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Ultraprecise mechanical sensors offer an exciting avenue for testing new physics. While many
of these sensors are tailored to detect inertial forces, magnetically levitated (Maglev) systems are
particularly interesting, in that they are also sensitive to electromagnetic forces. In this work, we
propose the use of magnetically levitated superconductors to detect dark-photon and axion dark
matter through their couplings to electromagnetism. Several existing laboratory experiments search
for these dark-matter candidates at high frequencies, but few are sensitive to frequencies below 1 kHz
(corresponding to dark-matter masses mDM ≲ 10−12 eV). As a mechanical resonator, magnetically
levitated superconductors are sensitive to lower frequencies, and so can probe parameter space
currently unexplored by laboratory experiments. Dark-photon and axion dark matter can source an
oscillating magnetic field that drives the motion of a magnetically levitated superconductor. This
motion is resonantly enhanced when the dark matter Compton frequency matches the levitated
superconductor’s trapping frequency. We outline the necessary modifications to make magnetically
levitated superconductors sensitive to dark matter, including specifications for both broadband and
resonant schemes. We show that in the Hz ≲ fDM ≲ kHz frequency range our technique can achieve
the leading sensitivity amongst laboratory probes of both dark-photon and axion dark matter.

I. INTRODUCTION

Discerning the nature of dark matter (DM) remains
one of the major outstanding problems in fundamental
physics. The mass of the particles which constitute DM is
largely unconstrained, and so numerous candidates have
been proposed over the years, but one class which has
garnered increased attention lately is ultralight bosonic
DM [1, 2]. This class consists of DM candidates with
masses ≲ 1 eV. As the local energy density of dark mat-

ter has been measured to be ρDM ≈ 0.3GeV/cm
3
[3],

these candidates, in turn, have large number densities.
This necessitates that these candidates must be bosonic,
and moreover, should behave like classical fields [4, 5].
Some of the most popular ultralight DM candidates in-
clude QCD axions [6–8], axionlike particles [9, 10], and
dark photons [11–13]. These candidates are particularly
intriguing because the QCD axion can solve the strong
CP problem [14–16], while axionlike particles and dark
photons are predicted by a variety of string compactifi-
cations [17–19].

These ultralight candidates may possess couplings to
electromagnetism [11, 20], and a variety of laboratory
experiments have been proposed to search for such cou-
plings [21–45]. Many of these experiments search for
electromagnetic fields sourced by ultralight DM. In par-
ticular, in the regime where the Compton wavelength
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of the dark matter λDM is much larger than the size of
the experiment, the typical signal that these ultralight
DM candidates would produce is an oscillating magnetic
field [27, 46].

Various experiments searching for ultralight DM uti-
lize systems which take advantage of resonant enhance-
ments, e.g. lumped-element circuits [27, 38], resonant
cavities [22, 42], or layers of dielectric disks [29, 31, 41],
in order to increase their sensitivity to DM of a partic-
ular Compton frequency (mass). The frequency range
to which each of these experiments is sensitive is set,
respectively, by: the inductance and capacitance of the
circuit, the size of the cavity, and the spacing between
the layers. It is thus difficult for any of these techniques
to probe frequencies below 1 kHz, corresponding to DM
massesmDM ≲ 10−12 eV. In this work, we propose to uti-
lize a mechanical resonator, specifically a magnetically-
levitated superconducting particle (SCP), in order to de-
tect the oscillating magnetic field sourced by DM, at fre-
quencies in the Hz to kHz range.

Magnetically levitated superconductors function as ul-
traprecise accelerometers [47–49], and can be employed
in a wide range of precision sensing applications. In
comparison with optical levitation, magnetostatic lev-
itation allows for the suspension of significantly larger
loads [47], up to even train-scale objects [50]. Magnet-
ically levitated superconductors have been utilized for
gravimetry [47, 48], and have the potential to test quan-
tum physics on macroscopic scales [51, 52]. The usage
of accelerometers to detect B − L dark matter has been
actively explored in recent years [28, 53–57], and mag-
netically levitated systems have been proposed as one
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promising candidate, due to their excellent acceleration
sensitivity [55, 56, 58, 59]. Here, we highlight that mag-
netically levitated systems are also excellent magnetome-
ters, and as such, can be sensitive to electromagnetically
coupled ultralight DM.

The fundamental property underlying the magnetic
levitation of a superconductor is its superdiamagnetism,
which means that nearly all magnetic fields are expelled
out of its interior [60]. In the presence of an external
magnetic field, currents are driven along the surface of
the SCP which screen the interior from the magnetic
field. These surface currents then experience a Lorentz
force from the external magnetic field, leading to a net
force on the SCP (see Fig. 1). This principle can be
used to trap a SCP near the center of an applied static
quadrupole field, with trapping frequencies typically in
the Hz to kHz range [49, 61, 62].

The levitation apparatus must be surrounded by mag-
netic shielding in order to isolate the SCP from envi-
ronmental fields. Inside this shield, ultralight DM can
source an oscillating magnetic field signal, similar to the
one sourced in experiments like DM Radio [27]. If the
apparatus is positioned off-center within the shield, this
signal can be nonzero in the vicinity of the apparatus.
This additional field can then perturb the equilibrium
position of the SCP, leading to oscillatory motion of the
particle. If the frequency of this oscillation, which is set
by the DM mass, matches the trapping frequency, then
the motion will be resonantly enhanced. Magnetically
levitated SCPs thus provide an excellent context in which
to resonantly search for electromagnetic couplings of DM
withmDM ≲ 10−12 eV. In this work, we will explore both
resonant and broadband detection schemes to search for
ultralight DM in this mass range.

This work is structured as follows. In Sec. II, we outline
how a superconductor can be magnetically levitated. We
discuss the physics of trapping a SCP, as well as the pos-
sible readout schemes and potential range of system pa-
rameters. In Sec. III, we review the physics of the ultra-
light DM candidates considered in this work. These in-
clude dark-photon dark matter (DPDM) and axion DM.1

In Sec. IV, we discuss the relevant noise sources for our
setup and project sensitivities to both DM candidates.
We consider both a broadband scheme using a single ex-
periment and a scanning scheme using several resonant
experiments, and outline the parameter choices relevant
to each of these schemes. Finally, in Sec. V, we discuss
our results and possible future improvements. We also
perform detailed computations in our appendices. In Ap-
pendix A, we derive the response of a spherical SCP to
an applied magnetic field. In Appendix B, we derive the
axion DM magnetic field signal sourced inside a rectilin-
ear magnetic shield. We make all the code used in this
work publicly available on Github [63].

1 Throughout this work, we simply use “axion” to refer to both
the QCD axion and axionlike particles.

II. LEVITATED SUPERCONDUCTORS

In this section, we discuss the magnetic levitation of
a SCP. First, we show how a SCP can be trapped near
the center of a static quadrupolar magnetic field. Next,
we discuss various methods of reading out the motion
of a SCP inside the trap. Finally, we outline the phys-
ical limitations of the setup, and the resulting range of
parameters that can be achieved with such a system.

A. Trapping

The magnetic trap is formed by a quadrupolar field,
which confines the SCP near its center, at the point where
the magnetic field vanishes. Such a magnetic field can be
created by two coils carrying currents in opposite direc-
tions, also known as an anti-Helmholtz-like configuration
(see Fig. 1). To understand the effect of the trap on the
SCP, let us expand the magnetic field in the vicinity of
the trap center to linear order as

Bi(x, t) = B0,i(t) + bij(t)xj , (1)

where the Einstein summation convention is implicit in
the second term. Here B0 represents the magnetic field
at the center of the coordinate system, while bij describes
the magnetic field gradients near the center. (Note that
Gauss’s law of magnetism enforces

∑
i bii = 0).

In the absence of beyond-the-Standard-Model effects,
the only contribution to B is the applied quadrupole
trap, which is static. Because of this, we can choose
a coordinate system in which the magnetic field vanishes
at the origin, i.e. B0(t) = 0, and in which bij is diagonal.
Then Eq. (1) simplifies to

Btrap(x, t) = bxxxx̂+ byyyŷ + bzzzẑ. (2)

When we introduce a DM signal, the total magnetic field
will not take this simple form, as B will exhibit a time
dependence.
A superconducting sphere of volume V , located at po-

sition x within the magnetic field in Eq. (1), will experi-
ence a force2

Fi(x, t) = −3

2
V bjiBj(x, t) (3)

(see Appendix A or Refs. [49, 64] for derivation). Mi-
croscopically, this force occurs because the local mag-
netic field drives surface currents on the SCP, in order
to screen the magnetic field out of its interior. These
currents then experience a Lorentz force in the presence
of the magnetic field (see Fig. 1). Note that because the
net force is given by the difference between the Lorentz

2 Throughout, we use natural units ℏ = c = kB = µ0 = 1.
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forces on either side of the sphere, Eq. (3) depends not
only on the magnetic field, but also on its gradient bij
across the sphere.

