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Abstract

We study physical implications of general CP symmetry including CP-like symmetry.
Various scattering amplitudes of CP asymmetry are calculated in CP-like symmetric
models. We explicitly show that the CP-like transformation leads to a specific relation
between different CP asymmetries. The resultant relation is similar to the one ob-
tained in GUT baryogenesis and sphaleron processes, where we also obtain a required
condition for generating particle number asymmetry in CP-like symmetric models. In
addition, we propose a generalization of a CP-like transformation for continuous sym-
metry groups. Since the CP transformation is an outer automorphism, which depends
on the internal symmetry group, it turns out that the physical CP and CP-like sym-
metries can be mutually converted through the spontaneous symmetry breaking (SSB)
of the internal symmetry. We investigate properties of physical CP asymmetry in both
CP and CP-like symmetric phases, and find that the spontaneous CP violation and
restoration can be observed even in models with continuous groups. We demonstrate
that CP-like symmetric models with continuous Lie groups can be naturally realized
in physical CP symmetric models through the SSB.
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1 Introduction

Violation of CP symmetry is a key property of the Standard Model (SM). CP violation in
the SM has been confirmed by several experiments, and the observed CP asymmetries are
consistently described by the complex phases in the Yukawa couplings [1]. In addition, CP
violation is a necessary condition for the matter/antimatter asymmetry of the universe [2].
However, the CP violation of the SM is not sufficient to reproduce the baryon number
density of the nature, and hence CP violation should be related to new physics beyond the
SM. It is important to study the property of CP transformations in such an underlying
theory.

If an underlying theory has other (flavor) symmetry groups, a generalized CP trans-
formation is considered as an extension of the CP transformation in the SM [3–5]. There
are vast phenomenological applications of generalized CP. For instance, generalized CP
is introduced as µ − τ reflection symmetry [6, 7].1 It is also studied in flavor symmet-
ric models with discrete groups such as S4 [9–13], A4 [13–16], A5 [13, 17–21], T ′ [13, 22],
∆(27) [23], ∆(48) [24,25], ∆(96) [26], ∆(3n2) [27–29], ∆(6n2) [28–32], and other discrete
groups [33–36].2 Recently generalized CP symmetries (and its spontaneous breaking)
in modular symmetric models have been investigated [42–56], where the generalized CP
transformation also acts on the moduli space [57, 58]. String compactification also gives
rise to conventional flavor symmetries [59–61], and hence, it provides a unified origin of
generalized CP, modular, and discrete flavor symmetries [57,62–66].

From a theoretical viewpoint, a generalized CP transformation is characterized by
its action on the internal symmetry group G. Its action on G is given by uCP : G →
CP−1 ◦G◦CP , and uCP must be an (outer) automorphism if the model is invariant under
G and CP [5,67]. This is a consistency condition for generalized CP transformation. As for
a continuous symmetry it is known that most of semi-simple Lie algebras3 have an outer
automorphism of Z2 or trivial group, which corresponds to the complex conjugation CP
transformation, and hence the physical CP is uniquely defined up to inner automorphism
[67].

By contrast, outer automorphisms of a discrete group have a more variety, for exam-
ple Out(∆(54)) ∼= S4 [68]. Among them, proper CP transformation is defined to be a
transformation which maps all complex representations to their own complex conjugate
representations. It is referred to as a class-inverting automorphism (CIA) [69], which
transforms g ∈ G → uCP(g) = h ∼ g−1. On the other hand, a general CP transfor-
mation associated with non-CIA is called a CP-like transformation. In fact, there are
discrete groups without CIA, which are referred to as Type I groups in [69]. Thus any
of outer automorphisms of Type I group should correspond to a CP-like transformation.
Since the CP-like transformation includes non-trivial interchanges of particles and other
(anti)particles which are not related by complex conjugations, it has been shown that the
physical CP symmetry is violated in models with a Type I symmetry group [69–71]. De-

1For review of µ− τ symmetry see [8] and references therein.
2For review of non-Abelian discrete groups in particle physics, see [37–41] and references therein.
3The only exception is so(8), which exhibits the triality.
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spite its interesting property, phenomenological aspects of the CP-like symmetric models
with a general symmetry group other than type I have not been investigated comprehen-
sively so far. In addition, the dynamical origins of the CP-like symmetric models and its
relation to the proper CP symmetry for general and continuous symmetry groups have
not been carefully investigated in the previous works.

In this paper, we study physical implications of general CP transformations with con-
tinuous and discrete symmetry groups. Throughout the paper we only consider the global
symmetry G. To precisely discuss the CP asymmetry of a theory, we have to consider
a physical CP transformation, under which all particles are transformed into their own
antiparticles. For applicability to type I groups, it is essential that both the physical
CP transformation and the associated unitary matrix are defined independently of group
automorphisms. Thus in our study we first define field transformations for general CP
transformations, and subsequently categorize them based on the symmetry properties of
the theory, as well as group automorphisms. As a result, general CP transformations will
be classified into three different types: proper CP, CP-like, and inconsistent CP transfor-
mations. Among them we will pay particular attention to CP-like transformations. We
will provide various constructions of CP-like symmetric models for a general symmetry
which includes a direct product of groups and continuous groups, without resorting to the
characteristic property of type I groups. We then explicitly show that in CP-like symmet-
ric models there exists a characteristic relation between different CP violating amplitudes.
The resultant relation is similar to the B − L in GUT baryogenesis [72] and sphaleron
process [73], so that the CP-like model can provide us with an alternative mechanism for
generating matter asymmetry as well as asymmetric dark matter [74]. In addition, we find
that there exists a CP-like eigenstate which does not have a CP-like partner, and hence its
number conservation is violated too. We also study the effects of spontaneous symmetry
breaking (SSB) of the internal symmetry on the CP(-like) symmetric models. We show
that the proper CP and CP-like symmetries are mutually changeable through the SSB of
the internal symmetry.4 We will point out that the emergence of CP-like symmetry is not
directly related to the absence of the CIA of the discrete group. In fact, we demonstrate
that various CP-like models with discrete and continuous Lie groups can be naturally
realized in proper CP symmetric models through the SSB. We show CP-like symmetry
appearance from ∆(54) × U(1), SU(3) and SU(2) × U(1) models. We explicitly show
how CP-violation occurs in the broken phase if physical CP becomes CP-like in some toy
models.

This paper is organized as follows. In Sec. 2, we briefly review CP transformation and
study general CP transformation from the viewpoint of internal symmetry. We clarify the
difference between proper CP symmetry and CP-like symmetry. We then propose a gen-
eralization of CP-like transformation for continuous groups. In Sec. 3, we consider general
CP symmetric model with internal symmetry. We use a toy model with ∆(27) symmetry
for illustrative purposes. We calculate scattering amplitude in CP-like symmetric models,
and study physical implications of the CP-like invariance. Then we consider general CP

4CP → CP-like symmetry has been already studied in [71].
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transformation with continuous group and introduce CP-like symmetry. In Sec. 4, we
study CP symmetric model with SSB of internal symmetry. We consider models with
various internal symmetry including discrete and continuous groups. We show CP-like
symmetric model can be originated from physical CP symmetric model and vice versa.
Section 5 is devoted to conclusion. In App. A, we summarize group property of ∆(54). In
App. B, we show part of Clebsch-Gordan (CG) coefficients of ∆(27) and ∆(54) relevant
to our discussions. In App. C, we explicitly compute one-loop amplitude of a CP violating
process. In App. D, we study sufficient condition for general CP violation.

2 CP Transformation for General Group

We first review general CP transformations with internal symmetry group G. Throughout
the paper, we only consider global symmetry. In order to discuss CP asymmetry of
physical quantities, it is important to establish the difference between the two physical
amplitudes of particles and their antiparticles. For this purpose, we introduce a physical
CP transformation, which can be defined independently of the internal group property.
On the other hand, a general CP transformation is characterized by its actions on the
internal symmetry, i.e., automorphisms of G. We study a CP-like transformation for
general symmetry groups including continuous and non-simple groups. We will show that
general CP transformations can be classified into three classes: proper CP, CP-like, and
inconsistent CP transformations. Our notation is based on [69,75] and references therein.

2.1 General and Physical CP Transformations

The CP transformation transforms a particle with momentum p into an antiparticle with
inverse momentum. Therefore the standard definition of the CP transformation for a
complex scalar field ϕ(x) is given as

CP : ϕ(x) → ηϕ∗(x̃) (2.1)

where x̃ = (t,−x)T and η is a U(1) phase. CP transformations for fermions and gauge
bosons should be modified depending on its spin structures. In this section, we concentrate
on scalar fields for simplicity.

If there are multiple fields in a theory, CP transformation can be generalized. In
particular, with internal symmetries such as gauge and flavor symmetries, the definitions
of CP transformations as well as CP invariance are extended. Let us consider a quantum
field theory with N fields denoted by ϕi=1,...,N . If a theory has an internal symmetry
associated with a group G, ϕ = (ϕ1, ϕ2, · · · , ϕN)T forms N dimensional (in general)
reducible representation of G;

g ∈ G : ϕ(x) → ρϕ(g)ϕ(x), (2.2)
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where ρϕ(g) is a unitary representation of g. The most general CP transformation for ϕ
is given by [4, 5, 39]

CP :ϕ(x) → Uϕ∗(x̃), CP : ϕ∗(x) → U∗ϕ(x̃), (2.3)

where U is an N ×N unitary matrix. We note that the most general CP transformation
in Eq. (2.3) may in some cases not lead to physical CP conservation.

Here we define a physical CP transformation. We denote Φ = (ϕr1 , · · · , ϕrN′ ) as a
direct sum of irreducible representations of N -multiplet field ϕ, where ri (i = 1, · · ·N ′)
is an irreducible representation of G. The standard CP transformation is defined to
transform particles to their antiparticles with inverse momenta. Therefore, the physical
CP transformation is defined to transform a field ϕri in irreducible representation ri to
its complex conjugate;

physical CP : ϕri(x) → Uriϕ
∗
ri
(x̃), (i = 1, · · · , N ′), (2.4)

where Uri is a unitary matrix associated with the physical CP transformation.5 The
general CP transformation is not restricted solely to transformations among the same
irreducible representations, so that the group associated with the general CP transforma-
tion in Eq. (2.3) should include the one corresponding to the physical CP transformation
in Eq. (2.4). Note that in our terminology, the set of representations r1, · · · , rN ′ does
not necessarily include all the irreducible representations of G, and hence the physical
CP transformation given in Eq. (2.4) can be defined independently of the group (outer)
automorphism.

2.2 Proper CP, CP-like, and Inconsistent CP Transformations

If CP and G are symmetries of the theory, the consistency condition CP−1 ◦ g ◦CP ∈ G
should hold [5, 67]. Thus a consistent CP transformation is referred to as a general CP
transformation which satisfies

CP−1 ◦G ◦ CP ⊂ G. (2.5)

In this case, for any g ∈ G we have h ∈ G satisfying the following relation,

Uijρ(g)
∗
jkU

†
kl = ρ(h)il. (2.6)

This means that if there is an automorphism uCP : G → G such that uCP(g) ≡ h, then
one can obtain a consistent transformation based on it.

On the other hand, an inconsistent CP transformation is referred to as a general CP
transformation which does not satisfy the above relation, that is

CP−1 ◦G ◦ CP ̸⊂ G. (2.7)

5If there is F -fold multiplicity in representation ri, Uri is given as a (dim ri × F )2 unitary matrix.
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It is also obvious that the inconsistent CP symmetry is not compatible with the symmetry
group G. It follows that either an inconsistent CP is not a symmetry, or G is enlarged to
G̃ such that CP−1 ◦ G̃ ◦ CP ⊂ G̃.

Let us consider the consistent CP transformation in detail. If there is a complex
conjugation automorphism which maps all the irreducible complex representations of G
to its own conjugates, we can obtain a proper CP transformation, which acts on ϕri as

proper CP : ϕri(x) → Uriϕ
∗
ri
(x̃), ∀i. (2.8)

Such a consistent CP transformation can only be ensured if and only if the unitary matrix
Uri satisfies the following relation

Uriρri(g)
∗U †

ri
= ρri(h), ∀i. (2.9)

Thus all the irreducible representations satisfy Eqs. (2.8) and (2.9) for proper CP trans-
formation.

It is important to reiterate that there exists a subtle but crucial difference between
the physical and proper CP transformations in Eqs. (2.4) and (2.8). In our definition, the
physical CP transformation acts only on fields existing in a theory, which does not imply
that the consistency condition in Eq. (2.4) is applicable to all irreducible representations
of G. By contrast, the proper CP transformation is based on an automorphism of G,
thus Eq. (2.9) applies to all irreducible representations [69]. That is, the proper CP
transformation should be a subset of the physical CP transformations. This difference is
important for precisely investigating a CP asymmetry of physical quantities particularly
for models with a symmetry group that does not have any complex conjugation outer
automorphisms.

On the other hand, a CP-like transformation for general (and continuous) groups
should be defined as a consistent but not proper CP transformation. Since the CP-like
transformation is a consistent CP transformation, one can obtain a CP-like transformation
only if there exists a non-complex conjugation automorphism, i.e. there is at least one
irreducible representation which is not mapped to its conjugate by the automorphism. As
a result, the CP-like transformation acts like a physical CP transformation on some fields,
but differently on other fields. Therefore, if a model only has fields that are transformed
into their complex conjugate fields, the CP-like transformation can be a physical CP
transformation.

We should note that the consistency condition in Eq. (2.5) is a necessary condition
for the CP (or CP-like) invariance of a theory, but not a sufficient condition. In order to
discuss the symmetry properties of models, it is important to specify the unitary matrix
U accompanying a general CP transformation. In fact, the structure of unitary matrix
influences the assignment of fundamental quantum numbers to particle states that are
not determined by the internal symmetry group. In addition, it is not straightforward
to impose CP-like symmetry in a theory, particularly when dealing with general (non-
simple) groups, such as U(1) and a direct product of groups G1 × G2. We will present
such non-trivial examples of CP-like models for continuous groups later in Sec. 3.
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Finally, we also emphasize that it is important to consider an inconsistent but physical
CP transformation. If G does not have any complex conjugation automorphism, the
physical CP transformation should be an inconsistent CP transformation in general.

2.3 Classification of General CP transformations

Based on the previous discussions, any of general CP transformations in Eq. (2.3) can be
classified into one of the following three types:

1. Consistent CP transformation: general CP transformation satisfying consis-
tency condition in Eq. (2.5). This class of CP transformations can be ensured if
there is an automorphism of G via CP−1 ◦ G ◦ CP ⊂ G. It is possible to impose
invariance under this type of CP transformation and G simultaneously. There are
two types in this class.

a. Proper CP: physical CP transformation consistent with a complex conjuga-
tion automorphism of G. Field transformations are specified with transforma-
tion unitary matrices in Eq. (2.8). In the case of a discrete group, it is consistent
with a CIA.6 If a model is proper CP invariant, all the fields are transformed
to their complex conjugate fields under the proper CP transformation.

b. CP-like: consistent but not proper CP transformation. It includes a transfor-
mation of a particle in representation ri to an (anti)particle in other represen-
tation r∗j . If a model does not have such fields, it can be a physical CP.

