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Symmetry breaking is a fundamental concept in understanding quantum phases of matter, studied
so far mostly through the lens of local order parameters. Recently, a new entanglement-based probe
of symmetry breaking has been introduced under the name of entanglement asymmetry, which has
been employed to investigate the mechanism of dynamical symmetry restoration. Here, we provide
a universal formula for the entanglement asymmetry of matrix product states with finite bond
dimension, valid in the large volume limit. We show that the entanglement asymmetry of any
compact – discrete or continuous – group depends only on the symmetry breaking pattern, and is
not related to any other microscopic features.

In our current understanding of many-body quantum
systems, symmetry and entanglement stand as two
pivotal concepts, playing a crucial role in shaping phases
of matter and characterizing quantum dynamics [1–6].
Surprisingly, their connection has received limited atten-
tion until fairly recently, when the concept of ‘symmetry-
resolved entanglement’ has been introduced [7–11]. Since
then, this interplay has been extensively investigated
both theoretically [12–16] and experimentally [17, 18],
and it has turned out to be crucial to fully understand
some features of entanglement dynamics [8, 17] and de-
tection [19]. However, the connection between symmetry
breaking and entanglement has remained elusive. Re-
cently, such a connection has been explored by means
of the entanglement asymmetry. The latter has been
used to analyse the restoration (or lack thereof) of a
U(1) symmetry in the quench dynamics of quantum
spin chains [20–22], and employed to characterize the
symmetry-breaking pattern in field theory [23]. In this
work, we prove a general conjecture about the entangle-
ment asymmetry, proposed in Ref. [23] for finite groups,
and further extend it here to compact Lie groups. In par-
ticular, we show that the entanglement asymmetry of a
large region is only related to the symmetry of the state,
and does not rely on any additional features of the lat-
ter. We provide an extensive characterization for trans-
lational invariant Matrix Product States (MPS) [24, 25]
in the thermodynamic limit, supporting our theoretical
results with numerical simulations using iDMRG [26].

I. INTRODUCTION

We first summarize the main definitions, following
closely Ref. [23], valid for the entanglement asymmetry
of any compact group.

Let us consider a (possibly mixed) state ρ of a bipartite
system A∪ Ā, described by the Hilbert space H = HA ⊗
HĀ . We assume that a finite group G acts unitarily on
H as map G ∋ g 7→ ĝ ∈ End(H), with ĝ = ĝA ⊗ ĝĀ.
Given ρ, we trace out the degrees of freedom of Ā and

we construct the reduced density of matrix of A as ρA ≡
TrĀ (ρ). What we ask is whether ρA is symmetric under
the group G, namely whether ρA = ĝAρAĝ

−1
A holds for

any g ∈ G, or is violated for some group elements, thus
signaling a breaking of the symmetry. To do so, for finite
groups we introduce the symmetrized state

ρ̃A ≡ 1

|G|
∑
g∈G

ĝAρAĝ
−1
A (1)

that can be generalized to

ρ̃A ≡
∫
G

dg ĝAρAĝ
−1
A (2)

for generic compact Lie groups, with
∫
G
dg the normal-

ized Haar measure [27]. It is easy to check that ρ̃A is
symmetric under G for any group element. Therefore,
comparing the two states ρA and ρ̃A would lead naturally
to probing (spontaneous or explicit) symmetry-breaking
at the level of the subsystem A. In doing so, one intro-
duces the Rényi entanglement asymmetry, defined as

∆Sn ≡ 1

1− n
log

Tr (ρ̃nA)
Tr (ρnA)

, (3)

that is the Rényi entropy difference of the two states.
As explained in Ref. [23] the computation of the Rényi
entanglement asymmetry for n ≥ 2 integer requires the
calculation of the charged moments of ρA, that are the
elements appearing in the sum

Tr(ρ̃nA) =

=
1

|G|n−1

∑
gi∈G

Tr(ρAg1 · · · ρAgn−1ρA(g1 · · · gn−1)
−1).

(4)
Here, and later (if not specified explicitly), we omit the
index A and the hat on the group operators for notational
convenience.

In this work, we are interested in the case where the
quantum state ρ is symmetric under a subgroup H of G,
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defined as

H ≡ {h ∈ G|ρ = hρh−1} ⊂ G. (5)

In this case, we say that the symmetry-breaking pattern
G → H, arises for the state ρ. The first main result of
this work is to prove that the Rényi asymmetry of a very
large subsystem A is

∆Sn ≃ log
|G|
|H|

, (6)

and thus it only depends on the symmetry-breaking pat-
tern. Eq. (6) appeared firstly as a conjecture in Ref. [23],
and it has been previously proven only for the trivial case
of zero-entanglement states (see also Ref. [28] for some
specific cases).