This force can alternatively be understood by rewriting
Eq. (3) as F = −∇U , where

U =
3

4
V |B|2. (4)

Heuristically, this potential can be interpreted as the
amount of energy that it takes for the superconducting
sphere to screen out the local magnetic field. The sphere
will therefore settle at the point of lowest total magnetic
field. In the case of a static quadrupole field, this will be
the center of the trap x = 0.
This can be seen even more directly by plugging Eq. (2)

into Eq. (3) to find

Ftrap(x, t) = −3

2
V
(
b2xxxx̂+ b2yyyŷ + b2zzzẑ

)
. (5)

This expression makes it clear that the trap creates a
restoring force towards x = 0, so that the system acts
as a harmonic oscillator. The resonant frequencies of the
trap are simply given by [49]

fi =

√
3

8π2ρ
bii, (6)

where ρ is the density of the sphere. As we will see in
Sec. III, the magnetic field signal induced by ultralight
DM can drive this harmonic oscillator. If the frequency
of the driving signal (which is set by the ultralight DM
mass) matches one of the trapping frequencies in Eq. (6),
then the oscillator will ring up resonantly.

B. Readout

The motion of the levitated SCP can be read out in
different fashions. One method relies on placing a pickup
coil close to the particle. As the SCP moves, it dis-
torts the magnetic trapping field, causing the magnetic
flux threading the pickup coil to change. This flux can
be transferred to a sensitive magnetometer, such as a
SQUID [49, 51, 62] or a SQUID coupled to a microwave
resonator [65], which outputs a signal describing the par-
ticle motion.

Another method also makes use of a pickup coil close
to the particle, but uses a different mechanism for sensing
the particle motion. As the SCP moves, it changes the
inductance of the pickup coil, due to the SCP’s superdia-
magnetism. This inductance change can be measured to
probe the particle motion [48, 66].

Alternatively, the particle motion can be measured us-
ing optical interferometry [67]. Specifically, one can form
a Michelson interferometer, with a reflective SCP act-
ing as the mirror at the end of one of the interferometer
arms. In principle, each of these methods allows the par-
ticle motion to be probed close to the standard quantum

limit (SQL). In this work, we will primarily consider the
SQUID readout. The sensitivity of this readout scheme
will be discussed further in Sec. IV.

C. Range of system parameters

Here we discuss physical limitations of this levitation
geometry, which set the viable range of parameters that
can be achieved. First, Eq. (6) implies that the fre-
quency range of our setup is constrained by the range
of achievable magnetic field gradients and particle densi-
ties, namely3

f0 ∼ 170Hz ·
√

0.1 g/cm3

ρ

(
b0

10T/m

)
. (7)

Densities of 0.1 g/cm3 can be achieved by using a hollow
SCP. A SCP of mass 1 g and density 0.1 g/cm3 would
require a thickness of ∼ 50µm (see Ref. [47] for levita-
tion of similarly sized hollow SCPs). Such a particle is
around 3 cm across. Field gradients of up to ∼ 100T/m
have been produced in cm-scale traps [49], so we find it
reasonable to consider trapping frequencies f0 ≲ 100Hz.
Additionally, for sufficiently low trapping frequencies,

gravity can displace the vertical equilibrium position of
the SCP. By balancing the force of gravity Fg = −mgẑ
with Eq. (5), we see that the vertical displacement of the
equilibrium will be

∆z =
g

4π2f2
z

∼ 3 cm ·
(
3Hz

fz

)2

. (8)

To avoid significant displacements from gravity, in this
work, we will focus on the range of trapping frequencies
3Hz ≲ f0 ≲ 100Hz.
The size of the SCP is also constrained by the critical

fields of the superconducting material out of which it is
made. As the size of the SCP is increased, the magnetic
field strength at its surface will increase (due to the mag-
netic field gradients bii), and so its superconductivity can
be broken if the SCP is too large. When the SCP is lo-
cated at the center of the trap, the maximum magnetic
field strength on its surface is given by

Bmax ∼ b0R (9)

∼ 80mT ·
(

m

1 g

)1/3(
ρ

0.1 g/cm3

)1/6(
f0

100Hz

)
,

(10)

3 Throughout the rest of this work, we write f0 = ω0/2π and b0,
rather than fi and bii, to refer to the trapping frequency and
magnetic field gradient, in contexts where we are agnostic about
which mode is being excited. These quantities are still related
by Eq. (6).
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FIG. 1. Magnetic levitation of a SCP. The levitation apparatus (shown on the left) consists of two current-carrying coils
arranged in an anti-Helmholtz-like configuration, i.e. carrying currents in opposite directions. Together these coils source a
quadrupole magnetic field (shown in purple), which can trap a SCP. If the SCP is displaced from the center of the trap (the
point at which B = 0), surface currents (shown in light blue) will run on the SCP to screen the magnetic field out of its interior.
These surface currents then experience a Lorentz force in the presence of the magnetic field, leading to a net restoring force
(shown in red) which drives the SCP back to the center of the trap. The trap is typically located within a magnetic shield
(shown on the right). Inside of this shield, ultralight DM can be parametrized by an effective current (shown in dark blue),
which sources an oscillating magnetic field signal (shown in green). In the DPDM case, the direction of the effective current
is given by the DPDM polarization. In the axion case, it is given by the quadrupole magnetic field trap. The DM-induced
magnetic field can displace the equilibrium position of the trap, resulting in oscillatory motion of the SCP. Note that since this
magnetic field signal vanishes at the center of the shield, the trap must be located off-center within the shield in order to be
sensitive to DPDM or axion DM.

where R is the characteristic length of the SCP. Typ-
ical type-I superconducting materials, such as Pb and
Ta, have critical field strengths of up to 80mT [68, 69],
so in this work we restrict ourselves to SCPs no larger
than m = 1g. We note, however, that thin films of TiN
have been shown to have critical field strengths of up to
5T [70], so larger SCPs may be possible.

Finally, as this system acts as a harmonic oscillator, it
exhibits a characteristic dissipation rate γ. We anticipate
the main source of dissipation to be gas collisions with
the SCP. The dissipation rate from gas collisions is given
by [53, 71]

γ ∼ PA

mv̄gas
∼ 2π · 10−8 Hz ·

(
P

10−7 Pa

)(
1 g

m

)1/3

·
(
0.1 g/cm

3

ρ

)2/3√(mgas

4Da

)(10mK

T

)
,

(11)

where P is the gas pressure, A is the cross-sectional area
of the SCP, and v̄gas ∼

√
T/mgas is the mean velocity of

the gas molecules (which have mass mgas). Other poten-
tial sources of dissipation include flux creep and eddy cur-
rent damping. Flux creep is the movement of unpinned
flux lines within the SCP [49, 72]. Flux pinning occurs in
type-II superconductors, and so flux creep can be elimi-
nated by using a SCP made from a type-I superconduct-
ing material with few crystalline domains. Eddy current
damping occurs when the motion of the SCP causes mag-
netic field changes which drive currents in nearby resis-
tive conductors with nonzero resistance. This dissipation
can be mitigated by surrounding the levitation apparatus
by a superconducting shield (see Fig. 1), and ensuring all
materials inside the shield are either superconductors or
electrical insulators. We therefore expect γ ∼ 2π·10−8 Hz
to be an achievable benchmark for the dissipation rate.4



5

III. DARK MATTER SIGNALS

In this section, we review two ultralight DM candi-
dates, dark-photon dark matter (DPDM) and axion DM,
and derive the signals that they can effect on a levitated
SCP through their coupling to electromagnetism. As we
will see, both DM candidates can be described by an
effective current. Within the confines of the magnetic
shield surrounding the levitation setup, this effective cur-
rent sources an oscillating magnetic field signal, just as
inside shielded experiments like DM Radio [27]. This
magnetic field will then drive oscillatory motion of the
SCP.

A. Dark-photon dark matter

A kinetically mixed dark photon A′ of mass mA′

and kinetic mixing parameter ε is described by the La-
grangian5

LA′ ⊃ −1

4
FµνF

µν − 1

4
F ′
µνF

′µν +
1

2
m2

A′A′
µA

′µ

+ εm2
A′AµA

′µ − Jµ
EMAµ, (12)

where F ′
µν = ∂µA

′
ν −∂νA

′
µ is the field-strength tensor for

the dark photon, and Jµ
EM is the Standard Model elec-

tromagnetic current. By comparing the last two terms
in Eq. (12), we can see that A′ has a similar effect to a
current. In particular, if we take ε ≪ 1 so that there
is negligible backreaction on A′ and consider the limit
where the DPDM is non-relativistic vDM ∼ 10−3 ≪ 1,
then the only effect A′ has on electromagnetism is to
modify the Ampère-Maxwell law by [46]6

∇×B − ∂tE = Jeff , (13)

where

Jeff = −εm2A′ (14)

4 Even lower dissipation rates can be achieved with lower pressures.
However, as we will see, decreasing the dissipation rate further
will not necessarily improve our sensitivity. In our “broadband”
setup, thermal noise is subdominant so that γ becomes irrele-
vant. In the “scanning” setup, smaller γ will improve the sensi-
tivity on resonance but decrease the linewidth of each individual
experiment [see Eq. (38)]. It will then require a longer total in-
tegration time in order to scan the same frequency range. A
dedicated analysis of the scanning strategy would be required to
determine how to take advantage of a lower dissipation rate in
the scanning setup.

5 The Lagrangian for the mixed photon–dark-photon system can
be written in multiple different bases (see Sec. II A and Ap-
pendix A of Ref. [46] for a detailed review). In this work, we
operate only in the so-called “interaction basis,” in which the
Lagrangian is given by Eq. (12). In this basis, only A inter-
acts with SM currents at leading order. However, A and A′ are
not propagation eigenstates, and so will mix as they propagate
through vacuum.