2. Inconsistent CP: general CP not satisfying the consistency condition Eq. (2.5).
We cannot impose invariance under inconsistent CP transformation, or G is enlarged
to G̃ which satisfies Eq. (2.5). If there is no complex conjugation automorphism of
G, physical CP transformation is inconsistent CP transformation in general. CP is
not a symmetry in such a model.

We also summarize the classification in Tab. 1. It should be emphasized that we classify
the generic CP transformations in terms of the symmetry property of a theory and the
group automorphisms. Consequently, some of CP transformations may not be well-defined
for a given G. See [69] for a classification of (discrete) groups in terms of possible CP
transformations.

2.4 Examples of CP-like Transformation with Order Two Au-
tomorphism

As shown above, a CP-like symmetry is not directly related to the matter/antimatter sym-
metry in general. We note, however, that a CP-like symmetry can be naturally emerge
from SSB of G in an underlying physical CP symmetric theory [71]. More importantly, as

6The Z2 outer automorphism of SU(N) (N ̸= 2) is class inverting [76].
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consistency with G automorphism physical/unphysical

Proper CP consistent
complex conjugation
(class-inverting)

physical

CP-like consistent
non-complex conjugation
(non class-inverting)

physical/unphysical

inconsistent CP inconsistent no physical/unphysical

Table 1: Classification of general CP transformations. We also show their properties
inside parenthesis () in the case of discrete groups.

will be shown later, a physical CP symmetry and a CP-like symmetry of order two can be
mutually converted through SSB. As a result, certain CP-like transformations could orig-
inate from a proper CP transformation based on the complex conjugation automorphism
of G. Thus we will pay particular attention to CP-like transformations of order two,
which we refer to as CP2 -like transformations. In this case the CP2-like transformation
of N -multiplet field Φ(x) is specified with

CP2-like : Φ(x) → UCP2-likeΦ
∗(x̃), (2.10)

where the unitary matrix UCP2-like includes anti-diagonal block elements as,

UCP2-like =



Ur1 0 · · ·
0

. . .
... 0 Urij

Urji 0
...

. . . 0
· · · 0 UrN′


. (2.11)

In order to be consistent with Eq. (2.6) the unitary matrices should satisfy

Urijρrj(g)
∗U †

rij
= ρri(h), Urjiρri(g)

∗U †
rji

= ρrj(h). (2.12)

From the above conditions, we see that ri and rj have the same dimension. Therefore
the CP2-like transformation in Eq. (2.11) exchanges a particle in representation ri to an
(anti)particles in other representation r∗j . Obviously other particles are properly trans-
formed to their complex conjugate particles.7 As will be demonstrated subsequently, there
are significant phenomenological implications in CP2-like symmetric models. Below, we
illustrate some examples where we construct CP2-like symmetric models without resorting
to the characteristic property of type I groups. For the sake of simplicity, in the subsequent
discussion, we will not consider ZN ̸=2 CP-like transformations.8 Therefore “CP-like” will
generally refers to CP2-like transformation unless explicitly specified otherwise.

7If irreducible representations of all the fields contents are restricted to such properly transformed
representations, CP-like transformation can be interpreted as a physical CP.

8E.g., S3 outer automorphism group of SO(8). For a study of non-CP (ZN≥3) transformations,
see [69,76,77].
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One simple example is G = Z3 group (a3 = e, a ∈ Z3), which has three irre-
ducible representations of 10,1,2. Let us consider a model with a triplet scalar field
Φ = (ϕ10 , ϕ11 , ϕ12)

T , where 10,1,2 are the irreducible representations of Z3. A group
action of Z3 on Φ is given as

ρΦ(a) =

1 0 0
0 ω 0
0 0 ω2

 , (2.13)

where ω = e
2πi
3 . We find that the following CP-like transformation,

CP-like : Φ(x) → UCP-likeΦ
∗(x̃), UCP-like =

1 0 0
0 0 1
0 1 0

 , (2.14)

satisfies the consistency condition UCP-likeρ(a)
∗U †

CP-like = ρ(a). The corresponding auto-
morphism is given as an identity map; uZ3

CP-like(g) = g for any g ∈ Z3. In this case, it
should be noted that the two exchanged fields ϕ11 and ϕ

∗
12

possess identical charges under
Z3. In the context of a CP-like symmetric model, this implies that these two fields cannot
be distinguished from a quantum theory perspective. Consequently, the particle (energy)
eigenstate should also be either a CP-like even or odd particle, resulting from a linear
combination of these two fields, in analogous to the standard CP even or odd (neutral)
particle with intrinsic parity ±1. Unlike the standard CP transformation, we find that
the CP-like eigenstate can be charged under the internal symmetry. This characteristic
(CP-like eigenstate with ±1 eigenvalue) is a distinctive feature of CP-like transformations
with an order of two. We will carefully study their physical amplitudes based on the
energy eigenstates in this specific context in Sec. 3.

The situation changes if we consider a direct product group of Z3 × U(1). Let us
consider a model with a triplet field Φ = (ϕq10

, ϕq11
, ϕq12

)T , where q ̸= 0 is a U(1) charge.
A group action of Z3 × U(1) is given as

ρΦ(a, θ) =

eiqθ 0 0
0 ωeiqθ 0
0 0 ω2eiqθ

 , (2.15)

where θ is a parameter of U(1). Obviously the same CP-like transformation as in Eq. (2.14)
satisfies the consistency condition. Thus the corresponding automorphism uCP-like is given
by a direct product of two specific automorphisms as

u
Z3×U(1)
CP-like = uZ3

CP-like ⊗ u
U(1)
CP , (2.16)

uZ3
CP-like : a 7→ a, u

U(1)
CP : θ 7→ −θ. (2.17)

On the contrary to the previous case, both the two exchanged fields of ϕ11 and ϕ∗
12

have
the same Z3 charge, but opposite U(1) charges. Therefore these two particles should be
distinguished under the CP-like transformation.
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We should stress here that a CP-like transformation (a, θ) 7→ (a,−θ) is only possible
for models with specific field content. Since the existence of two related fields of ϕq11

and

ϕ−q
11

is not automatically ensured, while for the physical CP transformation a field ϕq11
and

their conjugate field ϕ−q
12

should be ensured by the reality of the relativistic quantum field
theory. Thus the CP-like symmetric model generally requires the existence of the CP-like
partner in addition to their complex conjugate field (anti-particle).

3 General CP Symmetries and CP Asymmetry

We study the general CP symmetric models with internal symmetry. In the following,
we first show constructions of various models with general CP symmetries. We use a
discrete symmetry group for illustration purposes, where a special attention is paid to the
CP-like symmetry. To explore the impact of the CP-like symmetry in comparison with
the proper CP symmetry, we study physical scattering amplitudes of the CP asymmetry.
Although the physical CP symmetry is in general violated in CP-like symmetric models,
it is important to notice that different CP violating amplitudes can be related to each
other through the CP-like transformations. We will find that such correspondences can
be classified by representations of initial and final states in the scattering amplitudes.
We then discuss a possibility of particle number generations through the CP violating
processes along with these correspondences. Subsequently we consider extending CP-like
transformation to general continuous symmetry groups. An outer automorphism of order
two is used to define a CP-like transformation. We then propose to construct a new class
of CP-like symmetric model with continuous symmetry groups which include U(1) and
general non-Abelian Lie groups.

3.1 General CP Transformation in ∆(27) Model

We study an explicit model with ∆(27) symmetry for illustration purposes. ∆(27) is
isomorphic to (Z3 × Z3)⋊ Z3, and all elements of ∆(27) is represented by aia′jbk, where
i, j, k = 0, 1, 2, where a, a′, and b satisfy ba′ = ab, ba = a2a′2b, aa′ = a′a and a3 = a′3 =
b3 = e. There are 11 conjugacy classes in ∆(27):

C1a :{e}, C3a :{a, a′, a2a′2},
C3b :{a2, a′2, aa′}, C3c :{b, aa′2b, a2a′b},
C3d :{b2, a2a′b2, aa′2b2}, C3e :{aa′b, a2b, a′2b},
C3f :{a′b2, a2a′2b2, ab2}, C3g :{ab, a′b, a2a′2b},
C3h :{a′2b2, a2b2, aa′b2}, C3i :{aa′2},
C3j :{a2a′}, (3.1)

and hence there are nine singlets 1i and two triplets, 3 and 3∗. 3∗ is the complex conjugate
representation of 3. The complex conjugate representations of the singlets are also given
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by

1∗
1 = 12, 1∗

3 = 16, 1∗
4 = 18, 1∗

5 = 17, (3.2)

and vice versa. 10 is the trivial singlet. Character table of ∆(27) is summarized in
Tab. 2. As is known, the group ∆(27) has no CIA [69]. Therefore there is no proper CP
transformation in models with ∆(27) symmetry.

C1a C3a C3b C3c C3d C3e C3f C3g C3h C3i C3j

1 3 3 3 3 3 3 3 3 1 1
∆(27) e a a2 b b2 a2b ab2 ab a2b2 aa′2 a2a′

10 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 ω2 ω ω2 ω ω2 ω 1 1
12 1 1 1 ω ω2 ω ω2 ω ω2 1 1
13 1 ω2 ω 1 1 ω ω2 ω2 ω 1 1
14 1 ω2 ω ω2 ω 1 1 ω ω2 1 1
15 1 ω2 ω ω ω2 ω2 ω 1 1 1 1
16 1 ω ω2 1 1 ω2 ω ω ω2 1 1
17 1 ω ω2 ω2 ω ω ω2 1 1 1 1
18 1 ω ω2 ω ω2 1 1 ω2 ω 1 1
3 3 0 0 0 0 0 0 0 0 3ω 3ω2

3∗ 3 0 0 0 0 0 0 0 0 3ω2 3ω

Table 2: Character table of ∆(27).

3.1.1 CP-like transformation for ∆(27)

There are several CP-like transformations for ∆(27) model. One example of CP-like
transformations we examine here is

3 → Us3
∗, (3.3)

where Us is given by [68]

Us =

ω2 0 0
0 0 1
0 1 0

 . (3.4)

Since 3 is a faithful representation of ∆(27), the outer automorphism introducing this
CP-like transformation is specified without ambiguity. It is given by

u : (a, a′, b) 7→ (a2a′2, a′, a2b2), (3.5)

and this automorphism transforms the conjugacy classes as

C3c ↔ C3h, C3d ↔ C3g, C3e ↔ C3f , C3i ↔ C3j. (3.6)

10



C3a and C3b are fixed under the map u. To satisfy this relation, the CP-like transformation
for the singlets are determined as follows,

10 → 1∗
0, 11 → 1∗

1, 12 → 1∗
2, 13 → 1∗

7, 14 → 1∗
8,

15 → 1∗
6, 16 → 1∗

5, 17 → 1∗
3, 18 → 1∗

4. (3.7)

This CP-like transformation is represented by a unitary matrix A,

1i → Aij1
∗
j , with A =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0


. (3.8)

As shown above, this transformation does not transform all singlets to their own conjugate.
While this is not a physical CP transformation, 10,1,2 are properly transformed to their
complex conjugates under the CP-like transformation. Thus this CP-like transformation
can be identified as a physical CP transformation for a model without 13,...,8. Generally
speaking, if a model has only triplets (or up to a couple of non-trivial singlets), there exists
a certain CP-like transformation which can be regarded as a physical CP transformation
[28].

3.1.2 Inconsistent CP transformation for ∆(27)

As explained above, if a model has a sufficient number of irreducible representations, the
CP-like transformation ceases to be a physical CP transformation. Thus the following
physical CP transformation,

CPinc :

{
1i → 1∗

i , (i = 0, · · · , 8)
3 → Us3

∗,
(3.9)

should be an inconsistent CP transformation. This is because there is no element h ∈ G
satisfying Usρ

∗
3(g)U

†
s = ρ3(h), and ρ

∗
1i
(g) = ρ1i

(h) for any g and i. Thus we cannot realize
physical CP invariance in models with the internal symmetry of ∆(27).

To see differences of the CP-like and the inconsistent physical CP transformations,
we consider a simple model. We introduce nine singlet scalars ϕi, (i = 0, ..., 8) and one
triplet Dirac fermion Ψ = (ψ1, ψ2, ψ3)

T , where ϕi and Ψ are in representations of 1i, and
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3 under ∆(27), respectively. The ∆(27)-invariant Yukawa interactions are given as

Lyukawa =
∑

i=0,...,8

yi[ϕi ⊗ (Ψ̄⊗Ψ)1∗
i
] + (h.c.)

=
∑

i=0,...,8
j,k=1,2,3

yi(Mi∗)jkϕiψ̄jψk +
∑

i=0,...,8
j,k=1,2,3

y∗i (M
†
i∗)jkϕ

†
i ψ̄jψk (3.10)

where yi is a complex constant and (Mi∗)jk is the CG coefficients of ∆(27), which are
summarized in App. B.1. Imposing the CP-like invariance in the model, the coupling
constants should satisfy the following conditions,

y0 = y∗0, y1 = y∗1, y2 = y∗2,

ωy7 = y∗3, ωy8 = y∗4, ωy6 = y∗5, (3.11)

ωy5 = y∗6, ωy3 = y∗7, ωy4 = y∗8.

On the other hand, imposing inconsistent physical CP invariance given in Eq. (3.9), we
obtain vanishing Yukawa couplings. This is because some Yukawa terms are transformed
to prohibited Yukawa terms under the inconsistent CP transformation. For example,
ϕ3 ⊗ (Ψ̄ ⊗ Ψ)1∗

3
= ϕ3 ⊗ (Ψ̄ ⊗ Ψ)16 is transformed to ϕ†

3 ⊗ (ω2Ψ̄j ⊗ Ψk)17 under the
inconsistent CP transformation. This term is not ∆(27) invariant. Thus allowed Yukawa
couplings are restricted to real values as follows,

y0 = y∗0, y1 = y∗1, y2 = y∗2, (3.12)

and the other couplings of y3,··· ,8 are zero. Obviously the inconsistent CP symmetry is
different from the CP-like symmetry. We notice, however, that the conditions for y0,1,2 in
Eq. (3.12) are the same as the one obtained in the CP-like symmetry in Eq. (3.11). Thus
CP-like transformation is identified as the physical one if the model does not have ϕ3,...,8.

3.2 Physical Implications of CP-like Symmetry

We study physical implications of CP-like symmetry in detail. Let us first review the
CP transformation of the scattering amplitude of multi-particle states {ϕr1 , ϕr2 , ...} →
{ϕr′1

, ϕr′2
, ...}, where ri is an irreducible representation of the internal symmetry group G.

For concreteness, G is assumed to be a discrete group. In the following analysis we restrict
the asymptotic states to a direct product of single particle states made of elementary fields
for simplicity.9 Neglecting the internal (wave function) structure, the asymptotic states
can be simply decomposed into those in the irreducible representations. Thus we only
consider that the initial and final states of i and f are in the irreducible representation of
ri and rf of G, where we note that ri = rf thanks to the symmetry.

