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Abstract

Time series anomaly detection is a vital task in
many domains, including patient monitoring in
healthcare, forecasting in finance, and predictive
maintenance in energy industries. This has led
to a proliferation of anomaly detection methods,
including deep learning-based methods. Bench-
marks are essential for comparing the perfor-
mances of these models as they emerge, in a
fair, rigorous, and reproducible approach. Al-
though several benchmarks for comparing mod-
els have been proposed, these usually rely on a
one-time execution over a limited set of datasets,
with comparisons restricted to a few models. We
propose OrionBench— an end-user centric, con-
tinuously maintained benchmarking framework
for unsupervised time series anomaly detection
models. Our framework provides universal ab-
stractions to represent models, extensibility to add
new pipelines and datasets, hyperparameter stan-
dardization, pipeline verification, and frequent
releases with published updates of the benchmark.
‘We demonstrate how to use OrionBench, and the
performance of pipelines across 17 releases pub-
lished over the course of four years. We also
walk through two real scenarios we experienced
with OrionBench that highlight the importance of
continuous benchmarking for unsupervised time
series anomaly detection.

1. Introduction

As continuous data collection becomes more commonplace
across domains, there is a corresponding need to monitor
systems, devices, and even human health and activity in
order to find patterns in collected data, as well as deviations
from those patterns (Chandola et al.; Aggarwal, 2017). Over
the past decade, tremendous progress has been made in us-
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ing machine learning to perform various types of monitoring,
including unsupervised time series anomaly detection. For
example, in the past 5 years, Hundman et al. (2018) created
a Long Short-Term Memory (LSTM) forecasting model to
find anomalies in spacecraft data, Park et al. (2018) used
LSTM variational autoencoders for anomaly detection in
multimodal sensor signals collected from robotic arms, and
Geiger et al. (2020) used generative adversarial networks
for time series anomaly detection on widely used public
datasets.

These methods have gained popularity given their unsuper-
vised nature. With supervised learning, models learn pat-
terns from human-labelled data and then use those patterns
to detect other anomalies. That these models are restricted
to previously labelled events, which are themselves difficult
for humans to find, makes it more challenging for models to
make useful predictions. Moreover, these models struggle to
find “new” events that are interesting to the user. In contrast,
with unsupervised learning, no ground truth is given to the
model, revealing anomalies that may have otherwise gone
unseen. This property is highly valuable to users, who are
often unable to determine what they are looking for and
when it will occur. In this paper, we focus on unsupervised
models.

When end-users — defined here as people who are interested
in training a model on their own data in order to find anoma-
lies — attempt to use these models, they regularly run into
particular challenges and pain points, which we highlight in
Table 1.

One challenge is simply deciding which model to use. Rapid
innovation in the machine learning space, where papers are
regularly published presenting new state-of-the-art (SOTA)
models, means many users are in a constant state of strug-
gling to keep up. Moreover, if users do decide to use the
latest pipeline — perhaps alongside their existing approach
— they often find themselves unsure of how to get started,
as research papers are full of new terminology published
alongside obfuscated code. Another challenge comes with
determining whether one model works better than another.
Users might find that the new model did not actually im-
prove on their existing model. Lastly, and more subtly, a
new model can outperform existing models not because
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Table 1. A set of pain points experienced by end-users and their corresponding research questions we aim to address.

End-User Pain Point

Research Question

Fear of Numerous generative modeling techniques are published, RQ1 How can we support end-users in
missing each promising better performance than all previous mod- confidently making the decision of
out els. An end-user worries if the model they have been using is whether or not to adopt a new
suboptimal and needs to updated. model?
Unable Published work has a lot of complex machine learning spe- RQ2 How can we best represent models
to parse cific jargon which makes it impossible for an end-user to with proper abstractions, such that
complex approach implementation or delineate differences between new models can be represented as a
jargon what they have been using versus the new methods. Important set of components and one can iden-
components (e.g. pre-processing functionalities) are hidden tify the differences between models
behind the complexity of the model, when in reality these easily?
components are what made the model successful.
Time lost With these two challenges above, end-users may spend sub- RQ3 How can we provide end-users with
with no stantial time trying to adapt a new model’s code for their data, ready-to-use models should they
improve-  only to discover that the new model did not outperform their choose to adopt?
ment current model on their data.

of the model itself, but due to the inclusion of important
pre- and/or post-processing operations, a distinction that
may not be apparent to the user. This entire process can be
time-consuming, taking 6-12 months after the research is
published for an end-user to figure out and decide whether or
not to incorporate a newly published method. Figure 1(left)
depicts this asynchrony between the research process and
method usage.

It is important to note that an end-user is only interested
in finding the best solution for their particular problem,
and does not think about these modeling techniques in the
way that researchers do. In recent years, benchmarks have
become instrumental in gauging and comparing model per-
formance for machine learning researchers (Coleman et al.,
2019; Han et al., 2022). In this paper, we ask — can bench-
marking frameworks also help to alleviate end-users chal-
lenges? Specifically, we ask if it possible to bring together
both the researcher and the end-user to utilize benchmark-
ing systems and reduce the time required to use the latest
research.

We propose OrionBench— an end-user centric benchmark-
ing framework for unsupervised time series anomaly de-
tection. Figure 1(left) illustrates how in a regular setting
researchers and end-users operate independently from one
another, creating hurdles for end-users when adopting a new
published model. With our system Figure 1(right), all re-
searchers (Orion and ML researchers) directly contribute
their model to OrionBench. This creates a single source of
readily-available models for the end-user.

Three concrete innovations enable us to address end-users’
common but critical concerns:

* A continuously running system, moving away from
point-in-time evaluations.

* Abstractions that allow us to easily incorporate and
assess new models, and isolate the factors that make
them better.

* Seamless integration of the latest models into usable
pipelines for end-users.

Below we highlight our framework’s unique contributions.
OrionBench is:

1. A standardized framework that enables the integra-
tion of new pipelines and datasets. OrionBench started
with 2 pipelines in 2020, and as of now encompasses
12 pipelines, 28 primitives, 14 public datasets, and 2
custom evaluation metrics. Once integrated into the
framework and benchmarked, a pipeline is seamlessly
made available to the end-user through unified APIs.

2. A continuously-run benchmark with frequent re-
leases. To date, we have 17 benchmark leaderboards
covering almost four years, accumulating over 70,032
experiments. In addtion, we demonstrate the stability
and reproducibility of OrionBench.

3. An end-to-end benchmark executable with a single
command. Given a pipeline and datasets, the bench-
mark evaluates the performance of the pipeline on ev-
ery signal according to time series anomaly detection-
based metrics. We provide an extensive evaluation
that illustrates the qualitative and computational per-
formances of pipelines across all datasets according to
time series anomaly detection-based metrics.

https://
1

4. Open-source and publicly available:
github.com/sintel-dev/Orion.

"Reproducing paper figures and tables is available: https:
//github.com/sarahmish/orionbench-paper
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Figure 1. Typically researchers and end-users have independent processes. Researchers develop their method and benchmark it to publish
their papers. Once these methods are publicized, end-users work on first understanding the model then adapting the code to work on their
own data. After it is tested, end-users decide whether the performance is sufficient for it to be deployed or not. With OrionBench, we

aim to have a single hub where researchers can benchmark their pipelines and become instantaneously available to end-users.

2. OrionBench

OrionBench is a benchmark suite within the Orion sys-
tem (Alnegheimish, 2022). A researcher creates a new
model and integrates it with Orion through a pull request.
A benchmark run is executed and produces a leaderboard,
and the model is then stored in the sandbox. This part of
the workflow satisfies the goals of the researcher, which is
comparing the performance of different models. To serve
end-users, pipelines in the sandbox are tested by an Orion
developer. Pipelines that pass the tests are verified and be-
come available to end-users. This workflow is depicted
in Figure 2. Five main properties enable our framework
for benchmarking unsupervised time series anomaly detec-
tion models: abstractions that enable us to compose models
as pipelines (directed acyclic graphs) of reusable compo-
nents called primitives; hyperparameter standardization; ex-
tensions to add new pipelines and datasets; verification of
pipelines; and continuous benchmark releases. Lastly, we
conclude the section by illustrating how OrionBench bene-
fits the end-user.

2.1. Abstracting Models into Primitives and Pipelines

New unsupervised time series anomaly detection models
are constantly being developed. This poses the question:
how do we uniformly represent these models?

To accomplish this goal, we standardize models. The
anomaly detection process starts with a signal X =
{xX1,Xa,...,x7} where T is the length of the time se-
ries and x; € R"™ and n is the number of channels.
When the time series is a univariate signal then n = 1.
The goal is to find a set of anomalous intervals A =
{(tL,th), ..., (t*,t*)} where k > 0. Each interval repre-
sents the start and end timestamps of the detected anomaly.

We adopt a universal representation of primitives and
pipelines (Smith et al., 2020). Primitives are reusable basic
block components that perform a single operation. Prim-
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Figure 2. OrionBench integrates new models made by ML re-
searchers and compares its performance to currently available
models through the leaderboard. After testing the validity and
reproduciblity of the model, it is transferred from “sandbox” to
“verified” and becomes readily available to the end-user.

itives can be single tasks, and range from data scaling to
signal processing to model training. When primitives are
stacked together, they compose pipelines. A pipeline is
computed into its respective computational graph, similar
to the LSTM DT pipeline and its primitives shown in Fig-
ure 3a, where the input is a uni- or multi-variate time series,
and the output is a list of intervals of the detected anoma-
lies. As portrayed in Figure 3b, we use the £it method to
train the model and the detect method to run inference.
With this standardization, we are able to treat all models
equivalently. Primitives provide a code-efficient structure
such that we can be modular and re-use primitives between
pipelines. Moreover, it allows researchers to conduct abla-
tion studies in order to attribute pipeline performance and
the contribution of primitives.

2.2. Standardizing Hyperparameter Settings

Deep learning models require setting a multitude of hyper-
parameters, some of which are model-specific. This has
made it more challenging to keep benchmarks fair and trans-
parent. In OrionBench, hyperparameters are stored as json
files to expose configurations in both machine- and human-
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hyperparameters = {
'time_segments_aggregate':
— |
[ ] 'interval': 21600
Xy from orion import Orion Y,
index| time_segments_ from orion.data import 'rolling_window_sequences':
aggregate .
— load_signal — {
X¥ 'target_column': 0,
SimpleImputer train = load_signal ( 'window_size': 250
x¥ <~ 'S-l-train'") },
MinMaxScaler test = load_signal('S-1-test'") 'LSTMTimeSeriesRegressor':
X¥ — |
rolling_window_ index orion = Orion( 'epochs': 35
sequences y pipeline="lstm_dt' by
X ) 'find_anomalies': {
LSTMTimeSeries 'window_size_perc':
Regressor # train pipeline — 30,
yv orion.fit (train) 'fixed_threshold':
regressions_ — false
errors # detect an ies }
errors ¥ anomalies = orion.detect (test) }
find_anomalies
yv
]

(a) Graph representation

(b) Usage in python

(c) Hyperparameter config

Figure 3. Example of LSMT DT pipeline. (a) Graph representation of the pipeline showcasing its primitives and data flow. (b) python
usage example. (c) Subset of hyperparameter configuration in json format of the pipeline.

readable representations. Figure 3c is an example of the
hyperparameter settings for LSTM DT.

To increase benchmark fairness, we standardize hyperpa-
rameters for both global and local hyperparameters. Global
hyperparameters are shared between pipelines. They typ-
ically pertain to pre- and post- processing primitives. For
example, in Figure 3c, interval is a global hyperparam-
eter that denotes the aggregation level for the signal — here
it is set to 6 hours of aggregation (21,600 seconds). Such
hyperparameters are selected based on the characteristics of
the dataset, and in some cases are dynamic. For example,
window_size_perc sets the window size to be 30% of
the signal length. Local hyperparameters such as epochs
are pipeline-specific and are selected based on the authors’
recommendation in the original paper. These hyperparam-
eters are consistent across datasets per pipeline in order to
alleviate any bias introduced by knowing the ground truth
anomalies of the dataset.

2.3. Integrating New Pipelines and Datasets

A main pillar of open-source development is continuously
maintaining and updating a library. Benchmark libraries
are no different. For a library to grow, it is essential to
keep introducing new pipelines and datasets to benefit the
end-user.

ML researchers build new primitives and compose new
pipelines easily in OrionBench. The framework provides
templates to help guide researchers in this process. More-
over, ML researchers can utilize primitives in other packages
given a corresponding json representation. It is often the

case that pre- and post- processing primitives are reusable
across pipelines (Alnegheimish et al., 2022). OrionBench
first started with 2 pipelines, and now has 12 pipelines. The
same applies to benchmark datasets. To make the data more
accessible, we host publicly available datasets on an Ama-
zon S3 instance. Signals can be loaded via load_signal
command (as shown in Figure 3b) that will directly connect
to S3 if the data is hosted there. Otherwise, it will search
for the file locally. This enables users to also load their own
private custom data for benchmarks.