The second contribution to the topic is the investiga-
tion of the entanglement asymmetry for generic compact
Lie groups, whereas only the case of U(1) has been pre-
viously considered explicitly [20, 21]. We prove that

∆Sn ≃ 1

2
(dimg− dimh) log |A|+ . . . , (7)

with g, h the Lie algebras of G,H respectively. This result
is in agreement with the scaling ∆Sn ≃ 1

2 log |A| observed
in Refs. [20, 28] for the case of a broken U(1) symmetry.
Also, Eq. (7) is reminiscent of the logarithmic scaling
of entropy previously found in Refs. [29–31] for highly
degenerate states.

Finally, we provide technical details regarding the ex-
plicit construction of the symmetrized state in terms of
the symmetry sectors (see Appendix A). In this way,
we make a connection with the original definition of
the asymmetry proposed for abelian groups in Ref. [20],
showing its natural extension to non-abelian groups.

II. ENTANGLEMENT ASYMMETRY OF
FINITE GROUPS

We focus on translational invariant states with low en-
tanglement, assuming that those can be efficiently de-
scribed by MPS [32, 33].

Let us consider a translational invariant (not normal-
ized) MPS on a finite chain of size L [34]:

|ΨL⟩ =
d∑

s1,...,sL

Tr (Ms1 . . .MsL) |s1, . . . , sL⟩ . (8)

Here {Ms} are D × D matrices, and D is the bond di-
mension of the MPS, and d the dimension of the local
Hilbert space. We are interested in the limit L → ∞,
such that the finite size effects are washed out; we de-
note the corresponding state by |Ψ⟩.

The action of a global symmetry G is implemented by
the operator

g = ug ⊗ · · · ⊗ ug, (9)

Figure 1. Diagrammatic representation of (i) R(a,a′)(b,b′) as
in Eq. (12), (ii) (Rg)(a,a′)(b,b′) as in Eq. (15), (iii) Rℓ

(a,a′)(b,b′),
and (iv) of the charged moments as in Eq. (4) where P in (v)
is the projector in Eq. (19). We replace the standard trace
loop by circles at the end points that virtually connect to each
other only horizontally at the same level.

with ug a d × d unitary matrix. By definition, |Ψ⟩ is
symmetric under the element g whenever

| ⟨Ψ| g |Ψ⟩ | ≡ lim
L→∞

| ⟨ΨL| g |ΨL⟩ |
⟨ΨL|ΨL⟩

= 1, (10)

otherwise, say if | ⟨Ψ| g |Ψ⟩ | < 1, |Ψ⟩ is said to be asym-
metric under g. We now discuss the consequence of the
symmetry, or its lack, at the level of the local tensor M ,
relating them eventually to the large-scale behavior of
the charged moments.

To do so, we first express

⟨ΨL|ΨL⟩ = Tr
(
RL

)
, (11)

where R is a D2 ×D2 matrix given by

R(a,a′)(b,b′) =
∑
s

(Ms)a,b(Ms)a′,b′ , (12)

with a, b, a′, b′ = 1, . . . , D. We represent it pictorially in
Fig. 1(i). We assume that R has a single maximum ei-
genvalue in absolute value, a technical assumption that
is physically equivalent to clustering of correlation func-
tions as explained in [35] (see Appendix C). Furthermore,
we normalize M such that the maximum eigenvalue of R
is 1. Within, this assumption, it is easy to show that
|ΨL⟩ is normalized in the infinite volume limit, namely

lim
L→∞

⟨ΨL|ΨL⟩ = 1. (13)

Similarly, we express

⟨ΨL| g |ΨL⟩ = Tr
(
RL

g

)
, (14)

with Rg a D2 ×D2 matrix defined by

(Rg)(a,a′)(b,b′) =
∑
s,s′

(Ms)a,b(Ms′)a′,b′(ug)s′s. (15)
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This is represented in Fig. 1(ii). The bar de-
notes the complex conjugation. As a consequence of
| ⟨ΨL| g |ΨL⟩ | ≤ | ⟨ΨL|ΨL⟩ |, coming from the unitarity
of g, it is easy to bound the spectrum of Rg from above,
for instance its operator norm satisfies

∥Rg∥ ≡ sup
|v⟩̸=0

| ⟨v|Rg |v⟩ |
⟨v|v⟩

≤ 1. (16)