9It may be interesting to consider extending to more general states including non-product representa-
tions such as composite and entangled states. For a recent study of the CP transformation of composite
state, see [76].
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The cross section of this process is given by the Lorentz invariant S-matrix elements
iM given as

i(2π)4M{ϕr1 (p1),ϕr2 (p2),...}→{ϕr′1
(p′1),ϕr′2

(p′2),...}δ
(4)(pinit − pfinal)

= lim
T→∞

⟨p′1, p′2, ...| e−2iHT |p1, p2, ...⟩ , (3.13)

where pi and p
′
i represent the momenta of the initial and final particles in representation

of ri and r′i, respectively. pinit and pfinal denote the total momenta of the initial and final
states. The physical CP transformation relates a scattering amplitude and the identical
process but with antiparticles of momenta ki = −pi,k

′
i = −p′

i as follows,

lim
T→∞

⟨p′1, p′2, ...| CP−1CPe−2iHTCP−1CP |p1, p2, ...⟩

= lim
T→∞

⟨k′1, k′2, ...| e−2iCPHCP−1T |k1, k2, ...⟩ , (3.14)

where CP is the physical CP transformation operator. If the theory is invariant under the
physical CP transformation, the operator CP satisfies [H, CP ] = 0, and hence we obtain

M{ϕCP
r1

(k1),ϕCP
r2

(k2),...}→{ϕCP
r′1

(k′1),ϕ
CP
r′2

(k′2),...} = M{ϕr1 (p1),ϕr2 (p2),...}→{ϕr′1
(p′1),ϕr′2

(p′2),...}, (3.15)

where ϕCP
ri

(ki) is the antiparticle of ϕri(pi) with inverse momentum. Therefore the scat-
tering amplitude is invariant under exchanging particles and antiparticles with inverse
momenta. It is worth noting that the physical CP transformation flips the sign of the
particle numbers, so that the physical CP invariance implies that both processes of par-
ticle generations and particle annihilation can occur with equal probability. Thus the CP
violation is necessary for number generation mechanisms such as baryogenesis.

Next, we consider the CP-like transformation of the scattering amplitudes. If a model
is invariant under a CP-like transformation, we obtain

M{ϕCP-like
r1

(k1),ϕCP-like
r2

(k2),...}→{ϕCP-like
r′1

(k′1),ϕ
CP-like
r′2

(k′2),...} = M{ϕr1 (p1),ϕr2 (p2),...}→{ϕr′1
(p′1),ϕr′2

(p′2),...},

(3.16)

where ϕCP-like
ri

(ki) denotes the CP-like transformed particle of ϕri(pi) with inverse momen-
tum. By definition, we have at least one particle ϕri which is transformed to ϕ∗

rj ̸=i
under

the CP-like transformation. Therefore Eq. (3.16) does not guarantee the vanishing CP
asymmetry.

From the perspective of the CP-like transformation, it is convenient to classify the
representations for the asymptotic states of the physical amplitudes into the following
three classes:

A. Representation which is properly transformed to its complex conjugate representa-
tion under the CP-like transformation. For instance 3,3∗ and 10,1,2 in the previous
∆(27) model are properly transformed to their complex conjugate representations
under Eq. (3.6).
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B. Representation which is transformed to the same representation under the CP-like
transformation, i.e. the CP-like eigenstate. For instance, 14 in the ∆(27) model is
transformed 14 → 1∗

8 = 14.

C. Representation which is transformed to an irrelevant representation under the CP-
like transformation different from neither its complex conjugate representation nor
the original representation. 13,5,6,7 in the ∆(27) model are classified into this class.

In the case of class A, the CP-like transformation of the initial state i is i→ iCP-like = ī
(up to phase), where ī is the complex conjugate state of i with inverse momentum. Thus
the final state f is also transformed to its complex conjugate state as f → fCP-like = f̄
(up to phase). The CP-like symmetry relates two different matrix elements as follows,

|M{i}→{f}| = |M{iCP-like}→{fCP-like}| = |M{̄i}→{f̄}|. (3.17)

The physical CP violation cannot be observed from this process.
As for the case of class B, the field ϕri is transformed as ϕri → ϕ∗

r∗i
. Since ϕri and

ϕ∗
r∗i

have the same representation under G, both two fields could be kinematically mixed.
In fact, from the symmetry point of view the following mass terms should be generally
allowed,

m2
(
ϕ∗
ri
ϕri

+ ϕ∗
r∗i
ϕr∗i

)
+ µ2ϕr∗i

ϕri + (c.c.) = (ϕ∗
ri
, ϕr∗i

)

(
m2 µ2∗

µ2 m2

)(
ϕri

ϕ∗
r∗i

)
. (3.18)

This mass matrix is diagonalized by the CP-like eigenstates ϕ±
ri
= 1√

2
(ϕri ± ϕ∗

r∗i
), and the

particle (energy) eigenstates should be also given by the CP-like eigenstates ϕ±
ri

rather
than ϕri . If the states i and f are CP-like eigenstates, the CP-like symmetry implies that

|M{i}→{f}| = |M{iCP-like}→{fCP-like}| = |M{i}→{f}| (with inverse momenta). (3.19)

There is no relationship between M{i}→{f} and M{̄i}→{f̄}. Therefore in principle we can
observe the physical CP violation from this process.

In the last case of class C, if the initial and final states transform as i→ ī′ and f → f̄ ′

by the CP-like transformation, where ri′ = rf ′ ̸= ri = rf . We obtain

M{i}→{f} = M{ī′}→{f̄ ′}. (3.20)

From this process the physical CP violation can also be observed. In addition, this relation
means that the two CP-violating amplitudes are equivalent.

The differences of the above three amplitudes are clearly obtained when we consider
a three-point decay process as depicted in Fig. 1, which will be studied in models with
∆(27) in the next subsection.

14



ϕr1

ψr2

ψ̄r3

Figure 1: 3-point decay.

3.2.1 CP-like symmetry in ∆(27) model: class B

To illustrate the physical implications of the CP-like symmetry, we calculate a decay
amplitude whose initial state belongs to class B in a model with ∆(27) symmetry. We
introduce one complex scalar singlet ϕ+

4 , a triplet scalar fields Φ3, two singlet fermions ψ5,
ψ6, and a triplet fermion Ψ3. The field contents are summarized in Tab. 3. The CP-like
transformation of the fields is given as

CP-like : ϕ+
4 → ϕ+

4 , Φ3 → UsΦ
∗
3,

ψ5 → Cψ∗
6, ψ6 → Cψ∗

5, Ψ3 → UsCΨ
∗
3, (3.21)

where C = −iγ2γ0 is the standard charge conjugation matrix for spinors. ϕ+
4 is the CP-like

eigenstate. The Yukawa terms are given by

LYukawa =y1ϕ
+
4 ψ̄6ψ5 + y2ϕ

+
4 ⊗ (Ψ̄3 ⊗Ψ3)18 + y3ψ̄5 ⊗ (Φ∗

3 ⊗Ψ3)15

+ y4ψ̄6 ⊗ (Φ∗
3 ⊗Ψ3)16 + (h.c.). (3.22)

The CP-like invariance constrains y4 = y∗3, while y1 and y2 are the free parameters. The
scalar potential is irrelevant to discussion in this section, and we omit it here. Assuming
that ϕ+

4 is much heavier than ψ5 and ψ̄6, we calculate the decay amplitude of ϕ+
4 → ψ6ψ̄5.

Since the product state of 16 ⊗ 1∗
5 = 14, the initial and final states are in the same

representation under ∆(27) as expected. As explained in Sec. 3.1.2, the Yukawa term is not
invariant under the physical CP transformation in Eq. (3.9), we expect that the nonzero
value of a CP asymmetry ϵϕ+4 →ψ6ψ̄5

≡ |Mϕ+4 →ψ6ψ̄5
|2 − |M̄ϕ̄+4 →ψ̄6ψ5

|2 can be observed. At
the one-loop order the matrix element Mϕ+4 →ψ6ψ̄5

is given by the following diagrams as

ϕ+
4

ψ̄5

ψ6

+ ϕ+
4

ψ̄5

ψ6

Ψ3

Ψ3

Φ3
=− i

{
y1 − y2y

∗
3y4tr

(
M6M8M

†
5

)
I
}
ūs(p)vs

′
(p′)

=− i
(
y1 − 3ω2y2y

∗
3y4I

)
ūs(p)vs

′
(p′), (3.23)

where I is the one-loop integral, and p, p′ are the momenta of the final state fermions.
The explicit form of I is given in App. C. Mi are the CG coefficients of ∆(27) given in
App. B.1. The physical CP asymmetry is observed as

ϵϕ+4 →ψ6ψ̄5
∝ Im

(
3ω2y∗1y2y

∗
3y4
)
Im I ̸= 0. (3.24)
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Thus the decay process of the class B state is CP asymmetric.

ϕ+
4 Φ3 ψ5 ψ6 Ψ3

∆(27) 14 3 15 16 3
mass m4 ms m5 m6 mf

Table 3: Field contents of ∆(27) model.

We also find that this decay process can generate the particle numbers of ψ5 and
ψ6, since ψ5 and ψ6 are in different representations and are different particles. We note,
however, that the sum of the particle numbers of ψ5,6 is conserved, i.e.

Nψ5 +Nψ6 = 0, (3.25)

where Nψ5,6 ̸= 0 are the particle numbers of ψ5,6. The relation in Eq. (3.25) is analogous
to other particle number generation processes such as the GUT baryogenesis [72] and the
sphaleron process [73], in which the number of B − L is conserved thanks to the internal
(gauge) symmetry. In this model the conservation of Nψ5 + Nψ6 is guaranteed by the
CP-like symmetry. The decay of the CP-like eigenstate could be the origin of matter
generations.

3.2.2 CP-like Symmetry in ∆(27) Model: Class C

We consider a model with nine singlet scalars ϕi and N triplet fermions ΨI
3,

ΨI
3 = (ψI1 , ψ

I
2 , ψ

I
3)
T , I = 1, ..., N. (3.26)

The field contents are summarized in Tab. 4. The mass terms of ϕi and ΨI
3 are given as

Lmass = m2
iϕ

∗
iϕi +mIΨ̄

I
3Ψ

I
3, (3.27)

where we omit the mixing mass terms, since they are irrelevant to the following analysis.
The Yukawa terms are almost the same as those in Eq. (3.10), but Yukawa couplings are
generalized to yIJi . At the one-loop order, the matrix element Mϕi→ψI

j ψ̄
J
k

(i ̸= 0, 1, 2, 4, 8)

is given by the following diagrams as

ϕi

ψ̄Jk

ψIj

+ ϕi

ψ̄Jk

ψIj

ψ̄Ln

ψKm

ϕl

= −i

(
(Y IJ

i )jk −
∑
l,K,L

[
Y IK†
l Y KL

i Y LJ
l + Y IK

l Y KL
i Y LJ†

l

]
jk
IKLl

)
ūs(p)vs

′
(p′), (3.28)
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where IKLl is the loop integral with ϕl, ψ
K
3 , ψ

L
3 . Y IJ

i is the Yukawa matrix given by
Y IJ
i = yIJi Mi∗ . As a result, we calculate a CP asymmetry,

ϵϕi→ΨI
3Ψ̄

J
3
≡

3∑
j,k=1

(
|Mϕi→ψI

j ψ̄
J
k
|2 − |M̄ϕ̄i→ψ̄I

i ψ
J
k
|2
)

=− 4
∑
l,K,L

Im
(
trY IJ†

i

[
Y IK†
l Y KL

i Y LJ
l + Y IK

l Y KL
i Y LJ†

l

])
Im IKLl

=− 8
∑
l,K,L

Re
(
yIK∗
l yLJl trM †

l∗Mi∗Ml∗M
†
i∗

)
Im yIJ∗i yKLi Im IKLl , (3.29)

where we sum over the indices of j, k from 1 to 3 for the final states 3, since those three
components are equivalent under the ∆(27) symmetry. This summation is important to
prove that there is no general CP transformation that cancels the CP asymmetry for
a specific channel.10 In terms of ∆(27) symmetry this summation should correspond
to extracting 1i from the tensor products of 3 ⊗ 3∗. From the conditions for CP-like
symmetry in Eq. (3.11), yIJi is complex. Hence when N ≥ 2, even though the theory
is CP-like invariant, yIJ∗i yKLi is complex, and we observe the physical CP violation of
ϵϕi→ΨI

3Ψ̄
J
3
̸= 0 at the one-loop level.

ϕi ΨI
3

∆(27) 1i 3

Table 4: Matter contents of ∆(27) model. i = 0, ..., 8, and I = 1, ..., N .

In addition, it follows from Eq. (3.20) that the CP-like transformation relates ϵϕi→ΨIΨ̄J

to the other CP asymmetry of ϵϕi′→ΨIΨ̄J , where i′ is the index of the CP-like conjugated
state of ϕi given in Eq. (3.7). For instance, ϕ3 is related to ϕ∗

7. Using the following
relations

trM †
l∗M3∗Ml∗M

†
3∗ = (trM †

l′∗M7∗Ml′∗M
†
7∗)

∗, yIK∗
l yLJl = (yIK∗

l′ yLJl′ )∗, (3.30)

we obtain

ϵϕ3→ΨI
3Ψ̄

J
3
=− 8

∑
l′,K,L

Re
(
(yIK∗
l′ yLJl′ )∗(trM †

l′∗M7∗Ml′∗M
†
7∗)

∗
)
Im (yIJ∗7 yKL7 )∗Im IKLl′

=− ϵϕ7→ΨI
3Ψ̄

J
3
, (3.31)

where we use IKLl = IKLl′ , because the masses of ϕl and ϕl′ are the same due to the CP-like
symmetry, and the minus sign in the last line comes from Im (yIJ∗7 yKL7 )∗ = −Im yIJ∗7 yKL7 .
Thus we obtain

ϵϕ3→ΨI
3Ψ̄

J
3
+ ϵϕ7→ΨI

3Ψ̄
J
3
= 0. (3.32)

10See App. D.
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The CP asymmetries of the two different amplitudes are related by the CP-like transfor-
mation as expected.

In both class B and C cases, the physical CP violation is observable. In addition, since
two particles in different representations are exchanged by the CP-like transformation,
two different particle numbers can be generated through the corresponding CP-violating
scattering process, although the sum of the two exchanged particle numbers is conserved
by the CP-like transformation. It is noted that our results can also be applied to the pair
annihilation process of two fermions to one complex scalar field. Thus, the CP asymmetry
also implies the violation of particle number conservation of the complex scalar fields such
as ϕ+

4 and ϕ3,7 in the models presented here. The only difference between class B and C
is that the CP-eigenstate has no CP-like partner, and its particle number is not related
to other antiparticles nor conserved, i.e., Nϕ+4

̸= 0. In any case, it is crucial to consider a
state of either class B or C for number generation. This mechanism might be useful for
phenomenological purposes, e.g., for baryogenesis and asymmetric DM.

