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Knotted proteins, when forced through the pores, can get stuck if the knots in their backbone tighten under
force. Alternatively, the knot can slide off the chain, making translocation possible. We construct a simple
energy landscape model of this process with a time-periodic potential that mimics the action of a molecular
motor. We calculate the translocation time as a function of the period of the pulling force, discuss the asymptotic
limits and biological relevance of the results.

I. INTRODUCTION

It is increasingly realized that topology plays an impor-
tant role for the functional and dynamical properties of
biomolecules. Knots and tangles are rather unavoidable in
the DNA chain, due to its huge length and large density, with
2 meters of DNA squeezed in a tiny cell nucleus. However,
topology can also be important for function, dynamics and
stability of proteins, although the exact function of the en-
tanglement in proteins is still under debate [1–4]. In about
1% of the proteins the polypeptide chain [5, 6], which forms
a protein backbone, adopts a knotted configuration. It was
reported that the presence of knots can increase the thermal
and mechanical stability of proteins [7, 8] or help them in
their enzymatic activity [9–11], but it can also be hindering,
particularly during folding [12–14], unfolding [15], and pass-
ing through narrow constrictions [16, 17]. The latter happens
when the protein is degraded in proteasome or translocated
through the intercellular membranes, e.g. during import into
mitochondria [18–22]. The unfolding and import of proteins
into mitochondria or proteasome are facilitated by molecular
motors that act with forces of the order of 30pN [23]. How-
ever, as shown in a number of studies, both experimental and
numerical [24–26], the protein knots tend to tighten under
the action of the force. The radius of gyration of the tight
knot has been estimated to be around 7–8Å for the simplest
protein knot (a trefoil) and correspondingly larger for more
complicated knots. On the other hand, the smallest constric-
tions in mitochondrial pores or proteasome openings are 6–7Å
in radius [27, 28], thus proteins with knotted backbones might
have problems navigating them.

Assuming that the translocation of a knot is impossible,
from the macroscopic point of view two possibilities remain
- either the knot would slide off the rope or it would block
the opening. Sewing afficionados know that very well, as they
make thread knots using a narrow space between the fingers
through which the thread goes easily, but the knot jams and
tightens. (Fig. 1). However, proteins are not like ropes or
sewing threads in one important respect. Different parts of the
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protein chain attract each other, and as a result, the molecule
- if left on its own, with no forces acting on it - folds into its
native conformation (a specific spatial configuration which is
critical to its biological function).

As proposed in Ref. [29], such a folding propensity of pro-
teins, together with the repetitive nature of the forces pro-
duced by molecular motors, enables the knotted molecules to
translocate successfully. The molecular motors work in an on-
off manner, during an "on" part of the cycle, they attempt to
pull the knotted protein into the pore. During pulling, the knot
slides towards the free end of the chain [17, 30]. If it succeeds
in sliding off the chain before it tightens, the protein translo-
cates successfully. The tightened knot, on the other hand, jams
the pore, but not permanently. During the next off-cycle of
the force, as the protein begins to refold, some stored length
is inserted into the knotted core, and the knot loosens, thus es-
caping the tightened configuration. Subsequently, during the
next force-on period the protein makes another attempt at the
translocation, with an eventual success after sufficiently many
attempts.

FIG. 1. Tightening of the knot on a rope while pushing it through an
opening with the diameter smaller than that of a tightened knot

Ref. [29] looked at this system through a series of molec-
ular dynamics simulations that resolved the interactions be-
tween individual aminoacids as well as between aminoacids
and the pore walls. It seems, however, that the main physi-
cal mechanism behind this process can be captured in a much
more simple one-dimensional model in the spirit of reaction
rate theory. The construction of such a description is the ob-
jective of the present manuscript.
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II. MODEL

We will model the dynamics of our system in terms of reac-
tion rate theory [31] with a one-dimensional reaction coordi-
nate x, indicating the state of the system. Within this model,
the dynamics of the system along the reaction coordinate is
assumed to follow the overdamped Langevin equation [32]

dx

dt
= −µdV (x, t)

dx
+
√
µkTξ(t), (1)

where ξ(t) is the Gaussian white noise satisfying ⟨ξ(t)⟩ = 0
with ⟨ξ(t)ξ(s)⟩ = δ(t − s), µ is the effective mobility along
the reaction coordinate and T is the temperature.