2.4. Verifying Pipelines

We organize pipelines into verified pipelines and sandbox
pipelines. When a new pipeline is proposed, it is catego-
rized under “sandbox” until several tests and validations
are made. The ML researcher opens a new pull request
and is requested to pass unit and integration tests before the
pipeline is merged and stored in the sandbox. Next, Orion
developers test the new pipeline and verify its performance
and reproducibility. One of the most commonly encountered
situations is a mismatch between the researchers’ compar-
ison report and the results an Orion developer would get
from running the same framework. A very common reason
for this was that researchers had failed to update a hyper-
parameter setting. Once these checks are made, pipelines
are transferred from “sandbox” to “verified”. The increased
reliability of verified pipelines enhances the end-user’s con-
fidence in adopting pipelines.
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2.5. Releasing Regularly

The last requirement for an end-user-friendly benchmarking
framework like OrionBench is to keep track of how bench-
mark results change over time. Most pipelines are stochastic
in nature, meaning benchmark results can change from run
to run. Moreover, when the underlying dependency pack-
ages (e.g. TensorFlow) introduce new versions, bench-
mark results can be affected or even compromised. There-
fore, it is crucial to monitor the pipeline performances over
time and prevent possible breakdowns due to backwards
incompatibility.

This need is a main driver behind the creation of Orion-
Bench. Benchmarking was introduced as a measure of sta-
bility and reproducibility testing, analogous to how Continu-
ous Integration Continuous Deployment (CI/CD) tests have
greatly increased the reliability of open-source libraries.
OrionBench now serves as a test of pipeline stability over
time. As of now, 17 releases have been published, and the
leaderboard changes with each release (see Section 3.2).

2.6. Benefiting the End-User

OrionBench is available to the end-user on pypi, where they
can install OrionBench through “pip install Orion”. Then
all verified pipelines are at the finger tips of the end-user
where they train a pipeline and detect anomalies using fit
and detect APIs, respectively. End-Users have access
to a collection of models that they trust to perform as ex-
pected, fits their computational needs, and are continuously
maintained and benchmarked.

3. Evaluation

We demonstrate the use of OrionBench on 12 pipelines
ranging from classic to generative models and 14 datasets.
We also lay out how benchmarking works as a mechanism
to test pipeline stability. Moreover, we present two real-
world scenarios in which OrionBench was used to ground
unsupervised anomaly detection.

Datasets. Currently, the benchmark is executed on 14
datasets with ground truth anomalies. These datasets are
gathered from different sources, including NASA 2 NAB?3,
UCR 4, and Yahoo S5 °. Collectively, these datasets con-
tain 742 time series and 2,599 anomalies. The properties of
each dataset, including the number of signals and anoma-
lies, the average length of signal, and the average length of
anomalies are presented in Table 2. The table makes clear

https://github.com/khundman/telemanom
*https://github.com/numenta/NAB
4https://www.cs.ucr.edu/“eamonn/time_
series_data_2018
5https://webscope.sandbox.yahoo.com/
catalog.php?datatype=s&did=70

Table 2. Datasets Summary. There are 14 datasets with varying
number of signals and anomalies. The table presents the aver-
age signal length and anomaly length for each dataset. All these
datasets are publicly accessible.

Dataset # Signals  # Anomalies Avg. Signal
MSL 27 36 4890.59
NASA ™ smap 53 67 10618.86
Art 6 6 4032.00
AWS 17 30 3980.35
NAB AdEx 5 11 1593.40
Traf 7 14 2237.71
Tweets 10 33 15863.1
Al 67 178 14159
A2 100 200 1421.0
Yahoo S5 5 100 939 1680.0
A4 100 835 1680.0
Natural 142 142 99973.33
UCR Distorted 92 92 49218.02
Noise 16 16 39343.38
Total 742 2599

how properties differ between datasets; for instance, NASA,
NAB, and UCR contain anomalies that are longer than those
in Yahoo S5, and the majority of anomalies in Yahoo S5’s
A3 & A4 datasets are point anomalies.

Models. As of the writing of this paper, OrionBench in-
cludes 12 pipelines: ARIMA — Autoregressive Integrated
Moving Average statistical model (Box & Jenkins, 1968);
MP — Discord discovery through Matrix Profiling (Yeh et al.,
2016); AER — AutoEncoder with Regression deep learn-
ing model with reconstruction and prediction errors (Wong
etal., 2022); LSTM-DT — LSTM non-parametric Dynamic
Threshold with two LSTM layers (Hundman et al., 2018);
TadGAN — Time series Anomaly Detection using Gener-
ative Adversarial Networks (Geiger et al., 2020); LSTM
VAE — Variational AutoEncoder with LSTM layers (Park
et al., 2018); LSTM AE — AutoEncoder with LSTM lay-
ers (Malhotra et al., 2016); Dense AE — Similar to LSTM
AE, with Dense layers (Sakurada & Yairi, 2014); LNN —
Liquid Neural Network model, a variant of Liquid Time-
Constant Networks (Hasani et al., 2021); GANF — Graph
Augmented Normalizing Flows density-based model (Dai &
Chen, 2022); AT — AnomalyTransformer model with associ-
ation discrepancy (Xu et al., 2022); Azure AD — Microsoft
Azure Anomaly Detection service (Ren et al., 2019).

Hyperparameters. Hyperparameter settings are an im-
portant part of model performance. As highlighted in
Section 2.2, OrionBench seeks to provide a fair bench-
mark by standardizing hyperparameters. Moreover, we sort
pipelines based on whether they are prediction-based or
reconstruction-based (Alnegheimish et al., 2022) and set
the hyperparameters based on those properties. The precise
values are selected based on the configurations proposed
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Figure 4. Distribution of F1 Scores across NASA, NAB, Yahoo S5, and UCR. Yahoo S5 was split into two subsets highlighting the F1

difference pipelines experience when detecting point anomalies.

from orion.benchmark import benchmark

pipelines = [ 'arima', 'lstm_dt', 'aer', '...']
datasets = ['NAB', 'NASA', '...']
metrics = ['fl', 'precision', '...']

benchmark (pipelines=pipelines, datasets=datasets,
< metrics=metrics, rank='fl")

Figure 5. Benchmark command in Python. Running
benchmark () with default settings will execute the benchmark
on all pipelines and datasets currently integrated.

by the original authors in previous work (Hundman et al.,
2018; Wong et al., 2022; Geiger et al., 2020; Dai & Chen,
2022). For example, reconstruction-based pipelines tend
to have a smaller window_size compared to prediction-
based pipelines given that reconstructing large segments is
difficult. For example, prediction-based pipelines have a
window_size of 250 data points, while reconstruction-
based pipelines have a smaller window_size of 100, be-
cause the objective is to reconstruct the entire window rather
than predict a few steps ahead. While some other methods
alter the window_size based on the signal length (Mal-
hotra et al., 2016), we provide the option to make these
hyperparameters dynamic. For example, window_size
can be set as 10% of the entire signal length.

Settings. We use OrionBench version 0.5 . 2. The bench-
mark is executed to run for 5 iterations over all the pipelines
and datasets.

Compute.. We set up an instance on the MIT Super-
Cloud (Reuther et al., 2018) with an Intel Xeon Gold 6249
processor of 10 CPU cores (9 GB RAM per core) and one
NVIDIA Volta V100 GPU.

3.1. End-to-End Benchmark

The script in Figure 5 illustrates the few lines of code re-
quired for execution.

Benchmark Usage. OrionBench is available to all users
through a single command, as illustrated in Figure 5. Users
specify the list of pipelines, datasets, and metrics they are in-
terested in and pass them to the benchmark function. The
output result is stored as a detailed . csv file that signals
performance metrics for each pipeline, such as accuracy,
precision, recall, and F1 score. It also shows the status of
the run — whether it was successful or not, total execution
time, and the runtime for each internal primitive.

Qualitative Performance. Figure 4 depicts the F1 score
obtained for each dataset on average. The score achieved
by each pipeline differs based on the dataset and its proper-
ties. We can see that AER is the highest-performing pipeline
overall. Another interesting observation is that LSTM AE,
TadGAN, VAE, and Dense AE are not effective at detect-
ing point anomalies. These pipelines are all reconstruction-
based and are susceptible to anomalous regions when com-
puting the deviation between the original and reconstructed
signal, producing anomaly scores with reduced peaks at
these points. Anomalies thus pass by undetected (Wong
et al., 2022). This is clearly demonstrated in the Yahoo S5
datasets, where F1 scores for A3 & A4 datasets are low
compared to those for A1 & A2. Furthermore, the Azure
AD pipeline frequently flags segments as anomalous. This
strategy works for datasets with a lot of anomalies, such as
Yahoo S5. We therefore notice an increased F1 score there
compared to other datasets.

Leaderboard. Table 3 compares the performance of each
pipeline and reports the number of datasets for which it
outperforms ARIMA. Out of 14 datasets, AER is outperform-
ing ARIMA for 13, while Azure AD is performing worse
for all datasets. Since the benchmark was executed for 5
iterations, we report the median result. However, pipelines
are stochastic and might perform differently between runs.
Therefore, end-users are left to wonder whether the rank-
ings provided in the leaderboard are robust and trustworthy.
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Table 3. Leaderboard showing number of datasets in which each
pipeline outperformed ARIMA.

Outperform
Pipeline ARIMA, 1970
(Box & Jenkins, 1968)
AER, 2022 13
LSTM DT, 2018 10
LSTM AE, 2016 9
TadGAN, 2020 9
VAE, 2018 9
Dense AE, 2014 9
LNN, 2021 9
GANF, 2022 8
MP, 2016 7
AT, 2022 2
Azure AD, 2019 0

Using Spearman’s rank correlation, p = 0.916, we find
that the best pipelines are consistent across runs. Similarly,
pipelines at the lower end of the table are stable in their
rankings. On the other hand, the middle part of the table is
subject to change as TadGAN, LSTM AE, VAE, LNN, and
Dense AE compete with one another. The exact ranking of
each pipeline in all runs is shown in Table 5 in the Appendix.

Computational Performance. In addition to quality per-
formance, end-users are interested in pipelines’ computa-
tional performance. Figure 6 illustrates how much time
(in minutes) on average each pipeline needs depending on
the signal length. Elapsed time includes the time it takes
to train a pipeline and time it takes to run inference. The
shortest signal in all datasets contains 750 data points, while
the longest one contains 900,000 data points. On shorter
signals, pipelines typically take seconds, while longer sig-
nals may take minutes or even hours to complete. The
most time-consuming pipeline is LNN and in second place
18 TadGAN, which has more neural networks to train than
other pipelines. On the longest signal in the dataset, it takes
LNN and TadGAN approximately 5 and 2 hours total elapsed
time respectively. Moreover, inference-only pipelines, such
as Azure AD, are computationally fast and almost invari-
ant to the length of the signal. some pipelines can become
more demanding when the signal length increases such as
AT where the runtime increased by a factor of 7x and 8x
respectively.

Given the complexity of this model, end-users might want
to select an alternative pipeline. Moreover, a user might
sacrifice quality performance for computational efficiency,
or vice versa. Individual end users can make their own
decisions when weighing these tradeoffs.

3.2. Progression of Benchmarks

Stability. As we see in Figure 4, AER is the highest-
performing pipeline: Was this always the case? OrionBench
publishes benchmark results with every package release.

Pipeline Elapsed Time
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Figure 6. Average elapsed time of pipelines across different signal
length groups.

Figure 8 depicts the average F1 score of four pipelines.
These pipelines are chosen to show: the best-performing
pipeline (AER), the worst-performing pipeline (Azure
AD), the first implemented pipeline (LSTM DT), and the
classic pipeline (ARIMA), that are currently available in our
framework. The observed performance can change from
one release to another for a number of reasons, including
the stochastic nature of pipelines, internal changes in de-
pendency packages, and dynamic thresholding. If we look
closely at Figure 8, we notice three shifts (viewed as slopes)
to LSTM DT, and only two to AER, ARIMA, and Azure
AD.

First, in versionupdate 0.1.3 — 0.1.4, we saw a drop
in F1 score due to an internal change in how we calculate
the overall scores. The aggregation calculation became auto-
mated and was conducted on the dataset level rather than the
signal level. Second, in versionupdate 0.1.5 — 0.1.6,
there was an increase in performance that can be traced back
to our hyperparameter setting modifications. Third, going
from version 0.3.2 — 0.4.0 shifted our implementa-
tion from TensorFlow version 1 to 2, which impacted the
underlying implementation. Lastly, after introducing a new
dataset, namely UCR, we noticed a drop in the overall per-
formance by pipelinesin 0.5.0 — 0.5.1 because this
was a more difficult dataset. Overall, the observed changes
were minimal and could be traced back to alterations within
our framework.