3.3 CP-like Symmetry for Continuous Groups

We discuss a possible extension of CP-like transformations to general groups. As is known,
since most of popular simple Lie groups such as SU(N) (N ≥ 3) and Abelian group U(1)
have the unique outer automorphism group of Z2 which is identified with the proper
CP transformation [67], the CP-like transformation is not well defined for such simple
groups. Let us provide a specific explanation by using a U(1) symmetry. For a multiplet
field Φ = (ϕp, ϕq)

T , where ϕp,q have U(1) charges of p, q ̸= 0, a U(1) transformation is
represented as

Φ → Φ′ = ρΦ(θ)Φ, ρΦ(θ) =

(
eipθ 0
0 eiqθ

)
, θ ∈ R. (3.33)

A candidate CP-like transformation is given as

Φ(x) → UΦ∗(x̃), U =

(
0 1
1 0

)
. (3.34)

The consistency condition of Uρ∗Φ(θ)U = ρΦ(θ
′) leads to the following relation as(

e−iqθ 0
0 e−ipθ

)
=

(
eipθ

′
0

0 eiqθ
′

)
⇒ p = ±q. (3.35)

As a result, two automorphisms are allowed. In the case of p = q, this is a proper
CP transformation, which is based on the unique outer automorphism u

U(1)
CP as given in

Eq. (2.17). On the other hand in the case of p = −q it corresponds to an identity map

u
U(1)
CP-like : θ 7→ θ, (3.36)

18



where two exchanged fields of ϕp and ϕ
∗
−p are in the same irreducible representation (class

B). These two are kinematically mixed to be CP-like basis

ϕ± = ϕp + ϕ∗
−p. (3.37)

Under this automorphism there is no representation belongs to class A or C except for
the trivial singlet, so that this is not a genuine CP-like transformation.

For the reasons above, we shall extend slightly further to consider non-simple groups of
G = G1×G2, where we assume that both G1 and G2 have a complex conjugation outer au-
tomorphism. We provide different ways to construct models with CP-like transformations
as follows.

One trivial way to construct a CP-like symmetric model is to use the following direct
product of two automorphisms as

uG1×G2
CP-like = uG1

CP-like × uG2
CP, (3.38)

where uG1
CP-like is the identity map of the group G1, while u

G2
CP corresponds to the Z2 outer

automorphism of the group G2. Thus the CP-like transformation for a direct product
representation of (r1, r2) is given as

CP-like : (r1, r2) → (r1, r
∗
2), (3.39)

where r1 and r2 are some non-trivial irreducible representations of G1 and G2, respectively,
and r∗2 is the complex conjugate representation of r2. Accordingly the direct product
representations are categorized into the aforementioned three classes in the following
manner,

Class A : (11, r2), Class B : (r1,12), Class C : (r1, r2), (3.40)

where 11 and 12 are the trivial singlet representations of G1 and G2, respectively.
An example for this type of CP-like transformation is easily constructed in a model

with U(1)1 ×U(1)2 symmetry. Let us introduce a multiplet field Φ = (ϕp, ϕq)
T , where ϕp

and ϕq have two U(1) charges p1,2, and q1,2 under U(1)1 × U(1)2. A group action on Φ is
represented as

Φ → Φ′ = ρΦ(θ1, θ2)Φ, ρΦ(θ1, θ2) =

(
ei(p1θ1+p2θ2) 0

0 ei(q1θ1+q2θ2)

)
, θ1,2 ∈ R. (3.41)

For example, when q1 = −p1 and q2 = p2 the following CP-like transformation

Φ(x) → U
U(1)1×U(1)2
CP-like Φ∗(x̃), U

U(1)1×U(1)2
CP-like =

(
0 1
1 0

)
, (3.42)

satisfies the consistency conditions. The corresponding automorphism u
U(1)1×U(1)2
CP-like is

u
U(1)1×U(1)2
CP-like : (θ1, θ2) 7→ (θ1,−θ2). (3.43)
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Thus the CP-like partners of ϕp and ϕq have the opposite U(1)1 charges but the same
U(1)2 charge. If the model has this CP-like symmetry, it requires the existence of a CP-
like partner in addition to their complex conjugate fields. In the same way, it is possible
to construct a CP-like symmetric model with internal symmetry group G1 ×G2.

In addition, in the case of U(1) two independent U(1) transformations can mix, so
that it is possible to find a non-trivial CP-like transformation for generic values of U(1)
charges. When p1q2 − p2q1 ̸= 0, a general solution to the consistency condition is as
follows, (

0 1
1 0

)
ρΦ(θ1, θ2)

∗
(
0 1
1 0

)†

= ρΦ(θ
′
1, θ

′
2)

⇒
(
θ′1
θ′2

)
= A

(
θ1
θ2

)
, A =

1

p1q2 − p2q1

(
p1p2 − q1q2 p22 − q22
q21 − p21 q1q2 − p1p2

)
. (3.44)

This is a CP-like transformation since it exchanges the states of linearly independent
charges. To see it more clearly we diagonalize the automorphism corresponding to the
CP-like transformation in Eq. (3.44) as,(

θ̃1
θ̃2

)
=M

(
θ1
θ2

)
(3.45)

whereM is a diagonalization matrix of A, and θ̃1 and θ̃2 are transformation parameters of
Ũ(1)1 × Ũ(1)2 ≃ U(1)1 × U(1)2 (linear combinations of original two U(1) groups). From
the facts that detA = −1, in the new basis the automorphism is given as(

θ̃′1
θ̃′2

)
=

(
1 0
0 −1

)(
θ̃1
θ̃2

)
. (3.46)

The Ũ(1)2 charge reverses, while the Ũ(1)1 charge is unchanged. Thus we obtain a CP-like
transformation for U(1)1 × U(1)2 symmetry.

We should stress here again that a CP-like transformation (r1, r2) 7→ (r1, r
∗
2) is only

possible for models with specific field content. Since the existence of two related fields of
ϕr1,r2 and ϕr1,r∗2

is not automatically ensured, while for the physical CP transformation a
field ϕr1,r2 and their conjugate field ϕr∗1,r

∗
2
should be ensured by the reality of the relativistic

quantum theory. Thus the CP-like symmetric model generally requires the existence of
the CP-like partner in addition to their complex conjugate field (anti-particle).

4 CP/CP-like Symmetry and Spontaneous Symme-

try Breaking

In this section we first discuss the origin of the CP-like symmetry in the CP-like symmetric
model. In the previous sections, we have shown that models with CP-like symmetry for
type I groups (i.e., the absence of CIA) exhibit a physical CP violation. It is important to
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notice that such type I groups can be embedded into simpler groups like SU(N) (N ≥ 3),
in which a proper CP transformation can be defined. This observation implies a potential
scenario in certain dynamical models: when a vacuum expectation value (VEV) gives rise
to a symmetry breaking from G→ H, a physical CP is simultaneously violated due to a
spontaneous change of the proper CP → CP-like, even if the VEV does not break the CP
symmetry, that is, the vacuum remains invariant under the original CP transformation.
The spontaneous CP violation based on the mechanism was first proposed in a model with
SU(3) → T7 [71], where T7 is a type I group. Thus, it might be expected that a limited
class of groups, such as type I, could manifest such spontaneous CP violation. We note,
however, that as we will illustrate later, a wider class of CP-like symmetric models can
be derived from a proper CP symmetric model, even if the subgroup H possesses CIA.

IfH does not have any CIA, the physical CP transformation in the broken phase should
be an inconsistent CP transformation, and CP asymmetry should be observed. There are
two possibilities for spontaneous CP violation in the broken phase. If the inconsistent
physical CP transformation in the broken phase is given by a product of the original CP
transformation and a broken element of G\H, the CP violation is directly caused by the
SSB of the internal symmetry, and hence the CP asymmetry is proportional to the VEV
giving rise to the SSB. On the other hand, if this is not the case, the inconsistent physical
CP transformation in the broken phase should remain inconsistent even in the symmetric
phase, although the theory is invariant under the same CP(-like) transformation in both
phases. Therefore the CP asymmetry may not necessarily be proportional to the VEV.
We will show that the latter type of CP asymmetry really occurs through SSB. In this
case, the CP violation genuinely comes from the group structure. We will carefully study
the CP asymmetry of several physical observables in the broken phases, by which we
elucidate the relations between the physical CP violation in the broken phase and the CP
invariance in symmetric phase in detail.

Next, we discuss the fate of the CP-like symmetry. Let us assume that H is a type I
group. As mentioned above, if a model is invariant under H and CP-like transformations,
the physical CP is violated in general. Here one question arises immediately: is there
a possibility that the CP-like transformation would become a proper CP transformation
after further symmetry breaking of H → H ′? If the VEV does not break the CP-like sym-
metry, it appears to be possible. A trivial example is when H is completely broken down
to H ′ = I, resulting in all fields belonging to the trivial singlet representation (multiplet
merging), making it impossible to distinguish between CP-like partners. Accordingly the
CP-like transformation will spontaneously change to a proper CP transformation. In a
more general scenario where H ′ ̸= I, if two mutually exchanged representations, ri and
rj, belong to the same representation after SSB, the transformation matrix in Eq. (2.11)
should change to that of a proper CP transformation in Eq. (2.8). On the contrary, the
spontaneous CP violation may occur when two mutually exchanged fields under a proper
CP transformation split into two distinct representations (multiplet splitting). The details
of such examples will be shown in what follows.
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4.1 ∆(54)× U(1) Model

In this subsection, we study symmetry breaking pattern of model with ∆(54) × U(1).
The discrete group ∆(54) has 10 irreducible representations of two real singlets 10,1, four
pseudoreal doublets 21,2,3,4 and four complex triplets 31,2,3

∗
1,2. See App. A for the details of

∆(54). Since there is no CIA of ∆(54), we consider the following CP-like transformation,

3i → Us3
∗
i , 21 → 2∗

1, 22 → 2∗
4, 23 → S22

∗
3, 24 → 2∗

2, 10,1 → 1∗
0,1, (4.1)

where Us and S2 are unitary matrices given by

Us =

ω2 0 0
0 0 1
0 1 0

 , S2 =

(
0 1
1 0

)
. (4.2)

This CP-like transformation corresponds to an automorphism

u
∆(54)
CP-like : (a, a′, b, c) 7→ (a2a′2, a′, a2b2, c), (4.3)

on ∆(54),11 and eiθ → e−iθ on U(1).

Ψ1 Ψ2 Ψ3 Ψ4 S T R
∆(54) 31 31 31 31 11 23 21

U(1) 1 2 3 4 0 −1 −2

Table 5: Irreducible representations and U(1) charges of the fields. ΨI are Dirac fermions,
T,R are complex scalars, S is a real scalar.

We consider a Lagrangian with

L = Ψ̄I(i/∂ −mI
Ψ)Ψ

I +
1

2
∂µS∂

µS + ∂µT
†∂µT + ∂µR

†∂µR− LYukawa − V(S, T,R), (4.4)

where we introduce two complex doublet scalar fields T,R, one real singlet scalar S, and
have four triplet Dirac fermions Ψ1,2,3,4. Their charges and representations are summarized
in Tab. 4.1. The interaction term LYukawa is given by

LYukawa =t1[T ⊗ (Ψ̄1 ⊗Ψ2)23 ]10 + t2[T ⊗ (Ψ̄3 ⊗Ψ4)23 ]10

+ r1[R⊗ (Ψ̄1 ⊗Ψ3)21 ]10 + r2[R⊗ (Ψ̄2 ⊗Ψ4)21 ]10 + (h.c.), (4.5)

where ti and rj are Yukawa couplings. Since 3∗
1 ⊗ 31 does not include 11, there are no

Yukawa couplings between S and the triplet fermions. The tensor products are written
as

[T ⊗ (Ψ̄1 ⊗Ψ2)23 ]10 =M
′
ijkTiΨ̄

1
jΨ

2
k

[R⊗ (Ψ̄1 ⊗Ψ3)21 ]10 =N
′
ijkRiΨ̄

1
jΨ

3
k, (4.6)

11It is straightforward to check that Usρ3i
(g)∗U†

s = ρ3i
(uCP-like(g)), and S2ρ23

(g)∗S†
2 =

ρ23(uCP-like(g)).
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where

M ′
1jk =

0 0 1
ω 0 0
0 ω2 0

 , M ′
2jk =

0 1 0
0 0 ω2

ω 0 0

 ,

N ′
1jk =

1 0 0
0 ω 0
0 0 ω2

 , N ′
2jk =

1 0 0
0 ω2 0
0 0 ω

 . (4.7)

We note that the above CG coefficients are the same as those of ∆(27): M ′
1 =M4,M

′
2 =

M8, N
′
1 =M1 and N ′

2 =M2 in App. B.1. The scalar potential is given by

V =
1

2
m2
SS

2 +m2
T (T

† ⊗ T )10 +m2
R(R

† ⊗R)10 + κ1S(T
† ⊗ T )11 + κ2S(R

† ⊗R)11

+
λ1
4
(T † ⊗ T )210

+
λ2
4
(T † ⊗ T )211

+
λ3
4
(R† ⊗R)210

+
λ4
4
(R† ⊗R)211

+ λ5(T
† ⊗ T )10(R

† ⊗R)10 + λ6(T
† ⊗ T )11(R

† ⊗R)11

+ λ7S
2(T † ⊗ T )10 + λ8S

2(R† ⊗R)10 + λ9S
4 + (h.c.), (4.8)

where κi and λj are complex parameters. The tensor products are given by

(T † ⊗ T )10 = |T1|2 + |T2|2, (R† ⊗R)10 = |R1|2 + |R2|2,
(T † ⊗ T )11 = |T1|2 − |T2|2, (R† ⊗R)11 = |R1|2 − |R2|2. (4.9)

All the fields in the model are properly transformed to their complex conjugate fields
under the CP-like transformation (See Eq. (4.1)), and hence this is regarded as a physical
CP transformation.12 By imposing the CP-like invariance in this model we obtain the
following constrains on the couplings as

κ1 =0, λ6 =0, ti =|ti|ω, r1,2, κ2, λi(i ̸= 6) ∈ R, (4.10)

where we notice that (T † ⊗ T )11 is CP(-like) odd and (R† ⊗ R)11 is CP(-like) even. It
should be noted here that this model has complex couplings, while it is invariant under
the physical CP transformation by construction. In fact, for example, the CP asymmetry
of the partial decay width of T → Ψ1Ψ̄2 at the one-loop level is given by the interference
of diagrams written in Fig. 2. It is given as

ϵT→Ψ1Ψ̄2 ∝
∑
a,b=1,2

Im
(
t∗1r1t2r

∗
2trM

′†
a N

′
bM

′
aN

′†
b

)
=Im (−6t∗1r1t2r

∗
2) = 0. (4.11)

In the last line, we use the fact that r1,2 are real and the phases of t1,2 are the same.

12Since S is real, S transforms to S itself under the CP-like transformation.
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Figure 2: Decay diagram of T → Ψ1Ψ̄2.

