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ABSTRACT
The size and complexity reached by the large sky spectroscopic surveys require efficient, accurate, and flexible automated tools
for data analysis and science exploitation. We present the Galaxy Spectra Network/GaSNet-II, a supervised multi-network deep
learning tool for spectra classification and redshift prediction. GaSNet-II can be trained to identify a customized number of
classes and optimize the redshift predictions. Redshift errors are determined via an ensemble/pseudo-Montecarlo test obtained by
randomizing the weights of the network-of-networks structure. As a demonstration of the capability of GaSNet-II, we use 260k
Sloan Digital Sky Survey spectra from Data Release 16, separated into 13 classes including 140k galactic, and 120k extragalactic
objects. GaSNet-II achieves 92.4% average classification accuracy over the 13 classes and mean redshift errors of approximately
0.23% for galaxies and 2.1% for quasars. We further train/test the pipeline on a sample of 200k 4MOST mock spectra and 21k
publicly released DESI spectra. On 4MOST mock data, we reach 93.4% accuracy in 10-class classification and mean redshift
error of 0.55% for galaxies and 0.3% for active galactic nuclei. On DESI data, we reach 96% accuracy in (star/galaxy/quasar
only) classification and mean redshift error of 2.8% for galaxies and 4.8% for quasars, despite the small sample size available.
GaSNet-II can process ∼ 40k spectra in less than one minute, on a normal Desktop GPU. This makes the pipeline particularly
suitable for real-time analyses and feedback loops for optimization of Stage-IV survey observations.

Key words: Techniques: spectroscopic, software: development, galaxies: distances and redshifts, surveys, methods: data analysis

1 INTRODUCTION

With the upcoming all-sky spectroscopic survey infrastructures, in-
cluding the Dark Energy Spectroscopic Instrument (DESI; DESI
Collaboration et al. 2022), 4-metre Multi-Object Spectroscopic Tele-
scope (4MOST; de Jong et al. 2019), Multi-Object Optical and Near-
infrared Spectrograph (MOONS; Cirasuolo et al. 2020), and consid-
ering also the slitless spectroscopic capabilities of the space-based
missions like Chinese Space Station Telescope (CSST; Zhan 2011)
and Euclid (Laureĳs et al. 2011), hundreds of millions of spectra will
be acquired in the next half-decade. The first samples from DESI are
already publicly available (DESI Collaboration et al. 2023). To op-
timize the scientific outcome of these huge datasets, strategies to
perform fast, efficient, and, most of all, accurate automated analyses
have become mandatory. Machine learning (ML) provides a large
variety of efficient solutions to achieve this goal. We have already
demonstrated that Convolutional Neural Network (CNN) models can
be very effective in classifying spectra for specific tasks like the
search for strong galaxy-galaxy lenses (GaSNet; Zhong et al. 2022),
showing superior efficiency and flexibility compared to traditional
methods (e.g., principal component analysis (PCA) eigenspectra fit-
ting; see Talbot et al. 2021).

Object classification and redshift prediction are the first steps to
be performed by standard pipelines of spectroscopy observations.
They provide basic information to be used for science applications.
For instance, the separation of quiescent early-type galaxies, from
the starburst emitting systems is fundamental for galaxy formation
(Lehnert & Heckman 1996), while the classification of active galac-
tic nuclei (AGN) is crucial to understanding the role of supermassive
black holes (Fiore et al. 2017), and the identification of quasars
(quasi-stellar objects, QSOs) is important for cosmological studies
(Secrest et al. 2021). ML can be an efficient and practical alternative
to traditionally automatic methods (Bolton et al. 2012; Hutchinson
et al. 2016) to build entire ML-based parallel pipelines, similar to
what is already done in astronomical imaging, where there have been
enormous advances in recent years. Some examples of these latter
applications are the galaxy morphology pipelines, like the one de-
veloped by Domínguez Sánchez et al. (2022) for SDSS-DR17, and
the pipeline developed by Boucaud et al. (2020) for Euclid. ML

★ E-mail: napolitano@mail.sysu.edu.cn

can offer huge decreases in computational time and resources (Graff
et al. 2014), while providing close to human-level classification re-
sults, e.g., in the star/quasar separation (Busca & Balland 2018). This
provides the chance to overcome the limits typically plaguing tradi-
tional classification methods in terms of computational resources,
human intervention, limited real-time applications, scalability, etc.
(Alzubaidi et al. 2021), thus giving us the opportunity to develop
automatized ML-based tools (D’Isanto & Polsterer 2018; Parks et al.
2018; Makhĳa et al. 2019).