In particular, ∥Rg∥ = 1 iff the state is symmetric since
| ⟨Ψ| g |Ψ⟩ | = lim

L→∞
|Tr

(
RL

g

)
|. Also, for the asymmetric

case ∥Rg∥ < 1, one gets an exponential decay of the
overlap

⟨ΨL| g |ΨL⟩ ∼ ∥Rg∥L (17)

in the large L limit.
At this point, we have all the ingredients to compute

the charged moments of a subregion A. For the sake of
simplicity, we focus on A as a large but finite interval of
length |A|. In this way, we express the moment of ρA as

Tr (ρnA) = lim
L→∞

Tr
((

R⊗n
)|A|

P
(
R⊗n

)L−|A|
P †

)
, (18)

where P is the D2n × D2n matrix associated with the
following permutation of bonds (see e.g. Ref. [22])(

1 2 3 . . . 2n− 1 2n
1 4 3 . . . 2n− 1 2

)
(19)

as represented pictorially in Fig. 1(v). Let us observe
that, since ∥R∥ = 1, one has

lim
L→∞

RL = Π, (20)

with Π a rank-one projector, namely Π2 = Π and
Tr(Π) = 1. As an important consequence, in the limit
|A| → ∞ the Rényi entropy converges (and it satisfies
the area law [35]) to

Sn =
1

1− n
logTr

(
Π⊗nPΠ⊗nP †) . (21)

With a similar approach, we can compute the charged
moments of A as

Tr (ρAg1 . . . ρAgn) =

lim
L→∞

Tr
(
(Rg1 ⊗ · · · ⊗Rgn)

|A|
P
(
R⊗n

)L−|A|
P †

). (22)

From the expression above, it is clear that the charged
moments can only converge to a constant or vanish expo-
nentially in the large |A| limit, depending on the operator
norm of {Rgj}j=1,...,n. For instance, if gj is a symmetry
of the state, say gj ∈ H, then ∥Rgj∥ = 1. Thus, given
eiϕj the largest eigenvalue (in absolute value) of Rgj we
have

lim
L→∞

RL
gje

−iϕjL = Πj , (23)

with Πj a rank-one projector, leading immediately to

lim
|A|→∞

Tr (ρAg1 . . . ρAgn) e−i(ϕ1+···+ϕn)|A| =

Tr
(
(Π1 ⊗ · · · ⊗Πn)PΠ⊗nP †) . (24)

On the contrary, whenever ∥Rgj∥ < 1 for some j, then
an exponential decay is observed and one gets

Tr (ρAg1 . . . ρAgn) ∼ (∥Rg1∥ . . . ∥Rg1∥)
|A|

. (25)

We finally notice that the terms in Eq. (4) with gi ∈
H are equal to Tr(ρnA), since, whenever g ∈ H one has
[ρA, g] = 0, as a consequence of the definition Eq. (5)
(see Ref. [23]). Thanks to the last property and the
vanishing of the other charged moments in Eq.(25), one
gets from Eq. (4) the universal prediction in Eq. (6) for
finite groups.

To conclude this section, we emphasize that we did not
find any direct relation between the correlation length
of the state |Ψ⟩, related to the spectral gap of R, and
the rate of exponential decay of the charged moments,
ruled instead by the norm of Rg (see Appendix B). This
might seem in contrast with the previous analysis of the
massive Ising field theory in the ordered phase of Ref.
[23], where a unique length ξ = (2m)−1 is present, and
the two quantities mentioned above are closely related.
However, we believe that the latter feature is specific to
relativistic field theories, as it does not have a counter-
part to lattice models.

III. GENERALIZATION TO COMPACT LIE
GROUPS

In this section, we prove the formula in Eq. (7) for
compact Lie groups. In particular, while the analysis
of the exponential decay of the charged moments in
Sec. II applies to both finite and continuous groups, dif-
ferences arise in the computation of the entanglement
asymmetry, depending on whether the Haar measure is
discrete/continuous. We provide a saddle point analysis,
generalizing the approach of Ref. [20], where the U(1)
group was considered, to tackle any compact Lie group
G.

To do so, we first express the asymmetry as an integral

∆Sn =
1

1− n
log

(∫
G

dg1· · ·
∫
G

dgn−1f(g1, . . . , gn−1)

)
,

(26)
with f : Gn−1 → C defined by

f(g) ≡
Tr

(
ρAg1ρAg2 . . . ρA(g1 . . . gn−1)

−1
)

Tr (ρnA)
, (27)

with g ≡ (g1, . . . , gn−1). From our analysis, we know
that |f(g)| ≤ 1, and |f(g)| = 1 iff g ∈ Hn−1. Also, from
the analysis of Sec. II, we have that |f(g)| goes to zero
exponentially in |A| whenever g /∈ Hn−1. These consid-
erations suggest that the dominant contribution to the
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integral in Eq. (26) comes from a small neighborhood
of the submanifold Hn−1, and a saddle point analysis
around those points can be performed. Some technical
details regarding the validity of this approach are sum-
marized in the Appendix D.