4.1.1 Spontaneous CP Violation: ∆(54)× U(1) → ∆(27)× U(1)

We consider a spontaneous symmetry breaking of ∆(54) × U(1) → ∆(27) × U(1). Since
∆(27) is inconsistent with a proper CP transformation, we expect that the physical CP
transformation for ∆(54) turns into CP-like transformation in the broken phase. The
irreducible representations of ∆(54) are decomposed to those of ∆(27) as follows,

21 = 12 ⊕ 11, 1i = 10,

22 = 15 ⊕ 17, 3i = 3,

23 = 18 ⊕ 14, 3∗
i = 3∗,

24 = 16 ⊕ 13, (4.12)

where the left-hand side corresponds to the irreducible representations of ∆(54), and the
right-hand side ∆(27). Thus ∆(54)×U(1) is broken down to ∆(27)×U(1) by a nonzero
VEV for the non-trivial singlet S,

⟨S⟩ = v ∈ R. (4.13)

This vacuum does not violate the original CP symmetry, since ⟨S⟩ ∈ R is invariant under
the CP transformation defined in Eq. (4.1). This vacuum is stable if m2

S is negative and
λ9 is positive. The doublets of T,R are decomposed into the singlets of ∆(27). The
degenerate masses of R1 and R2 split by ⟨S⟩. On the other hand, the masses of T1 and T2
remain degenerate even after SSB, because they are related by the CP-like transformation.
We summarize the representations and mass eigenstates in Tab. 4.1.1.

ΨI S T1 T2 R1 R2

∆(27) 3 10 18 14 12 11

U(1) qI 0 −1 −1 −2 −2

m mI
Ψ

√
−λ9m2

S mT mT

√
m2
R + κ2v

√
m2
R − κ2v

Table 6: Irreducible representations and U(1) charges of the fields, and mass eigenvalues.

This model is inconsistent with the physical CP transformation because there are
more than three fields in different singlet and triplet representations. Thus physical
CP transformation turns into a CP-like transformation in the broken phase while the
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vacuum is invariant under the original CP transformation. The CP-like transformation
for ∆(27)× U(1) model are exactly the same as those in Eqs. (3.3), (3.7), namely

3 → Us3
∗, 10,1,2 →1∗

0,1,2, 14 →1∗
8, (4.14)

The field contents in the broken phase are similar to those of the model studied in Sec. 3.2.2
(up to U(1) charges). The CP asymmetry of the partial decay width of the complex scalar
fields in the broken phase is similarly calculable. For instance, the CP asymmetry of the
T1 → Ψ1Ψ̄2 is given by

ϵT1→Ψ1Ψ̄2 =
∑
a=1,2

|t1||t2|r1r2Im
(
trM ′†

1 N
′
aM

′
1N

′†
a

)
Im I34a

=
3

2
|t1||t2|r1r2

(
−Im I341 + Im I342

)
(4.15)

where I34a (a = 1, 2) corresponds to the one-loop integral with Ra and Ψ3,4 (See Fig. 2).
Since the masses of R1 and R2 are not degenerate in the broken phase, and hence,
−Im I341 + Im I342 ̸= 0, we observe the physical CP violation ϵT1→Ψ1Ψ̄2 ̸= 0. On the
other hand, ϵT2→Ψ1Ψ̄2 is given by

ϵT2→Ψ1Ψ̄2 =
∑
a=1,2

|t1||t2|r1r2Im
(
trM ′†

2 N
′
aM

′
2N

′†
a

)
Im I34a

=
3

2
|t1||t2|r1r2

(
Im I341 − Im I342

)
̸= 0. (4.16)

Thus we obtain

ϵT1→Ψ1Ψ̄2 + ϵT2→Ψ1Ψ̄2 = 0. (4.17)

The magnitudes of both CP asymmetries for T1 and T2 are the same, while their signs
are opposite due to the CP-like symmetry, as shown previously in Sec. 3.2.2.

Here we should comment on the role of the VEV in the physical CP asymmetry. As
shown above, the CP asymmetry ϵTi→Ψ1Ψ̄2 is proportional to the mass difference of R1

and R2 in the one-loop integrals, thus ϵTi→Ψ1Ψ̄2 should be proportional to ⟨S⟩. This result
might imply that the physical CP is violated by the VEV. In other words all the physical
CP asymmetries would vanish when ⟨S⟩ → 0. We note, however, that this is not always
the case, since as stated above the vacuum does not violate the original CP symmetry.13

In fact, as it will turn out that physical CP transformation for ∆(27)×U(1) is not given
by a product of the CP-like transformation and a broken element, physical CP is violated
even in the symmetric phase, and hence there is no reason to make the CP asymmetry
proportional to ⟨S⟩.

To show this point clearly, we also calculate the CP asymmetry of 2 → 2 scattering
amplitudes of four complex scalars as depicted in Fig. 3.14 The tree level and one-loop

13A VEV dependent CP violation was first studied in a CP-like T7 model in [71], where the decay
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Figure 3: 4-point scattering of TbR̄c → TdR̄a.

diagrams are calculated as

Mtree
bc̄→dā =− iλ5δacδbd

M1-loop
bc̄→dā =(−i)4(r2t2r∗1t∗1trN ′

aM
′
bN

′†
c M

′†
d + r1t1r

∗
2t

∗
2trN

′
aM

′
bN

′†
c M

′†
d )I1-loop

=(−i)42r2|t2|r1|t1|trN ′
aM

′
bN

′†
c M

′†
d I1-loop

=

{
6r1r2|t1t2|ω2δacδbdI1-loop (a = b)

6r1r2|t1t2|ωδacδbdI1-loop (a ̸= b)
, (4.18)

where we use that r1, r2 are real, and the phases of t1 and t2 are the same. As a result,
the CP asymmetry at the one-loop level is given by

ϵTbR̄c→TdR̄a
=

{
3
√
3λ5r1r2|t1t2|δacδbdIm I1-loop (a = b)

−3
√
3λ5r1r2|t1t2|δacδbdIm I1-loop (a ̸= b)

. (4.19)

Thus the CP violation is observed in the 2 → 2 scattering processes. We should emphasize
that the CP asymmetry ϵTbR̄c→TdR̄a

does not depend on the mass splitting of the doublets,
or scalar interaction parameters that include ⟨S⟩. Thus ϵTbR̄c→TdR̄a

is not proportional to
⟨S⟩ at the one-loop level. The spontaneous CP violation is caused by the splitting of the
multiplicity due to the VEV of the scalar field. Actually this specific CP asymmetry is
non-zero even in the symmetric phase. Nevertheless, this process does not violate the CP
symmetry in the symmetric phase. This is because T1,2 and R1,2 are in the same multiplet
in ∆(54), and hence we can sum over the flavor indices a, b of Ta and R̄b in external lines
in the scattering amplitudes. Thus the cross section should be given by(

dσ

dΩ

)
TR̄→TR̄

∝
∑
a,b,c,d

|MTbR̄c→TdR̄a
|2. (4.20)

asymmetry for a particle in CP-like eigenstate (class B) was calculated.
14There are other one-loop diagrams contributing to the 4-point scattering, but the other diagrams do

not contribute to the CP asymmetry because there are no complex couplings without Yukawa couplings
in this model. Therefore the CP asymmetry should be obtained from the diagrams including fermions at
the one-loop level.
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This value is CP symmetric because(
dσ

dΩ

)
TR̄→TR̄

−
(
dσ̄

dΩ

)
T̄R→T̄R

∝
∑
a,b,c,d

(
|MTbR̄c→TdR̄a

|2 − |MT̄bRc→T̄dRa
|2
)

= ϵT1R̄1→T1R̄1
+ ϵT1R̄2→T1R̄2

+ ϵT2R̄1→T2R̄1
+ ϵT2R̄2→T2R̄2

= 2 (ϵT1R̄1→T1R̄1
+ ϵT2R̄1→T2R̄1

) (∵ ∆(54))

= 0, (4.21)

where ϵT1R̄1→T1R̄1
and ϵT2R̄1→T2R̄1

cancel out each other (See Eq. (4.19)). This cancellation
is also consistent with the fact that there exists a general CP transformation associated
with a unitary matrix S2 in Eq. (4.2). As shown here, the summation over the internal
indices is important to prove the existence of the CP violation (see App. D for a general
proof).

This result is also understood from a calculation of the matrix elements in a diagonal
basis for the CP-like transformations. We take the following CP basis

T̃± =
1√
2
(T1 ± T2), R̃1,2 = R1,2 (4.22)

on which the CP-like transformation in Eq. (4.1) diagonally acts as

CP-like :

{
T̃± → T̃CP-like

± = ±T̃ ∗
±,

R1,2 → RCP-like
1,2 = R∗

1,2.
(4.23)

From the properties in Eq. (4.23) we see that the CP-like symmetry makes a connection
between two amplitudes as

MT̃xR̄c→T̃yR̄a
= MT̃CP-like

x R̄CP-like
c →T̃CP-like

y R̄CP-like
a

= xyM ¯̃TxRc→ ¯̃TyRa
(4.24)

where x, y = ±. Thus the matrix element in this CP-basis is invariant under the CP-like
transformation. In the broken phase, however, we have to distinguish two fields T1 and T2
due to a multiplet splitting. Therefore we specify either T1 or T2 as the initial and final
states. For example, a scattering amplitude of T1R̄a → T1R̄c can be obtained as a sum of
the CP invariant matrix elements as

MT1R̄a→T1R̄c
=

1

2

(
MT̃+R̄a→T̃+R̄c

+MT̃+R̄a→T̃−R̄c
+MT̃−R̄a→T̃+R̄c

+MT̃−R̄a→T̃−R̄c

)
.

(4.25)

We note that while each term is CP invariant, there are interferences between them, and
hence it is not guaranteed that MT1R̄a→T1R̄c

is also CP invariant. In fact, from Eq. (4.24)
we easily see that there is a relationship between two different matrix elements for different
states as

MT1R̄a→T1R̄c
=MT̄2Ra→T̄2Rc

, (4.26)
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but there is no relation between MT1R̄a→T1R̄c
and MT̄1Ra→T̄1Rc

. This is also consistent
with the general result obtained in Eq. (3.20).

As shown above, we explicitly confirm that when the vacuum does not violate the
original CP(-like) symmetry, it remains after the SSB. Nevertheless, the spontaneous
CP violation occurs due to multiplet splitting. To be specific, S2 can be regarded as a
physical CP transformation matrix at the level of ∆(54). However, it becomes to a CP-
like transformation after the SSB, since S2 exchanges T1 and T2 in different irreducible
representations at the level of ∆(27). Here we note that a physical CP transformation in
the broken phase is an inconsistent CP transformation, since it should be defined as

3i → U3∗
i , 21 → 2∗

1, 22 → 2∗
4, 23 → 2∗

3, 24 → 2∗
2, 10,1 → 1∗

0,1. (4.27)

Obviously this transformation is inconsistent with any automorphisms of ∆(54) and
∆(27), and it is not given by any product of original CP transformation and a broken
element of ∆(54)\∆(27). We also note that this model is not invariant under the phys-
ical CP transformation (Eq. (4.27)) from the beginning. Therefore for some scattering
amplitudes we could observe a “CP violation” in both symmetric and broken phases, e.g.
ϵTbR̄c→TdR̄a

, where we recall that the complex conjugate states are defined by using the
physical (but inconsistent) CP transformation defined in Eq. (4.27). In fact we explicitly
confirm that this CP asymmetry is not proportional to the VEV at leading order. Re-
markably enough, in the broken phase this CP asymmetry proves evidence of the physical
CP violation, while in the symmetric phase this does not mean the physical CP violation
due to the existence of a general CP transformation. It should be noted that the results
presented here do not depend on basis for the transformation matrix (S2) as explicitly
shown in the calculations with a different (CP-like) basis.

The aforementioned result can be directly derived through group-theoretical analysis.
Using the properties of ∆(27) as a type I group (no proper CP) and as a normal subgroup
of ∆(54), we begin with the assumption that a physical CP transformation CPphys at the
level of ∆(27)×U(1) can be represented as CPphys = ρ(g̃) ◦CP , where CP is the original
CP transformation at the level of ∆(54)×U(1), and g̃ ∈ ∆(54)\∆(27), a broken element.
Consequently, for any h ∈ ∆(27), there exists h′ ∈ ∆(27) such that g̃−1hg̃ = h′, thus
ensuring that CPphys satisfies the consistency condition,

CP−1
phys ◦ ρ(h) ◦ CPphys =CP

−1 ◦ ρ(g̃−1hg̃) ◦ CP
=CP−1 ◦ ρ(h′) ◦ CP
=ρ(u

∆(54)
CP-like(h

′)) ∈ H. (4.28)

However, this assumption leads to a contradiction, as type I groups do not have any proper
CP transformations, implying that CPphys should not satisfy the consistency condition.
Therefore, CPphys cannot be represented as a product of CP and any broken element. This
conclusion can be extended as follows: In scenarios involving the spontaneous change of
a physical CP to a CP-like via SSB from G→ H, if the unbroken symmetry H is a type
I group and a normal subgroup of G, then any physical CP transformation defined in the
broken phase ceases to exhibit symmetry, even in the symmetric phase.
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In the next section we will further investigate the spontaneous breaking of the internal
symmetry group of ∆(27) × U(1) in light of the relationship between the CP-like and
physical CP transformations. We will see that when ∆(27) × U(1) symmetry is broken
down further by the scalar fields VEV of T,R, the role of the original CP transformation
can change depending on the symmetry breaking pattern. We study the following three
CP-like invariant vacua: ⟨Ri⟩ ∈ R, ⟨T1⟩ = ⟨T2⟩∗, and their combination. The first one
breaks U(1) and the internal symmetry is broken down to ∆(27). Since there is no CIA
in ∆(27), it is still CP-like symmetric, and the physical CP symmetry remains violated
as well. On the other hand, in other two cases we will see some interesting phenomena
will occur such as the spontaneous CP restorations due to a multiplet merging.

4.1.2 Spontaneous CP restoration: ∆(27)× U(1) → Za2a′3 × Za2b3

We consider the VEVs of the scalar fields

⟨T1⟩ = ⟨T2⟩∗ =
vT√
2
eiθ, (4.29)

and ⟨Ri⟩ = 0. This vacuum does not violate the CP-like symmetry. vT is given by

vT = ±

√
−2m2

T

λ1
, (4.30)

where mT and λ1 is the real parameter of the scalar potential Eq. (4.8). This vacuum is
stable if λ2 > 0 and m2

R − 4λ5
λ1
m2
T ± 2κ2 ⟨S⟩ > 0. The vacuum is invariant under a2a′ and

a2b, which are Z3 generators of ∆(27), and the U(1) is completely broken down. Thus
symmetry is broken to Za2a′3 × Za2b3 . The irreducible decompositions are given as

31 =120 ⊕ 121 ⊕ 122, 14,8 =100, 11 =101, 12 =102, (4.31)

where the left-hand side corresponds to the irreducible representations of ∆(27), and the
right-hand side Za2a′3 × Za2b3 . The lower indices of 1ij denote the charges of Za2a′3 × Za2b3 ,

a2a′ :1ij → ωi1ij,

a2b :1ij → ωj1ij. (4.32)

The representations are summarized in Tab. 7. Since the vacuum is invariant under the
CP-like transformation at ∆(27), it is consistent with an automorphism of Z3 × Z3,

uZ
a2a′
3 ×Za2b

3 : (a2a′, a2b) 7→ (aa′2, a′b2) = ((a2a′)−1, (a2b)−1). (4.33)

Thus all group elements in Za2a′3 × Za2b3 are transformed to their own inverses, this is the
proper CP transformation (CIA) at the level of Za2a′3 ×Za2b3 . This result is also consistent
with the fact that the two exchanged fields T1 and T ∗

2 under the CP-like transforma-
tion belong to the same representation 100 as shown in Tab. 7. Due to the multiplet
merging, the CP-like transformation given by S2 spontaneously changes to the proper CP
transformation.
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Ψi S, T1, T2 R1 R2

Za2a′3 × Za2b3 120 ⊕ 121 ⊕ 122 100 101 102

Table 7: The representations of the matter fields.