With respect to spectroscopy, a variety of automatic redshift pre-
diction tools and pipelines have been developed using traditional
methods, but relatively little has been done in terms of ML applica-
tions. Traditional codes, such as spectro1d (SubbaRao et al. 2002)
and redmonster (Hutchinson et al. 2016), based on cross-correlation
methods (Tonry & Davis 1979), or redrock (Lan et al. 2023), based
on template fitting using a set of different PCA components (DESI
Collaboration et al. 2023), are some examples of such automated
tools. They have been tested or successfully applied to larger-scale
spectroscopy surveys, generally requiring minimal human interven-
tion. However, they are often time-consuming, e.g., if the number
of templates increases, or require an optimization of the first guess
redshifts to maximize the accuracy. Furthermore, in low signal-to-
noise ratio (SNR) situations, the performance of some of these tools
can highly be degraded (e.g., because of an increasing failure rate,
Bolton et al. 2012).

Deep learning (DL) based methods, instead, have the advantage
of efficiency, scalability, and flexibility. Here, the applications to
spectroscopy are yet at the pioneer level and limited to the search for
strong gravitational lenses, Li et al. 2019), with only a deep learning
tool previously tested to classify spectra and measure redshift (i.e.
GaSNet, Zhong et al. 2022) yet with the specific goal of finding
hidden strong lensing emissions in galaxy spectra. However, the first
GaSNet is versatile enough to be adapted to answer most of the
typical problems large sky surveys might need to face. In particular,
it can easily perform tasks like real-time analysis for the detection of
transients/peculiar objects, and still give a prediction of their redshift.

In this paper, we present a new DL tool that expands the capa-
bilities of the former GaSNet to respond to the needs for upcoming
spectroscopic surveys like 4MOST and DESI. DESI is expected to
observe 30 million galaxies/AGN and 10 million stars. On the other
hand, 4MOST will cover approximately 15,000 square degrees and
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observe more than 25 million targets. In particular, we design and test
a full real-time pipeline based on deep learning that uses reduced 1-D
spectra as input to 1) classify spectra in a given number of subclasses;
2) predict the redshift; 3) assign an error to the redshift. GaSNet-II is a
deep-learning-based tool for spectroscopy classification and redshift
prediction which provides the probability of the type of spectrum and
the object redshift with uncertainty. To train and test the pipeline we
start from a catalog from Sloan Digital Sky Survey Data Release 16
(SDSS-DR16, Jönsson et al. 2020) which provides a large number of
classified spectra grouped into about 180 classes. This allows us to
randomly select 13 subclass spectra from the SDSS Data Release 16,
each with more than 20,000 spectra. The 4MOST mock spectra (10
subclasses) and DESI early data release spectra (3 classes) are also
randomly selected as additional datasets, to examine the flexibility
and generality of the pipeline. In particular, the different properties
of these three datasets will allow us to cover a large variety of clas-
sification situations from very specialized classifications for SDSS
and 4MOST samples to a coarse-grained classification using DESI
data.

The paper is organized as follows: in Section 2, SDSS data sets
used for our analysis are introduced. In Section 3, we describe the
ML models and our novel idea of building an ML pipeline. In Section
4, we present the training and testing results. In Section 5, we dis-
cuss the ML predicted results, including further improvements and
perspectives for further ML pipelines. In the final section 6, we draw
some conclusions.

2 DATA

The main purpose of this paper is to find a DL-based method, to clas-
sify and predict the redshift of 1-D spectra. As introduced above, we
are interested in applying “supervised” networks, based on labeled
data. For the scope of this work, the main labels we need to start with
are a “class” and a “redshift”. The generality of the tool depends on
the number of classes we can separate from their spectral properties.
While a basic separation can rely on a very coarse classification aim-
ing to distinguish only stars, galaxies, and AGN/QSO (Pâris et al.
2017), for many science applications, one might be interested in a
more detailed classification that distinguishes various star, galaxy and
AGN/QSO subclasses (Bundy et al. 2015; Yan et al. 2019). In this
case, to best train any supervised tool we need datasets that can pro-
vide such kind of information. The ideal dataset would be an observed
sample of objects for which a qualitative/quantitative classification
has been performed (Liu et al. 2019; Lyke et al. 2020). However, as an
alternative, one can use mock datasets, where physically motivated
templates of different galactic and extragalactic objects in different
instrumental conditions (resolution, seeing, etc.) and covering a re-
alistic range of intrinsic object properties (e.g., luminosity, colors,
redshifts, kinematics, etc.), can mimic the data one is expected to
collect for a given science program (e.g. via spectral synthesis; Cid
Fernandes et al. 2005).