To perform the integral in Eq. (26), it is convenient to
decompose G in terms of H and its coset G/H. For the
sake of simplicity, we assume explicitly that G is connec-
ted and G/H (that is not a group, in general) is a smooth
manifold, albeit these hypotheses can be easily relaxed.
Then, for any gj ∈ G, we decompose

gj = hje
Xj , (28)

with hj ∈ H and Xj ∈ g/h, that is the tangent space of
the coset G/H. In a neighborhood of Hn−1 we expand
at second order the function f (see Appendix D)

log f(g) ≃ −1

2
XTN(h)X|A|, (29)

with XTN(h)X a non-degenerate quadratic form over
(g/h)n−1 depending on h = (h1, . . . , hn−1). Since |f(g)|
has a local maximum at g ∈ Hn−1, corresponding to
X = 0, the quadratic form above should be positive, and
we can perform the Gaussian integral over X as follows∫

Gn−1

dgf(g) ≃∫
Hn−1

dh

∫
(g/h)n−1

dX exp

(
−1

2
XTN(h)X|A|

)
≃

(
|A|
2π

)−n−1
2 dim(g/h) ∫

Hn−1

dh (detN(h))
−1/2

.

(30)

In the end, we got a power-law decay in |A|, while the
last integral over h gives just a model-dependent propor-
tionality constant that is beyond our purpose. Putting
everything together, we eventually get Eq. (7) up to finite
(order O(1)) terms in the limit |A| → ∞.

IV. NUMERICAL RESULTS

In this section, we discuss the ground state of a
quantum spin chain, and we provide numerical results
for its entanglement asymmetry to support our predic-
tions. Let us consider the spin-1/2 XXZ model defined
as

HXXZ =
∑
j

(
σx
j σ

x
j+1 + σy

j σ
y
j+1

)
+∆

∑
j

σz
jσ

z
j+1, (31)

where σα
j (α = x, y, z) are the Pauli matrices at posi-

tion j. We focus on the discrete group G generated by
the rotation of π/2 around the y axis, namely

∏
j e

−i θ
2σ

y
j

with θ = 0, π/2, π, 3π/2. The Hamiltonian HXXZ is
invariant under the rotations of θ = 0, π, while the
angles θ = π/2, 3π/2 correspond to explicitly broken

elements. We consider the ground state of the model
for various parameters ∆ and we aim to characterize
the entanglement asymmetry of large regions: careful is
needed since, by the Lieb-Schultz-Mattis Theorem[36],
the ground state of the model is never gapped. We dis-
cuss separately the phases as a function of ∆.

For ∆ > 1, the antiferromagnetic phase, transla-
tional symmetry and the rotation of θ = π around y
are spontaneously broken, and two degenerate ground
states are present in the infinite volume limit. These
are adiabatically connected to the Néel states |Ψ0⟩ =
|↑↓↑↓, . . .⟩ , |↓↑↓↑, . . .⟩, which become exact ground states
in the limit ∆ → +∞. At finite size, the two states above
hybridize, and a single non-clustering ground state is
present. However, we focus on the clustering state with fi-
nite correlation length obtained via tensor network meth-
ods (both DMRG and iDMRG in the following), starting
from a Néel state; this is an approximation of the ground
state in the infinite volume limit, for which the theory
developed in the main text is expected to be predictive.
In this case, the invariant subgroup H ⊂ G associated to
this state is the trivial group (rotations with θ = 0), and
we get ∆S2 ≃ log |G|

|H| = log 4 for large subsystem sizes.
For ∆ < −1, the ferromagnetic phase, the two states

|Ψ0⟩ = |↑↑ . . .⟩ , |↓↓ . . .⟩ are exact ground states at finite
size. We study the ground states with all spin up along
the z axis, which does not have spatial entanglement.
For the state above, an elementary calculation gives the
charged moments of an interval of length ℓ as

Tr
(
ρAgρAg

−1
)
=


1 θ = 0,
1
2ℓ

θ = π/2, 3π/2,

0 θ = π.

(32)

Therefore, the asymmetry of the group G converges ex-
ponentially fast to ∆S2 ≃ log 4 in the subsystem size.
This is compatible with the general prediction of Eq. (6),
since the ground state above is broken by the rotation
with θ = π and it admits the trivial group as invariant
subgroup.