6 Throughout, we use unbolded symbols A′ to denote four-vectors
and bolded symbols A′ to denote three-vectors.

is the “effective current” induced by the DPDM.
Naively, Eq. (13) implies that the DPDM may gener-

ate either an electric or magnetic field. A well-controlled
magnetic levitation setup must however occur inside
some magnetic shielding (see Fig. 1). This magnetic
shield typically acts a perfect conductor, and so the tan-
gential electric field at its surface must vanish. The
DM-induced signal will have a wavelength matching the
Compton wavelength of the DM, λDM ≳ 107 m (for
fDM ≲ 100Hz). This wavelength sets the length scale on
which the electric field can vary, and will be much larger
than the characteristic size of the shielding. Therefore,
since the tangential electric field vanishes at the walls
of the shield, it will typically be small everywhere in-
side the shield. In other words, the dominate signal of
DPDM inside the shield will typically be a magnetic field
(see Refs. [27, 46] for similar discussion and examples).
Because the electric field can be neglected, this magnetic
field signal should satisfy7

∇×B ≈ Jeff . (15)

As an example, let us consider the case where the shield
is a cylinder of radius L (and arbitrary height). Suppose
that the DPDM is polarized along the axis of the cylinder,
which we will identify with the z-axis. That is, in the
non-relativistic limit, the spatial components of A′ are
given by

A′(x, t) = A′
0 cos(mA′t)ẑ, (16)

(and the temporal component of A′ is suppressed by
vDM). This corresponds to an effective current, given
by Eq. (14). If mA′L ≪ 1, then Eq. (15) applies, and
solving it yields the magnetic field signal [27, 46]8

BA′(x, t) = −1

2
εm2

A′A′
0r cos(mA′t)ϕ̂ (17)

∼ 5× 10−20 T
( ε

10−8

)( fA′

100Hz

)( r

1m

)
,

(18)

where r denotes the distance from the axis of the cylindri-
cal shield, and ϕ̂ denotes the azimuthal direction. Note
that BA′ vanishes at the center of the cylindrical shield

7 Note that the B predicted by Eq. (15) is the observable magnetic
field associated with A, not the dark magnetic field associated
with A′. While the latter is suppressed by vDM, B need not be.

8 The DPDM amplitude is normalized by 1
2
m2

A′ ⟨|A′|2⟩ = ρDM ≈
0.3GeV/cm3, where the average ⟨· · · ⟩ is taken over many coher-
ence times (the timescale over which the amplitude in Eq. (16)
varies; see discussion in Sec. IV). Generically, A′ can point in any
direction, but will have some nonzero projection onto the z-axis.
Therefore in this estimate and in the DPDM sensitivity in Fig. 3,

we take mA′A′
0 ∼

√
2ρDM

3
. The estimate in Eq. (25) and the ax-

ion sensitivity in Fig. 3, on the other hand, take maa0 ∼
√
2ρDM,

since the axion DM has no inherent direction.
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r = 0. Therefore, in order to be sensitive to the DPDM
signal, it will be important that the magnetic levitation
setup is positioned off-center within the magnetic shield.
The total field that the magnetically levitated par-

ticle experiences will be a combination of the static
quadrupole trap and the oscillating DPDM signal. In
other words, Eq. (1) will consist of the terms in Eq. (2),
along with an additional (time-dependent) contribution
from the DPDM signal given by Eq. (17). As the
quadrupole gradient bij is much larger than the gradi-
ent of Eq. (17), the second term in Eq. (1) will receive
negligible corrections. In particular, this implies that the
trapping frequencies will remain unchanged.

Instead, the dominant effect of the DPDM signal in
Eq. (17) will be to give a time-dependent contribution to
the first term in Eq. (1). Concretely, let us choose coor-
dinates similar to those used in Eq. (2), i.e. let x = 0
denote the point for which the time-averaged magnetic
field vanishes, ⟨B0(t)⟩ = 0. Moreover, we can take co-
ordinates where bij is diagonal. Let us suppose the trap
is oriented so that one of these coordinate directions is
the z-direction (the axial direction of the shield). Then
if the center of the trap x = 0 is displaced by a distance
r along the x-direction from the axis of the shield, the
total magnetic field in the vicinity of the trap center will
be

B(x, t) = Btrap(x, t)−
1

2
εm2

A′A′
0r cos(mA′t)ŷ, (19)

where Btrap is as in Eq. (2). Plugging this into Eq. (3),
we find that the SCP experiences a force

F (x, t) = Ftrap(x, t) +
3

4
εm2

A′A′
0 · V byyr · cos(mA′t)ŷ,

(20)
where Ftrap is the restoring force from Eq. (5). The sec-
ond term represents a driving force, which will drive os-
cillatory motion along the y-direction. If mA′ ≈ 2πfy,
this translational mode will be resonantly driven.

B. Axion dark matter

Levitated SCPs may also be sensitive to axion DM
which couples to photons. An axionlike particle a, with
mass ma and coupling gaγ to photons, is described by
the Lagrangian

La ⊃ 1

2
∂µa∂

µa− 1

4
FµνF

µν − 1

2
maa

2 +
1

4
gaγaFµν F̃

µν ,

(21)

where F̃µν = 1
2ϵ

µνρσFρσ. In the non-relativistic limit,
the axion DM is uniform in space and oscillates at its
Compton frequency (corresponding to its mass ma), i.e.
it takes the form

a(x, t) = a0 cos(mat). (22)

Much like in the case of DPDM, in the non-relativistic
limit, the only effect of the last term in Eq. (21) is to

add an effective current to the Ampère-Maxwell law, as
in Eq. (13). In the axion case, this current takes the
form [20, 73, 74]

Jeff = −gaγ(∂ta)B. (23)

One important difference from the DPDM case is that an
applied magnetic field is required in order for the axion
to convert into an electromagnetic signal [as can be seen
from the presence of B in Eq. (23)]. Conveniently, in our
case, the quadrupole trap itself can act as the necessary
applied magnetic field!
As in the DPDM case, this current should produce an

oscillating magnetic field inside the shield. However, in
the axion case, the magnetic field response is much more
difficult to compute. From Eq. (23), we see that in the
axion case, the direction of the effective current is set by
the static magnetic field. Therefore the effective current,
in this case, will inherit the complicated shape of the
trapping field (which depends on how exactly the trap is
implemented). Moreover, just as in the DPDM case, the
trap must be positioned off-center within the shield, oth-
erwise the magnetic field sourced by Jeff will vanish at
the center of the trap, by symmetry (see Appendix B).
The computation thus amounts to determining the re-
sponse of a cavity to a complicated asymmetric current
distribution.
In Appendix B, we compute the signal in the case

where the shield is rectilinear and the trap is created
by two coils in an anti-Helmholtz-like configuration. The
exact signal must be computed numerically, but we can
derive a parametric estimate analytically, in terms of the
dimensions of the shield L, the radius of the coils R, and
the distance between the coils 2h. We find that the axion-
induced magnetic field response at the center of the trap
should be

Ba(0, t) ∼ O(0.1) · gaγmaa0b0
(
R2 + h2

)5/2
L3

sin(mat)

(24)

∼ 3× 10−20 T

(
gaγ

10−10 GeV−1

)(
f0

100Hz

)
·
√

ρ

0.1 g/cm
3

(
h

10 cm

)5(
100 cm

L

)3

, (25)

where we have taken h ∼ R. The constant of propor-
tionality in Eq. (24) depends on the exact position of the
trap within the cavity (and as mentioned above, will be
zero if the trap is positioned in a sufficiently symmetric
location). As in the DPDM case, this magnetic field will
drive the oscillatory motion of the SCP.

IV. SENSITIVITY

In this section, we derive the sensitivity of levitated
SCPs to ultralight DM. To do so, we must first discuss the
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relevant noise sources. This section discusses three pri-
mary sources: thermal noise, measurement imprecision
noise, and measurement backaction noise. The latter two
of these depend on the readout scheme that is used. This
work considers a SQUID readout, although similar noise
sources exist for other readout schemes. Once we have
enumerated the noise sources, we discuss the trade-off
between imprecision and backaction noise, controlled by
the coupling strength of the readout scheme. We outline
two possible choices in this trade-off, one corresponding
to a broadband detection scheme and one corresponding
to a resonant detection scheme. Finally, we estimate the
sensitivity of both these schemes to DPDM and axion
DM.

A. Noise sources

The first relevant noise source in our system is ther-
mal noise. By the fluctuation-dissipation theorem, the
thermal force noise acting on the SCP is given by Sth

FF =
4mγT , where m is the mass of the SCP, and γ and T are
the dissipation rate and temperature of the system [75].
To compare with Eqs. (18) and (25), it will be useful to
translate this into a noise power spectral density (PSD)
for the magnetic field [via Eq. (3)]

Sth
BB =

16mγT

9V 2b2
=

8ργT

3mω2
0

(26)

∼ 7× 10−39 T2/Hz

(
1 g

m

)(
ρ

0.1 g/cm3

)
·
( γ

2π · 10−8 Hz

)( T

10mK

)(
100Hz

f0

)2

. (27)

The second noise source of interest is imprecision noise.
As mentioned above, the details of this noise source de-
pend on the readout scheme used. Here, we consider a
SQUID readout, in which case imprecision noise arises
from flux noise within the SQUID. The DM-induced
magnetic field exerts a force on the SCP, causing it to
move and distort the local magnetic field. This, in turn,
changes the flux measured by the SQUID. Conversely,
uncertainty in the measured flux of the SQUID results
in uncertainty in the DM-induced magnetic field. Let us
denote the internal flux noise of the SQUID by Sϕϕ(ω).
We can parameterize the coupling between the position
of the SCP and the measured flux of the SQUID by a
parameter η, which can be varied, e.g., by changing the
inductance of the pickup coil or its position relative to
the SCP [49]. The flux noise of the SQUID is then related
to noise in the position of the SCP via Simp

xx = Sϕϕ/η
2.