Pipeline Integration. Figure 7 showcases exactly when
each pipeline was integrated to OrionBench. The first bench-
mark release, version 0. 1. 3, in September 2020, featured
only 2 pipelines. Over time, new models have been de-
veloped and integrated. As of today, OrionBench has 12
verified pipelines, ranging from classical models to deep
learning and made by 5 different contributors.

3.3. OrionBench in Action

As anomaly detection models continue to be developed, Ori-
onBench allows researchers and end-users to understand
and compare these models. In this subsection, we walk
through two real-world scenarios where benchmarking was
useful for: (1) guiding researchers to develop a new model
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ARIMA LSTM AE

LSTM DT Azure AD TadGAN Dense AE AER VAE GANF MP LNN
| | | | | | | | |

0.1.3 0.1.4 0.1.5 0.1.6 0.3.1 0.4.0 0.4.1 0.5.2 0.6.

Version Release

Figure 7. Timeline of pipeline introduction to the benchmark. OrionBench started with 2 pipelines; over the course of three years, 8 more
pipelines were introduced at different stages.

Table 4. Comparison of anomaly detection benchmarks. A (v) indicates the framework includes an attribute, while an () indicates the
attribute is absent. #Datasets and #Pipelines columns represent the number of currently available datasets and pipelines respectively.
Columns under “Pipeline Type” represent whether certain pipeline types are supported including classic pipelines such as ARIMA, Deep
Learning (DL) pipelines such as LSTM, and BlackBox (BBox) pipelines that are called externally through an API such as Azure’s AD
service. Columns under “Properties” represent whether a benchmark has certain properties, including custom evaluation methods for
time series anomaly detection; Whether the benchmark is extensible and can integrate new datasets and pipelines, and If the benchmark
is being released in periodic fashion with an updated leaderboard. The last two columns illustrate the last time a leaderboard has been
published and where.

Available Pipeline Type Properties Published Leaderboard
Framework # Datasets  # Pipelines Classic DL BBox Evaluation Extensible Periodic Last Update  Source
Numenta (Lavin & Ahmad, 2015) 7 4 v v v Jun 2018 Github
TSB-UAD (Paparrizos et al., 2022) 18 12 v v v Nov 2022 Github
TODS (Lai et al., 2021) 4 9 v v Dec 2021 Paper
TimeEval (Wenig et al.) 23 71 v v v Aug 2022 Paper
Exathlon (Jacob et al., 2020) 10 3 v v Sep 2021 Paper
Merlion (Bhatnagar et al., 2021) 12 12 v v v Sep 2021 Paper
OrionBench 14 12 v v v v v v Oct 2024 Github

Scenario 1 — OrionBench guided a researcher to focus
in the right direction. Researchers are eager to adopt

Pipeline Performance Across Releases
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0.8 the latest innovations in deep learning. An independent
—— e~ researcher was keen on introducing the attention mechanism
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o performance we decided to run it through OrionBench.
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0.2 led to an investigation of the successes and limitations
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Version

of pipelines. Subsequently, it led to a deep understand-
ing of where prediction models prevailed compared
to reconstruction models and vice versa. OrionBench
helped guide this process by cross-referencing model
performance with dataset properties. The conclusion was
that prediction-based anomaly scores are better at capturing
point anomalies than reconstruction-based anomaly scores.
Moreover, reconstruction-based anomaly scores are better at
capturing longer anomalies. Wong et al. (2022) uncovered
more associations related to anomaly scores and error
methods. The outcome of this investigation ultimately
resulted in the AER model and is now the best-performing
pipeline on OrionBench.
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Figure 8. Monitoring pipelines’ performance across all formal re-
leases of OrionBench.

for unsupervised time series anomaly detection; (2) provid-
ing end-users with an existing SOTA model. We show that
OrionBench is a commodity benchmarking framework.

Before walking through the aforementioned scenarios, we
would like to describe the state of OrionBench. LSTM
DT (Hundman et al., 2018) and TadGAN (Geiger et al.,
2020) (which was developed by the Orion team) performed

competitively against each other until version 0. 3. 1, when
AER (Wong et al., 2022) was introduced. Below, we il-
lustrate the story behind the AER model and how we, the
OrionBench developers, helped benchmark their model.

Scenario 2 — OrionBench enabled the addition of a lat-
est model and provided an end-user with confidence in
other models. We had been working with an end-user from
a renowned satellite company for over four years when they
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approached us with interest in a new SOTA model. The
model was GANF, (Dai & Chen, 2022) which had been fea-
tured in a news article © that caught their attention. New
models are published that claim SOTA performance, beating
existing models on their benchmarks. This is common for
renowned companies that invest in creating high-performing
models. The end-user wanted to know: Should we adopt
this model? Several issues can prevent such models from
living up to their promised performance in industrial and op-
erational settings. Real-world datasets are inherently more
complex than pristine benchmark datasets. Furthermore,
authors often fine-tune a model to the benchmark datasets,
neglecting others and causing their model to underperform
on unseen datasets. OrionBench, as an independent bench-
mark, can help determine whether it makes sense to adopt
a new model. We integrated GANF into OrionBench. As
presented earlier in Figure 4, it was only competitive on the
NAB dataset. However, due to the seamless integration of
the pipelines into OrionBench, the end-user was still able to
apply the pipeline to their own data and obtained valuable
results. This emphasizes that the behavior of models differs
from one dataset to another, and there is no one-pipeline-
fits-all.

Similarly, LNN models (Hasani et al., 2021) have been uti-
lized in a variety of applications, including robot control. A
published news article’ suggests that these models are able
to perform any time series task. To test their ability to per-
form unsupervised anomaly detection, we implemented an
LTC primitive and, shortly after, the LNN pipeline. Hasani
et al. (2021) released an accompanying pip installable li-
brary, which has made creating the LNN pipeline straight-
forward. It took one week from its first commit to when it
merged on the main branch and became sandbox-available.
OrionBench has made it easier for us to incorporate new
models and assess their anomaly detection capabilities.

4. Related Work

In this section, we walk-through some of the algorithms
on unsupervised time series anomaly detection as well as
benchmarking systems.

4.1. Unsupervised Time Series Anomaly Detection
Algorithms

Many anomaly detection methods have emerged in the past
few years (Chandola et al.; Bladzquez-Garcia et al., 2021;
Goldstein & Uchida, 2016). These include statistical thresh-
olding techniques (Patcha & Park, 2007), clustering-based
methods (Miinz et al., 2007; Syarif et al., 2012; Agrawal
& Agrawal, 2015), and machine learning models (Hasan

Shttps://news.mit.edu/2022/artificial-intelligence-anomalies-
data-0225
"https://news.mit.edu/2021/machine-learning-adapts-0128

etal.,, 2019; Liu et al.). More recently, deep learning models
have become popular and have been adopted for anomaly
detection (Chalapathy & Chawla, 2019; Pang et al., 2021).
Deep learning-based anomaly detection models for time
series data rely mostly on unsupervised learning, because in
most settings, there is no a priori knowledge of anomalous
events. Malhotra et al. (2016) built an autoencoder with
Long Short-Term Memory (LSTM) layers (Hochreiter &
Schmidhuber, 1997) that learns to reconstruct ‘normal’ sig-
nal behavior. It uses the residual between the reconstructed
signal and the original signal to locate anomalies. LSTM
networks are practical at capturing the temporal dynamics
in time series data. Hundman et al. (2018) used an LSTM
forecasting model to predict the signal and paired it with a
non-parametric threshold to mitigate false positives. Since
then, generative models including variational autoencoders
(VAE) (Park et al., 2018), Generative Adversarial Networks
(GAN) (Geiger et al., 2020), and Transformers (Xu et al.,
2022) have been adopted for unsupervised anomaly detec-
tion.

4.2. Time Series Anomaly Detection Benchmarks

There are several notable open-source time series bench-
marking systems featuring unsupervised time series
anomaly detection methods (Lavin & Ahmad, 2015; Pa-
parrizos et al., 2022; Lai et al., 2021; Wenig et al.; Jacob
et al., 2020; Bhatnagar et al., 2021). Table 4 highlights the
key features present in each framework. While these bench-
marks do exist, they are not directed towards end-users, and
are usually not kept up-to-date. Table 4 shows the latest
published results for each time series anomaly detection
benchmark framework, whether the scoreboard has been
updated on github, and the date of the latest update. Usually,
these assessments are done once, during the production of
related papers. We argue that this makes them point-in-time
benchmarking frameworks.

In addition to unsupervised pipelines, some frameworks
include supervised pipelines (Paparrizos et al., 2022; Wenig
et al.). However, comparing supervised pipelines to unsu-
pervised ones can be misleading, as labels are not available
in most real-world scenarios. We address three key points
with OrionBench: (1) time series anomaly detection requires
careful consideration of how to evaluate pipelines; (2) inte-
gration of new pipelines and datasets needs to be seamless
such that pipelines are available to end-users, (3) bench-
marks need periodic releases and leaderboard updates to
ensure results are trusted and pipelines are stable.

There are many other benchmarking frameworks, such as
time series forecasting benchmarks (Alexandrov et al., 2020;
Bauer et al., 2021; Taieb et al., 2012), and anomaly detec-
tion for tabular data (Campos et al., 2016; Han et al., 2022).
However, these benchmarks inherently differ from our un-
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supervised anomaly detection benchmark for time series
data.

5. Conclusion

We present OrionBench— a continuous end-to-end bench-
marking framework for unsupervised time series anomaly
detection. The benchmark is open-source and publicly avail-
able: https://github.com/sintel-dev/Orion.
As of today, the benchmark holds 28 primitives, 12 pipelines,
14 public datasets, and 2 custom evaluation metrics. We
present the qualitative and computational performance of
pipelines across all datasets. Moreover, we showcase results
our benchmark has accumulated since 2020, highlighting its
value for providing continuous evaluations that demonstrate
the extensibility and stability of pipelines.

Although the benchmark compares different pipelines, there
is no one pipeline will be the best choice for every dataset.
Pipeline selection is still a challenging process that highly
correlates with the characteristics of the dataset at hand and
the type of anomalies present in the dataset. In our future
work, we would like to focus on the suitability of pipelines
and finding the relationship between various attributes of the
input data and the efficacy of anomaly detection. Moreover,
we invite ML researchers to contribute to OrionBench.
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Appendix
A. Limitations

We acknowledge several limitations of our framework and results. Black box pipelines such as Microsoft’s Azure AD
service lack certain levels of transparency. In Figure 8, we noticed that Azure AD improvedin 0.1.6 — 0.1.7.
However, we have no knowledge on what has caused this improvement. Unlike other pipelines where we can cross reference
change of behaviour to code modification or even updated dependency package releases. Nevertheless, we are still able to
monitor the performance of black box pipelines and having some confidence in their stability.

In addition, benchmarks are notorious for requiring massive computing resources, and in this case it is no different. While
the models can vary in usage, to perform a comprehensive benchmark, we utilize MIT supercloud (Reuther et al., 2018).
When computing resources are limited, on-demand benchmark runs become difficult. We aim to alleviate this challenge
with continuous and periodic running benchmarks. Moreover, with every introduction to a new model, a benchmark must be
run to add the model to the leaderboard.

Lastly, and most importantly, there is no guarantee that these pipelines will deliver the same performance on real-world
datasets. A clear example was demonstrated in Section 3.3 Scenario 2 where GANF produced valuable results for the
end-user, however its results in the benchmark are not as promising as some other pipelines. This stresses the importance of
pipeline selection based on the characteristics of the datasets and anomalies. Further research is needed to understand the
suitability of unsupervised pipelines for a given dataset.

B. Primitives & Pipelines
B.1. Primitive Template

Abstractions in OrionBench of primitives and pipelines are universal representations of end-to-end models, from a signal to
a set of detected anomalies. Compared to standard scikit—learn like code, it requires one additional step of creating
json files to define these primitives. Figure 9 showcases a template that helps contributors to guides their own primitive.

Once primitives are built, they can be stacked to create a pipeline similar to the example shown in Figure 10. The example
shows the json file representation of LSTM DT pipeline.

B.2. Pipelines

Currently in OrionBench, there are 9 readily available pipelines. They are all unsupervised pipelines. All pipelines and their
hyperparameter settings for the benchmark can be explored directly: https://github.com/sintel-dev/Orion/
tree/master/orion/pipelines/verified. Below we provide further detail on the mechanisms behind each
pipeline.

ARIMA (Pena et al., 2013). ARIMA is an autoregressive integrated moving average model which is a classic statistical
analysis model. It is a forecasting model that learns autocorrelations in the time series to predict future values prediction.
Since then it has been adapted for anomaly detection. The pipeline computes the prediction error between the original signal
and the forecasting one using simple point-wise error. Then it pinpoints where the anomalies are based one when the error
exceeds a certain threshold. Particularly, ARIMA pipeline uses a moving window based thresholding technique defined in
find_anomalies primitive.