Below we describe the data we will use throughout the paper,
covering the two typologies of training/test samples discussed above.
In particular, as the observation-based dataset, we use the SDSS-
DR16 dataset, which contains the most detailed classified subclass
sample of sources available to date. As such, this will represent the
reference dataset around which we want to construct and benchmark
our pipeline. Furthermore, to explore the possible application of
GaSNet-II to upcoming stage-IV surveys, we use a customized mock
catalog, closely reproducing 4MOST observations (de Jong et al.
2019; Helmi et al. 2019; Merloni et al. 2019; Driver et al. 2019;

Table 1. Some definitions and statistics of our reference dataset from SDSS.
Col. 1: the name of the different subclass, constituted by the class name and
subclass name. The subclass name ‘nan’ denotes classes with no specific
subclass. Col. 2: the label we used afterward. Col. 3: the mean redshift of the
subset. Col. 4: the redshift range. Col. 5: mean median signal-to-noise, 𝑆𝑁𝑅.

Col. 1 2 3 4 5

class_subclass label �̄� [𝑧𝑚𝑖𝑛 , 𝑧𝑚𝑎𝑥 ] 𝑆𝑁𝑅

STAR_A0 0 – – 26.2

STAR_F5 1 – – 30.5

STAR_F9 2 – – 34.9

STAR_G2 3 – – 33.7

STAR_K1 4 – – 32.8

STAR_K3 5 – – 31.1

STAR_K5 6 – – 31.0

GALAXY_nan 7 0.46 [0.00, 1.86] 5.82

GALAXY_AGN 8 0.21 [0.00, 0.57] 14.3

GALAXY_STARBURST 9 0.15 [0.00, 0.57] 9.78

GALAXY_STARFORMING 10 0.11 [0.00, 0.56] 12.4

QSO_nan 11 1.68 [0.01, 7.04] 2.64

QSO_BROADLINE 12 1.78 [0.03, 5.29] 6.54

Swann et al. 2019). Furthermore, we take advantage of the early
data release of DESI (DESI Collaboration et al. 2023), to perform
a first test of the novel GaSNet-II version performances on a first
Stage-IV survey dataset. Notable for SDSS and DESI, the redshifts
and classifications are not 100% reliable (see, e.g., Lyke et al. 2020
and Alexander et al. 2023), which can potentially lead to deviations
between the DL predictions and the pipeline results.

2.1 Reference dataset: SDSS-DR16

SDSS-DR16 (Ahumada et al. 2020), contains around 0.44 million
unique stars, 2.6 million galaxies, and 0.75 million quasars; all spectra
are divided into three classes (star, galaxies, QSOs), each one having
a different number of subclasses for a total of 181 subclasses. Most
of the subclasses comprise a number of spectra smaller than a few
hundred. The classification and redshift pipeline of SDSS is based on
a 𝜒2 minimization, by comparing each spectrum to the combination
of basis templates, which are derived from rest-frame PCA of training
samples (Bolton et al. 2012, B+12 hereafter). The number of labeled
spectra is more than four million.1 In Table 1, we report the only 13
sub-classes that have more than 20,000 classified objects, as this is the
minimal sample size we need for the best training of our tools. Despite
these representing a tiny fraction of the original class list (181), we
stress that these 13 sub-classes are representative of the most common
objects one would expect to classify in typical spectroscopic surveys,
especially if we look at the extragalactic sample. Most of the excluded
classes, though, consist of stellar types (e.g., O, B star, dwarf, special
carbon star, etc.) that have small observational samples collected,
due to their intrinsic rarity. Of course, this is a limitation if one

1 DR16 Optical Spectra Overview.
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Figure 1. Example spectra of the 7 stellar sub-classes, corresponding to the
first 7 of the 13 sub-classes constituting the SDSS sample listed in Table 1.
The A, F, G, and K stars with different subtypes are selected as the SDSS test
samples to validate the ability of fine classification.