We can convert this position noise into a magnetic field
noise PSD (as a function of frequency ω) via

Simp
BB (ω) =

4Simp
FF

9V 2b2
=

4Simp
xx (ω)

9V 2b2|χ(ω)|2 (28)

=
2ρSϕϕ(ω)

3m2ω2
0η

2|χ(ω)|2 , (29)

where

χ(ω) =
1

m(ω2
0 − ω2 − iγω)

(30)

denotes the mechanical susceptibility. Note that while
the thermal noise in Eq. (26) is frequency-independent,
the imprecision noise in Eq. (29) does depend on fre-
quency. In particular, the imprecision noise becomes sig-
nificantly suppressed at the trapping frequency ω = ω0.
The final relevant source of noise is back-action noise.

This arises from current noise SJJ(ω) within the SQUID.
A current J circulating in the SQUID will generate lo-
cal magnetic fields which back-react on the SCP with a
force −ηJ [49]. The larger the coupling η is, the stronger
the back-reaction on the SCP will be. Therefore, when
choosing η, there exists a trade-off between imprecision
noise and back-action noise. The magnetic field noise
PSD associated with back-action noise is given by

Sback
BB (ω) =

2ρη2SJJ(ω)

3m2ω2
0

. (31)

As with thermal noise, back-action noise is frequency-
independent (up to any frequency dependence coming
from SJJ ; see next section).
We also note one additional noise source, namely vi-

brational noise. External vibrations of the system lead
to position noise Svib

xx , and as in the case of imprecision
noise, this will manifest as noise in the force and mag-
netic field. Vibrational noise is, however, not inherent
to the readout scheme, and can be mitigated by various
means. As in Ref. [49], the experimental apparatus can
be hung from a vibration isolation system to reduce vi-
brational noise. Further, instead of utilizing just a single
levitation apparatus, a second copy can be set up at the
center of the same shield. Then both copies will expe-
rience the same external vibrations, while only the first
will be sensitive to the DM signal. The relative displace-
ment of the two sensors can then be used to isolate the
DM signal from external vibrations. We leave a more
detailed study of vibrational noise to future work.

B. Choice of the coupling η

Before we can estimate the size of the imprecision and
back-action noise sources, we must decide on an appro-
priate choice for the coupling η. First, let us observe
that Sϕϕ and SJJ are described by an uncertainty rela-

tion
√

SϕϕSJJ = κ, where κ ≥ 1 is referred to as the
SQUID’s energy resolution [76]. The limiting case κ = 1
corresponds to the SQL. State-of-the-art SQUIDs can
achieve κ ≈ 5 [77–79]. We note that SQUIDs typically
display 1/f noise at frequencies ≲ 10 kHz, which would
make Sϕϕ, SJJ , and κ frequency-dependent. This 1/f
noise can be avoided by up-converting the signal, using
for instance a superconducting capacitor bridge trans-
ducer [80, 81] or a superconducting inductance bridge
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transducer [82]. In our subsequent estimates, we will
assume that this upconversion can be achieved, so that
we can treat κ, Sϕϕ and SJJ as frequency-independent.
In this case, the combination of all noise sources can be
written as

Stot
BB = Sth

BB + Simp
BB + Sback

BB

=
2ρ
(
4mγT + κη̃−2|χ(ω)|−2 + κη̃2

)
3m2ω2

0

, (32)

where η̃ = η 4

√
SJJ

Sϕϕ
.

We can vary the relative sizes of these contributions by
changing the coupling η. As mentioned above, there is,
however, a trade-off between imprecision noise and back-
action noise, when we do so. Since both back-action and
thermal noise are frequency-independent, there is no ben-
efit in decreasing η beyond the point where thermal noise
dominates over back-action noise. Thus, (if possible) we
should always take

η̃ ≥
√

4mγT

κ
. (33)

On the other hand, at low frequencies ω ≪ ω0, we have
χ ≈ 1/(mω2

0), and so imprecision noise (for a fixed test
mass m) is frequency-independent as well. Therefore,
increasing η beyond the point where back-action noise
dominates over imprecision noise is not beneficial at fre-
quencies lower than the trapping frequency.9 In other
words, we also want

η̃ ≤ 1√
|χ(0)|

=
√
mω0. (34)

We expect that it should generally be possible to saturate
this upper bound by appropriate design of the readout;
e.g., see the supplemental material of Ref. [49]. Mean-
while, the coupling can always be decreased by worsening
the readout efficiency. Therefore, we expect that η̃ can be
varied across the entire range from Eq. (33) to Eq. (34).

In our sensitivity calculations below, we consider two
choices of η, corresponding to the limiting cases in
Eq. (33) and (34). We refer to these as the “reso-
nant” and “broadband” choices, respectively, as the for-
mer maximizes sensitivity at ω = ω0,

10 while the latter

9 Increasing η further can still be beneficial at high frequencies ω ≫
ω0, but the sensitivity in this regime degrades rapidly (see Fig. 2),
so we do not consider increasing η further to be a productive way
of improving sensitivity. Instead, if one wants to probe higher
frequencies, it is better to increase ω0.

10 The resonant sensing scheme takes advantage of the low impre-
cision noise around the resonance frequency ω0 within a narrow
frequency range of ∼ max(γ, 1/tint) [the latter describes Fourier
broadening]. This requires that resonance frequency drifts within
the integration time are small compared with max(γ, 1/tint). For
instance, in Ref. [49], the current in the trap coils was unsta-
ble, causing ω0 to drift and preventing the on-resonance sensing
enhancement to be fully demonstrated. Such drifts can be mit-
igated by using persistent superconducting currents [47] in the
trap coils.

3 10 30
f [Hz]

10−39

10−38

10−37

10−36

10−35

10−34

10−33

10−32

S
B
B

[T
2
/H

z]

Total (res.)

Total (broad.)

Thermal

Back-action (res.)

Back-action (broad.)

Imprecision (res.)

Imprecision (broad.)

FIG. 2. Noise curves for resonant (solid) and broadband
(dashed) choices of η. The black curves show the total noise,
while the colored curves show the thermal (red), back-action
(orange), and imprecision (blue) noise contributions. To com-
pute these curves, we use the same parameter values as in
Eq. (27), except with f0 = 10Hz and κ = 5. Note that in the
case of the resonant choice, the back-action noise coincides
with the thermal noise. Moreover, thermal noise is indepen-
dent of the choice of η. Therefore, the red curve represents
the thermal noise in both cases, as well as the back-action
noise in the resonant case.

maximizes sensitivity at ω ≪ ω0. Fig. 2 shows sample
noise curves for these two different choices, along with
the individual noise contributions in each case.

C. Projections

With these choices for η, we can project sensitivity
curves for DPDM and axion DM using our proposed se-
tups. The simpler case is to utilize the broadband choice.
In this case, good sensitivity to a wide range of masses
can be achieved by running a single experiment with a
fixed resonant frequency ω0. From Eq. (32) with the
choice of η as in Eq. (34), we can see that, in the regime
where imprecision and backaction noise dominate over
thermal noise (see Fig. 2), the total noise at low frequen-
cies ω ≪ ω0 is independent of ω0. Therefore, our choice
of the resonant frequency will not affect our sensitivity at
low frequencies (in the DPDM case),11 and so it is best to
choose ω0 as large as possible to minimize the frequency
range that suffers the high-frequency suppression. Our
projections in Fig. 3 take f0 = 100Hz.
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For short integration times tint, the signal-to-noise ra-
tio (SNR) for such an experiment can be determined as

SNR =
B2

DM

2Stot
BB/tint

, (35)

where BDM is the magnetic field signal in Eqs. (17) and
(24) for the DPDM case and the axion case, respectively.
However, Eqs. (16) and (22) [and so also Eqs. (17) and
(24)] are only valid on timescales tint shorter than the
coherence time tcoh ∼ 2π/(mDMv2DM) ∼ 106/fDM of the
DM. On timescales longer than this, the amplitudes A′

0

and a0 in Eqs. (17) and (24) vary stochastically (see
footnote 8 for a discussion of their normalization). For
tint > tcoh, we can then treat each coherence time as an
independent experiment. To get the SNR for the full tint,
we sum the SNRs from each individual coherence time in
quadrature [83]

SNR =
B2

DM

2Stot
BB/tcoh

·
√

tint
tcoh

. (36)

The blue and orange curves labeled “broadband” in Fig. 3
show the projected sensitivities to DPDM and axion DM,
respectively. These are computed by setting SNR = 3 in
Eq. (36), utilizing the broadband choice for η in Stot

BB ,
fixing a trapping frequency f0 = 100Hz, and taking an
integration time of tint = 1yr.
The blue curves in Fig. 3 show the sensitivities which

can be achieved with parameters representative of an ex-
isting levitation setup, such as in Ref. [49], if they can
improve their coupling strength close to the bound in
Eq. (34). In principle, the only other modification re-
quired for such a setup to be sensitive to ultralight DM
is to shift the trap off-center within the shield. The or-
ange curves show the sensitivities that can be achieved
with an improved setup. Most notably, this setup con-
siders a SCP that is much larger and hollow, along with
a reduced dissipation rate and larger apparatus dimen-
sions. The parameter values used for these setups are
shown in Table I. In the DPDM case, we consider only
the sensitivity to the z-component of A′, for simplicity,
but we note that marginally better sensitivity could be
achieved by considering all three components. In the ax-
ion case, we take the trap to be located at a position
r0 = (0.7L, 0.8L, 0.5L) within the shield.
In the resonant case, we achieve excellent sensitivity

near ω0, but worse sensitivity away from it. We will,
therefore, need to perform several experiments of shorter
durations, each with a different ω0. The trapping fre-
quency can be scanned e.g., by varying the current run-
ning through the coils, which will change b0. Each such

11 In the axion case, the signal also scales with ω0 [see Eq. (24)].
Therefore in the axion case, larger ω0 will actually improve our
sensitivity at low frequencies. We do note, however, that as per
Eq. (10), increasing ω0 also increases the maximum magnetic
field on the surface of the SCP, Bmax. This means that larger
ω0 more strongly constrains the size of the SCP.