AER (Wong et al., 2022). AER is an autoencoder with regression pipeline. It combines prediction and reconstruction models
simultaneously. More specifically, it produces bi-directional predictions (forward & backward) while reconstructing the
original time series at the same time by optimizing a joint objective function. The error is then computed as a point-wise
error for both forward and backward predictions. As for reconstruction, dynamic time warping is used, which computes
the euclidean distance between two time series where one might lag behind another. The total error is then computed as a
point-wise product between the three aforementioned errors.

LSTM DT (Hundman et al., 2018). LSTM DT is a prediction-based pipeline using an LSTM model. Similar to ARIMA, it
computes the residual between the original signal and predicted one using smoothed point-wise error. Then they apply a
non-parametric thresholding method to reduce the amount of false positives.

TadGAN (Geiger et al., 2020). TadGAN is a reconstruction pipeline that uses generative adversarial networks to generate
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{
"name": "orion.primitives.primitive.PrimitiveName",
"contributors": ["Author <email>"],
"documentation": "reference to documentation or paper if available.",
"description": "short description.",
"classifiers": {
"type": "postprocessor",
"subtype": "anomaly_detector"
by
"modalities": [],
"primitive": "orion.primitives.primitive.PrimitiveName",
"fit": |
"method": "fit",
"args": [
{
"name": "X",
"type": "ndarray"
by
{
"name": "y",
"type": "ndarray"
}
]
b
"produce": {
"method": "detect",
"args": [
{
"name": "X",
"type": "ndarray"
by
{
"name": "y",
"type": "ndarray"
}
1,
"output": [
{
"name": "y",
"type": "ndarray"
}
]
b
"hyperparameters": {
"fixed": {
"hyper_name": {
"type": "str"
"default": "value"
}
}
}
}

Figure 9. Primitive template. The first section of the json describes metadata, the second part contains functional information including
the names of the methods and their arguments, the third part defines the hyperparameters of the primitive.
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"primitives": [
"mlstars.custom.timeseries_preprocessing.time_segments_aggregate",
"sklearn.impute.SimpleImputer"
"sklearn.preprocessing.MinMaxScaler",
"mlstars.custom.timeseries_preprocessing.rolling_window_sequences",
"keras.Sequential.LSTMTimeSeriesRegressor",
"orion.primitives.timeseries_errors.regression_errors",
"orion.primitives.timeseries_anomalies.find_anomalies"

1,

"init_params": {
"mlstars.custom.timeseries_preprocessing.time_segments_aggregate#l": {

"time_column": "timestamp",
"interval": 21600,
"method": "mean"
I
"sklearn.preprocessing.MinMaxScaler#1": {
"feature_range": [
-1,
]

b
"mlstars.custom.timeseries_preprocessing.rolling_window_sequences#1": {
"target_column": O,
"window_size": 250
by
"keras.Sequential.LSTMTimeSeriesRegressor": ({
"epochs": 35
by
"orion.primitives.timeseries_anomalies.find_anomalies#1": {
"window_size_perc": 30,
"fixed_threshold": false

Figure 10. LSTM DT pipeline example. This is the content present in the json file of the pipeline. The first section defines the stack of
primitives used in the pipeline which will be computed to the graph shown previously in Figure 3a. The init argument initializes some
of the hyperparameters for each primitive. This is a detailed version with full primitive names of the hyperparameters shown in Figure 3c.
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a synthetic time series. To sample a “similar” time series, the model uses an encoder to map the original time series to
the latent dimension. There are three possible strategies to compute the errors between the real and synthetic time series.
Specifically, point-wise errors, area difference, and dynamic time warping. Most datasets are set to dynamic time warping
(dtw) as error.

MP (Yeh et al., 2016). MP is a matrix profile method that seeks to find discords in time series. The pipeline computes
the matrix profile of a signal, which essential provides the closes nearest neighbor for each segment. Based on these
values, segments with large distance values to their nearest neighbors are anomalous. We use find_anomalies to set the
threshold dynamically.

VAE (Park et al., 2018). VAE is a variational autoencoder consisting of an encoder and a decoder with LSTM layers. Similar
to previous pipelines, it adopts reconstruction errors to compute the deviation between the original and reconstructed signal.

LSTM AE (Malhotra et al., 2016). LSTM AE is an autoencoder with an LSTM encoder and decoder. This is a simpler
variant of VAE. It also uses reconstruction errors to measure the difference between the original and reconstruction signal.

Dense AE.Dense AE is an autoencoder where its properties are exactly similar to that of LSTM AE with the exception
of the encoder and decoder layers.

GANF (Dai & Chen, 2022). GANF is density-based methods where they use normalizing flows to learn the distribution of the
data with a graph structure to overcome the challenge of high dimensionality. The model outputs an anomaly measure that
indicates where the anomalies might be. To convert the output into a list of intervals, we add find_anomalies primitive.

Azure AD (Renetal.,2019). Azure AD is ablack box pipeline which connects to Microsoft’s anomaly detection service ®.

To use this pipeline, the user needs to have a subscription to the service. Then the user can update the subscription_key
and endpoint in the pipeline json for usage.

AnomTransformer (AT) (Xuetal., 2022). AnomTransformer is a transformer based model using a new anomaly-
attention mechanism to compute the association discrepancy. The model amplifies the discrepancies between normal and
abnormal time points using a minimax strategy. The threshold is set based on the attention values.

C. Data
C.1. Data Format

Time series is a collection of data points that are indexed by time. There are many forms in which time series can be stored,
we define a time series as a set of time points, which we represent through integers denoting timestamps, and a corresponding
set of values observed at each respective timestamp. Note that no prior pre-processing is required as all pre-processing steps
are part of the pipeline, e.g. imputations, scaling, etc.

C.2. Dataset Details

The benchmark currently features 11 publicly accessible datasets from different sources. Table 2 illustrates some of the
datasets’ properties. Below, we provide more detailed description for each dataset.

NASA. This dataset is a spacecraft telemetry signals provided by NASA. It was originally released in 2018 as part of the LSTM-
DT paper (Hundman et al., 2018) and can be accessed directly from https://github.com/khundman/telemanom.
It features two datasets: Mars Science Laboratory (MSL) and Soil Moisture Active Passive (SMAP). MSL contains 27
signals with 36 anomalies. SMAP contains 53 signals with 69 anomalies. In total, NASA datasets has 80 signals with 105
anomalies. This dataset was pre-split into training and testing partitions. In our benchmark, we train the pipeline using the
training data, and apply detection to only the testing data.

NAB. Part of the Numenta benchmark (Lavin & Ahmad, 2015) is the NAB dataset https://github.com/numenta/
NAB. This datasets includes multiple types of time series data from various applications and domains In our benchmark
we selected five sub-datasets (name: # signals, # anomalies): artWithAnomaly (Art: 6, 6): this dataset was artificially
generated; real AWSCloudwatch (AWS: 17, 20): this dataset contains AWS server metrics collected by AmazonCloudwatch
service such as CPU Utilization; realAdExchange (AdEx: 5, 11), this dataset contains online advertisement clicking rate

8https ://azure.microsoft.com/en-us/products/cognitive-services/anomaly—-detector/
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metrics such as cost-per-click; realTraffic (Traf: 7, 14): this dataset contains real time traffic metrics from the Twin Cities
Metro area in Minnesota such as occupancy, speed, etc; and realTweets (Tweet s: 10, 33): this dataset contains metrics of a
collection of Twitter mentions of companies (e.g. Google) such as number of mentions each 5 minutes.

Yahoo S5. This dataset contains four different sub-datasets. Al dataset is based on real production traffic of Yahoo
computing systems with 67 signals and 179 anomalies. On the other hand, A2, A3 and A4 are all synthetic datasets with
100 signals each and 200, 939, and 835 anomalies respectively. There are many anomalies in this dataset with over 2,153
in 367 signals, averaging 5.8 anomalies in each signal. Most of the anomalies in A3 and A4 are short and last for only
a few points in time. Data can be requested from Yahoo’s website https://webscope.sandbox.yahoo.com/
catalog.php?datatype=s&did=70. In our benchmark, we train and apply detection to the same entire signal.

UCR. This dataset was released in a SIGKDD competition in 2021 https://www.cs.ucr.edu/~eamonn/time_
series_data_2018/UCR_TimeSeriesAnomalyDatasets2021.zip. It contains 250 signals with only one
anomaly in each signal. The anomalies themselves were artificially introduced to the signal. More specifically, in many
times they are synthetic anomalies, or a consequence of flipping/smoothing/interpolating/reversing/prolonging normal
segments to create anomalies. The dataset was created to have more challenging cases of anomalies.

D. Evaluation

This section provides further details on our evaluation setup and obtained results. Code to reproduce Figures and Tables are
provided https://github.com/sarahmish/orionbench-paper

D.1. Evaluation Setup

Results presented in Section 3 are reported based on version 0. 5 . 0 of Orion which is also released on pip °. We recommend
setting up a new python environment before installing Orion. Currently the library is supported in python 3.6, 3.7, and
3.8.

Evaluation Strategy. Measuring the performance of unsupervised time series anomaly detection pipelines is more nuanced
than the usual classification metrics. OrionBench compares detected anomalies with ground truth labels according to
well-defined metrics. This can be done using either weighted segment or overlapping segment (Alnegheimish et al., 2022).
For our evaluation in this paper, we use overlapping segment exclusively. Using overlapping segment, for each experiment
run (which is an evaluation of one pipeline on one signal), we record the number of true positives (TP), false positive (FP),
and false negative (FN) obtained. Because anomalies are scarce and in many signals only one anomaly exists (or none), in
many cases precision and recall scores will be undefined on a signal level. Therefore, we compute the scores on a dataset
level.

ZSES TP ZSES TP

recall =

>ocs TP + FP, > o5 TP + FN,

precision =

For a given dataset with a set of signals S, we compute the total true positives, false positives, and false negatives within
every signal in that set. Then we compute the score for each pipeline according to the metric of interest whether it is

precision, recall, or f1 score. The computation of f1 score is standard from precision and recall (f1 = 2 x Brecisionxrecall
precision+recall

Recorded Information. During the benchmark process, information regarding performance, computation, diagnostics, etc.
gets recorded. Below we list all the information we store for each experiment. An experiment is defined as a single pipeline
trained on a single time series then used for detection for the same time series.

* dataset: the dataset that the signal belongs to, e.g. SMAP.
e pipeline: the name of the pipeline, e.g. AER.

e signal: the name of the signal, e.g. S—1.

e iteration: each experiment can be run for & iterations.

9https ://pypi.org/project/orion-ml1/0.5.0/
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* f1, precision, recall: the evaluated metrics, in many cases it is undefined.

e 1, fp, fn, tp: the evaluated number of true negatives, false positives, false negatives, true positives respectively. In
overlapping segment approach, tn does not have a value given the nature of evaluation.

* status: whether or not the experiment ran from beginning to end without issue.

e elapsed: how much runtime each experiment took (includes training and inference).

* run_id: the process identification number.
The benchmark results are saved as . csv files and stored directly in the Github repositories: https://github.com/
sintel-dev/Orion/tree/master/benchmark/results. Moreover, the pipelines used in each experiment are

saved for reproduciblity measures. Due to their large size, we store these pipelines on a local server. However, part of our
endeavour is to make these pipelines public as well such that they can be used and inspected.
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Figure 11. Distribution of F1 Score per Dataset. This Figure is a detailed version of Figure 4 where now every dataset is shown separately.
On average, AER is the highest scoring pipeline for most datasets with the exception of AWS, AdEx, and Tweets. The performance of
pipelines changes from one dataset to another, indicating there does not exists a single pipeline that will work perfectly for all datasets.
One of the insights we find is how point anomalies in A3 & A4 present a challenge for reconstruction-based pipelines such as LSTM AE,
TadGAN, VAE, and Dense AE.
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Figure 12. Runtime (in seconds) per dataset. Runtime is recorded as the wall time it takes to train a pipeline using £it and run inference
using detect. The most time consuming pipeline is TadGAN.

D.2. Benchmark Results

Figure 11 illustrates the F1 score obtained per dataset. Observing the average values per dataset, AER seems to score the
highest on most datasets. However, other pipelines such as LSTM DT are comparable or outperform AER in certain cases.
Each pipeline has its strengths and the performance varies from one dataset to another.

Pipeline scalability is an important aspect to address for many end-users. The reported wall time of each pipeline per dataset
is shown in Figure 12. TadGAN takes minutes to run while other pipelines seem to finish in several seconds. The fastest
pipelines are GANF and Azure AD.Azure AD is an inference only pipeline, and GANF is fast to train.

D.3. Leaderboard

Table 5 shows the rank of each pipeline in 5 different benchmark runs. The rank is calculated from the order of the
leaderboard (as shown in Table 3). If two pipelines have the same number of wins, the average F1 score is used as a
tie-breaker.
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Table 5. Rank of pipelines in five independent runs.