For ∆ = (−1, 1) the system is critical, a single ground
state is present at finite size and the gap decays algebra-
ically in the infinite size limit. This regime is not well-
described by the formalism presented in the main text,
since critical states are known to be not efficiently rep-
resented by MPS due to their algebraically decaying cor-
relations. Still, we conjecture the validity of the main
prediction (Eq. (6)), which reads as ∆S2 ≃ log 2 since
spontaneous symmetry breaking does not occur and the
ground state shares the same symmetries of the Hamilto-
nian (in particular it is invariant under θ = π). We fi-
nally observe that the limit ∆ → 1− is tricky, since the
hamiltonian becomes rotational invariant for any θ; how-
ever, a comprehensive discussion of the pathological case
∆ = 1 is beyond our scope.

In Fig. 2 we provide numerical results for all the
phases employing both DMRG and iDMRG. The latter
(Fig. 2(a)) is efficient in the antiferromagnetic and fer-
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Figure 2. Rényi-2 entanglement asymmetry ∆S2 of the
ground state of the XXZ model for several values of ∆, as
a function of the length of the system considered ℓ, computed
using (a) iDMRG, bond dimension considered D = 128 and
(b) DMRG, D = 160. The dashed grey line is the asymptotic
value log 4, while the dashed black line marks the value log 2.
We highlight the exponential fit of ∆S2 in the critical region,
by dashed yellow lines.

romagnetic phases since the correlation length is finite.
We consider a bond dimension D = 128 (which implies
a truncation error ∼ 10−9) and a unit cell of 4 sites. We
observe that ∆S2 converges to log 4 as predicted before.
The convergence is slower near the critical point ∆ = 1,
and we believe that this is due both to the divergence
of the correlation length and the restoration of the sym-
metry at ∆ = 1.

We further probe the critical regime ∆ ∈ (−1, 1) by
means of DMRG. For instance, we pick a finite-size chain
with open boundary conditions and we consider as a sub-
system the entire chain. We set the bond dimension equal
to D = 160, which implies a truncation error ∼ 10−7, and
we display the results in Fig. 2(b). We observe that ∆S2

approaches exponentially log 2 as expected. We show the
exponential fits with dashed yellow lines. Furthermore,
we check that in the gapped regime the results obtained
at finite size via DMRG show similar features with those

at infinite size (with iDRMG).

V. CONCLUSIONS

In this work, we establish the validity of a universal
prediction of the entanglement asymmetry for both dis-
crete (Eq. (6)) and continuous groups (Eq. (7)). Our
analysis is based on the properties of translational invari-
ant MPS with finite bond dimension, and our proof relies
on the relation between the symmetry of the state and
the spectral properties of the corresponding local tensors.
Our results are compatible with the universal values of
the entanglement asymmetry observed in Ref. [28] in a
global quench at short times (compared to the subsystem
size) and in Ref. [23] for the ground state of the Ising
field theory.

Our predictions mainly rely on the proof of the expo-
nential decay in Eq. (25), derived for one dimensional
tensor network with finite bond dimension, which comes
from the bound ||Rg|| < 1, g /∈ H discussed in the main
text.

Interesting generalizations could be provided. For ex-
ample, we expect that, if boundary effects are present
and symmetries are broken by the boundary conditions
only (see e.g. [37]), the corresponding charged moments
should not decay exponentially to zero and violation to
our universal predictions could be observed. Also, we be-
lieve that our analysis could be extended to mixed states
described by Matrix Product Operator (MPO), which are
known to efficiently simulate thermal states [38] and pos-
sibly other stationary ensembles [39]. Finally, tensor net-
works in higher dimensions, as the Projected Entangled-
pair States (PEPS) [40], important for topological phases
of matter and lattice gauge theories, might be investig-
ated as well within a similar framework.

Some important questions remain open. First, it is not
clear what happens for ground states of critical hamilto-
nians, which are known to show algebraic decay of cor-
relation functions, and therefore are not described by
MPS [35] with finite bond-dimension. In principle, this
might not be an obstacle to the main result, as long as
an MPS with infinite bond dimension describes the state
and ||Rg|| is strictly bounded by 1 for g not belonging
to the invariant group H. In particular, a work on the
full-counting statistics of the critical Ising chain [41] sug-
gests that the generating function of the non-conserved
charges and, more in general, the charged moments might
still decay exponentially, even if the correlation length of
the state diverges.

Also, some fundamental aspects of the dynamical res-
toration of symmetries seem to be missing. For instance,
it would be interesting to understand a general criterion,
besides the specific example in Ref. [21], to detect the
lack of symmetry restoration, relating the (possibly non-
abelian) symmetries of the stationary states and the con-
served charges.