The initial position of the knotted protein in front of the
pore corresponds to the point x = 0 in our 1d reaction model.
At this point, the protein is in its native conformation - its
backbone is knotted, but the knot is not tightened. In the
following, we will denote this state as KL (knotted loose).
The point x = L1, on the other hand, represents the protein
with a fully tightened knot (KT - knotted tightened), which
is blocking the pore. To represent this blockage, we place
an impermeable (reflecting) wall at x = L1. Finally, the
point x = −L2 represents the protein which has successfully
translocated through the pore and left the system. Since in this
process the knot slides off the chain, such a state will be called
U (unknotted) in subsequent considerations. We assume that
translocation is only possible under the action of the force, so
we make the wall at x = −L2 absorbing only in the first part
of the period (when the force is on). In the second part of the
force cycle this wall will be reflecting.

To mimic the repetitive nature of molecular motors, we
will introduce a potential V (x, t) which switches between two
states with period 2T . To describe it, we find it convenient to
introduce an additional variable.

T = mod (t, 2T ), (2)

which measures the time from the beginning of the present
force period. Using this variable, the periodic potential is
given by

V (x, t) =

 Vpull(x) T (t) < T

Vfree(x) T (t) > T
(3)

where Vpull(x) and Vfree(x) are time-independent, piecewise
linear potential wells (see Fig. 2), with

Vpull(x) =

 −fTx x < 0

−fDx x ⩾ 0
. (4)

and

Vfree(x) =

 −fTx x < 0

fUx x ⩾ 0.
(5)

In the first half of the force period T < T , the potential
Vpull(x) corresponds to the situation when the molecular mo-
tor exerts the force on a protein chain, pulling it in. The ap-
pearance of this force is represented by a potential well of

depth fDL1 at x = L1. As mentioned above, the trapping
of the particle at this position corresponds to tightening of the
knot under the action of the force. The other possible pathway
corresponds to a successful translocation through x = −L2

wall. Getting there is much less likely than entering the ki-
netic trap at x = L1. To represent that, we assume that there
is an energy barrier (fTL2) to overcome to reach the absorb-
ing wall at x = −L2.

The second part of the force period, when the force is off, is
described by the potential Vfree(x). The minimum at x = L1

disappears and is replaced by a maximum of height fUL1.
This creates a potential ramp pulling the particle towards the
origin, which represents the effective action of the interactions
between the aminoacids, which are trying to refold the protein
into its native conformation. The other part of the potential
(for x < 0) is the same as in the first part of the force period,
with the only difference that now the boundary at x = −L2

is assumed to be reflecting. This represents the fact that it is
impossible to translocate through the pore in the absence of
force.

Before proceeding, let us introduce the dimensionless vari-
ables {

x̃ = x/L1,
t̃ = tµkT/L2

1
. (6)

and rescaled parameters,{
f̃i = fiL1/kT,

L̃ = L2/L1
. (7)

After such a transformation, the motion is restricted to the
(−L̃, 1) interval, with the forces rescaled by the characteristic
thermal forces. For convenience, from now on, we will drop
tildes and consequently use dimensionless units.