Run
Pipeline #1 #2 #3 #4 #5
AER 1 1 1 1 1
LSTM DT 3 2 2 2 2
LSTM AE 2 5 3 4 4
TadGAN 6 7 5 5 6
VAE 4 3 4 7 5
Dense AE 7 4 6 6 7
LNN 5 6 7 3 3
GANF 8 8 8 8 8
MP 9 9 9 9 9
AT 10 10 10 10 10
Azure AD 11 11 11 11 11

D.4. Computational Cost Across Releases

In addition to quality stability shown in Figure 8, we can monitor the runtime execution of the benchmark. We illustrate the
average runtime for each pipeline across 15 releases in Figure 13. There is a clear improvement in average runtime in release
0.2.1. This increase in speed traces back to an internal change of the API’s code. More specifically, pipelines builds were
adjusted to only build once to reduce overhead during the £it and detect process. Looking back at the development
plan, this is reflected in Issue #261 where we see exact alterations made to the code.

Moreover, in version 0. 4 . 0, the package migrated to TensorFlow 2.0 which consequently made the pipelines faster
in GPU mode. However, in version 0 . 4 . 1 the pipelines were executed without GPU, which is evident by the slight increase
in runtime.

Average Runtime Across Releases
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Figure 13. Average runtimes (in seconds) across Orion versions. Deep learning pipelines with LSTM layers are more sporadic across
releases due to the availability of GPU. Pipelines such as Azure AD are black box pipelines that run inference alone making it fast. In
version 0.2 .1, we migrated our benchmark to MIT Supercloud.
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D.5. Qualitative Performance Across Releases

The detailed sheets of benchmark runs are stored directly in the repository: https://github.com/sintel—-dev/
Orion/tree/master/benchmark/results. The following tables report the F1 score, precision, and recall metrics
for each pipeline across all releases as of today.

e version 0. 6. 1, pipelines 12, datasets 12, release date: October 4th 2024,

e version 0. 6. 0, pipelines 11, datasets 12, release date: February 13t 2024,
« version 0.5. 2, pipelines 10, datasets 12, release date: October 19" 2023.
* version 0.5. 1, pipelines 9, datasets 12, release date: August 16% 2023.

* version 0. 5.0, pipelines 9, datasets 11, release date: May 231 2023,

* version 0.4.1, pipelines 9, datasets 11, release date: January 31% 2023.

e version 0. 4.0, pipelines 8, datasets 11, release date: November 10t 2022.
e version 0. 3. 2, pipelines 7, datasets 11, release date: July 4th 2022,
 version 0. 3.1, pipelines 7, datasets 11, release date: April 261 2022.

« version 0. 3. 0, pipelines 6, datasets 11, release date: March 31 2022.

e version 0. 2. 1, pipelines 6, datasets 11, release date: February 18t 2022.
e version 0. 2. 0, pipelines 6, datasets 11, release date: October 11t 2021.
 version 0. 1.7, pipelines 6, datasets 11, release date: May 4th 2021,

* version 0. 1. 6, pipelines 6, datasets 11, release date: March 81 2021.

e version 0. 1.5, pipelines 4, datasets 11, release date: December 251 2020.
* version 0. 1.4, pipelines 3, datasets 11, release date: October 16™ 2020.

 version 0. 1. 3, pipelines 2, datasets 11, release date: September 29t 2020.
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OrionBench: Benchmarking Time Series Generative Models in the Service of the End-User

Table 6. Benchmark Summary Results Version 0.6.1

NASA UCR Yahoo S5 NAB
Pipeline MSL SMAP UCR Al A2 A3 A4 Art  AWS AdEx Traf Tweets
F1 Score
AER 0.533 0.781 0489 0.784 0.987 0.878 0.712 0.714 0.727 0.690 0.703 0.562
LSTM DT 0466 0.694 0390 0.735 0.980 0.743 0.637 0400 0.507 0.714 0.585 0.603
ARIMA 0.525 0411 0.153 0.728 0.856 0.797 0.686 0.308 0.382 0.727 0467 0.514
MP 0474 0423 0.051 0507 0.897 0.793 0.825 0.571 0440 0.692 0305 0.343
LSTM AE 0462 0.662 0330 0.600 0.864 0.444 0.247 0.667 0.737 0500 0467 0.508
TadGAN 0.568 0.610 0.177 0.593 0.805 0.377 0.308 0.667 0.667 0.696 0.516 0.531
VAE 0.538 0.627 0354 0570 0.809 0427 0.244 0.667 0.712 0480 0.483 0.508
Dense AE 0493 0.688 0.204 0.644 0.891 0.084 0.086 0.545 0.778 0.600 0.563 0.533
GANF 0462 0463 0.143 0.086 0.171 0.008 0.152 0.667 0.578 0308 0.583 0.667
LNN 0477 0.654 0363 0.661 0.925 0305 0.197 0400 0.506 0.710 0.636 0.592
Azure AD 0.051 0.019 0.004 0.280 0.653 0.702 0.344 0.056 0.112 0.163 0.117 0.176
AT 0449 0303 0.021 0.583 0.617 0.772 0576 0.385 0.423 0474 0338 0.315
Precision
AER 0.513 0.820 0411 0.805 0.990 0995 0.922 0.625 0.800 0.556 0.565 0.581
LSTM DT 0.358 0.638 0.329 0.690 0.975 0988 0.896 0.333 0439 0.588 0.444 0.550
ARIMA 0477 0303 0.144 0.670 0.769 0998 0.955 0.286 0.342 0.727 0438 0.486
MP 0.346  0.291 0.027 0448 0.824 0952 0946 0.500 0.314 0.600 0.200 0.324
LSTM AE 0.429 0.627 0.242 0.630 0.814 0941 0.681 0.667 0.778 0462 0438 0.577
TadGAN 0.481 0540 0.130 0.629 0.777 0.716 0.531 0.556 0.636 0.667 0471 0.548
VAE 0.599 0558 0271 0556 0.709 0.856 0.640 0.667 0.724 0429 0467 0.577
Dense AE 0.515 0.741 0.171 0.725 0949 0.976 0.534 0.600 0.875 0.667 0.500 0.593
GANF 0.750 0.786 0.105 0.281 0.300 1.000 0986 1.000 0.867 1.000 0.700 0.639
LNN 0404 0573 0285 0.659 0.872 0929 0.620 0.333 0.408 0.550 0.467 0.553
Azure AD 0.026 0.009 0.002 0.167 0.484 0542 0217 0.029 0.060 0.089 0.062 0.099
AT 0.297 0.193 0.011 0.517 0.498 0.855 0.747 0.250 0.297 0.333 0.206 0.189
Recall
AER 0.556 0.746 0.604 0.764 0.985 0.786 0.580 0.833 0.667 0.909 0.929 0.545
LSTM DT 0.667 0.761 0480 0.787 0.985 0.595 0.495 0.500 0.600 0909 0.857 0.667
ARIMA 0.583 0.642 0.164 0.798 0.965 0.663 0.535 0.333 0433 0.727 0500 0.545
MP 0.750 0.776 0432 0584 0.985 0.679 0.732 0.667 0.733 0.818 0.643 0.364
LSTM AE 0.500 0.701 0.520 0.573 0.920 0.291 0.151 0.667 0.700 0.545 0.500 0.455
TadGAN 0.694 0.701 0276 0.562 0.835 0.256 0.217 0.833 0.700 0.727 0.571 0.515
VAE 0583 0.716 0512 0584 0.940 0.284 0.151 0.667 0.700 0.545 0.500 0.455
Dense AE 0472 0.642 0.252 0579 0.840 0.044 0.047 0500 0.700 0.545 0.643 0.485
GANF 0.333 0328 0.224 0.051 0.120 0.004 0.083 0.500 0.433 0.182 0.500 0.697
LNN 0.583 0.761 0500 0.663 0.985 0.182 0.117 0500 0.667 1.000 1.000 0.636
Azure AD 0.806 0.940 0.824 0.848 1.000 0.998 0.837 1.000 0.833 0.909 1.000 0.818
AT 0917 0.701 0.704 0.669 0.810 0.704 0469 0.833 0.733 0.818 0.929 0.939
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OrionBench: Benchmarking Time Series Generative Models in the Service of the End-User

Table 7. Benchmark Summary Results Version 0. 6.0

NASA UCR Yahoo S5 NAB
Pipeline MSL SMAP UCR Al A2 A3 A4 Art  AWS AdEx Traf Tweets
F1 Score
AER 0.587 0.819 0476 0.799 0.987 0.892 0.709 0.714 0.741 0.690 0.703 0.638
LSTM DT 0471 0.726 0393 0.728 0.985 0.744 0.646 0400 0468 0.786 0.585 0.603
ARIMA 0.525 0411 0.153 0.728 0.856 0.797 0.686 0.308 0.382 0.727 0467 0.514
MP 0474 0423 0.051 0507 0.897 0.793 0.825 0.571 0440 0.692 0305 0.343
LSTM AE 0.545 0.662 0327 0595 0.867 0466 0.239 0.667 0.741 0.500 0.500 0.475
TadGAN 0.560 0.605 0.170 0.578 0.817 0416 0.340 0.500 0.623 0.818 0452 0.554
VAE 0494 0.613 0324 0592 0.803 0438 023 0.667 0.689 0583 0483 0.533
Dense AE 0559 0.692 0.207 0.667 0.892 0.07 0.101 0545 0.764 0.600 0.563 0.508
GANF 0.462 0463 0.147 0.086 0.171 0.008 0.152 0.667 0.578 0308 0.583 0.667
LNN 0.517 0618 0362 0.652 0.938 0.331 0.191 0.375 0481 0.714 0.667 0.575
Azure AD 0.051 0.019 0.015 0.280 0.653 0.702 0.344 0.056 0.112 0.163 0.117 0.176
Precision
AER 0.564 0.867 0395 0.830 0.990 0993 0917 0.625 0.833 0.556 0.565 0.611
LSTM DT 0364 0.671 0335 0.665 0.985 0986 0.905 0.333 0.383 0.647 0.444 0.550
ARIMA 0477 0303 0.144 0.670 0.769 0998 0.955 0.286 0.342 0.727 0438 0.486
MP 0346 0.291 0.027 0448 0.824 0952 0946 0.500 0.314 0.600 0.200 0.324
LSTM AE 0.512  0.615 0.239 0.633 0.827 0948 0.649 0.667 0.833 0462 0444 0.538
TadGAN 0.538 0516 0.124 0.629 0.845 0.762 0.588 0.400 0.613 0.818 0412 0.562
VAE 0.444 0.600 0.243 0574 0.701 0.852 0.646 0.667 0.677 0538 0467 0.593
Dense AE 0594 0714 0.178 0.748 0.939 0.944 0590 0.600 0.840 0.667 0.500 0.577
GANF 0.750 0.786 0.111 0.281 0.300 1.000 0986 1.000 0.867 1.000 0.700 0.639
LNN 0.434 0520 0288 0.632 0.895 0954 0.590 0.300 0.388 0.588 0.500 0.525
Azure AD 0.026 0.009 0.008 0.167 0.484 0.542 0217 0.029 0.06 0.089 0.062 0.099
Recall
AER 0.611 0.776 0.600 0.770 0.985 0.809 0.578 0.833 0.667 0909 0929 0.667
LSTM DT 0.667 0.791 0476 0.803 0.985 0.597 0.502 0.500 0.600 1.000 0.857 0.667
ARIMA 0.583 0.642 0.164 0.798 0.965 0.663 0.535 0.333 0433 0.727 0500 0.545
MP 0.750 0.776 0432 0584 0.985 0.679 0.732 0.667 0.733 0.818 0.643 0.364
LSTM AE 0.583 0.716 0.516 0562 0910 0309 0.146 0.667 0.667 0545 0571 0424
TadGAN 0.583 0.731 0272 0.534 0.790 0.286 0.240 0.667 0.633 0.818 0.500 0.545
VAE 0.556 0.627 0488 0.612 0.940 0.295 0.140 0.667 0.700 0.636 0.500 0.485
Dense AE 0.528 0.672 0.248 0.601 0.850 0.036 0.055 0.500 0.700 0.545 0.643 0.455
GANF 0.333 0328 0.220 0.051 0.120 0.004 0.083 0.500 0.433 0.182 0.500 0.697
LNN 0.639 0.761 0488 0.674 0.985 0.200 0.114 0500 0.633 0909 1.000 0.636
Azure AD 0.806 0940 0.176 0.848 1.000 0998 0.837 1.000 0.833 0.909 1.000 0.818
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OrionBench: Benchmarking Time Series Generative Models in the Service of the End-User