Finally, let us observe that the entanglement asym-
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metry is also experimentally measurable by means of ran-
domized measurements [42], equivalently to symmetry-
resolved entanglement [17, 19].
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Appendix A: Symmetrization of a density matrix

In this appendix, we explain how to construct explicitly
the symmetrized state ρ̃A in terms of the block decom-
position of ρA wrt the symmetry sectors, making contact
with the original definition of Ref. [20] proposed for U(1).
We first summarize the main result, and then we discuss
its derivation.

Let us decompose the Hilbert space HA in sectors, say
irreducible representations of G, as follows

HA = ⊕σ ⊕nσ
j=1 Vσ,j . (A1)

Here σ labels a generic irreducible representation of G,
and Vσ,j ⊂ HA are nσ copies of it. For any operator
acting on HA we have a block decomposition given by
the matrix elements connecting two generic subspace Vσ,j

and Vσ′,j′ . Here, we state that

• The blocks of ρ̃A connecting two distinct irreducible
representations σ and σ′ are vanishing.

• The block of ρ̃A connecting Vσ,j and Vσ,j′ is propor-
tional to the identity. Moreover, its trace is equal
to the corresponding block of ρA, a property which
fixes unambiguously the proportionality constant.

This is represented pictorially in Fig. 3. The result
above is a direct consequence of the well-known Schur
lemma, and we refer the reader to Ref. [27] for details.
For completeness, we discuss first a simple derivation for
abelian groups, and then we provide a complementary
approach for generic (non-abelian) groups.

1. Abelian groups

For abelian groups, a straightforward calculation start-
ing from the definition leads directly to the result.

We first observe that, since every irreducible rep-
resentation is one-dimensional (see Ref. [27]), that is
dim (Vσ,j) = 1, ĝA is proportional to the identity on the

Figure 3. Symmetrization of the reduced density matrix. The
blocks that connect equivalent representations, the blue and
green ones, become proportional to the identity. The other
(yellow) ones are washed out by the symmetrization proced-
ure.

subspace ⊕jVσ,j . In particular, given χσ the character of
σ and Πσ the orthogonal projector onto ⊕jVσ,j , it holds

ĝA =
∑
σ

χσ(g)Πσ. (A2)

Inserting the result above onto the definition (1) we get

ρ̃A =
1

|G|
∑
g,σ,σ′

χσ(g)χσ′(g)ΠσρΠσ′ =

∑
σ

ΠσρΠσ,
(A3)

where the orthogonality of characters [27]

1

|G|
∑
g

χσ(g)χσ′(g) = δσσ′ (A4)

has been employed. We stress that Eq. (A3), proved here
for finite abelian groups, holds for abelian compact Lie
groups too.

In contrast, Eq. (A3) does not apply generically to
non-abelian groups. The reason is that for those groups
a direct relation as Eq. (A2) between the action of the
group elements and the characters is absent. Specific-
ally, whenever an irreducible representation of dimension
greater than 1 appears in HA, then Eq. (A2) does not
hold.

It is also worth to explain why Eq. (A3) cannot hold
on physical ground for a non-abelian group as SU(2).
Imagine, for example, that ρA has a block of spin S > 0
with distinct entries along the diagonal, corresponding
to distinct probabilities to observe the values of Sz, the
magnetization along the z axis. The same property is
clearly shared by the matrix

∑
σ ΠσρAΠσ, as its entries

on the block above are the same as ρA. However, ρ̃A
is symmetric under rotation by construction, which im-
plies that the probabilities associated with Sz cannot de-
pend on the explicit value of the magnetization. This
observation clearly rules out Eq. (A3), and suggests the
properties the blocks of ρ̃A should have.

http://dx.doi.org/10.1103/PhysRevB.91.045138
https://iopscience.iop.org/article/10.1088/1751-8121/aa6f38/meta
https://iopscience.iop.org/article/10.1088/1751-8121/aa6f38/meta
https://iopscience.iop.org/article/10.1088/1742-5468/2014/05/P05010/meta
https://iopscience.iop.org/article/10.1088/1742-5468/2014/05/P05010/meta
https://www.nature.com/articles/s42254-022-00535-2
https://www.nature.com/articles/s42254-022-00535-2
http://dx.doi.org/10.1103/PhysRevA.79.042308
http://dx.doi.org/10.1103/PhysRevB.81.064439
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2. General case

To understand what happens in the general case, it is
convenient to think End (HA) as a Hilbert space with the
Hilbert Schmidt product ⟨f1, f2⟩ ≡ Tr

(
f1

†f2

)
. Within

this perspective, ρA → ρ̃A can be seen as an orthogonal
projection onto the subspace of symmetric operators

EndG(HA) ≡ {f ∈ End(HA) | [ĝA, f ] = 0 ∀g ∈ G}.
(A5)

In this way, the problem of the symmetrization is traced
back to find an orthogonal basis of EndG(HA) and pro-
ject ρA onto it.