III. ASYMPTOTIC REGIMES

To characterize the escape dynamics of the system, we ana-
lyze the distribution of the first exit times. The latter is defined
as

⟨τ⟩ = ⟨min{t : x(0) = 0 ∧ x(t) ⩽ −L}⟩. (8)

Due to the time dependence of the potential V (x, t) the gen-
eral solution is difficult to obtain. Nevertheless, one may ob-
tain a number of useful results for the limit of slowly-changing
potential, i.e. T → ∞. In this limit, the first escape time is
dominated by waiting for the state when escape is possible.
Therefore, MFET is proportional to the average number of
force periods before the particle escapes

⟨τ⟩ = 2⟨n⟩T. (9)

To calculate ⟨n⟩ we assume that fD is sufficiently deep so that
the force pulling the particle towards the KT state for x > 0 is
so high that the escape chance is negligible and we inevitably
end up in the trap at x = 1. In this case

1

⟨n⟩
=

∫ 0

−L

p(x)πL(x)dx, (10)
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FIG. 2. Potential given by Eq. (3) under pulling (a) and in the free
state (b). The marked conformations correspond to the state with a
loose knot (KL), tightened knot (KT) and untied knot (U).

where p(x) is the probability density of finding the particle
in x at T = 0 and πL(x) is the probability that the particle
escapes through the left boundary, assuming that it started at
x.

The general formula for the probability that the particle
starting in the (−L, 0) interval escapes through the left bar-
rier is given by[32].

πL(x) =

∫ 0

x
ψ(y)dy∫ 0

−L
ψ(y)dy

, (11)

where, for potential (3)

ψ(x) = exp

(∫ x

−L

fT dy

)
= exp (fT (x+ L)). (12)

In the limit of T → ∞ the particle probability density will
have sufficient time during the off-force period to relax to-
wards the stationary distribution, pst(x). For the potential of

the form Vfree(x) the stationary distribution is

pst(x) =

 A exp (fTx) x < 0

A exp (−fUx) x ⩾ 0
, (13)

with a normalization factor

A =
fU

fU−fUe−fT L

fT
+ sinh(fU )− cosh(fU ) + 1

. (14)

On the other hand, during the on-force period, if the pulling
force is sufficiently high (fD ≫ fT ), the distribution relaxes
to the stationary distribution in the linear potential well with a
slope fD

p(x) =
fDe

fD(L+x)

efDL+fD − 1
. (15)

Inserting Eqs. (11) and (13) into Eq. (10) one may obtain
formula for the average number of force periods before escape

⟨n⟩ = 2efTL(fT sinh fU − fT cosh fU + fU + fT )− 2fU
fU (efTL − 1)

.

(16)
Another important time scale in the system is the mean time

necessary to return to the origin from x = 1 in the absence of
the pulling force. Biologically, this corresponds to the protein
refolding time. The latter can be calculated analogously to
the left barrier problem considered above, using a formula for
MFET from the interval limited by a reflecting boundary from
one side [32]

τ(x) =

∫ x

0

dy

ψ(y)

∫ 1

y

ψ(z)dz, (17)

where

ψ(x) = exp

(∫ x

0

fUdy

)
= exp (−fUx). (18)

Performing the integration in (17) leads to

τfold =
fU + e−fU − 1

f2U
(19)

For large fU the folding proceeds deterministically, in a down-
hill manner, and τfold ≈ f−1

U .
In the limit of very short force periods, t ≪ τfold, the

translocation time can again be estimated analytically. This
time, the starting point is the jammed configuration (x = 1),
where the system is trapped after the first force period. The
probability that the particle, starting at x = 1 can reach
x = −L over time T can be estimated in the following man-
ner. First, we note that in the limit of very short times, the de-
terministic drift of a particle under the action of fU and fT can
be neglected with respect to diffusion, since the latter scales
as

√
t and the former as t. The diffusive current at x = −L

due to the source near a reflective wall at x = 1 is given by

J(t) = − 2√
2πt

∂x

(
e−

(x−1)2

2t − e−
(x+2L+1)2

2t

)
x=−L

=
23/2(L+ 1)√

πt3
e−

(L+1)2

2t (20)
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By integrating this over t, we obtain the escape probability
over a single force period of the form

P (T ) =

∫ T

0

J(t)dt = 4 Erfc
(
L+ 1√

2T

)
(21)

with the mean escape time proportional to the inverse of P ,
i.e.