Table 8. Benchmark Summary Results Version 0.5.2

NASA UCR Yahoo S5 NAB
Pipeline MSL SMAP UCR Al A2 A3 A4 Art  AWS AdEx Traf Tweets
F1 Score
AER 0.587 0.775 0474 0.780 0.987 0.869 0.686 0.769 0.750 0.733 0.611 0.581
LSTM DT 0485 0.707 0417 0.724 0.987 0.744 0.644 0400 0494 0.759 0.667 0.600
ARIMA 0435 0326 0.090 0.744 0.816 0.782 0.684 0429 0472 0.727 0429 0.513
MP 0474 0423 0.051 0507 0.897 0.793 0.825 0.571 0440 0.692 0305 0.343
LSTM AE 0479 0.662 0332 0619 0.874 0460 0.227 0.667 0.750 0.615 0471 0.533
TadGAN 0.568 0590 0.173 0.552 0.806 0408 0.321 0.571 0.603 0.583 0.529 0.606
VAE 0486 0.649 0339 0556 0.817 0415 0236 0462 0.737 0.538 0.483 0.533
Dense AE 0.537 0.641 0.202 0.640 0.885 0.078 0.102 0.545 0.800 0.632 0.500 0.508
GANF 0462 0463 0.147 0.086 0.171 0.008 0.152 0.667 0.578 0.308 0.583 0.667
Azure AD 0.051 0.019 0.015 0.280 0.653 0.702 0.344 0.056 0.112 0.163 0.117 0.176
Precision
AER 0.564 0.806 0385 0.816 0.990 0992 0.920 0.714 0.808 0.579 0.500 0.621
LSTM DT 0.373  0.650 0352 0.680 0.990 0988 0.892 0.333 0404 0.611 0545 0.568
ARIMA 0455 0311 0.102 0.684 0.772 0998 0.955 0.375 0405 0.727 0429 0444
MP 0346 0.291 0.027 0448 0.824 0952 0.946 0.500 0.314 0.600 0.200 0.324
LSTM AE 0486 0.639 0.245 0.652 0.833 0932 0.675 0.667 0.808 0.533 0400 0.593
TadGAN 0.511 0517  0.125 0.624 0.758 0.736 0.532 0.500 0.576 0.538 0.450 0.606
VAE 0474 0583 0259 0.540 0.723 0.857 0.619 0429 0.778 0467 0467 0.593
Dense AE 0581 0.672 0.172 0.715 0949 0.974 0566 0.600 0.880 0.750 0.500 0.577
GANF 0.750 0.786 0.111 0.281 0.300 1.000 0986 1.000 0.867 1.000 0.700 0.639
Azure AD 0.026 0.009 0.008 0.167 0.484 0542 0217 0.029 0.060 0.089 0.062 0.099
Recall
AER 0.611 0.746 0.616 0.747 0985 0.773 0.547 0.833 0.700 1.000 0.786 0.545
LSTM DT 0.694 0.776 0512 0.775 0.985 0.596 0.504 0.500 0.633 1.000 0.857 0.636
ARIMA 0.417 0343 0.080 0.815 0.865 0.643 0.533 0.500 0.567 0.727 0429 0.606
MP 0.750 0.776 0432 0584 0.985 0.679 0.732 0.667 0.733 0.818 0.643 0.364
LSTM AE 0472 0.687 0512 0590 0.920 0306 0.137 0.667 0.700 0.727 0.571 0.485
TadGAN 0.639 0.687 0.280 0.494 0.860 0.282 0.230 0.667 0.633 0.636 0.643 0.606
VAE 0.500 0.731 0492 0573 0940 0274 0.146 0.500 0.700 0.636 0.500 0.485
Dense AE 0500 0.612 0.244 0.579 0.830 0.040 0.056 0.500 0.733 0.545 0.500 0.455
GANF 0.333 0328 0.220 0.051 0.120 0.004 0.083 0.500 0.433 0.182 0.500 0.697
Azure AD 0.806 0940 0.176 0.848 1.000 0998 0.837 1.000 0.833 0.909 1.000 0.818
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OrionBench: Benchmarking Time Series Generative Models in the Service of the End-User

Table 9. Benchmark Summary Results Version 0.5.1

NASA UCR Yahoo S5 NAB
Pipeline MSL SMAP UCR Al A2 A3 A4 Art AWS AdEx Traf Tweets
F1 Score
AER 0.575 0.803 0482 0.799 0.987 0.898 0.712 0.500 0.750 0.667 0.703 0.571
LSTM DT 0471 0730 0393 0.743 0980 0.734 0.639 0400 0.494 0.710 0.632 0.560
ARIMA 0435 0326 0.090 0.744 0.816 0.782 0.684 0429 0.472 0.727 0429 0.513
LSTM AE 0.533 0.658 0311 0593 0.852 0.452 0.252 0545 0.737 0.667 0.500 0.542
TadGAN 0.571 0592 0.172 0547 0.809 0427 0324 0.667 0.645 0.727 0486 0.552
VAE 0475 0.653 0340 0599 0.806 0.424 0.227 0.667 0.700 0.609 0.516 0.542
Dense AE 0500 0.692 0.199 0.656 0.902 0.080 0.094 0545 0.764 0.600 0467 0.508
GANF 0462 0463 0.147 0.086 0.171 0.008 0.152 0.667 0.578 0308 0.583 0.667
Azure AD 0.051 0.019 0.015 0.280 0.653 0.702 0.344 0.056 0.112 0.163 0.117 0.176
Precision
AER 0.568 0.850 0402 0.830 099 0.995 0931 0500 0.808 0.526 0.565 0.600
LSTM DT 0364 0.667 0332 0.696 0.975 0.979 0.898 0.333 0.404 0.550 0.500 0.500
ARIMA 0455 0311 0.102 0.684 0.772 0.998 00955 0.375 0405 0.727 0429 0444
LSTM AE 0.513 0.608 0.224 0.629 0.802 0946 0.690 0.600 0.778 0.615 0444 0.615
TadGAN 0473 0529 0.124 0.621 0.803 0.736 0.569 0.556 0.625 0.727 0.391 0.640
VAE 0432 0600 0.256 0.582 0.714 0.834 0.639 0.667 0.700 0.583 0471 0.615
Dense AE 0571 0714 0.166 0.739 0.955 0.975 0.558 0.600 0.840 0.667 0438 0.577
GANF 0.750 0.786 0.111 0.281 0.300 1.000 0986 1.000 0.867 1.000 0.700 0.639
Azure AD 0.026 0.009 0.008 0.167 0.484 0542 0217 0.029 0.060 0.089 0.062 0.099
Recall
AER 0.583 0.761 0.604 0.770 0.985 0.818 0.577 0.500 0.700 0.909 0.929 0.545
LSTM DT 0.667 0.806 0484 0.798 0.985 0.587 0.496 0.500 0.633 1.000 0.857 0.636
ARIMA 0.417 0343 0.080 0.815 0.865 0.643 0.533 0.500 0.567 0.727 0429 0.606
LSTM AE 0.556 0.716 0.508 0.562 0910 0.297 0.154 0.500 0.700 0.727 0.571 0.485
TadGAN 0.722 0.672 0.280 0.489 0.815 0.300 0.226 0.833 0.667 0.727 0.643 0.485
VAE 0.528 0.716 0.504 0.618 0.925 0.284 0.138 0.667 0.700 0.636 0.571 0.485
Dense AE 0444 0.672 0.248 0.590 0.855 0.042 0.051 0500 0.700 0.545 0.500 0.455
GANF 0.333 0328 0.220 0.051 0.120 0.004 0.083 0.500 0.433 0.182 0.500 0.697
Azure AD 0.806 094 0.176 0.848 1.000 0.998 0.837 1.000 0.833 0.909 1.000 0.818
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OrionBench: Benchmarking Time Series Generative Models in the Service of the End-User

Table 10. Benchmark Summary Results Version 0. 5.0

NASA Yahoo S5 NAB
Pipeline MSL SMAP Al A2 A3 A4 Art AWS AdEx Traf Tweets
F1 Score
AER 0.632 0.784 0.767 0978 0.878 0.708 0.769 0.727 0.667 0.686 0.603
LSTM DT 0481 0708 0.726 0973 0.740 0.638 0.400 0474 0.759 0.649 0.560
ARIMA 0435 0324 0.744 0816 0.782 0.684 0429 0472 0.727 0429 0.513
LSTM AE 0.514 0686 0.600 0.888 0.443 0.227 0.667 0.800 0.522 0.500 0.483
TadGAN 0482 0573 0.612 0818 0.371 0327 0.615 0.645 0.538 0.512 0.551
VAE 0.538 0.635 0.556 0.803 0.457 0257 0545 0.700 0.593 0.571 0.567
Dense AE 0.545 0.683 0.629 0.877 0.087 0.098 0.545 0.741 0.632 0.571 0.500
GANF 0462 0463 0.086 0.171 0.008 0.152 0.667 0.578 0.308 0.583 0.667
Azure AD 0.051 0.019 0280 0.653 0.702 0.344 0.054 0.112 0244 0.111 0.189
Precision
AER 0.600 0.845 0.795 0970 0.991 0923 0.714 0.800 0.526 0.571 0.633
LSTM DT 0.368 0.662 0.678 0961 0.989 0.883 0.333 0.391 0.611 0.522 0.500
ARIMA 0.455 0307 0.684 0.772 0.998 0955 0375 0405 0.727 0.429 0.444
LSTM AE 0.529 0.658 0.630 0.846 0.929 0.679 0.667 0.880 0.500 0.444 0.560
TadGAN 0.426 0539 0.690 0.806 0.703 0.558 0.571 0.625 0467 0.379 0.528
VAE 0.500 0.580 0.549 0.703 0.869 0.680 0.600 0.700 0.500 0.571 0.630
Dense AE 0.600 0.729 0.723 0.964 0977 0549 0.600 0.833 0.750 0.571 0.609
GANF 0.750 0.786 0.281 0.300 1.000 0986 1.000 0.867 1.000 0.700 0.639
Azure AD 0.026 0.009 0.167 0484 0.542 0217 0.028 0.060 0.141 0.059 0.107
Recall
AER 0.667 0.731 0.742 0985 0.789 0.575 0.833 0.667 0.909 0.857 0.576
LSTM DT 0.694 0761 0.781 0985 0.591 0499 0.500 0.600 1.000 0.857 0.636
ARIMA 0417 0343 0.815 0.865 0.643 0.533 0.500 0.567 0.727 0429 0.606
LSTM AE 0.500 0.716 0.573 0935 0.291 0.137 0.667 0.733 0.545 0.571 0424
TadGAN 0.556 0.612 0.551 0.830 0.252 0.231 0.667 0.667 0.636 0.786 0.576
VAE 0.583 0.701 0.562 00935 0.310 0.158 0.500 0.700 0.727 0.571 0.515
Dense AE 0.500 0.642 0556 0.805 0.046 0.054 0.500 0.667 0545 0571 0424
GANF 0.333 0328 0.051 0.120 0.004 0.083 0.500 0.433 0.182 0.500 0.697
Azure AD 0.806 0940 0.848 1.000 0.998 0.837 1.000 0.833 0.909 1.000 0.818
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OrionBench: Benchmarking Time Series Generative Models in the Service of the End-User

Table 11. Benchmark Summary Results Version 0.4 .1

NASA Yahoo S5 NAB
Pipeline MSL SMAP Al A2 A3 A4 Art AWS AdEx Traf Tweets
F1 Score
AER 0.583 0.778 0.787 0978 0.895 0.691 0.750 0.690 0.733 0.632 0.606
LSTM DT 0.457 0707 0.743 0980 0.748 0.651 0.421 0474 0.733 0.649 0.571
ARIMA 0435 0324 0.744 0816 0.782 0.684 0429 0472 0.727 0429 0.513
LSTM AE 0493 0662 0.588 0.885 0.446 0237 0.667 0.712 0.615 0.552 0.492
TadGAN 0.543 0.620 0.558 0.828 0.428 0.321 0.571 0.585 0.583 0.516 0.559
VAE 0.533 0634 0575 0.833 0444 0230 0545 0.689 0.615 0483 0.533
Dense AE 0.545 0.683 0.646 0.902 0.082 0.075 0.545 0.755 0.600 0.581 0.483
GANF 0462 0463 0.086 0.171 0.008 0.152 0.667 0.578 0.308 0.583 0.667
Azure AD 0.051 0.019 0280 0.653 0.702 0.344 0.054 0.112 0244 0.111 0.189
Precision
AER 0.583 0.831 0.818 0970 0.992 0918 0.600 0.714 0.579 0.500 0.606
LSTM DT 0.348 0639 0.691 0975 0986 0901 0.308 0.391 0.579 0.522 0.500
ARIMA 0.455 0307 0.684 0.772 0.998 0955 0375 0405 0.727 0.429 0.444
LSTM AE 0.486 0.605 0.623 0.849 0.939 0.658 0.667 0.724 0.533 0.533 0.536
TadGAN 0.489 0538 0.631 0.826 0.766 0.560 0.500 0.543 0.538 0.471 0.543
VAE 0.513 0590 0.561 0.742 0.855 0.639 0.600 0.677 0.533 0.467 0.593
Dense AE 0.600 0.750 0.722 0960 0.952 0.507 0.600 0.870 0.667 0.529 0.560
GANF 0.750 0.786 0.281 0.300 1.000 0986 1.000 0.867 1.000 0.700 0.639
Azure AD 0.026 0.009 0.167 0484 0.542 0217 0.028 0.060 0.141 0.059 0.107
Recall
AER 0.583 0.731 0.758 0985 0.816 0.553 1.000 0.667 1.000 0.857 0.606
LSTM DT 0.667 0.791 0.803 0985 0.603 0.510 0.667 0.600 1.000 0.857 0.667
ARIMA 0417 0343 0.815 0.865 0.643 0.533 0.500 0.567 0.727 0429 0.606
LSTM AE 0.500 0.731 0.556 0925 0.293 0.145 0.667 0.700 0.727 0.571 0455
TadGAN 0.611 0.731 0.500 0.830 0.297 0225 0.667 0.633 0.636 0.571 0.576
VAE 0.556 0.687 0.590 0950 0.300 0.140 0.500 0.700 0.727 0.500 0.485
Dense AE 0.500 0.627 0.584 0.850 0.043 0.041 0.500 0.667 0545 0.643 0424
GANF 0.333 0328 0.051 0.120 0.004 0.083 0.500 0.433 0.182 0.500 0.697
Azure AD 0.806 0940 0.848 1.000 0.998 0.837 1.000 0.833 0.909 1.000 0.818
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OrionBench: Benchmarking Time Series Generative Models in the Service of the End-User