Parameter Existing Improved
SCP mass m 10µg 1 g

SCP density ρ 10 g/cm3 0.1 g/cm3

Dissipation rate γ 2π · 10−5 Hz 2π · 10−8 Hz
Temperature T 10mK

SQUID energy resolution κ 5
Distance from axis r 10 cm 1m
Shield dimension L 10 cm 1m

Coil radius R 1 cm 10 cm
Coil separation h 1 cm 10 cm

TABLE I. Parameters used to compute the sensitivity curves
in Fig. 3. One column shows parameter values representative
of an existing setup, as in Ref. [49], while the other shows
parameter values for an improved setup. The first set of pa-
rameters is common to both the DPDM and axion DM sce-
narios. The parameter r is relevant in the DPDM scenario [as
in Eq. (17)], while the parameters L, R, and h are relevant in
the axion DM scenario [as in Eq. (24)].

experiment will only effectively probe some small range
δω of frequency space. We can estimate this width by
determining when Stot

BB doubles in size, that is

Stot
BB

(
ω0 +

δω

2

)
= 2Stot

BB(ω0) (37)

(using the resonant choice Eq. (33) for η). Assuming
thermal noise and backaction noise dominate over im-
precision noise at ω = ω0 (see Fig. 2), this implies

δω =
4
√
2γT

κω0
(38)

∼ 2π · 0.2Hz
( γ

2π · 10−8 Hz

)
·
(

T

10mK

)(
5

κ

)(
10Hz

f0

)
. (39)

We will, therefore, need to run experiments at several
trapping frequencies ωi, separated from each other by
roughly δωi = δω(ω0 = ωi) [so the ωi values will be
closer together at higher frequencies]. As our sensitivity
improves more slowly for tint > tcoh [see Eq. (36)], we
will fix the integration time of each experiment to be
tint,i = tcoh(mDM = ωi).

12 If we wish to scan over a
total frequency range of ∆ω, the total integration time
will then be∑

i

tint,i =
∑
i

κπ

2
√
2γTv2DM

δωi

=
κπ

2
√
2γTv2DM

∆ω (41)

∼ 1 yr
(κ
5

)(2π · 10−8 Hz

γ

)
·
(
10mK

T

)(
∆f

74Hz

)
. (42)
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The solid red curves in Fig. 3 show the projected sen-
sitivities for this scanning scheme (and the “improved”
parameters mentioned above). We scan from f0 = 3Hz
up to 77Hz, so that the total integration time is 1 yr.
The SNR for the experiment with trapping frequency ωi

is calculated using Eq. (36), with tint = tcoh(ωi) and the
resonant choice for η in Stot

BB . The SNRs of the individual
experiments are then combined in quadrature,13 i.e.

SNR2 =
∑
i

SNR2
i , (43)

where the index i runs over the individual experiments.
The sensitivity in Fig. 3 takes a total SNR = 3. For
3Hz < fDM < 77Hz, the sensitivity is dominated by
the peak sensitivity of the experiment with trapping
frequency f0 = fDM. Outside this frequency range,
the low/high-frequency tails of several experiments con-
tribute to the combined sensitivity. The dashed red
curves also show the sensitivities of a single experiment
with f0 = 10Hz.
In Fig. 3, we also show existing constraints in vari-

ous shades of grey.14 The DPDM constraints include
limits from: unshielded magnetometer measurements by
the SNIPE Hunt collaboration [45]; magnetometer mea-
surements taken inside a shielded room by the AMAILS
collaboration [44]; non-observation of CMB-photon con-
version into (non-DM) dark photons by the FIRAS in-
strument [87]; heating of the dwarf galaxy Leo T [91];

12 Note that there is also a lower bound on tint,i. This is because an
applied AC force takes time to ring up the position oscillations

of the SCP fully. In other words, the imprecision noise Simp
BB in

Eq. (29) only receives the |χ(0)/χ(ω0)|−2 = (γ/ω0)2 suppres-
sion on resonance for times tint > 2π

γ
. Since the system rings

up linearly at short times, this suppression should instead be
(2π/ω0tint)

2 for shorter times. In order for imprecision noise to
be subdominant to thermal and back-action noise on resonance,
we must have

tint,i >
πκω0

2
√
2γT

∼ 40 s
(κ

5

)(
f0

100Hz

)
·
(
2π · 10−8 Hz

γ

)(
10mK

T

)
. (40)

By comparison, tcoh ∼ 104 s formDM = 2π·100Hz, so this bound
is satisfied for the entire projected sensitivity curve appearing in
Fig. 3. Moreover, the sensitivity width in Eq. (38) is unaffected
because δω ≫ 2π/tcoh, so the broadening of the signal due to
finite integration time is negligible.

13 Adding the SNRs in quadrature is necessary when the DM signal
is not coherent from one experiment to the next. Because the
experiment with trapping frequency fi integrates for tcoh(ωi),
the SNRs must be summed in quadrature for mDM ≥ ωi. In
principle, the SNRs can be summed linearly for mDM < ωi, but
we expect the gain to be marginal as the sensitivity for masses
mDM ≥ 2π · 3Hz is dominated by the single experiment with
trapping frequency near mDM. For simplicity, we therefore sum
in quadrature for all masses.

14 Several of these limits were acquired from Refs. [84, 85]. See also
Refs. [86–89] for other limits in this mass range which are not
shown here, and Ref. [90] for a brief discussion of the caveats
regarding those limits.

and resonant conversion of DPDM during the dark
ages [92]. The axion constraints include limits from:
SNIPE Hunt; the CAST helioscope search for solar ax-
ions [30]; non-observation of gamma rays in coincidence
with SN1987A [93]; and X-ray observations of the quasar
H1821+643 from the Chandra telescope [94]. Labora-
tory constraints (SNIPE Hunt, AMAILS, and CAST)
are shown in darker shades of grey, while astrophysi-
cal/cosmological constraints are shown in lighter shades.

V. DISCUSSION

In this work, we explored the prospect of utilizing mag-
netically levitated superconductors to search for ultra-
light DM at frequencies below kHz. If ultralight DM
couples to electromagnetism, it can source an oscillating
magnetic field inside an experimental apparatus. Various
experimental methods exist to probe such magnetic field
signals at high frequencies, but few existing or proposed
experiments are sensitive to DM with masses correspond-
ing to frequencies fDM ≲ kHz. We showed that levitated
superconductors can function as excellent magnetome-
ters, which are sensitive to signals in the Hz to kHz fre-
quency range. This makes them well suited to detect
ultralight DM in the 4 × 10−15 ≲ mDM ≲ 4 × 10−12 eV
mass range.
A superconductor immersed in a magnetic field con-

figuration will tend to settle at the point of lowest mag-
netic field. This fact can trap a SCP at the center of a
quadrupole magnetic field. Ultralight DM can source a
nonzero oscillating magnetic field signal near the trap if
such a trap is located off-center within a magnetic shield.
This DM-sourced field can perturb the equilibrium posi-
tion of the SCP, leading to oscillatory motion. If the
frequency of this magnetic field signal matches the trap-
ping frequency (typically in the Hz to kHz range), then
the motion can be resonantly enhanced. This makes lev-
itated superconductors unique among axion and dark-
photon experiments in that they can resonantly search
for these DM candidates for masses mDM ≲ 10−12 eV.
We discussed three primary noise sources for a levi-

tated SCP experiment: thermal noise, imprecision noise,
and back-action noise. The first is fixed by the exper-
iment’s dissipation rate and temperature, while the pa-
rameters of the readout system fix the latter two. In par-
ticular, a trade-off exists between imprecision and back-
action noise, which allows for two different operation
schemes of a levitated SCP experiment. In the “broad-
band” scheme (the blue and orange curves in Fig. 3),
sensitivity to a wide range of frequencies is maximized
by equating back-action noise with below-resonance im-
precision noise. In this case, a single experiment run for
a long duration can achieve excellent sensitivity at many
DM masses. In the “resonant” scheme (the red curves in
Fig. 3), sensitivity on-resonance is maximized by equat-
ing thermal and back-action noise. In this case, several
shorter-duration experiments are required to scan a large
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FIG. 3. Sensitivity of levitated superconductors to DPDM (left) and axion DM (right). The blue curves show the sensitivity
achievable with parameters representative of an existing setup (with increased readout efficiency), as in Ref. [49]. In contrast,
the orange and red curves show the sensitivity of a new setup with improved parameters, including a larger hollow SCP. The
parameter values for both setups are shown in Table I. The blue and orange curves consider a single experiment conducted
for tint = 1yr, using a trapping frequency of f0 = 100Hz and the “broadband” choice of coupling η (see main text). The
dashed red curves represent a single experiment conducted for tint = tcoh ∼ 30 hr, using a trapping frequency of f0 = 10Hz
and the “resonant” choice of η. The solid red curves show the aggregate sensitivity of scanning this resonant setup over many
trapping frequencies from f0 = 3Hz to 77Hz (so that the total integration time is 1 yr). We also show existing constraints in
various shades of grey (see main text for descriptions). Laboratory constraints (SNIPE Hunt, AMAILS, and CAST) are shown
in darker shades of grey, while astrophysical/cosmological constraints are shown in lighter shades. These sensitivity curves
demonstrate that existing levitation setups with improved readout efficiencies are comparable to other laboratory probes of
DPDM. In addition, a focused, dedicated setup can achieve the leading sensitivity amongst such probes of both DPDM and
axion DM.

range of DM masses.