wants to apply the current classifier to real data that we expect to
solve in the future by collecting more complete samples to build a
compelling training sample, e.g. using the early release of upcoming
surveys (e.g. DESI and 4MOST). Also, the reduced number of sub-
types adopted might not return the true final accuracy of the method,
as we cannot predict if the classifier can perform closely to the
average accuracy for all the missing classes. However, we believe
that the number and variety of classes we have collected for this test,
is already large enough to assess the potential of these (novel and
unexplored) techniques. Indeed, since the main objective of this paper
is to check if DL can efficiently and automatically classify spectra
and measure redshifts of astronomical sources, the main conclusions
we will draw will not be affected by the number of classes adopted,
as long as the network can be trained for each class with a sufficiently
large and representative knowledge base. Following this same line
of argument, our results are also not affected by the accuracy of the
classification performed in B+12, as long as all spectra are assigned
to a given class following self-consistent criteria. In this respect,
GaSNet-II would just replicate the same classification bias intrinsic to
the SDSS-DR16 sample, if any. However, from the perspective of the
application to upcoming surveys, the problem of cross-contamination
among classes needs to be addressed to quantify how much this can

4000 5000 6000 7000 8000 9000

0

5

10
GALAXY_nan
z=0.4

4000 5000 6000 7000 8000 9000
0
2
4 GALAXY_AGN

z=0.5

4000 5000 6000 7000 8000 9000
0

25
50
75 GALAXY_STARBURST

z=0.2

4000 5000 6000 7000 8000 9000

10

20

flu
x/

(1
0

17
er

g
s

1
cm

2
An

g
1 )

GALAXY_STARFORMING
z=0.1

4000 5000 6000 7000 8000 9000

0
2
4 QSO_nan

z=1.6

4000 5000 6000 7000 8000 9000
wavelength/Å

5
10
15 QSO_BROADLINE

z=1.4

Figure 2. Example spectra of SDSS extragalactic sub-classes, as listed in
Table 1. We can clearly see the different features characterizing the different
classes. From top to bottom, in particular, we can notice the increasing impor-
tance of the emission lines that play an important role in redshift prediction.
The ‘nan’ type spectra generally lack such emission lines, although they might
still contain some low-SNR ones, which are hard to see. This means that the
‘nan’ sample might overlap with other emission line classes. QSOs also show
a power-law continuum that does not carry any redshift information.

impact the purity of classifications. Although this is not among the
objectives of this paper, we briefly discuss this in Appendix A.

Finally, for the 13 suitable classes from SDSS-DR16, we can ran-
domly select 20,000 spectra from each of these classes to collect
a total catalog of 260,000 spectra, constituting our primary dataset.
Most of the classes do not overlap physically, except for the “BROAD-
LINE” one, because if any galaxies or quasars have lines detected
at the 10-sigma level with velocity dispersion 𝜎 >200 km/sec at the
5-sigma level, the label “BROADLINE" is added to their subclass
2. The 20,000 spectra in each subclass are further split into random
70%, 15%, 15% subsamples to be used in training, validation, and
testing, respectively.

Some typical spectra of different galactic (stars) and extragalactic
(galaxies/AGN/QSOs) types are shown in Fig. 1 and Fig. 2, respec-
tively. The spectra are trimmed to stay within 4, 000−9, 000 Å wave-
length range, for uniformity, then re-sampled to cover 5,001 pixels,
for a final effective binning of 1Å/pixel. Besides this “preprocess-
ing” step, producing a uniform binned spectrum with respect to the
original one, no additional data manipulation has been applied to
the data. The range and mean redshift and SNR are listed in Table
1. The distribution of redshift and SNR of different subclasses are

2 https://www.sdss3.org/dr9/spectro/catalogs.php
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Figure 3. The redshift distribution of the SDSS-DR16 dataset (stacked his-
togram). The mean and range of redshift are already shown in Table 1.

shown in Figs. 3 and 4. We stress that the high redshift end on the
redshift distribution in Fig. 3 is populated by a few systems. This is
important to keep in mind, as we expect that this under-sampling can
impact the redshift predictions at the higher end of the class redshift
distributions. On the other hand, the SNR distribution covers quite
a high range, except for the QSO, which also shows a significant
under-sampling at SNR > 10, and (counter-intuitively) causes worse
predictions in this SNR range. Overall, to prevent such selection ef-
fects, one solution can be the use of simulated spectra, in order to
collect a more balanced training dataset. Although useful to solve
these “completeness” problems, this strategy has other limits which
we will discuss in the next section, where we make use of 4MOST
mock spectra, as an additional dataset to test.