4.1.3 CP-like symmetry for group with CIA: ∆(27)× U(1) → Za2a′3 × Za′3
If ⟨R1⟩ and ⟨R2⟩ develop non-zero real VEVs, the unbroken symmetry can change. We
consider the following VEVs

⟨R1⟩ = v1, ⟨R2⟩ = v2, ⟨T ⟩ = 0, vi ∈ R. (4.34)

This vacuum is realized if m2
R < 0, λ3 > 0, and v21 − v22 = −2κ2

λ4
⟨S⟩. This vacuum has two

flat directions, but is free from tachyon. The symmetry group of ∆(27)× U(1) is broken
to Za2a′3 × Za′3 , The irreducible decompositions are given as

3 =120 ⊕ 121 ⊕ 122, 14 =102, 18 =101, 11 =100, 12 =100, (4.35)

where the left-hand side corresponds to the irreducible representations of ∆(27), and the
right-hand side Za2a′3 × Za′3 . The lower index of 1ij denotes the charges of Za2a′3 × Za′3 ,

a2a′ :1ij → ωi1ij,

a′ :1ij → ωj1ij. (4.36)

From Eq. (4.3), the automorphism of Za2a′3 × Za′3 is given as

uZ
a2a′
3 ×Za′

3 : (a2a′, a′) 7→ (aa′2, a′). (4.37)

Thus it is CP-like transformation rather than physical (proper) CP, although Za2a′3 × Za′3
has a CIA.

If ⟨Ri⟩ and ⟨Ti⟩ develops VEVs at the same time, the internal symmetry is broken
further. Suppose the vacuum is given by

⟨R1⟩ ∈ R, ⟨R2⟩ = 0, ⟨T1⟩ = ⟨T2⟩∗ ̸= 0. (4.38)

This vacuum does not violate the CP-like symmetry, but break ∆(27) × U(1) to Za2a′3 ,
which is the center of ∆(27). The consistent automorphism is a2a′ to aa′2 = (a2a′)−1.
Hence it becomes to a physical (proper) CP transformation.

4.1.4 Other breaking patterns of ∆(27)× U(1)

If there is an additional triplet scalar U and it develops the VEV given by

⟨U⟩ ∝ (ω, 0, 0)T , (4.39)
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∆(27) is broken to Z3 generated by a′. This vacuum is CP(-like) invariant. Since a′ is
fixed under uCP, CP-like symmetry is still CP-like at the level of Za′3 , and physical CP is
violated. Thus we can realize Z3 symmetric model with CP-like symmetry.

If the internal symmetry is completely broken down the CP-like transformation can
be regarded as a physical CP transformation due to a multiplet merging, since all the
fields should belong to the same representation of the trivial singlet.

We summarize the symmetry breaking patterns of ∆(54)×U(1) model obtained afore-
mentioned processes in Fig. 4. We find that various non-standard CP violation/restoration
scenarios appear. It is shown that both the proper CP and CP-like transformations can
be mutually converted due to the mechanisms of the multiplet splitting and merging,
which depends on which subgroup remains after the SSB. We will study its cosmological
and phenomenological implications.

4.2 SU(3) Model

Here we show another example in a model with the proper CP symmetry for continu-
ous symmetry group SU(3). Since the methods for calculations of CP asymmetry and
analyses of the scalar potentials are the same as in the previous subsection, we only dis-
cuss a possible breaking pattern and their symmetries based on the group structures for
simplicity.

We start with a model with symmetry group G = SU(3) and a proper CP invariance.
The unique Z2 outer automorphism of SU(3) is defined as

uCP : g → h ∈ G, such that ρ3(g)
∗ = ρ3(h), (4.40)

where 3 is the fundamental representation of SU(3), and ρ3(g) is a 3× 3 special unitary
matrix. Based on uCP, we define a proper CP transformation as

proper CP : 3 → 3∗. (4.41)

4.2.1 Spontaneous CP violation : SU(3) → ∆(54)

If SU(3) is broken down to ∆(54), the proper CP transformation spontaneously changes
to a CP-like transformation. Given an explicit form of the group elements of ∆(54) as
shown in Eqs. (A.2) and (A.3), one can easily see that the fundamental representation 3 of
SU(3) is identified with 32 of ∆(54). Thus the automorphism of ∆(54) is also determined
from Eq. (4.40) as

u∆(54) : (a, a′, b, c) 7→ (a2, a′2, b, c). (4.42)

From the matrix representations for four doublet fields ϕ21,2,3,4 (see App. A), we imme-
diately see that the corresponding CP transformation matrix is given a CP-like form for
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dashed lined = physical CP (CP-like)
gray node = CP-violated (CP-like)
white node = proper CP

Figure 4: The relationship between symmetry breaking of the internal symmetry and
the resultant property of the CP transformation. We only consider CP(-like) invariant
vacuum. The gray node represents a CP violated (with CP-like symmetric) vacuum. The
white node represents a physical CP symmetric vacuum, where the CP transformation
is based on a CIA on the internal symmetry group. The broken lined node represents a
physical CP (CP-like) symmetric vacuum. We only show a part of the breaking patterns
for ∆(54) × U(1), and there are other possible breaking patterns. We also show the
breaking pattern of SU(3) and SU(2) × U(1) models which are studied in the following
subsections.
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the multiplet Φ2 = (ϕ21 , ϕ22 , ϕ23 , ϕ24)
T ,

CP-like : Φ2 → UΦ2Φ
∗
2, UΦ2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (4.43)

While the triplets 31,2, and two singlets 10,1 properly transform into their complex conju-
gate representations under the CP transformation. From the fact that irreducible decom-
positions of the adjoint representation 8 of SU(3) are given as 8 = 21 ⊕ 22 ⊕ 23 ⊕ 24 (see
Eq. (B.7)), we also see that the original CP transformation exchanges two different repre-
sentations of ϕ22 , ϕ23 in ∆(54). Therefore the CP transformation spontaneously changes
a CP-like transformation due to a multiplet splitting.

4.2.2 Spontaneous CP restoration : ∆(54) → S3 × Z3

Let us consider the spontaneous breaking of ∆(54) → S3 × Z3. All group elements of S3

and Z3 are given as {e, b, c, b2, bc, b2c}, and {e, aa′2, a2a′}, respectively. There are three
conjugacy classes in S3:

C1 :{e}, C2 :{b, b2}, C3 :{c, bc, b2c}, (4.44)

and there are two singlets, and one doublet. We denote all the irreducible representations
of S3×Z3 as the three doublets 2i and six singlets 1i, 1

′
i, where i = 0, 1, 2 represents a Z3

charge. From Eq. (4.42), we see that the original CP transformation becomes to a CIA
of S3 × Z3. Let us also see the irreducible decompositions;

10 = 10, 11 = 1′
0,

21 = 20, 22 = 20,

23 = 20, 24 = 10 ⊕ 1′
0,

31 = 11 ⊕ 21, 32 = 1′
1 ⊕ 21,

3∗
1 = 12 ⊕ 22, 3∗

2 = 1′
2 ⊕ 22, (4.45)

where the left-hand side corresponds to the irreducible representations of ∆(54), and the
right-hand side S3×Z3. This result is also consistent with the proper CP transformation.
Since two mutually exchanged fields ϕ22 and ϕ23 by the CP-like transformation in ∆(54)
eventually belong to the same representation of 20 in S3 × Z3. Thus the physical CP
symmetry can spontaneously emerge from the CP-like symmetry.

4.2.3 Spontaneous CP violation : S3 × Z3 → Z′
3

Next, we consider the breaking of S3 × Z3 → Z3. S3 × Z3 has two different subgroups
of Z3 : {e, aa′2, a2a′}, and Z′

3 : {e, b, b2}. It is important to notice that while these two
subgroups are both represented by Z3, the properties of the corresponding automorphism
vary depending on the generators of each subgroup.
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As for Z3 : {e, aa′2, a2a′}, the automorphism in Eq. (4.42) correspond to the (class-
inverting) outer automorphism, so that the corresponding CP transformation is the proper
CP transformation.

On the other hand, in the case of Z′
3 : {e, b, b2}, the automorphism in Eq. (4.42)

correspond to the identity map (non-CIA), so that the corresponding CP transformation is
the CP-like transformation. Let us also see the irreducible decompositions of S3×Z3 → Z′

3;

1i = 10, 1′
i = 10, 2i = 11 ⊕ 12, (i = 0, 1, 2) (4.46)

where the left-hand side corresponds to the irreducible representations of S3 × Z3, and
the right-hand side Z′

3. Thus two components of a doublet, which are connected by the
CP transformation, split into two fields of ϕ11 and ϕ12 . It is interesting to investigate
a relation between the physical CP transformation (CPphys) at the level of Z′

3 and the
proper CP transformation at the level of S3 ×Z3. Since Z′

3 has a CIA, CPphys is given by
a proper CP transformation which should correspond to the outer automorphism of

uphys : b 7→ b2. (4.47)

This automorphism uphys is obviously different from u∆(54) in Eq. (4.42). We notice,
however, that a CP transformation of CPphys = ρ(c) ◦ CP , given by a product of the
original CP transformation (CP ) and a broken element of c ∈ S3 × Z3\Z′

3, satisfies the
following relation,

CP−1
phys ◦ ρ(b) ◦ CPphys =CP

−1 ◦ ρ(c−1 b c) ◦ CP
=CP−1 ◦ ρ(b2) ◦ CP
=ρ(u∆(54)(b2))

=ρ(b2). (4.48)

This CP transformation is consistent with the CIA, uphys in Eq. (4.47). Thus in this
scenario of the spontaneous change of a proper CP to a CP-like transformation via SSB
of S3 × Z3 → Z′

3 the physical (proper) CP transformation CPphys is actually given by
a product of a CP-like transformation and a broken element, so that the physical CP
symmetry is spontaneously broken by the broken element and the CP asymmetry should
be explicitly proportional to the VEV, while there exists CP-like symmetry in the broken
phase.

The symmetry breaking patterns of SU(3) and CP are summarized in Fig. 4.

4.3 SU(2)× U(1)

We show yet another simple example in which a CP-like symmetric model with continuous
internal symmetry group can be derived from a proper CP symmetric model. As an
example, we consider SU(2) × U(1) symmetric model, and introduce a scalar field S =
(S1, S2, S3)

T , and a Dirac fermion field Ψq = (Ψq
1,Ψ

q
2,Ψ

q
3)
T in the triplet representation of
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SU(2). q denotes U(1) charge and S is neutral under U(1). A group action on a triplet
field Ψq (and S) is represented as

Ψq → Ψ′q =ρΨq(c⃗, θ)Ψq, ρΨq(c⃗, θ) = eiσ⃗·⃗ceiqθ, (4.49)

c⃗ =(c1, c2, c3), θ, ci ∈ R.

where σ⃗ = (σ1, σ2, σ3) is the Pauli vector in a three-dimensional representation, which is
given in terms of the su(2) generators,

σ1 =
1√
2

0 1 0
1 0 1
0 1 0

 , σ2 =
1√
2

0 −i 0
i 0 −i
0 i 0

 , σ3 =

1 0 0
0 0 0
0 0 −1

 . (4.50)

A proper CP transformation of Ψq is given as

Ψq(x) → −UCΨq∗(x̃), (4.51)

where U is an unitary matrix which acts on SU(2) indices, and C denotes the charge con-
jugation matrix. The complex conjugation automorphism of SU(2)×U(1) is represented

as a direct product of the two automorphisms as u
SU(2)×U(1)
CP = u

SU(2)
CP × u

U(1)
CP , and the

consistency condition for SU(2) is given as,

U
(
eiσ⃗·⃗c

)∗
U † = eiσ⃗·c⃗

′
= eiσ⃗·R·⃗c, (4.52)

where R is an O(3) matrix [67]. For U = 13×3 we obtain R = diag(−1, 1,−1). Then the

corresponding automorphism u
SU(2)
CP is given as

u
SU(2)
CP : σ1c1 7→ σ1c

′
1 = −σ1c1, σ2c2 7→ σ2c

′
2 = σ2c2, σ3c3 7→ σ3c

′
3 = −σ3c3. (4.53)

The mass and interaction terms for Ψq for a SU(2) × U(1) symmetric model can be
written as

LΨq = −mΨ̄qΨq + yΨ̄q(S ⊗Ψq)3 +
λ

Λ
(S ⊗ S)5(Ψ̄

q ⊗Ψq)5 + (h.c.). (4.54)

where we add non-renormalizable terms for later convenience.

4.3.1 CP-like Symmetry: SU(2)× U(1) → U(1)× U(1)

The group SU(2) is spontaneously broken to U(1) by a nonzero VEV for a triplet scalar
S. Let us assume that the VEV is given as

⟨S⟩ = (v, 0, v)T (v ∈ R), (4.55)

the vacuum is invariant under the CP transformation with U = 13×3. The unbroken U(1)
is generated by σ2, and we refer to it as U(1)σ2 . When c1 = c3 = 0, from the consistency
condition in Eq. (4.52) we obtain

CP−1 ◦ (eiσ⃗·⃗c)∗ ◦ CP = eiσ⃗·R·⃗c ⇒ CP−1 ◦ (eiσ2c2)∗ ◦ CP = eiσ2c2 . (4.56)
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Thus we see that the proper CP transformation at the level of SU(2) becomes to a CP-like
transformation at the level of U(1)σ2 ∈ SU(2). The triplet fields are decomposed into the
eigenstates for the remaining symmetry of U(1)σ2 × U(1). The eigenstates are given by

Ψq
+ = − i

2
Ψq

1 +
1√
2
Ψq

2 +
i

2
Ψq

3,

Ψq
− =

i

2
Ψq

1 +
1√
2
Ψq

2 −
i

2
Ψq

3,

Ψq
0 =

Ψq
1 +Ψq

3√
2

, (4.57)

as well as S. The lower index indicates the U(1)σ2 charge. For a multiplet field of these
eigenstates Ψ̃q = (Ψq

+,Ψ
q
−,Ψ

q
0)
T , the original proper CP transformation (Eq. (4.51)) can

be represented as a CP-like form,

CP-like : Ψ̃ → −UΨ̃CΨ̃
∗, UΨ̃ =

0 1 0
1 0 0
0 0 1

 , (4.58)

which indicates that the corresponding automorphism of the generators for U(1)σ2 ×U(1)
is give as

uU(1)σ2⊕U(1) : (c2, θ) 7→ (c2,−θ). (4.59)

It should be noted that this automorphism is consistent with the CP-like transformation
defined in Eq. (3.43).