Fig. 3 shows that, with a strongly coupled readout,
existing levitation experiments (blue curves) can already
achieve sensitivity to DPDM comparable to other labora-
tory experiments in this mass range. A dedicated setup
(orange and red curves) using larger hollow spheres, a
lower dissipation rate, and a larger apparatus can achieve
even better sensitivity. In particular, in the DPDM case,
it can exceed the existing laboratory constraints and ap-
proach the best astrophysical heating constraints, while
in the axion DM case, it can be the best laboratory probe
and approach constraints from SN1987A. Since these as-
trophysical constraints can depend quite sensitively on
the modeling of complex systems, it is valuable to have
complementary laboratory probes. Both the broadband
(orange) and scanning (red) schemes enable good sensi-
tivities for this improved setup.

While our projections already show that levitated su-
perconductors can be promising ultralight DM detectors,
this technique could potentially be improved in several
ways. Firstly, the thermal noise floor can be decreased
by further lowering the temperature of the system. Doing

so will likely not affect the sensitivity of our broadband
scheme, as thermal noise is typically subdominant, but
it can improve the sensitivity of the resonant scheme.
We also note that utilizing an array of sensors and/or
a squeezed readout can further improve the sensitivity
and scan rate of the experiment, which demands further
investigation [95–97].

Secondly, different geometries of the levitation appara-
tus can be considered. Our projections in Fig. 3 assume a
spherical SCP levitated between circular anti-Helmholtz-
like coils, which would result in bxx = byy = − 1

2bzz. By
utilizing elliptic coils, the degeneracy between bxx and
byy can be broken, potentially allowing for frequency hi-
erarchies bxx ≪ bzz. This would enable the apparatus
to probe lower frequencies while maintaining a small dis-
placement of the equilibrium position due to gravity [see
Eq. (8)]. A coaxial levitation geometry could also enable
a hierarchy between the radial and axial frequencies [48].
Additionally, the SCP shape can be varied to decrease the
effective density even further below the densities used in
the improved setup of Fig. 3. For instance, a SCP in
the shape of a ring can have a much smaller mass than a
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sphere of the same effective volume [98, 99].
Finally, a larger signal can be created in the axion case

by utilizing a larger static magnetic field for axion-photon
conversion. In this work, we have assumed that the mag-
netic field allowing the axion DM to convert is the same
magnetic field that traps the SCP. However, an addi-
tional magnetic field can be applied, which enhances the
axion-photon conversion rate without affecting the trap-
ping physics. The calculation in Appendix B shows that
the axion signal in the vicinity of the trap is affected by
static magnetic fields sourced from anywhere within the
shield (not just the magnetic field sourced by the trap).
It is, therefore, plausible that a large static magnetic field
can be sourced at the opposite end of the shield so that
it does not significantly affect the operation of the lev-
itated SCP apparatus, but it has a large effect on the
axion magnetic field signal. We leave a detailed study of
this idea to future work.
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Appendix A: Superconducting sphere in a magnetic field

Here, we compute the response of a superconducting sphere of radius R to an applied magnetic field of the form in
Eq. (1). Our calculation will be similar to that of Refs. [49, 64], but one crucial difference is that we will not assume
that ∇ ×Bapp = 0, as this is not the case for the DPDM signal in Eq. (17). Nevertheless, we find the same result,
given by Eq. (3).

As described in Sec. IIA, the applied magnetic field causes surface currents to run on the SCP to screen the magnetic
field out of its interior. These currents then experience a Lorentz force from the (total) magnetic field, leading to a
net force on the SCP. Therefore, to calculate this force, we solve for the total magnetic field, find the corresponding
surface currents, and evaluate the Lorentz force they experience.

Since the sphere is superconducting, the magnetic field inside it should vanish.15 Let us write the total field outside
the sphere as B = Bapp + Bresp, where Bapp is given by Eq. (1). As we are interested in the instantaneous force
exerted on the SCP, we may treat the magnetic field as static and the SCP as fixed. In this case, we may choose the
origin x = 0 to be the center of the sphere. Note that this may not be the center of the trap, so that Bapp(x = 0) = B0

may not vanish. Let us begin by writing Bapp in terms of vector spherical harmonics (VSH). These are defined in
terms of the scalar spherical harmonics Yℓm by

Yℓm = Yℓmr̂, Ψℓm = r∇Yℓm, Φℓm = r ×∇Yℓm, (A-1)

(see Appendix D of Ref. [46] for more details). In terms of these VSH, we can write Eq. (1) as

Bapp(x) = −
√

2π

3
(B0,x − iB0,y) (Y11 +Ψ11) +

√
4π

3
B0,z (Y10 +Ψ10) +

√
2π

3
(B0,x + iB0,y) (Y1,−1 +Ψ1,−1)

+

√
π

30
(bxx − ibxy − ibyx − byy)r (2Y22 +Ψ22)

−
√

π

30
(bxz − ibyz + bzx − ibzy)r (2Y21 +Ψ21)−

√
π

6
(ibxz + byz − ibzx − bzy)rΦ11

+

√
π

5
bzzr (2Y20 +Ψ20) +

√
π

3
(bxy − byx)rΦ10

+

√
π

30
(bxz + ibyz + bzx + ibzy)r (2Y2,−1 +Ψ2,−1)−

√
π

6
(ibxz − byz − ibzx + bzy)rΦ1,−1

+

√
π

30
(bxx + ibxy + ibyx − byy)r (2Y2,−2 +Ψ2,−2) , (A-2)

where Yℓm, Φℓm, and Ψℓm are the three different types of VSH.

In the static limit, we have ∇×Bresp = 0 and ∇ ·Bresp = 0. This implies that Bresp must take the form

Bresp =

∞∑
n=0

aℓmr−ℓ−2 (−(ℓ+ 1)Yℓm +Ψℓm) . (A-3)

The radial component of the magnetic field must be continuous across the boundary of the sphere. Since the magnetic
field vanishes inside the sphere, this implies that outside the sphere, we must also have Br = 0. In terms of VSH, this
implies that the coefficient of the Yℓm modes in the total magnetic field must vanish. This determines the coefficients

15 Here, we assume the SCP is a type-I superconductor (or a zero-field cooled type-II superconductor) so that all magnetic field lines
have been expelled. We note that physical superconductors exhibit a finite depth through which a magnetic field can penetrate into
the superconductor. This is the London penetration depth, typically O(10) nm. So long as this depth is much smaller than R, any
penetration into the superconductor can be neglected.
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aℓm. It is straightforward to show then that the total field at the surface of the sphere is

B(r = R) = −
√

3π

2
(B0,x − iB0,y)Ψ11 +

√
3πB0,zΨ10 +

√
3π

2
(B0,x + iB0,y)Ψ1,−1

+

√
5π

54
(bxx − ibxy − ibyx − byy)RΨ22

−
√

5π

54
(bxz − ibyz + bzx − ibzy)RΨ21 −

√
π

6
(ibxz + byz − ibzx − bzy)RΦ11

+

√
5π

9
bzzRΨ20 +

√
π

3
(bxy − byx)RΦ10

+

√
5π

54
(bxz + ibyz + bzx + ibzy)RΨ2,−1 −

√
π

6
(ibxz − byz − ibzx + bzy)RΦ1,−1

+

√
5π

54
(bxx + ibxy + ibyx − byy)RΨ2,−2. (A-4)

The nonzero tangential magnetic field at the surface of the sphere implies some surface current K = r̂×B flowing
around the sphere. The magnetic field then exerts a force on this current16

dF =
1

2
(K ×B)dA = −1

2
B2dAr̂. (A-5)

Integrating this over the surface of the sphere gives

Fx = −R2

2

∫
dΩB2 sin θ cosϕ = −πR3 ((bxx − byy − bzz)B0,x + 2byxB0,y + 2bzxB0,z)

= −3V

2
(bxxB0,x + byxB0,y + bzxB0,z) (A-6)

Fy = −R2

2

∫
dΩB2 sin θ sinϕ = −πR3 ((byy − bxx − bzz)B0,y + 2bxyB0,x + 2bzyB0,z)

= −3V

2
(bxyB0,x + byyB0,y + bzyB0,z) (A-7)

Fz = −R2

2

∫
dΩB2 cos θ = −3V

2
(bzzB0,z + bxzB0,x + byzB0,y) . (A-8)

Note that in Eqs. (A-6) and (A-7), we have used the fact that bxx + byy + bzz = 0 [see discussion below Eq. (1)]. This
total force exerted on the sphere can be expressed compactly as

Fi = −3

2
V bjiB0,j (A-9)

(with the Einstein summation convention implicit). This is equivalent to Eq. (3) when x is taken to be the center of
the SCP.