⟨τ⟩ = T

P
∼ (L+ 1)

√
πT

4
√
2

e
(L+ 1)2

2T (22)

where the asymptotic behaviour of the error function has been
used.

As we see, both long and short force periods result in very
long translocation times; with ⟨τ⟩ ∼ T for large T and ⟨τ⟩ ∼
exp(1/T ) for short T . We thus expect that between these two
extremes there exists an optimal force period, Tmin for which
the translocation is the fastest. One can anticipate that Tmin

should be of the order of the folding time, to allow enough
time for the system to reach the KL state and then attempt
the barrier crossing. In the next section, we investigate the
existence of the minimum numerically.

IV. NUMERICAL RESULTS

The intermediate force periods, between the asymptotes
considered in the previous section, do not lend themselves to
analytical analysis and we need to resort to numerical meth-
ods. To obtain a result for arbitrary T , the Euler-Maruyama
method [33, 34] of integration of the Eq (1) has been used.
The trajectories were simulated with the time-step ∆t = 10−5

until particle crosses barrier located inL = 0.25 when the first
exit time was registered. MFET was subsequently obtained by
averaging the first exit times over N = 105 trajectories.

We begin with an examination of the mean exit time
(MFET) as a function of half-period T . Fig. 3 shows ⟨τ(T )⟩
dependence for fT = 1, fU = 1, and fD = 320. As expected,
we see an eexponential increase of ⟨τ⟩ for small periods and
linear growth for large periods, with a minimum in between.
For the example presented in Fig. 3 the minimum corresponds
to τ ≈ 6 and is located at Tmin ≈ 0.2. Note that this is
slightly shorter than the protein refolding time, which, based
on (17) for this choice of parameters is τfold = e−1 ≈ 0.37.
The linear growth of ⟨τ(T )⟩ can be directly verified by inspec-
tion of ⟨n⟩. As can be seen in the bottom panel of Fig. 3, the
solution tends rapidly to the asymptotic behaviour given by
Eq. (16). The good agreement between the numerical data and
the analytical solution for large force periods can also serve as
a test of the approximations adopted when deriving Eq. (9), in
particular the assumption that the distribution can be approxi-
mated as stationary, Eq. (13). This is further confirmed by the
analysis of the particle distributions, as shown in Fig. 4. As
we see, in the first half of the period, the particles are pulled
towards the KT state, relaxing to a delta-like distribution, due
to the large depth of the energy well. On the other hand, in
the second part of the period, the particles move towards the
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FIG. 3. MFET (top panel) and the average number of force periods
needed for a successful translocation (bottom panel) as a function
of half-period T for fT = 1, fU = 1, and fD = 320. Solid line
corresponds to the asymptotic solution given by Eq (16).

KL minimum, with the distribution relaxing towards that de-
scribed by Eq. (13).

The potential (3) used in the model is described by three
characteristic forces – fT controlling the exit probability, fU
connected to the folding and fD describing the action of the
molecular motor, which - combined with steric interactions
between the protein and the pore - tend to tighten the knot
and block the pore. The exact value of fD does not affect the
MFET, as long as it can be considered large, i.e., the system
trapped by this force is basically unable to escape from KT
state. Weaker fD forces would be expected to facilitate escape
from the system, since the particle would be able to reach the
absorbing barrier at x = −L even after venturing into the
region of potential well, i.e. x > 0.