Table 12. Benchmark Summary Results Version 0.4 .0

NASA Yahoo S5 NAB
Pipeline MSL SMAP Al A2 A3 A4 Art AWS AdEx Traf Tweets
F1 Score
AER 0.579 0770 0.793 0978 0.888 0.721 0.800 0.727 0.690 0.667 0.571
LSTM DT 0472 0717 0.744 0987 0.735 0.652 0400 0.545 0.759 0.585 0.579
ARIMA 0435 0324 0.744 0.816 0.782 0.684 0429 0.472 0.727 0.429 0513
LSTM AE 0.548 0.681 0.611 0.877 0456 0.233 0545 0.764 0.667 0.452 0.500
TadGAN 0.558 0.610 0.568 0.824 0427 0320 0471 0.656 0.720 0.556 0.559
VAE 0.500 0.648 0.594 0.809 0450 0.236 0500 0.712 0.560 0.500 0.525
Dense AE 0554 0.683 0.665 0.889 0.074 0.094 0.545 0.727 0.632 0.533 0.508
Azure AD 0.051 0.021 0.279 0.653 0.702 0.344 0.054 0.113 0.250 0.112 0.189
Precision
AER 0.550 0.855 0.812 0970 0996 0.930 0.667 0.800 0.556 0.545 0.600
LSTM DT 0.357 0.667 0.701 0990 0987 0.894 0.333 0500 0.611 0444 0.512
ARIMA 0.455 0307 0.684 0.772 0998 0.955 0375 0405 0.727 0429 0.444
LSTM AE 0.541 0.662 0.648 0.850 0.956 0.692 0.600 0.840 0.562 0.412 0.556
TadGAN 0480 0.515 0.647 0.828 0.718 0.551 0.364 0.618 0.643 0.455 0.543
VAE 0475 0603 0.577 0.708 0.866 0.634 0500 0.724 0.500 0.500 0.571
Dense AE 0.621 0.729 0.752 0944 0.947 0.558 0.600 0.800 0.750 0.500 0.577
Azure AD 0.026 0.011 0.167 0.484 0.542 0.217 0.028 0.061 0.145 0.059 0.107
Recall
AER 0.611 0.701 0.775 0985 0.802 0.589 1.000 0.667 0.909 0.857 0.545
LSTM DT 0.694 0776 0.792 0985 0.586 0.514 0.500 0.600 1.000 0.857 0.667
ARIMA 0.417 0343 0.815 0.865 0.643 0.533 0500 0.567 0.727 0.429 0.606
LSTM AE 0.556 0.701 0.579 0905 0.299 0.140 0.500 0.700 0.818 0.500 0.455
TadGAN 0.667 0.746 0.506 0.820 0.304 0.225 0.667 0.700 0.818 0.714 0.576
VAE 0.528 0.701 0.612 0945 0.304 0.145 0500 0.700 0.636 0.500 0.485
Dense AE 0500 0.642 0596 0.840 0.038 0.051 0.500 0.667 0.545 0.571 0.455
Azure AD 0.806 0940 0.848 1.000 0.998 0.837 1.000 0.833 0.909 1.000 0.818
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Table 13. Benchmark Summary Results Version 0. 3.2

NASA Yahoo S5 NAB
Pipeline MSL SMAP Al A2 A3 A4 Art AWS AdEx Traf Tweets
F1 Score
AER 0.600 0.785 0.745 00985 0.881 0.721 0471 0.727 0.733 0.600 0.562
LSTM DT 0.500 0.680 0.741 0978 0.734 0.633 0400 0.481 0.786 0.611 0.603
ARIMA 0.344 0309 0.744 0.816 0.782 0.684 0429 0.472 0.727 0429 0513
LSTM AE 0.493 0.715 0.620 0.863 0447 0.241 0.667 0.712 0.609 0.516 0.516
TadGAN 0.595 0.645 0.531 0.829 0416 0350 0.714 0.645 0.818 0.541 0.580
Dense AE 0.507 0.661 0.665 0.887 0.082 0.098 0.400 0.778 0.632 0.581 0.542
Azure AD 0.050 0.027 0.279 0.653 0.702 0.344 0.053 0.068 0.250 0.068 0.269
Precision
AER 0.618 0.810 0.760 0985 0983 0.907 0364 0.800 0.579 0462 0.581
LSTM DT 0.375 0.614 0.700 0970 0980 0.886 0.333 0.388 0.647 0.500 0.550
ARIMA 0.393 0304 0.684 0.772 0998 0.955 0375 0405 0.727 0429 0.444
LSTM AE 0.515 0.700 0.641 0.817 0.942 0.665 0.667 0.724 0.583 0.471 0.552
TadGAN 0.521 0.568 0.567 0.769 0.745 0.582 0.625 0.625 0.818 0.435 0.556
Dense AE 0548 0.719 0.752 0934 0.952 0.570 0.500 0.875 0.750 0.529 0.615
Azure AD 0.026 0.014 0.167 0.484 0542 0.217 0.027 0.036 0.145 0.035 0.161
Recall
AER 0.583 0.761 0.730 0985 0.798 0.598 0.667 0.667 1.000 0.857 0.545
LSTM DT 0.750 0.761 0.787 0985 0.587 0.492 0500 0.633 1.000 0.786 0.667
ARIMA 0306 0.313 0.815 0.865 0.643 0.533 0500 0.567 0.727 0.429 0.606
LSTM AE 0472 0731 0.601 0915 0.293 0.147 0.667 0.700 0.636 0.571 0.485
TadGAN 0.694 0.746 0.500 0900 0.289 0.250 0.833 0.667 0.818 0.714 0.606
Dense AE 0472 0.612 0.596 0.845 0.043 0.054 0.333 0.700 0.545 0.643 0.485
Azure AD 0.806 0.567 0.848 1.000 0.998 0.837 1.000 0.733 0909 1.000 0.818
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Table 14. Benchmark Summary Results Version 0.3 .1

NASA Yahoo S5 NAB
Pipeline MSL SMAP Al A2 A3 A4 Art AWS AdEx Traf Tweets
F1 Score
AER 0.579 0.778 0.786 0992 0.896 0.716 0.533 0.678 0.759 0.667 0.581
LSTM DT 048 0703 0.752 0985 0.743 0.635 0400 0.545 0.733 0.667 0.580
ARIMA 0.344 0309 0.744 0.816 0.782 0.684 0429 0.472 0.727 0429 0513
LSTM AE 0.500 0.690 0.625 0.867 0446 0.238 0.667 0.764 0.583 0.500 0.500
TadGAN 0.512 0.658 0.566 0.858 0.422 0.331 0714 0.625 0.750 0.588 0.559
Dense AE 0.554 0.661 0.650 0.874 0.087 0.090 0.545 0.778 0.526 0.516 0.464
Azure AD 0.050 0.020 0.279 0.653 0.702 0.344 0.053 0.068 0.250 0.068 0.269
Precision
AER 0.550 0.831 0.810 1.000 0996 0.928 0444 0.690 0.611 0.545 0.621
LSTM DT 0366 0.642 0.716 0985 0988 0.886 0.333 0.500 0.579 0.545 0.556
ARIMA 0.393 0304 0.684 0.772 0998 0.955 0375 0405 0.727 0429 0.444
LSTM AE 0.500 0.641 0.658 0.824 0961 0.672 0.667 0.840 0.538 0.444 0.556
TadGAN 0440 0564 0.626 0.815 0.735 0.577 0.625 0.588 0.692 0.500 0.543
Dense AE 0.621 0.719 0.732 0922 0.956 0.519 0.600 0.875 0.625 0471 0.565
Azure AD 0.026 0.010 0.167 0.484 0542 0.216 0.027 0.036 0.145 0.035 0.161
Recall
AER 0.611 0.731 0.764 0985 0.814 0.583 0.667 0.667 1.000 0.857 0.545
LSTM DT 0722 0776 0.792 0985 0.595 0.495 0500 0.600 1.000 0.857 0.606
ARIMA 0306 0.313 0.815 0.865 0.643 0.533 0500 0.567 0.727 0.429 0.606
LSTM AE 0500 0746 0.596 00915 0.291 0.145 0.667 0.700 0.636 0.571 0.455
TadGAN 0.611 0.791 0.517 0905 0.296 0.232 0.833 0.667 0.818 0.714 0.576
Dense AE 0500 0.612 0.584 0.830 0.046 0.049 0.500 0.700 0.455 0.571 0.394
Azure AD 0.806 0940 0.848 1.000 0.998 0.837 1.000 0.733 0909 1.000 0.818
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Table 15. Benchmark Summary Results Version 0. 3.0

NASA Yahoo S5 NAB
Pipeline MSL SMAP Al A2 A3 A4 Art AWS AdEx Traf Tweets
F1 Score
LSTM DT 0476 0741 0.739 0990 0.753 0.644 0400 0.537 0.714 0.703 0.556
ARIMA 0.344 0309 0.744 0816 0.782 0.684 0.429 0.472 0.727 0.429 0513
LSTM AE 0.500 0.658 0.584 0.877 0444 0.262 0.667 0.724 0.667 0471 0475
TadGAN 0.575 0.659 0.564 0.853 0439 0370 0.615 0.656 0.640 0.541 0.559
Dense AE 0523 0.661 0.665 0.891 0.072 0.109 0400 0.764 0.571 0.552 0.517
Azure AD 0.050 0.020 0.279 0.653 0.702 0.344 0.053 0.068 0.250 0.068 0.269
Precision
LSTM DT 0.362 0.697 0.710 0995 0985 0.888 0.333 0.486 0.588 0.565 0.513
ARIMA 0.393 0304 0.684 0.772 0998 0.955 0375 0405 0.727 0429 0.444
LSTM AE 0.500 0.598 0.630 0.830 0935 0.709 0.667 0.750 0.615 0400 0.538
TadGAN 0490 0550 0.638 0.811 0.784 0.599 0.571 0.645 0.571 0.435 0.543
Dense AE 0586 0.719 0.752 0925 0.946 0.595 0.500 0.840 0.600 0.533 0.600
Azure AD 0.026 0.010 0.167 0.484 0542 0.216 0.027 0.036 0.145 0.035 0.161
Recall
LSTM DT 0.694 0.791 0.77 0985 0.610 0.505 0.500 0.600 0.909 0.929 0.606
ARIMA 0306 0.313 0.815 0.865 0.643 0.533 0500 0.567 0.727 0.429 0.606
LSTM AE 0.500 0.731 0.545 0930 0.291 0.160 0.667 0.700 0.727 0.571 0424
TadGAN 0.694 0.821 0.506 0900 0.305 0.267 0.667 0.667 0.727 0.714 0.576
Dense AE 0472 0.612 0.596 0.860 0.037 0.060 0.333 0.700 0.545 0.571 0.455
Azure AD 0.806 0940 0.848 1.000 0.998 0.837 1.000 0.733 0909 1.000 0.818
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Table 16. Benchmark Summary Results Version 0.2. 1