Appendix B: Axion DM signal

In this appendix, we derive the magnetic field signal induced by axion DM in a magnetic levitation setup. Unlike
the DPDM case, axion DM requires a static magnetic field in order to convert into an observable signal. In a magnetic
levitation setup, the trap can provide this. This is a unique feature that we exploit in this study. Generally, this field
has a complicated global configuration, and so the computation is more difficult than the DPDM case. Here, we show
how to write the result in terms of boundary integrals, which can be performed numerically. We then determine how

16 The factor of two in Eq. (A-5) originates from the discontinuity of the magnetic field at the surface of the sphere, i.e., the field just
outside the sphere is B, while the field just inside the sphere vanishes. Heuristically, it is the average of these fields exerts a force
on K, resulting in the factor of two in Eq. (A-5). More precisely, this factor of two can be derived by giving the magnetic field a
continuous profile, which increases from 0 inside the sphere to B outside the sphere over some finite thickness (see Sec. 1.14 of Ref. [100]
for a similar derivation force exerted by an electric field on a conductor). Eq. (A-5) can also be derived using dFi = σijdAj , where

σij = EiEj +BiBj − 1
2
(E2 +B2)δij is the Maxwell stress tensor [101].
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this result scales with the parameters of the system and evaluate it for the sample set of parameters used to compute
the sensitivity in Fig. 3.

For the purposes of our calculation, we will assume the trap consists of two current loops of radius R (oriented in
the horizontal plane) with currents I flowing in opposite directions17 and separated vertically by a distance 2h (see
Fig. B-2). By the Biot-Savart law, the magnetic field sourced by a single current loop is given by

Bloop(r) =
I

4π

∫
dl× (r − l)

|r − l|3 (B-1)

=
I

4π

∫
dθ

Rz cos θx̂+Rz sin θŷ + (R2 −Rx cos θ −Ry sin θ)ẑ

(r2 +R2 − 2Rx cos θ − 2Ry sin θ)
3
2

, (B-2)

where l = (R cos θ,R sin θ, 0) parameterizes the loop and r = (x, y, z) is the distance to the center of the loop (see
Fig. B-1). Therefore if the trap is centered at r0 = (x0, y0, z0), then the full magnetic field sourced by the trap is
given by

B0(r) = Bloop(r − r0 − hẑ)−Bloop(r − r0 + hẑ). (B-3)

As in Eq. (23), the effect of axion DM in the presence of this static magnetic field can be parameterized by an
effective current18

Jeff = igaγmaa0B0e
−imat. (B-4)

Then the axion DM signal can be derived by solving the Ampère-Maxwell law Eq. (13) with this current inside our
magnetic shield. In this calculation, we will take the shield to be rectilinear, with dimensions Lx, Ly, Lz (although
a similar approach can be used for any geometry). As shown in Appendix A of Ref. [27], this can be solved using a
cavity mode decomposition of the shield geometry. Let En be the electric field cavity modes of the shield (with Bn

their associated magnetic field modes and ωn their frequencies). Then the magnetic field response is given by19

B(r) =
∑
n

cn
ωn

ma
Bn(r)e

−imat, (B-5)

where

cn =
ima

ω2
n −m2

a

∫
dV En(r)

∗ · Jeff(t = 0)∫
dV |En(r)|2

(B-6)

= −gaγm
2
aa0

ω2
n −m2

a

∫
dV En(r)

∗ ·B0(r)∫
dV |En(r)|2

. (B-7)

In the case of a rectilinear cavity, the two types of electric field cavity modes are TE modes (for m,n ≥ 0, p ≥ 1 with
m+ n ̸= 0) and TM modes (for m,n ≥ 1, p ≥ 0)

ETE,mnp =

√√√√ 23−δm0−δn0(
m2

L2
x
+ n2

L2
y

)
LxLyLz


n
Ly

cos
(

mπx
Lx

)
sin
(

nπy
Ly

)
sin
(

pπz
Lz

)
− m

Lx
sin
(

mπx
Lx

)
cos
(

nπy
Ly

)
sin
(

pπz
Lz

)
0

 (B-8)

ETM,mnp =

√√√√√ 23−δp0(
m2p2

L2
xL

2
z
+ n2p2

L2
yL

2
z
+
(

m2

L2
x
+ n2

L2
y

)2)
LxLyLz


mp

LxLz
cos
(

mπx
Lx

)
sin
(

nπy
Ly

)
sin
(

pπz
Lz

)
np

LyLz
sin
(

mπx
Lx

)
cos
(

nπy
Ly

)
sin
(

pπz
Lz

)
−
(

m2

L2
x
+ n2

L2
y

)
sin
(

mπx
Lx

)
sin
(

nπy
Ly

)
cos
(

pπz
Lz

)
 , (B-9)

17 The current loops usually consist of N windings, so that the total current which sources the quadrupole trap is NI. For simplicity, in
this section, we write I in places of NI.

18 In this appendix, we promote the axion a(x, t) to a complex function, for calculational purposes. The physical axion (and all resulting
physical electromagnetic fields) are understood to be the real parts of the expressions given.

19 For a resonant cavity, the first denominator in Eq. (B-6) would contain a damping term of the form iγcavma (with γcav ≪ ωn), coming
from power lost to the cavity walls. As we will be primarily concerned with the case ma ≪ ωn, this term can be safely neglected.
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I

R

r

l

r − l

FIG. B-1. Biot-Savart law for a single current loop of radius R and current I. The vector l (red) parametrizes the current
loop. To calculate the magnetic field at a point r, we integrate Eq. (B-1) overall l. The relevant quantity in Eq. (B-1) is the
distance to the loop r − l (blue). In purple, we show the resulting magnetic field Bloop from a single current loop. Note that
the magnetic field is symmetric across both the yz- and xz-planes.

where (0, 0, 0) denotes the bottom corner of the cavity. (These are both normalized so that
∫
dV |En|2 = 1.) These

have corresponding magnetic fields

BTE,mnp = − πi

ωmnp

√√√√ 23−δm0−δn0(
m2

L2
x
+ n2

L2
y

)
LxLyLz


mp

LxLz
sin
(

mπx
Lx

)
cos
(

nπy
Ly

)
cos
(

pπz
Lz

)
np

LyLz
cos
(

mπx
Lx

)
sin
(

nπy
Ly

)
cos
(

pπz
Lz

)
−
(

m2

L2
x
+ n2

L2
y

)
cos
(

mπx
Lx

)
cos
(

nπy
Ly

)
sin
(

pπz
Lz

)
 , (B-10)

BTM,mnp =
iωmnp

π

√√√√√ 23−δp0(
m2p2

L2
xL

2
z
+ n2p2

L2
yL

2
z
+
(

m2

L2
x
+ n2

L2
y

)2)
LxLyLz


n
Ly

sin
(

mπx
Lx

)
cos
(

nπy
Ly

)
cos
(

pπz
Lz

)
− m

Lx
cos
(

mπx
Lx

)
sin
(

nπy
Ly

)
cos
(

pπz
Lz

)
0

 (B-11)

and frequencies ωmnp = π
√

m2

L2
x
+ n2

L2
y
+ p2

L2
z
.



20

From Eq. (B-7), we can see that the relevant quantities that we need to calculate are the overlap integrals between
B0 and the electric field cavity modes En. Before moving to calculate these overlap integrals, let us first note some
of the symmetries of B0, which can lead to the overlap integrals vanishing for certain positions of the trap within the
rectilinear shield. First, if we take x → −x and θ → π − θ in Eq. (B-2), we see that the x-component flips sign, but
the y- and z-components do not. This means that B0 is symmetric across the yz-plane passing through r0. Note also
that, for even m, the y- and z-components of the modes in Eqs. (B-8) and (B-9) flip sign under x → Lx−x, while the
x-component does not. Therefore, if the trap is located along the central yz-plane of the shield (i.e., x0 = Lx/2), then
the overlap integrals vanish for even m. Moreover, from Eqs. (B-10) and (B-11), we see that the y- and z-components
of BTE/TM,mnp(x = Lx/2) vanish for odd m. Therefore if x0 = Lx/2, then the axion DM signal at the center of the
trap B(r0) must point in the x-direction. A similar argument shows that if y0 = Ly/2, then B(r0) must point in the
y-direction. Finally, we see that taking z → −z in Eq. (B-2) flips the signs of the x- and y-components, but not the
z-component, and therefore taking z → 2z0 − z in Eq. (B-3) flips only the z-component. In other words, B0 is also
symmetric across the xy-plane passing through r0, and so the above argument also implies that if z0 = Lz/2, then
B(r0) points in the z-direction. All this means that in order to get a nonzero magnetic field signal at the center of
the trap, our trap must be placed off-center within the shield in at least two directions.

Now, let us evaluate the overlap integral. To do so, we will decompose the volume inside the shield into three
regions: two regions V1 and V2 which surround each current loop, and a third region V3 consisting of the rest of the
volume (see Fig. B-2). Because ∇×B0 = 0 and V3 is a simply connected region throughout which B0 is well-defined,
then we can define a magnetic scalar potential Ψ0 within V3, so that B0 = ∇Ψ0. This means the overlap integral
over V3 simplifies into multiple boundary integrals∫

V3

dV E∗
n ·B0 =

∫
V3

dV E∗
n · ∇Ψ0 =

∫
V3

dV ∇ · (E∗
nΨ0) (B-12)

=

∫
∂V

dA ·E∗
nΨ0 −

∫
∂V1

dA ·E∗
nΨ0 −

∫
∂V2

dA ·E∗
nΨ0. (B-13)

In the second equality here, we used ∇ ·En = 0. In the final expression, the boundary ∂V refers to the boundary of
the shield, while the boundaries ∂V1 and ∂V2 refer to the boundaries of the regions V1 and V2.