2.2 Other dataset: 4MOST mock spectra

The dataset consists of approximately 200,000 mock spectra obtained
to reproduce 4MOST observation conditions, which are categorized
into 10 different sub-classes according to the adopted templates. We
make use of a mock catalog of spectra based on a customized soft-
ware package3 reproducing the Exposure Time Calculator prediction
of observed spectra for 4MOST. The software makes use of a series of
customized templates selected for the different surveys (see §1) to be
tested within the Extragalactic Pipeline working group (IGW8) and
the Classification working group (IGW9) of the 4MOST consortium.
The spectral wavelength range is cut to between 4,000 and 9,000 Å,
and the number of pixels is interpolated to obtain 5,001 pixels. The
simulated spectra are generated from the given SED templates for
a given set of observation conditions and random noise (including
cosmic rays and randomized Ly𝛼 forest)4. The spectral signal is ob-
tained according to the exposure time and extinction: in particular, the
exposure time is taken to be 1,200s for all spectra, and the extinction
is determined by the average galactic reddening law parametrized by
Fitzpatrick & Massa 2007. The final sample contains a total of 10
subclasses, 5 galactic and 5 extragalactic. The galactic objects are:
metal-poor stars and other dynamics tracers (Dyn) of The Milky Way
Halo Low/High-Resolution Survey (Helmi et al. 2019; Christlieb
et al. 2019), Cepheids in Magellanic Cloud (GalHR) of 1001MC

3 https://escience.aip.de/readthedocs/OpSys/etc/master/
index.html
4 https://github.com/jkrogager/py4most
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Figure 4. The SNR distribution of the SDSS-DR16 dataset (stacked his-
togram). Top: star classes; middle: galaxy classes; bottom: AGN classes. In
general, the extragalactic objects are fainter than the star classes. The mean
SNR is shown in Table 1.

Table 2. 4MOST simulation dataset. Col 1: the name of the different subclass.
Col 2: the label we used afterward. Col 3: the mean redshift of the subset.
Col 4: the redshift range. Col 5: the mean median signal-to-noise, 𝑆𝑁𝑅. The
first 5 subclasses are galactic objects and the last 5 are extragalactic objects.

Col. 1 2 3 4 5

class_subclass label �̄� [𝑧𝑚𝑖𝑛 , 𝑧𝑚𝑎𝑥 ] 𝑆𝑁𝑅

Dyn 0 – – 74.5

GalHR 1 – – 39.9

ESN 2 – – 12.8

GalDiskLR 3 – – 140.4

MCsn 4 – – 72.3

COSMO_AGN 5 2.2 [0.9, 4.0] 6.3

ClusB 6 0.52 [0.3, 1.0] 5.8

WAVES 7 0.32 [0.0, 0.8] 1.6

RedGAL 8 0.33 [0.0, 1.1] 8.7

tides_host 9 0.11 [0.0, 0.6] 19.7

Survey (Cioni et al. 2019), White Dwarf (ESN) of 1001MC Survey,
Galactic disc stars (GalDiskLR) of 4MOST Surveys S1-S4 (Helmi
et al. 2019; Christlieb et al. 2019; Chiappini et al. 2019; Bensby
et al. 2019), stars of Magellanic Cloud (MCsn) in 4MOST Survey S1
(Helmi et al. 2019; Christlieb et al. 2019). The extragalactic simu-
lated sources are taken from mock catalogs and spectra provided by
the 4MOST consortium extra-galactic surveys: S5 eROSITA Galaxy
Cluster Redshift Survey (Finoguenov et al. 2019), S6 Active Galac-