As for the vacuum stability of the model, one can investigate the following general
renormalizable scalar potential,

V(S) =m
2

2
S† · S +

µ2

2
(S ⊗ S)0

+
λ1
4
[(S ⊗ S)0]

2 +
λ2
4
(S† · S)(S ⊗ S)0

+
λ3
4
(S† · S)2 + λ4

4
(S∗ ⊗ S∗)0(S ⊗ S)0 + (h.c.), (4.60)

where X† · Y and (X ⊗ Y )0 are the two SU(2) invariant tensor products

X† · Y = x∗1y1 + x∗2y2 + x∗3y3, (X ⊗ Y )0 = x1y3 − x2y2 + x3y1, (4.61)

for two triplets of X = (x1, x2, x3)
T and Y = (y1, y2, y3)

T . As a result, there exists
a parameter region where the CP-like symmetric vacuum given in Eq. (4.55) is stable.
Therefore we show that a CP-like symmetric model with continuous internal symmetry
can be naturally derived from a proper CP symmetric model.

While we use a basis where the unbroken group is represented by U(1)σ2 , all U(1) sub-
groups of SU(2) are completely equal, as their matrix representations can be transformed
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through a basis change. Hence breaking to one or the other subgroup should have the
same phenomenological consequence. Given that the CP transformation with U = 13×3

properly maps U(1)σ3 to its complex conjugate, it might be inferred that the model can
exhibit a physical CP symmetry for U(1)σ3 invariant vacuum after a basis change, sug-
gesting that a CP-like symmetric vacuum for continuous groups might not exist. This
apparent puzzle can be resolved by considering the basis change of the CP transformation
matrix U simultaneously.

A basis change for Ψ is generally represented by 3× 3 unitary matrix V as

Ψ′ =VΨ, (4.62)

ρΨ′(g) =V ρΨ(g)V
†, g ∈ SU(2). (4.63)

We can choose V U(1)σ2V
† = U(1)σ3 , where Ψ′ corresponds to a U(1)σ3 eigenstate. We

refer to the original basis for Ψ as the σ2 basis, and the new basis for Ψ′ as the σ3 basis,
respectively. Then the CP transformation is also changed to

CP : Ψ′ → −V UCΨ∗ = −V UV TCΨ′∗ ≡ −U ′CΨ′∗, U ′ =

0 0 1
0 1 0
1 0 0

 . (4.64)

The CP transformation in the σ3 basis is accompanied by a unitary matrix U ′ = V UV T =
V V T . Therefore, from the consistency condition the automorphism of unbroken U(1)σ3
associated with U ′ is obtained as

U ′U(1)∗σ3U
′† =V V T (V U(1)σ2V

†)∗(V V T )†

=V U(1)σ2V
†

=U(1)σ3 ̸= U(1)∗σ3 . (4.65)

Thus the CP transformation in the σ3 basis is also CP-like for U(1)σ3 , and not the physical
one. The automorphism group associated with the CP transformation remains invariant
under this basis change. Here we note that the VEV for a triplet field S ′ ≡ V S (in the
σ3 basis) should be given as

⟨S ′⟩ = (0,
√
2v, 0)T (v ∈ R), (4.66)

to be invariant under U(1)σ3 transformations, which is apparently different from the form
of ⟨S⟩ = (v, 0, v)T in the original basis, although the physical results do not depend on
the basis.

To clearly observe the phenomenological consequences in the CP-like symmetric vac-
uum, let us examine the mass spectra for the model given in Eq. (4.54). For ⟨S⟩ =
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(v, 0, v)T , we obtain the mass matrix M for Ψq
i ,

M =

m− λv2

3Λ
− λ∗v∗2

3Λ
−yv + y∗v∗ −λv2

Λ
− λ∗v∗2

Λ

yv − y∗v∗ m+ 2λv2

3Λ
+ 2λ∗v∗2

3Λ
−yv + y∗v∗

−λv2

Λ
− λ∗v∗2

Λ
yv − y∗v∗ m− λv2

3Λ
− λ∗v∗2

3Λ


=

m− 2λv2

3Λ
0 −2λv2

Λ

0 m+ 4λv2

3Λ
0

−2λv2

Λ
0 m− 2λv2

3Λ

 . (4.67)

The relative sign of yv and y∗v∗ comes from anti-symmetric nature of (3 ⊗ 3)3. Since
the model is assumed to be invariant under CP with U = 13×3, the coupling constants y
and λ as well as v are real. Using the mass eigenstates in Eq. (4.57), we obtain the mass
eigenvalues,

mΨq
0
= m− 8λv2

3Λ
, mΨq

±
= m+

4λv2

3Λ
. (4.68)

As shown above, two charged states Ψq
± are degenerate due to the CP-like symmetry,

since the CP transformation with U = 13×3 exchanges Ψq
+ and (Ψq

−)
∗ (See Eq. (4.57)).

Since there is no other symmetry, the theory should exhibit physical CP violation. To
explicitly show that this model indeed violates physical CP symmetry, we can examine
the complex phases of the Yukawa couplings. In the broken phase, the effective Yukawa
interactions in Eq. (4.54) can be expressed in terms of U(1)σ2 eigenstates in Eq. (4.57) as

Lyukawa =iy{S0(−Ψ̄q
+Ψ

q
+ + Ψ̄q

−Ψ
q
−) + S−(Ψ̄

q
0Ψ

q
+ − Ψ̄q

−Ψ
q
0) + S+(Ψ̄

q
+Ψ

q
0 − Ψ̄q

0Ψ
q
−)}

+

√
2λv

Λ
{S−(Ψ̄

q
0Ψ

q
+ + Ψ̄q

−Ψ
q
0) + S+(Ψ̄

q
+Ψ

q
0 + Ψ̄q

0Ψ
q
−)}

− 2
√
2

3

λv

Λ
S0(Ψ̄

q
+Ψ

q
+ − 2Ψ̄q

0Ψ
q
0 + Ψ̄q

−Ψ
q
−) + (h.c.). (4.69)

It is obvious that a part of complex phases of the Yukawa couplings must remain by field
redefinition. For instance, it is impossible to simultaneously rotate away the following
two complex phases in the Yukawa couplings,

Lyukawa ∋

(
−iy − 2

√
2

3

λv

Λ

)
S0Ψ̄

q
+Ψ

q
+ +

(
iy − 2

√
2

3

λv

Λ

)
S0Ψ̄

q
−Ψ

q
−. (4.70)

Therefore, a vacuum that is invariant under the CP-like transformation necessarily vi-
olates physical CP symmetry. It is remarkable that the imaginary part of the Yukawa
couplings can be dynamically generated through the CG coefficients even in the context of
continuous symmetry groups, while all the couplings and the VEV can be real parameters
in terms of the triplet fields in the symmetric phase.
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4.3.2 Proper CP Symmetry: SU(2)× U(1) → U(1)× U(1)

If the vacuum is given by ⟨S⟩ = (0,
√
2v, 0)T , U(1)σ3 symmetry is realized. The mass

matrix M for Ψq
i takes a diagonal form as,

M =

m− 2
√
2yv + 4λ

3Λ
v2 0 0

0 m− 8λ
3Λ
v2 0

0 0 m+ 2
√
2yv + 4λ

3Λ
v2

 . (4.71)

We obtain mass splitting because the CP transformation with U = 13×3 does not relate
among Ψq

i with different U(1) charges. Since v is assumed to be real for the CP invariance,
there is no complex phase in any of the couplings in the Ψq

i basis, and the physical CP
symmetry is preserved in the broken phase. Thus these two vacua of ⟨S⟩ = (v, 0, v)T and
⟨S⟩ = (0,

√
2v, 0)T are physically distinct, even though the representations for both VEVs

can be transformed through a basis change.
Let us also investigate the basis dependence of the CP transformation matrix. As

suggested by the basis change in Eq. (4.64), we consider U = U ′ as an example of a
different definition of a charge conjugation CP transformation for SU(2), which we refer
to as CP′ transformation. Since CP′ properly maps U(1)σ2 to its complex conjugate,
acting as a physical CP transformation, we assume ⟨S⟩ = (v, 0, v)T with v ∈ R. The
CP′ invariance requires y to be purely imaginary because of anti-symmetric nature of the
tensor product of (3⊗3)3. Under this symmetry, the three mass eigenvalues are provided
by

m− 8λv2

3Λ
,m+

4λv2

3Λ
±
√
2i(y − y∗)v. (4.72)

This results in a splitting of the mass degeneracy. By replacing Im y by y, we obtain the
same mass eigenvalues as those given by Eq. (4.71). Thus, we find that this model with
CP′ and ⟨S⟩ = (v, 0, v)T is equivalent to the model with CP and ⟨S⟩ = (0,

√
2v, 0)T , as

expected from the basis change from σ2 to σ3.
The symmetry breaking patterns of SU(2) × U(1) and CP are also summarized in

Fig. 4.

5 Conclusion

In this paper we have extensively discussed the general CP transformations in quantum
field theory with internal global symmetry including continuous groups. A special at-
tention has been paid to the CP-like transformation. Since the CP-like transformation
exchanges a particle and a different (anti)particle, the physical CP symmetry is in general
violated even if the theory has a CP-like symmetry [69]. Despite its interesting prop-
erty, the phenomenological aspects of the CP-like symmetric models have not been fully
investigated so far. To address physical consequences of the CP-like symmetry we have
computed the various scattering amplitudes. As a result it has been found that physical
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scattering processes that exhibit a physical CP asymmetry can also generate the mat-
ter/antimatter asymmetry. We have classified these CP-violating scattering amplitudes
based on the representations of the asymptotic states under the CP-like transformation,
by which a required condition for generating particle number asymmetry can be easily
obtained. One striking feature of the CP-like symmetric model is that, while there exist
physical processes that can exhibit particle number generations, the resultant particle
number asymmetries are constrained by the CP-like symmetry. Assuming that the two
different particles of ψi and ψ̄j are related to each other via the CP-like transformation, we
have explicitly calculated particle number generations of both particles Nψi

and Nψj
from

a CP-violating scattering process, where it has been shown that the following relation
about the number violations should hold in general,

Nψi
+Nψj

= 0. (5.1)

This relation is analogous to other particle number generation processes such as the GUT
baryogenesis [72] and the sphaleron process [73]. We also have found CP-like eigenstate
which has no CP-like partner, and hence, its particle number is not related to other
antiparticles nor conserved. Existence of these two classes of states is crucial for CP
violation in CP-like symmetric models. The mechanism for generating particle number
asymmetry might be useful for phenomenological purposes, e.g. for baryogenesis and
asymmetric DM, which we will study in the future work.

We also have discussed a dynamical origin of the CP-like symmetry and the fate of
the CP-like symmetry. It has turned out that a proper CP and a CP-like transformation
can be mutually converted through the SSB, where it is found that the mechanisms of
the multiplet splitting/merging play an important role. As we have pointed out that the
emergence of CP-like symmetry is not directly related to the absence of the CIA, CP-like
symmetric models with a wider class of internal symmetry groups can be obtained from
proper CP symmetric models through the SSB. Various examples of spontaneous CP vi-
olation/restoration have been explicitly shown, in which we have provided a simple way
to construct a CP-like symmetric model with continuous symmetries from an underlying
proper CP symmetric theory via the SSB. Our results suggest that some quantum charge
under a continuous symmetry may be defined to be invariant under the CP-like transfor-
mation. The CP-like symmetric model may shed light on the origin of the physical CP
violation and simultaneously provides us with novel frameworks for new physics.

Our analyses can be extended to other symmetries such as local (gauge) symmetry and
the modular symmetry. The modular symmetry includes CP transformation in its nature,
which also acts on the flavor symmetry as an automorphism. It would be also possible
to generalize the non-CP automorphisms. The above generalizations and applications to
phenomenology may be interesting and will be studied elsewhere.
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A Group Property of ∆(54)

The discrete group ∆(54) is isomorphic to ∆(27)⋊Z2
∼= ((Z3 ×Z3)⋊Z3)⋊Z2. It means

all elements of ∆(54) can be represented by aia′jbkcl (i, j, k = 0, 1, 2 and l = 0, 1), where
a, a′, b corresponds to the elements of ∆(27), and c corresponds to the element of Z2. The
commutation relations including c are given as ca = aa′c, ca′ = a′2c, and cb = b2c, and
those for ∆(27) are given in Sec. 3.1. There are 10 conjugacy classes in ∆(54):

C1a :{e}, C3e : {aa′2}, C3f : {a2a′},
C3a :{b, b2, a2a′b, aa′2b, aa′2b2, a2a′b2},
C3b :{a, a′, a2, aa′, a′2, a2a′2},
C3c :{a2b, a′2b, aa′b, ab2, a′b2, a2a′2b2},
C3d :{ab, a′b, a2a′2b, a2b2, aa′b2, a′2b2},
C2a :{c, a′c, bc, a′2c, b2c, ab2c, aa′bc, a2b2c, a2a′2bc},
C6a :{ac, aa′c, aa′2c, a′bc, a2bc, a′2b2c, aa′2bc, aa′2b2c, a2a′2b2c},
C6b :{a2c, abc, a2a′c, a′b2c, a′2bc, a2a′2c, aa′b2c, a2a′bc, a2a′b2c}. (A.1)

Therefore ∆(54) has 10 irreducible representations of two singlets 10,1, four doublets 21,2,3,4

and four triplets 31,2,3
∗
1,2. The character table of ∆(54) is summarized in Tab. 8.

C1a C3a C3b C3c C3d C2a C6a C6b C3e C3f

degeneracy 1 6 6 6 6 9 9 9 1 1
∆(54) e b a′ ba′b ba′ c ac a2c aa′2 a2a′

10 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 −1 −1 −1 1 1
21 2 −1 2 −1 −1 0 0 0 2 2
22 2 −1 −1 −1 2 0 0 0 2 2
23 2 −1 −1 2 −1 0 0 0 2 2
24 2 2 −1 −1 −1 0 0 0 2 2
31 3 0 0 0 0 1 ω ω2 3ω 3ω2

3∗
1 3 0 0 0 0 1 ω2 ω 3ω2 3ω

32 3 0 0 0 0 −1 −ω −ω2 3ω 3ω2

3∗
2 3 0 0 0 0 −1 −ω2 −ω 3ω2 3ω

Table 8: Character table of ∆(54).