Let S1 and S2 denote the surfaces bounded by the upper and lower current loops, respectively. It is a well-known
result that the magnetic scalar potential Ψi(r) from each loop individually is related to the solid angle subtended by
Si, as viewed from the point r [102]. (This scalar potential is well-defined everywhere except on Si itself.) Therefore,
the combined potential of both loops can be written simply as

Ψ0(r) = Ψ1(r) +Ψ2(r) = −I(Ω1(r)− Ω2(r))

4π
, (B-14)

where Ωi is the solid angle subtended by Si, as viewed from r (see Fig. B-3). We define Ωi as positive if r lies above
Si, and negative otherwise. Far from the trap |r − r0| ≫ R, h, this gives the potential of a decaying quadrupole

Ψ0(r) = − I

4π

(
πR2(z − z0 − h)

|r − r0 − hẑ|3 − πR2(z − z0 + h)

|r − r0 + hẑ|3
)

=
IR2h

2|r − r0|3
(
1− 3(z − z0)

2

|r − r0|2
)
. (B-15)

This limit can be used when evaluating the first boundary contribution in Eq. (B-13). [Equation (B-15) could also
have been computed by taking the far-field limit of Eqs. (B-2) and (B-3).]

Next, let us consider the latter two contributions in Eq. (B-13). We will consider the limit where we take the regions
V1 and V2 as small as possible. In this case, the boundary ∂V1 becomes two surfaces just above and below S1. The
Ω2(r) value is the same on the upper and lower surfaces of ∂V1. Therefore, the second term in Eq. (B-14) cancels out
when integrating over all of ∂V1. However, Ω1(r) approaches 2π as r approaches S1 from above, while it approaches
−2π as r approaches from below, so the former term in Eq. (B-14) does not cancel! (Recall that Ψ1 is not defined on
S1, and so it can exhibit a discontinuity there.) We instead find∫

∂V1

dA ·E∗
nΨ0 = −I

∫
S1

dA ·E∗
n. (B-16)

A similar statement applies for the boundary integral over ∂V2, but with the opposite sign.
Now that we know how to evaluate the overlap integral over V3, let us consider the contributions from V1 and V2.

We will find that these vanish in the limit that V1 and V2 approach the surfaces S1 and S2. This will be due to the
fact that the volumes of V1 and V2 vanish in this limit. However, we should consider this limit carefully, as B0 (and
therefore the integrands) also diverge near the current loops. For concreteness, let us define V1 as the set of points
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r0

R

h

Lx

Lz

V1

V2

V3

FIG. B-2. Two-dimensional projection of levitation apparatus inside shield (not to scale). The trap is centered at the point
r0, and consists of two current loops, each of radius R. The two loops have opposite currents and are located a distance h
above/below r0. The trap sits inside a rectilinear shield of dimensions Lx, Ly, Lz. (Note that in order to produce a nonzero
signal r0 must be positioned off-center within the shield in at least two directions.) In order to evaluate the overlap integral
in Eq. (B-7), we decompose the volume of the shield into three regions: V1 (red) surrounding the upper loop, V2 (green)
surrounding the lower loop, and the rest of the volume V3.

within a distance ϵ of S1, and take the limit as ϵ → 0. Let us define ρ2 = x2 + y2, and then separate V3 into three
regions: ρ < R − δ, R − δ < ρ < R, and ρ > R, for some δ ≪ R which remains fixed as we take the limit ϵ → 0
(see Fig. B-4). The integrand does not diverge in the first region, so the integral over this region vanishes trivially
as ϵ → 0. The integrand in the third region does diverge as B0 ∝ 1/ϵ; however, the volume of the region goes as
ϵ2. Therefore, the contribution from the third region should vanish as well. The second region requires more careful
treatment. In the limit of small δ, we can approximate B0 as the magnetic field from a straight wire. Then, explicitly,
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FIG. B-3. Magnetic field potential at a point r. The magnetic field potential Ψ0(r) defined in Eq. (B-14) can be related to
the solid angle subtended by each loop, as viewed from the point r. Specifically, we denote the surfaces bounded by the upper
and lower loops by S1 (red) and S2 (green), respectively. If these are projected onto a unit sphere centered at r, they subtend
angles Ω1 and Ω2, respectively, which appear in Eq. (B-14). Note that the solid angles are defined to be positive (negative) if
r lies above (below) the corresponding surface. Therefore Ω1 < 0 and Ω2 > 0 here. We also show the full magnetic field B0

from both loops in purple. This magnetic field is symmetric across the yz-, xz-, and xy-planes.

the integral over the second region looks like∫ 2π

0

dθ

∫ ϵ

−ϵ

dz

∫ R

R−δ

dρE∗
n ·
(

I

2π
√
z2 + (R− ρ)2

· (R− ρ)ẑ + zρ̂√
z2 + (R− ρ)2

)
(B-17)

=

∫ 2π

0

dθ
IE∗

n

2π
·
∫ ϵ

−ϵ

dz

∫ δ

0

dρ̃
ρ̃ẑ + zρ̂

z2 + ρ̃2
(B-18)

=

∫ 2π

0

dθ
IE∗

n

2π
·
∫ ϵ

−ϵ

dz
1

2
log

(
z2 + δ2

z2

)
ẑ (B-19)

=

∫ 2π

0

dθ
IE∗

n

2π
·
(
ϵ log

(
ϵ2 + δ2

ϵ2

)
− 2δ tan−1 δ

ϵ
+ πδ

)
ẑ, (B-20)

which vanishes in the limit ϵ → 0. Therefore, the volume integral from V1 does not contribute to the full overlap
integral in Eq. (B-7). A similar argument shows that the volume integral from V2 does not contribute either.
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z
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ε

δ

ρ < R− δ

R− δ < ρ < R R− δ < ρ < R

ρ > R ρ > R

FIG. B-4. Decomposition of V1. We define V1 as the set of points which are within a distance ϵ of the surface S1, and
parametrize it using cylindrical coordinates r = (ρ, θ, z). In order to show that the overlap integral over V1 vanishes as ϵ → 0,
we decompose it into three regions: ρ > R (dark red), R− δ < ρ < R (medium red), and ρ < R− δ (light red), for some fixed
δ ≪ R. The magnetic field in the light red region remains finite as we take ϵ → 0. Meanwhile, the volume of the dark red region
shrinks faster than its magnetic field grows, as ϵ → 0. Therefore, these contributions vanish trivially. Equations (B-17)–(B-20)
show that the contribution from the medium red region also vanishes.

In summary, we find that the full overlap integral appearing in Eq. (B-7) is the sum of the contributions in Eq. (B-
13). We can write the full solution for the magnetic field signal at the center of the trap as

B(r0) = −gaγmaa0e
−imat

∑
n

1

ωn

(∫
∂V

dA ·E∗
nΨ0 + I

∫
S1

dA ·E∗
n − I

∫
S2

dA ·E∗
n

)
Bn(r0). (B-21)

If Lx, Ly, Lz ≫ R, h, then Ψ0 in the first integral can be evaluated using Eq. (B-14). We have assumed here that
ma ≪ ωn and that the modes are normalized so that

∫
dV |En|2 = 1. Generically, Eq. (B-21) needs to be evaluated

numerically, but we can determine a parametric estimate analytically. The normalization of En fixes En ∼ L−3/2 [see
Eqs. (B-8) and (B-9)], where Lx, Ly, Lz ∼ L, so from Eq. (B-14), we find that∫

∂V

dA ·E∗
nΨ0 ∼ IR2h

L5/2
. (B-22)

Note that when ωnh ≫ 1, the integrals over S1 and S2 are nearly equal. In this case, we can Taylor expand E∗
n

around r0 to rewrite their difference as

I

∫
S1

dA ·E∗
n − I

∫
S2

dA ·E∗
n ≈ 2πIR2h · ∂zEn,z(r0)

∗ ∼ IR2h

L5/2
, (B-23)

so the boundary integral contributions scale similarly with the parameters of the system. In order to connect with
the magnetic field gradient b introduced in Eq. (1), let us note that the applied magnetic field near the center of the
trap r0 is

B0(r) = − 3IR2h

(R2 + h2)
5/2

(
x− x0

2
,
y − y0

2
,−z + z0

)
≡ b0

(
x− x0

2
,
y − y0

2
,−z + z0

)
. (B-24)

Then from Eq. (B-21), we find that the axion DM magnetic field signal scales as

B(r0) ∼
gaγmaa0b0

(
R2 + h2

)5/2
L3

. (B-25)

The exact constant of proportionality will depend on the position of the trap within the shield. (Recall that for a
sufficiently symmetric position, the constant may be zero.) For instance, for Lx = Ly = Lz = 10 cm, R = h = 1 cm,
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and r0 = (7 cm, 8 cm, 5 cm) [which are the parameters used for the blue curves in Fig. 3],20 we find the constant of
proportionality to be roughly 0.09.

20 Numerically, we find that the z-component of B(r0) tends to converge faster than the x- and y-components. Therefore we take z0 = Lz/2
here, so the magnetic field signal points exactly in the z-direction, and we can calculate the signal accurately.
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