First, the Schur lemma ensures that any symmetric
operator connecting two distinct irreducible representa-
tions has to vanish. Furthermore, it also tells us that n2

σ

independent invariant operators acting on the sector of
σ are present, a relation that we write as

dim
(
EndG

(
⊕nσ

j=1Vσ,j

))
= n2

σ. (A6)

To construct those operators explicitly, we choose an or-
thonormal basis of Vσ,j as

{|σ, j, a⟩}, a = 1, . . . ,dim(σ), (A7)

with j = 1, . . . , nσ. Then, it is easy to show that

Iσ,jj′ ≡
1√

dim(σ)

dim(σ)∑
a=1

|σ, j, a⟩ ⟨σ, j′, a| , (A8)

is a symmetric operator connecting Vσ,j′ with Vσ,j , whose
corresponding block is proportional to the identity.

In conclusion, the operators {Iσ,jj′}j,j′=1,...,nσ , which
are independent and orthogonal by construction, consti-
tute an orthonormal basis for EndG(HA), and one even-
tually expresses

ρ̃A =
∑
σ

nσ∑
j,j′=1

⟨Iσ,jj′ , ρA⟩Iσ,jj′ . (A9)

Appendix B: Area law saturation and exponential
correction

Here, we comment on the exponential corrections to
the area-law, that is Eq. (21), showing that they have a
different origin wrt the exponential decay of the charged
moments in Eq. (25).

To compute those corrections, it is sufficient to expand
R in terms of its spectrum as

R ≃ Π+ λΠ′ + . . . , (B1)

with |λ| < 1 the next-to-leading eigenvalue and Π′ its
corresponding projector (satisfying Π′Π = 0 and (Π′)2 =
Π′). In the large |A| limit, from Eq. (B1) one gets

R|A| ≃ Π+ λ|A|Π′ + . . . , (B2)

and similarly

(R⊗n)|A| ≃ Π⊗n + λ|A|(Π′ ⊗Π · · · ⊗Π+

Π⊗Π′ · · · ⊗Π+ . . . ) + . . . .
(B3)

Inserting Eq. (B3) in Eq. (18) one finally gets

Tr (ρnA) ≃Tr
(
Π⊗nPΠ⊗nP †)+

nλ|A|Tr[(Π′ ⊗Π⊗n)PΠ⊗nP †] + . . . ,
(B4)

where we used that the n terms of Eq. (B3) give the
same contribution, due to the symmetric properties of
the operator P under replica shift.

Similar considerations hold for the charged moments
of symmetric elements, namely belonging to H (see
Eq. (24)). In particular, we show below that the decay
rate of their exponential corrections is the same as the
ones for the Rényi entropy. We employ the well-known
result that the state Eq. (8) is invariant under g, say
g ∈ H, iff the tensor M is invariant under ug up to a
change of basis and a phase, say (see Ref. [43, 44])∑

s′

(Ms′)a,b(ug)ss′ = eiϕ
∑
b′a′

Ub′b(Ms)ab(U
−1)aa′ , (B5)

with U an invertible D×D matrix and ϕ ∈ R. Therefore,
it is evident that whenever g ∈ H, the eigenvalues of Rg

are related to the one of R via the phase-shift eiϕ. In
particular, the next-to-leading eigenvalue of Rg has the
same absolute value of λ.

Appendix C: Clustering hypothesis

An important hypothesis underlying our derivation is
the clustering property of the state under analysis, say

⟨O(x)O(y)⟩ → ⟨O(x)⟩⟨O(y)⟩, |x− y| → ∞ (C1)

with O(x),O(y) local observables with support localized
around the sites x,y respectively. This is technically
equivalent to non-degeneracy of the largest eigenvalue of
R in Eq. (12), as explained in Ref. [45]. In this ap-
pendix, we show that the clustering hypothesis is crucial
for the validity of our main result, and we discuss a simple
paradigmatic counterexample.