Contrary to fD, increasing fU results not only in faster es-
cape times but also in the emergence of a deeper minimum of
MFET, shifted towards shorter force periods, as observed in
the upper panel of Fig. 5. This behavior can be explained by
the shorter time required on average for the particle to return
to the origin after being trapped in KT state at x = 1. Since
this timescale is related to a refolding time, τfold, we can ex-
pect that rescaling by it should account for the most of MFET
dependence on fU . This is indeed the case, as illustrated in
Fig. 5, however for large fU the escape times become signif-
icantly shorter than expected by a simple rescaling by τfold.
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FIG. 4. Probability densities for T/2, when the protein is pulled
into the pore (top panel), and 5T/4, when the force is switched off
(bottom panel), for fT = 1, fU = 1, fD = 320 and T = 2. Points
correspond to the numerical results whereas solid lines represents
approximated analytical solutions given by Eq. (15) (top panel) and
by Eq. (13) (bottom panel) respectively.

This can be rationalized by noting that - for the particle to
have a chance of escaping - it needs to reach the left part of
the potential x < 0. The higher values of fU not only shorten
the time necessary to reach this region but also increase the
fraction of particles in the negative (x < 0) part of the poten-
tial, relative to those in the positive (x > 0) part during the
off-force period.

Finally, fT controls the probability of unknotting i.e. the
larger fT the slower is the particle escape from the topologi-
cal trap. To the leading order, the dependence of MFET on fT
is given by the Arrhenius law, thus even a small increase of
fT results in an exponential growth of MFET. In the asymp-
totic regime, T → ∞, this behavior is predicted by Eq. (16),
however it holds in a much wider range of force period val-
ues. This is confirmed by Fig. 6, which shows the dependence
of MFET on the transition force fT for fU = 1, fD = 320
and T = Tmin = 0.2 (the latter corresponds to the minimum
MFET as a function of T for fU = fT = 1 and fD = 320).
Despite the fact that T is relatively small, definitely not in the
T → ∞ asymptotic regime, one can still observe the linear
behavior in the logarithmic plot.
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FIG. 5. Mean first exit time as a function of the force period, T for
fT = 1, fD = 320 and a range of different fU .

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

5

10

20

50

FIG. 6. Mean first exit time as a function of fT for fU = 1, fD =
320 and T = 0.2.

V. SUMMARY AND CONCLUSIONS

We have constructed a simple energy landscape model of
the protein translocation process, with a time-periodic poten-
tial, mimicking the cyclic nature of biological motors. The
modal is solvable both in the limit of very short and very long
periods of the driving force. In both of these limits the translo-
cation time diverges, which suggests that there is an optimum
force period corresponding to the shortest translocation time.
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We find this time numerically and show that it is of the order
of the protein refolding time, τfold (for relatively low folding
forces) or shorter than τfold (for large folding forces resulting
in folding times shorter than the force period). Importantly,
the dwell times between the power strokes of the biological
motors are distributed rather broadly, with two characteris-
tic timescales; one of the order of hundreds of milliseconds
and the other of about ten seconds [35, 36]. On the other
hand, protein folding times are also broadly distributed [37],
with smaller two-state proteins folding on a millisecond scale,
while more complex molecules folding on the scale of sec-
onds. Similar timescales of motor action and protein folding
mean that translocases act near the optimum.

These results are in agreement with molecular dynamics re-
sults of Ref. [29], but the stochastic model has the benefit of
being simple and easily interpretable in terms of a handful of
parameters only (folding time, motor force intensity and fre-
quency), making it easier to understand the key factors con-
trolling system dynamics.

Finally, we note that, in principle, an analogous model can
also be used to simulate the escape of translocating proteins
from other kinetic traps, not necessarily of a topological na-
ture. One such example was reported in Ref. [38], which

shows that during the translocation of barnase through a mito-
chondrial pore, the protein can get trapped in a long-lived in-
termediate state, which blocks the pore and stalls the translo-
cation. Again, the repetitive forces can lead the system out of
such a kinetic trap, and it seems that the model presented here
can be applied if one interprets KT as an unfolding intermedi-
ate which acts as a kinetic trap and KL as a native state of this
protein.
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