The faithful representation is given by the triplets. A matrix representation of the
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triplets is given by

ρ31(a) = ρ32(a) =

ω 0 0
0 ω2 0
0 0 1

 , ρ31(a
′) = ρ32(a

′) =

1 0 0
0 ω 0
0 0 ω2

 , (A.2)

ρ31(b) = ρ32(b) =

0 1 0
0 0 1
1 0 0

 , ρ31(c) = −ρ32(c) =

1 0 0
0 0 1
0 1 0

 . (A.3)

3∗
i is the complex conjugate representation of 3i. The matrix representations of the

doublets are then given by

ρ21(a) = ρ21(a
′) =

(
1 0
0 1

)
, ρ21(b) =

(
ω 0
0 ω2

)
, ρ21(c) =

(
0 1
1 0

)
, (A.4)

ρ22(a) = ρ22(a
′) =

(
ω2 0
0 ω

)
, ρ22(b) =

(
ω 0
0 ω2

)
, ρ22(c) =

(
0 1
1 0

)
, (A.5)

ρ23(a) = ρ23(a
′) =

(
ω 0
0 ω2

)
, ρ23(b) =

(
ω 0
0 ω2

)
, ρ23(c) =

(
0 1
1 0

)
, (A.6)

ρ24(a) = ρ24(a
′) =

(
ω 0
0 ω2

)
, ρ24(b) =

(
1 0
0 1

)
, ρ24(c) =

(
0 1
1 0

)
. (A.7)

Since ρ2i
(a(′))∗ = S†

2ρ2i
(a(′))S2, and ρ2i

(b)∗ = S†
2ρ2i

(b)S2, where S2 is the matrix given in
Eq. (4.2). These doublets are pseudoreal representations. We also have the trivial singlet
10 and a nontrivial singlet 11, ρ11(a) = ρ11(a

′) = ρ11(b) = 1 and ρ11(c) = −1.
The outer automorphism group of ∆(54) is isomorphic to S4, which is equivalent to

the permutation of 4 doublets. It follows that 2i → 2i corresponds to the identity element
of the outer automorphism, and we cannot introduce consistent CP transformation which
is based on 3i → 3∗

i and 2i → 2i simultaneously.

B Clebsch-Gordon Coefficients of ∆(27) and ∆(54)

In this Appendix, we note CG coefficients of ∆(27) and ∆(54). There are various con-
ventions of the irreducible representations of discrete groups. We note tensor products
relative to our calculations rather than complete table of the algebra. Complete table of
tensor products of these representations and its CG coefficients are summarized in [41,69]
and reference therein, but the conventions are a little different. In this paper, we make
the irreducible representations ∆(27) and CG coefficients coincide with that of ∆(54) as
possible.
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B.1 CG Coefficients of ∆(27)

The tensor product of 3 and 3∗ is decomposed to nine singlets,

3∗ ⊗ 3 =
∑

i=0,...,8

1i. (B.1)

We introduce x3∗ = (x1, x2, x3)
T and y3 = (y1, y2, y3)

T Their tensor product is decomposed
to

(x3∗ ⊗ y3)10 = x1y1 + x2y2 + x3y3,

(x3∗ ⊗ y3)11 = x1y1 + ωx2y2 + ω2x3y3,

(x3∗ ⊗ y3)12 = x1y1 + ω2x2y2 + ωx3y3,

(x3∗ ⊗ y3)13 = x1y3 + x2y1 + x3y2,

(x3∗ ⊗ y3)14 = x1y3 + ωx2y1 + ω2x3y2,

(x3∗ ⊗ y3)15 = x1y3 + ω2x2y1 + ωx3y2,

(x3∗ ⊗ y3)16 = x1y2 + x2y3 + x3y1,

(x3∗ ⊗ y3)17 = x1y2 + ωx2y3 + ω2x3y1,

(x3∗ ⊗ y3)18 = x1y2 + ω2x2y3 + ωx3y1. (B.2)

The CG coefficients are written by matrix form. They are given by

M0 =

1 0 0
0 1 0
0 0 1

 ,M1 =

1 0 0
0 ω 0
0 0 ω2

 ,M2 =

1 0 0
0 ω2 0
0 0 ω

 ,

M3 =

0 0 1
1 0 0
0 1 0

 ,M4 =

0 0 1
ω 0 0
0 ω2 0

 ,M5 =

 0 0 1
ω2 0 0
0 ω 0

 ,

M6 =

0 1 0
0 0 1
1 0 0

 ,M7 =

 0 1 0
0 0 ω
ω2 0 0

 ,M8 =

0 1 0
0 0 ω2

ω 0 0

 , (B.3)

where

(x3∗ ⊗ y3)1i
= xT3∗Miy3. (B.4)

It is also useful to introduce Mi∗ , which satisfies

(x3∗ ⊗ y3)1∗
i
= xT3∗Mi∗y3. (B.5)

It is obvious that Mi∗ is relevant to Mj.

M0∗ =M0, M1∗ =M2, M2∗ =M1,

M3∗ =M6, M4∗ =M8, M5∗ =M7,

M6∗ =M3, M7∗ =M5, M8∗ =M4. (B.6)
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B.2 CG Coefficients of ∆(54)

We concentrate on 3∗
i ⊗ 3i. It is decomposed to one singlet and four different doublets.

Decomposition rules of the tensor products are given by

(x3∗
i
⊗ y3i

)10 = x1y1 + x2y2 + x3y3,

(x3∗
i
⊗ y3i

)21 =

(
x1y1 + ω2x2y2 + ωx3y3
ωx1y1 + ω2x2y2 + x3y3

)
,

(x3∗
i
⊗ y3i

)22 =

(
ωx1y3 + x2y1 + ω2x3y2
ω2x1y2 + x2y3 + ωx3y1

)
,

(x3∗
i
⊗ y3i

)23 =

(
x1y2 + ω2x2y3 + ωx3y1
ωx1y3 + ω2x2y1 + x3y2

)
,

(x3∗
i
⊗ y3i

)24 =

(
x1y2 + x2y3 + x3y1
x1y3 + x2y1 + x3y2

)
. (B.7)

We also note the CG coefficients of products of doublets,

x2i
⊗ y2i

=(x1y2 + x2y1)10 ⊕ (x1y2 − x2y1)11 ⊕
(
x2y2
x1y1

)
2i

(B.8)

x2i
⊗ y2j

=

(
x2y2
x1y1

)
2k

⊕
(
x1y2
x2y1

)
2l

. (B.9)

where i, j, k, l is a permutation of {1, 2, 3, 4}. For example,

x21 ⊗ y22 =

(
x2y2
x1y1

)
23

⊕
(
x1y2
x2y1

)
24

. (B.10)

C CP-Violating Amplitude

In this Appendix, we show an explicit form of the one-loop amplitude of decay of a scalar
field in our ∆(27) model studied in Section 3.2.1,

ϕ+
4

ψ̄5

ψ6

Ψ3

Ψ3

Φ3
=− 3iω2y2y

∗
3y4Iū

s(p)vs
′
(p′), (C.1)

where I is formally calculated as

Iūs(p)vs
′
(p′) =

∫
d4q

(2π)4
i

q2 −m2
s

ūs(p)
i((/p+ /q) +mf )

(p+ q)2 −m2
f

i((−/p′ + /q) +mf )

(−p′ + q)2 −m2
f

vs
′
(p′). (C.2)
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This integral is evaluated by using the Feynman parameters technique. The integral is
rewritten as

Iūs(p)vs
′
(p′) =− i

∫
d4l

(2π)4

∫ 1

0

dxdydz δ(x+ y + z − 1)

ūs(p)(/l
2
+ y2m2

5 + z2m2
6 − 2yzp′ · p− (m5 +m6 + 2mf )(ym6 + zm5) + (m6 +mf )(m5 +ms))v

s′(p′)

(l2 + (−y2 + y)p2 + (−z2 + z)p′2 + 2yzp · p′ − xm2
s − (y + z)m2

f )
3

.

(C.3)

We omit a linear term of l since it does not contribute to the integral. l is given by

l =q + (yp− zp′). (C.4)

We use /pus(p) = m6u
s(p) and /p′vs

′
(p′) = −m5v

s′(p′). Then, we obtain

I = −i
∫

d4l

(2π)4

∫ 1

0

dy

∫ 1−y

0

dz
l2 +∆′

(l2 −∆+ iϵ)3
, (C.5)

where

∆ =y(y − 1)p2 + z(z − 1)p′2 − 2yzp · p′ + (1− y − z)m2
s + (y + z)m2

f ,

∆′ =y2m2
6 + z2m2

5 − 2yzp′ · p− (m6 +m5 + 2mf )(ym6 + zm5) + (m6 +mf )(m5 +mf ).
(C.6)

We introduce Wick rotation and substitute l0 = il0E. We obtain

I =

∫
d4lE
(2π)4

∫ 1

0

dy

∫ 1−y

0

dz
l2E −∆′

(l2E +∆)3
. (C.7)

It is evaluated by the dimensional regularization method. We change d4lE to d4−ϵlE, and
we obtain

I =

∫ 1

0

dy

∫ 1−y

0

dz

{
1

(4π)2−ϵ/2

(
2− ϵ

2

) Γ
(
ϵ
2

)
Γ(3)

(
1

∆

) ϵ
2

− ∆′

(4π)2−ϵ/2
Γ
(
1− ϵ

2

)
Γ(3)

(
1

∆

)1− ϵ
2

}

=

∫ 1

0

dy

∫ 1−y

0

dz
2

(4π)2
√
π

{(
4

ϵ
− 2 log∆− 2γ − 1 + 2 log 4π

)
−

√
π∆′

∆
+O(ϵ)

}
.

(C.8)

The divergent parts are cancelled by the counter terms. For instance, we adopt the
MS scheme. In this scheme the divergent terms and constant terms given rise from the
regularization technique are subtracted by the counter terms. We obtain

I =

∫ 1

0

dy

∫ 1−y

0

dz
2

(4π)2
√
π

{(
−2 log

∆

µ2

)
−

√
π∆′

∆

}
. (C.9)
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where µ is the renormalization scale, and thus we obtain the finite invariant matrix of
particle decay at the one-loop level:

iMss′

ϕ+4 →ψ6ψ̄5
= −i

(
y1 − 3ω2y2y

∗
3y4I

)
ūs(p)vs

′
(p′). (C.10)

On the other hand, the one-loop decay amplitude of antiparticle with inverse momen-
tum is similarly given by

ϕ̄+
4

ψ5

ψ̄6

ψ3

ψ3

ϕ3
=i3ωy∗2y3y

∗
4Jū

s′(−p′)vs(−p), (C.11)

where J is given by

Jūs
′
(−p′)vs(−p) =

∫
d4q

(2π)4
i

q2 −m2
s

ūs
′
(−p′)

i((−/p′ + /q) +mf )

(−p′ + q)2 −m2
f

i((/p+ /q) +mf )

(p+ q)2 −m2
f

vs(−p).

(C.12)

It is obvious that the integrands of Eqs. (C.12) and (C.3) are the same except for the
spinors. Thus we find that I = J . We finally obtain the CP asymmetry of S-matrix at
the one-loop level by∑

s,s′

|Mss′

ϕ+4 →ψ6ψ̄5
|2 − |M̄ss′

ϕ̄+4 →ψ̄6ψ5
|2 =− 12Imω2y∗1y2y

∗
3y4 Im I × (p−m6) · (p′ +m5).

(C.13)

The imaginary part of I comes from ln∆. On the rest frame of ϕ+
4 , we obtain

∆ = y(y + z − 1)m2
6 + z(y + z − 1)m2

5 + (1− y − z)m2
s + (y + z)m2

f − yzm2
4, (C.14)

and it takes a negative value if m4 is heavy enough.

D Trace of S-Matrix and Existence of Generalized

CP symmetry

A scattering amplitude is CP conserved if there is a physical CP transformation which
cancels CP asymmetry. Nonexistence of physical CP transformation for a certain process
is not trivial since there are many candidates of physical CP transformations in general.
In this appendix, we consider a sufficient condition for physical CP violation.

We consider a model with internal symmetry G, which contains fields denoted by
ϕri = (ϕ1

ri
, ϕ2

ri
, ..., ϕdim ri

ri
)T , which transforms as an irreducible representation ri of G. Let

us consider a scattering process depicted by Fig. 5.
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r1

r2

rn−1

rn

r′1

r′2

r′m−1

r′m

Figure 5: A scattering process.

The invariant matrix element M of this process is given by

(2π)4δ(4)(
∑
in

pin −
∑
out

kout)M({rin, iin,pin} → {rout, jout,kout})

= lim
T→∞

out ⟨r′1, j1,k1; · · · ; r′m, jm,km| e−i2HT |r1, i1,p1; · · · ; rn, in,pn⟩in , (D.1)

where {rin, iin,pin} and {rout, jout,kout} formally represents the asymptotic states. They
are given by

|r1, i1,p1; · · · ; rn, in,pn⟩ ≡ a
(r1)†
i1,p1

...a
(rn)†
in,pn

|0⟩ ,

|r′1, j1,k1; · · · ; r′m, jm,km⟩ ≡ a
(r′1)†
j1,k1

...a
(r′m)†
jm,km

|0⟩ , (D.2)

where a
(r)†
i,p is the particle creation operator of the i-th component (flavor) of ϕr with

momentum p.15 The flavor indices i and j are explicitly shown for our purpose.
If the model is invariant under a physical CP transformation given by ϕr → Urϕ

CP
r

where Ur is a unitary matrix, the invariant matrix element is transformed as

M({rin, iin,pin} → {rout, jout,kout}) → M({r∗in, U iini
′

r i′,−pin} → {r∗out, U joutj′

r j′,−kout})

=
∏

iin,jout

U iini
′

r U joutj′∗
r M({r∗in, i′,−pin} → {r∗out, j′,−kout}),

(D.3)

under the physical CP transformation. And hence, this process is CP conserved,

|M({rin, iin,pin} → {rout, jout,kout})|2 − |M({r∗in, U iini
′

r i′,−pin} → {r∗out, U joutj′

r j′,−kout})|2 = 0,
(D.4)

To confirm physical CP violation by calculating an invariant matrix, we must prove
that there is no unitary matrix which satisfies Eq. (D.3). It might be difficult if we don’t
know the precise transformation rule for every irreducible representation. Our goal is to

15The initial and final state can contains antiparticles. However, it just make the notation more
complicated, and does not affect the result. We assume the external lines are particles in this appendix.
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establish an easy method to determine whether CP is violated without specifying physical
CP transformation rules. One easy way is to calculate

trAiinjout ≡
∑

iin∈rin,jout∈rout

|M({rin, iin,pin} → {rout, jout,kout})|2

− |M({r∗in, iin,−pin} → {r∗out, jout,−kout})|2, (D.5)

where we take the sum of all initial and the final states. If the model is physical CP
invariant,

trAiinjout =
∑

iin∈rin,jout∈rout

|
∏
iin

U iini
′

r

∏
jout

U joutj′∗
r M({r∗in, i′,−pin} → {r∗out, j′,−kout})|2

− |M({r∗in, iin,−pin} → {r∗out, jout,−kout})|2

=
∑

i′∈rin,j′∈rout

|M({r∗in, i′,−pin} → {r∗out, j′,−kout})|2

−
∑

iin∈rin,jout∈rout

|M({r∗in, iin,−pin} → {r∗out, jout,−kout})|2

=0. (D.6)

Hence trAij ̸= 0 is a sufficient condition for CP violation. On the other hand, trAij = 0
implies the existence of generalized CP.
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