Let us consider the state of a spin-1/2 chain

|Ψ⟩ = √
p |↑ . . . ↑⟩+

√
1− p |↓ . . . ↓⟩ , (C2)

with 0 ≤ p ≤ 1. Since |Ψ⟩ is a linear combination of
product states, it can be realized as an MPS (of dimen-
sion 2). Also |Ψ⟩ is not clustering, as it holds

⟨σz
xσ

z
y⟩ = 1, x ̸= y (C3)

which differs explicitly from

⟨σz
x⟩⟨σz

y⟩ = (2p− 1)2 (C4)
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whenever p ̸= 0, 1.
We compute the reduced density matrix of |Ψ⟩ of a

(proper) subsystem as

ρA = p |↑ . . . ↑⟩ ⟨↑ . . . ↑|+(1−p) |↓ . . . ↓⟩ ⟨↓ . . . ↓| , (C5)

so that its symmetrization under Z2, induced by the spin-
flip operator σx, is

ρ̃A =
1

2
⟨|↑ . . . ↑⟩ ⟨↑ . . . ↑|+ |↓ . . . ↓⟩ ⟨↓ . . . ↓|⟩. (C6)

Therefore, the Rényi entanglement asymmetry of |Ψ⟩ is

∆Sn = log 2− 1

1− n
log (pn + (1− p)n) , (C7)

no matter the size of the subsystem A. We remark that
for p = 0, 1 the state is clustering,it breaks Z2, and the
result ∆Sn = log 2 is compatible with our universal pre-
diction (6). Moreover, for p = 1/2 one has ∆Sn = 0,
which is still compatible with (6), as the Z2 symmetry
is unbroken, but it does not follow from our derivation
since the clustering hypothesis does not hold. In all the
other cases, Eq. (C7) violates explicitly the prediction
(6).

Finally, it is worth noting that this simple example
leads to an important remark in the context of spontan-
eous symmetry breaking. For instance, one can straight-
forwardly employ our predictions to the ground states
with short-range correlations, say the ground states of an
Ising with definite magnetization, but violations are ex-
pected to appear whenever linear combinations of those
are taken. In particular, depending on the boundary con-
ditions of the Hamiltonian, a non-clustering ground state
can be selected, as it happens for the Ising model for
periodic boundary conditions; consequently, one should
be careful in those cases, and tune properly the boundary
terms to select correctly a clustering ground state.

Appendix D: Saddle point analysis of the charged
moments

Here, we give some details and comment on some sub-
tleties regarding the saddle point analysis employed in
Sec. III. The crucial quantity in the forthcoming dis-
cussion is the function f(g), defined in Eq. (27) and its
behavior in the large volume limit |A| → ∞.

First, we observe that, thanks to the analysis of II (see
e.g. Eq. (25)), the limit above exists

F (g) ≡ − lim
|A|→∞

1

|A|
log f(g), (D1)

and we refer to it as density of charged free energy. Also,
F (g) = 0 iff g ∈ Hn−1 and it is a continuous function
of its entry. In general, F (g) is not guaranteed to be
smooth: indeed, as its value is related to the largest ei-
genvalue of the matrix Rg, singularities might appear Rg

displays level crossing. However, we are only interested
in the leading asymptotic of the integral Eq. (30), and an
analysis of F (g) in a neighborhood of Hn−1 is sufficient
for our purpose. For instance, we aim to prove that

• F (g) is analytic in a neighborhood of Hn−1.

• Hn−1 is a manifold of saddle points for F (g) and
Eq. (29) holds.

The first property is a consequence of the assumption
that |Ψ⟩ satisfies clustering. Indeed, for g = 1 the largest
eigenvalue of Rg = R is gapped: this implies that the
largest eigenvalue of Rg is a smooth function in a neigh-
borhood of g = 1, as it does not cross other eigenvalues.
The same considerations hold for g belonging to a neigh-
borhood of H, as one can show that Rg has the same
spectrum of R up to an overall phase whenever g ∈ H
and it is a symmetry of the state (see [43]).

To prove the second property, we have to show that no
linear terms appear whenever F (g) is Taylor expanded
around g ∈ Hn−1 and that the quadratic form in Eq. (29)
is non-degenerate. Expanding f(g) in Eq. (27) at first
order near g ∈ Hn−1 we get

f(g) ≃ Tr(ρAh1(1 +X1)ρAh2 . . . )

Tr(ρnA)
+ · · ·+

Tr(ρAh1ρAh2 . . . ρA(1−Xn−1)h
−1
n−1 . . . (1−X1)h

−1
1 )

Tr(ρnA)
≃ 1,

(D2)

where the cyclicity of the trace, together with [hj , ρA] = 0
has been used. Therefore, as no linear terms appear in
f(g), the same holds for F (g).

While we did not find rigorous proof of the non-
degeneracy of the quadratic form in Eq. (29), we expect
that a hypothetical violation can only be a fine-tuning
of the model. Indeed, even if in principle it might be
possible that F (g) vanishes faster than O(X2) along an
infinitesimal curve that is not tangent to Hn−1, and, e.g.
the leading term is at order O(X4), we were not able to
find an explicit example where this scenario occurs.
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