can each be processed on different
computing instances, allowing to distribute the computational
burden. The DDM method is used to improve the speed of
numerical simulations in solid mechanics, electromagnetism,
flow in porous media, etc., on parallel machines from tens
to hundreds of thousands of cores. This is well suited to take
advantage of supercomputer or cloud architectures, which was

www.quanscient.com
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(a) φ1 as colorplot and the normal
vectors ∇φ1 as vectors.

(b) φ2 as colorplot and the normal
vectors ∇φ2 as vectors.

(c) The resulting coil orientation J
∥J∥ as vector plot.

Fig. 3. Intermediate steps to find the orientations of the
coils/turns.

already shown in [9]. In this work, the optimized Schwarz al-
gorithm is used in the DDM framework: this algorithm solves
the problems defined on the smaller mesh pieces iteratively
using generalized minimal residual method (GMRES) and
exchanges boundary data between domains at each iteration
to reach convergence. Compared to the pioneering work of
[12] the method used in this work accelerates convergence
using GMRES and optimized boundary data [13].

III. RESULTS

A. Field plots

The numerical study is conducted for different interpolation
orders and mesh resolutions. First of all, the resulting fields for
the coarser mesh and cubic elements are presented. In Figure 4,
the distribution of the magnetic field in the full stellarator is
shown. It matches well the expected theoretical value of 8.9T
on the magnetic axis.

Figure 5 depicts the magnetic field map on the cable volume,
and its peak is 15.45T. If we consider an Iop = 63 798A and
a Bpeak = 15.45T we expect a peak of the Lorentz load of
Fdens = I×B ≃ 980 kN·m−1. Figure 6 represents the Lorentz
force density defined as I×B that could be used as an input for
a mechanical model to evaluate what are the maximum stresses
experienced by the coil. The maximum of the Lorentz load of
0.975MN · m−1 is in reasonable agreement with the rough
calculation estimated above and with the maximum Lorentz
loads in literature [14]–[17].

Fig. 4. Magnetic flux density of the full-scale stellarator.

Fig. 5. Magnetic field B on the full-scale full-turns detailed coil.

B. Validation against COMSOL Multiphysics

The solution was validated against another simula-
tion software, namely the commerical software COMSOL
Multiphysics [18], in which a direct solver for the coil
analysis, and an iterative solver with Auxiliary-Space Maxwell
(AMS) preconditioner for the magnetic problem were used.
In both simulation tools, the discretization was performed
using linear elements. Figure 7 shows the comparison of the
magnitude of the magnetic flux density on the magnetic axis
(marked in red in Figure 1) obtained from both simulations
of the stellarator. The different coil orientation acquisition
methods (Coil Geometry Analysis vs. Laplace Problem) lead
to computations on distinct mesh configurations. The analysis
with COMSOL was performed on coils represented with circu-

Fig. 6. Lorentz loads on the full-scale full-turns detailed coil.
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Fig. 7. Comparison of the magnetic field flux along
magnetic axis between COMSOL (dashed) and
Quanscient.allsolve (continuous).

lar cross sections. That explains the slight mismatch of 0.66 %
of the peak values.

The runtime statistics of both simulations will be compared
in subsection III-D.

C. Mesh sensitivity analysis

As a next step, we study the dependency of the solution
on the mesh resolution and the interpolation order. The same
simulation was repeated for a finer mesh, obtained by splitting
the elements, and for linear and cubic interpolation order.
Results are presented in Figure 8. Increasing the interpolation
order leads to smoother field results. The solutions of the two
mesh resolutions for cubic interpolation differ by a RMSE
below 0.8%, indicating that all effects are already covered
by the coarser mesh. However, the ability to perform large
simulations on different mesh resolutions enables the use of
machine learning models for (mechanical) optimization. Multi-
level machine learning algorithms learn on the differences of
the observable on successive mesh resolutions [19].

D. Runtime statistics

Table I states the number of unknowns, the number of cores
used and the computation time for different model setups. The
advantage of using DDM is clearly visible if we compare
the different simulations that were run on Quanscient
Allsolve. For example, an increase of the number of DoFs
by around 8 (see column 2 and 3) has rarely any effect on the
runtime if the number of cores is adapted as well. Using DDM
with Quanscient Allsolve makes it even possible to run
the largest problem of over 317 million DoFs in 17 minutes.

IV. CONCLUSION

In this paper, a magnetostatic simulation of a full-scale stel-
larator was carried out. Utilizing Quanscient Allsolve,
an in-house Domain Decomposition Method (DDM) tool was
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Fig. 8. Magnetic flux density norm on axis of the stellarator
compared for different orders and mesh resolutions.

TABLE I: Comparison of the computation times for different
setups.

Software COMSOL Quanscient
Allsolve

Quanscient
Allsolve

Quanscient
Allsolve

Shape
function
order

linear linear cubic cubic

Mesh res-
olution

coarse coarse coarse fine

MDoFs 1.5 5 39 317
Computer 16 cores,

96 GB
RAM

15 Cores 50 Cores 500 Cores x
2 CPUs

Runtime
(min)

23 < 4 4 17

benchmarked against COMSOL, while also demonstrating bet-
ter scalability on cloud infrastructure. In addition, the Laplace
problem was solved to individuate the correct current flow
along the complex path of the stellarator coils.

A single coil was modeled in high detail, while homogeniz-
ing the others. This allowed us to capture the magnetic field
and, consequently, Lorentz loads experienced by the chosen
coil, considering both its self-field and contributions from the
remaining coils.

The results, when compared with those obtained from
COMSOL, showcased a high degree of accuracy. Furthermore,
a mesh sensitivity analysis showed the advantages of higher
interpolation orders over finer mesh refinements.

Ultimately, this method serves as a stepping stone to rapidly
generate large amount of critical data such as Lorentz loads,
displacement, and stresses. These data can be integrated into a
workflow for coil design optimization, potentially leveraging
machine learning or other contemporary tools.
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