NASA Yahoo S5 NAB
Pipeline MSL SMAP Al A2 A3 A4 Art AWS AdEx Traf Tweets
F1 Score
LSTM DT 0460 0.703 0.752 0980 0.733 0.643 0400 0.481 0.643 0.684 0.568
ARIMA 0.344 0309 0.744 0816 0.782 0.684 0.429 0.472 0.727 0.429 0513
LSTM AE 0480 0.690 0.600 0.870 0436 0.243 0545 0.750 0.615 0.571 0.525
TadGAN 0.558 0.650 0.559 0.890 0412 0374 0500 0.677 0.692 0.500 0.567
Dense AE 0529 0.661 0.652 0.899 0.087 0.092 0.545 0.741 0.632 0.552 0.517
Azure AD 0.050 0.020 0.279 0.653 0.702 0.344 0.053 0.068 0.250 0.068 0.269
Precision
LSTM DT 0.359 0.654 0.716 0975 0991 0.895 0.333 0.388 0.529 0.542 0.512
ARIMA 0.393 0304 0.684 0.772 0998 0.955 0375 0405 0.727 0429 0.444
LSTM AE 0462 0.653 0.610 0.825 0.943 0.663 0.600 0.808 0.533 0.571 0.571
TadGAN 0480 0.567 0.642 0.837 0.746 0.635 0.500 0.656 0.600 0.409 0.559
Dense AE 0562 0.719 0.746 0960 0.956 0.553 0.600 0.833 0.750 0.533 0.600
Azure AD 0.026 0.010 0.167 0.484 0542 0.216 0.027 0.036 0.145 0.035 0.161
Recall
LSTM DT 0.639 0.761 0.792 0985 0.581 0.502 0500 0.633 0.818 0.929 0.636
ARIMA 0306 0.313 0.815 0.865 0.643 0.533 0500 0.567 0.727 0.429 0.606
LSTM AE 0.500 0.731 0.590 0920 0.283 0.149 0.500 0.700 0.727 0.571 0.485
TadGAN 0.667 0.761 0.494 0950 0.284 0.265 0.500 0.700 0.818 0.643 0.576
Dense AE 0500 0.612 0.579 0.845 0.046 0.050 0.500 0.667 0.545 0.571 0.455
Azure AD 0.806 0940 0.848 1.000 0.998 0.837 1.000 0.733 0909 1.000 0.818
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Table 17. Benchmark Summary Results Version 0.2 .0

NASA Yahoo S5 NAB
Pipeline MSL SMAP Al A2 A3 A4 Art AWS AdEx Traf Tweets
F1 Score
LSTM DT 0.447 0671 0.724 0975 0.751 0.637 0400 0.488 0.733 0.619 0.535
ARIMA 0435 0326 0.744 0816 0.782 0.684 0429 0.472 0.727 0.429 0513
LSTM AE 0.500 0.667 0.593 0.859 0422 0.223 0667 0.724 0.720 0.552 0.540
TadGAN 0.465 0.646 0.549 0.843 0492 0.388 0.667 0.623 0.741 0476 0.523
Dense AE 0563 0.710 0.656 0.889 0.084 0.094 0.545 0.800 0.632 0.500 0.517
Azure AD 0.061 0.021 0.276 0.653 0.702 0.344 0.053 0.068 0.286 0.068 0.269
Precision
LSTM DT 0.343 0.600 0.680 0966 0990 0.887 0.333 0.385 0.579 0464 0.500
ARIMA 0455 0311 0.684 0.772 0998 0.955 0375 0405 0.727 0429 0.444
LSTM AE 0.500 0.635 0.614 0.825 0934 0.667 0.667 0.750 0.643 0.533 0.567
TadGAN 0400 0546 0.600 0.814 0.792 0.584 0.556 0.613 0.625 0.357 0.531
Dense AE 0.643 0.772 0.731 0944 0.953 0.544 0.600 0.880 0.750 0.500 0.600
Azure AD 0.032 0.011 0.166 0.484 0542 0.216 0.027 0.036 0.169 0.035 0.161
Recall
LSTM DT 0.639 0.761 0.775 0985 0.605 0.497 0500 0.667 1.000 0.929 0.576
ARIMA 0417 0343 0.815 0.865 0.643 0.533 0500 0.567 0.727 0.429 0.606
LSTM AE 0.500 0.701 0.573 0.895 0.273 0.134 0.667 0.700 0.818 0.571 0.515
TadGAN 0.556 0.791 0.506 0.875 0.357 0.291 0.833 0.633 0.909 0.714 0.515
Dense AE 0500 0.657 0.596 0.840 0.044 0.051 0500 0.733 0.545 0.500 0.455
Azure AD 0.806 0.940 0.815 1.000 0.998 0.837 1.000 0.733 0909 1.000 0.818
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Table 18. Benchmark Summary Results Version 0.1 .7

NASA Yahoo S5 NAB
Pipeline MSL SMAP Al A2 A3 A4 Art AWS AdEx Traf Tweets
F1 Score
LSTM DT 0466 0.689 0.739 0975 0.746 0.645 0400 0.500 0.759 0.585 0.551
ARIMA 0.344 0309 0.744 0816 0.782 0.684 0.429 0.472 0.727 0.429 0513
LSTM AE 0.507 0.667 0.601 0.880 0.445 0.231 0.667 0.712 0.667 0.516 0.508
TadGAN 0.517 0.634 0.551 0.841 0484 0376 0571 0.689 0.769 0.563 0.559
Dense AE 0.507 0.693 0.665 0904 0.078 0.090 0.545 0.786 0.600 0.581 0.533
Azure AD 0.061 0.021 0.276 0.653 0.702 0.344 0.053 0.068 0.286 0.068 0.269
Precision
LSTM DT 0.358 0.619 0.684 0966 0984 0.894 0.333 0413 0611 0444 0.528
ARIMA 0.393 0304 0.684 0.772 0998 0.955 0375 0405 0.727 0429 0.444
LSTM AE 0487 0.623 0.624 0.861 0945 0.654 0.667 0.724 0.615 0471 0.577
TadGAN 0434 0543 0.642 0.801 0.792 0.585 0.500 0.677 0.667 0.500 0.543
Dense AE 0548 0.733 0.752 0971 0.950 0.532 0.600 0.846 0.667 0.529 0.593
Azure AD 0.032 0.011 0.166 0.484 0542 0.216 0.027 0.036 0.169 0.035 0.161
Recall
LSTM DT 0.667 0776 0.803 0985 0.601 0.504 0500 0.633 1.000 0.857 0.576
ARIMA 0306 0.313 0.815 0.865 0.643 0.533 0500 0.567 0.727 0.429 0.606
LSTM AE 0.528 0.716 0.579 0900 0.291 0.140 0.667 0.700 0.727 0.571 0.455
TadGAN 0.639 0.761 0.483 0.885 0.348 0.277 0.667 0.700 0.909 0.643 0.576
Dense AE 0472 0.657 0.596 0.845 0.040 0.049 0.500 0.733 0.545 0.643 0.485
Azure AD 0.806 0.940 0.815 1.000 0.998 0.837 1.000 0.733 0909 1.000 0.818
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Table 19. Benchmark Summary Results Version 0.1.6

NASA Yahoo S5 NAB
Pipeline MSL SMAP Al A2 A3 A4 Art AWS AdEx Traf Tweets
F1 Score
LSTM DT 0480 0.718 0.747 0975 0.739 0.649 0400 0.474 0.741 0.684 0.583
ARIMA 0.344 0309 0.744 0816 0.782 0.684 0.429 0.472 0.727 0.429 0513
LSTM AE 0474 0.667 0.593 0.865 0.438 0.276 0.667 0.764 0.615 0.452 0.552
TadGAN 0.529 0.654 0.555 0.822 0487 0377 0.714 0.645 0.741 0.486 0.567
Dense AE 0.515 0.667 0.648 0.897 0.080 0.091 0.545 0.786 0.600 0.581 0.517
Azure AD 0.061 0.021 0.276 0.653 0.702 0.344 0.053 0.070 0.019 0.068 0.269
Precision
LSTM DT 0.375 0.680 0.690 0966 0991 0.893 0.333 0.391 0.625 0.542 0.538
ARIMA 0.393 0304 0.684 0.772 0998 0.955 0375 0405 0.727 0429 0.444
LSTM AE 0450 0.635 0.629 0.833 0.931 0.711 0.667 0.840 0.533 0.412 0.640
TadGAN 0451 0573 0592 0.792 0.764 0.575 0.625 0.625 0.625 0.391 0.559
Dense AE 0567 0.712 0.719 00955 0.975 0.586 0.600 0.846 0.667 0.529 0.600
Azure AD 0.032 0.011 0.166 0.484 0542 0.216 0.027 0.037 0.009 0.035 0.161
Recall
LSTM DT 0.667 0.761 0.815 0985 0.589 0.510 0.500 0.600 0.909 0.929 0.636
ARIMA 0306 0.313 0.815 0.865 0.643 0.533 0500 0.567 0.727 0.429 0.606
LSTM AE 0.500 0.701 0.562 0900 0.286 0.171 0.667 0.700 0.727 0.500 0.485
TadGAN 0.639 0.761 0.522 0.855 0.358 0.280 0.833 0.667 0.909 0.643 0.576
Dense AE 0472 0.627 0.590 0.845 0.042 0.049 0500 0.733 0.545 0.643 0.455
Azure AD 0.806 0.940 0.815 1.000 0.998 0.837 1.000 0.700 0909 1.000 0.818
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Table 20. Benchmark Summary Results Version 0.1.5

NASA Yahoo S5 NAB

Pipeline MSL. SMAP Al A2 A3 A4 Art  AWS AdEx Traf Tweets
F1 Score

LSTM DT 0.532 0.704 0.735 0980 0.743 0.653 0.400 0462 0467 0.615 0.548

ARIMA 0.344 0307 0.744 0.816 0.782 0.684 0.429 0472 0.538 0.429 0.513

TadGAN 0.575 0.644 0.626 0.700 0.494 0.381 0.714 0.677 0.800 0.450 0.592

Azure AD 0.061 0.021 0271 0.653 0.697 0.337 0.053 0.068 0.019 0.068 0.269
Precision

LSTM DT 0.431 0.667 0.690 0980 0991 0.899 0.333 0.375 0.368 0.480 0.500

ARIMA 0.393 0300 0.684 0.772 0998 0.955 0.375 0405 0467 0429 0.444

TadGAN 0.490 0.523 0.652 0.700 0.795 0.588 0.625 0.656 0.714 0.346  0.553

Azure AD 0.032 0.011 0.163 0484 0.541 0.212 0.027 0.036 0.009 0.035 0.161

Recall

LSTM DT 0.694 0.746 0.787 0980 0.594 0.513 0.500 0.600 0.636 0.857 0.606

ARIMA 0.306 0313 0.815 0.865 0.643 0.533 0.500 0.567 0.636 0.429 0.606

TadGAN 0.694 0.836 0.601 0.700 0.359 0.281 0.833 0.700 0.909 0.643 0.636

Azure AD 0.806 0940 0.787 1.000 0.978 0.816 1.000 0.733 0.909 1.000 0.818

Table 21. Benchmark Summary Results Version 0.1 . 4
NASA Yahoo S5 NAB

Pipeline MSL SMAP Al A2 A3 A4 Art AWS AdEx Traf Tweets
F1 Score

LSTM DT 0.468 0.708 0.738 0978 0.728 0.634 0.400 0.468 0.437 0.667 0.564

ARIMA 0.344 0307 0.744 0.816 0.782 0.684 0.429 0472 0.538 0.429 0.513

Azure AD 0.061 0.021 0.277 0.653 0.692 0.333 0.053 0.068 0.019 0.068 0.269
Precision

LSTM DT 0379 0.662 0.679 0970 0.984 0.890 0.333 0.383 0.333 0.545 0.489

ARIMA 0.393 0300 0.684 0.772 0.998 0955 0.375 0405 0467 0429 0.444

Azure AD 0.032 0.011 0.184 0484 0.537 0.216 0.027 0.036 0.009 0.035 0.161

Recall

LSTM DT 0.611 0.761 0.809 0985 0.577 0.492 0.500 0.600 0.636 0.857 0.667

ARIMA 0.306 0313 0.815 0.865 0.643 0.533 0.500 0.567 0.636 0.429 0.606

Azure AD 0.806 0940 0562 1.000 0.972 0.729 1.000 0.733 0909 1.000 0.818
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Table 22. Benchmark Summary Results Version 0.1 .3

NASA Yahoo S5 NAB

Pipeline MSL SMAP Al A2 A3 A4 Art AWS AdEx Traf Tweets
F1 Score

LSTM DT 0495 0.750 0.757 0.987 0.756 0.643 0400 0.531 0452 0.718 0.620

ARIMA 0489 0424 0.753 0.856 0.783 0.693 0429 0.576 0.538 0.545 0.513
Precision

LSTM DT 0364 0.680 0.721 0.975 0986 0.890 0.333 0.472 0350 0.560 0.579

ARIMA 0.393 0300 0.690 0.772 0998 0955 0375 0.567 0467 0429 0444

Recall
LSTM DT 0.774 0.836 0.798 1.000 0.613 0.503 0.500 0.607 0.636 1.000 0.667
ARIMA 0.647 0724 0.829 00961 0.644 0.543 0500 0.586 0.636 0.750 0.606
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