MNRAS 000, 1–23 (2023)
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tic Nuclei (Merloni et al. 2019), S7 Wide-Area VISTA Extragalactic
Survey (WAVES; Driver et al. 2019; Jin et al. 2023), S8 Cosmology
Redshift Survey (CRS; Richard et al. 2019), S10 The Time-Domain
Extragalactic Survey (TiDES; Swann et al. 2019). The respective
contribution in simulated spectra of each survey is 2,099 (24,658,
6,056, 10,443, 13,386) for S5 (S6, S7, S8, S10). The templates used
by S5, S6, S8 were obtained by stacking spectra with the method from
Comparat et al. (2020)5. The stacked spectra were observed by SDSS
within the eBOSS or the SPIDERS programs (Almeida et al. 2023)
and have similar properties to the selected targets to be observed
by 4MOST consortium surveys S5, S6, and S8. As opposed to the
SDSS-DR16, the classes available in the 4MOST sample are “sur-
vey oriented”. In fact, the templates simulated come from different
methods, and they are not purely grouped by physical properties, e.g.,
star-forming vs. passive galaxies or AGN, but rather customized for
the survey requirements, including the SNR. 6 This is evident, e.g.,
for the WAVES sample, which requires only redshift measurements
of the targets, with the minimal exposure time and SNR needed to
reach a reliable measurement. Table 2 shows the label of subclasses,
SNR, and redshift distribution, while in Figs. 5 and 6 we show some
typical spectra from each of the 10 classes. The galactic objects have
a higher average median SNR than the extragalactic objects. In the
4MOST sample, galactic objects exhibit a higher 𝑆𝑁𝑅 than those in
the SDSS samples, whereas the extragalactic objects show a slightly
lower 𝑆𝑁𝑅. The redshift distributions of the 5 extragalactic classes
are shown in Fig. 7. The galaxy classes show a distribution that is
similar to the one seen for the SDSS-DR16, while the quasars show
a flatter distribution than the real data. As mentioned in Sect. 2.1,
this might help alleviate the bias associated with incompleteness.
However, this also raises the question of how realistic the “prior”
distribution adopted in simulation can be (e.g., see discussion in Li
et al. 2022b, for imaging mock data). We postpone this test until we
can access deep 4MOST observations, fully accounting for selection
effects. Until then the 4MOST mock dataset provides us a unique op-
portunity to test GaSNet-II as a general purpose “survey-oriented”
classifier, based on a large variety of classes, at the same time. Each
subclass consists of approximately 20,000 spectra, which are split
into 70%/15%/15% for training, validation, and testing, respectively.

2.3 Other dataset: DESI spectra

The dataset is constituted of 21,000 randomly selected DESI spec-
tra,7 which are categorized into 3 classes, QSO, STAR, GALAXY.
Each class consists of 7,000 spectra in the dataset. The DESI spectra
are randomly selected from “sv1" (“Target Selection Validation")
samples and “sv3" (One-Percent Survey) samples with SNR larger
than 2 and ZWARN flat equal 0. Spectra are split into 70%/15%/15%
for training, validation, and testing, respectively. In the early data

5 https://github.com/JohanComparat/qmost_templates
6 The main reason for this particular choice is that at the moment we
have finished this work there was not yet a uniform physically motivated
set of templates available for galactic/extragalactic targets in 4MOST, al-
though a list of FGK star targets (from the galactic working group, IWG3)
and a catalog of stars with known labels for half a million stars from
GALAH/APOGEE/RAVE/Gaia (from the ISSI team) will be available, and
will be used for future GaSNet analyses. This does not represent a major issue
for the purpose of this paper which aims to show the capabilities of the deep
learning to perform classifications/regression tasks, regardless of the physics
behind the spectra.
7 https://data.desi.lbl.gov/public/edr/
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Figure 5. Example spectra of 5 galactic sub-classes of the 4MOST sample, as
listed in Table 2. From top to bottom, there are Dyn, GalHR, ESN, GalDiskLR,
and MCsn.

release version, DESI only provides a separation of the observed ob-
ject into QSO-STAR-GALAXY, with only stars possessing further
subclasses (8 in total), but with too few spectra to be used for training
here. Hence, the DESI dataset can be used to test GaSNet-II for a
coarsely classified, poorly sampled dataset (e.g., to be compared to
a similar test on SDSS-DR16 as in Appendix B). The DESI clas-
sification and redshift prediction pipeline used redrock, a software
package8 based on fitting a set of PCA templates to every target at
every redshift (DESI Collaboration et al. 2023). The DESI spectra
consist of three bands (B, R, and Z band), with a wavelength range
from 3,600 - 9,800 Å. Once again, spectra are interpolated to cover
5,001 pixels in the wavelength range 4,000 - 9,000 Å, which are then
used for the training. More details of the dataset are shown in Table 3.
The samples have a similar level of 𝑆𝑁𝑅 to the SDSS samples (Table
1) after the selection conditions were imposed. In Fig. 8, we show
some spectra from the 3 different classes. Here, we have also high-
lighted, in different colors according to the legend, the sub-spectra
collected from the three DESI arms, that are combined in the final
DESI full wavelength range spectra. Finally, the redshift distributions
of galaxy and quasar samples are shown in Fig. 9.

3 PIPELINE DESCRIPTION AND TRAINING

Thanks to their flexibility, efficiency, and accuracy, the multi-
networks combination can be applied to the prediction of various
astronomical parameters, and possibly form a fully-automatic DL
pipeline. The Convolution Neural Network (CNN; Krizhevsky et al.
2012) and the Residual Connection (ResNet; He et al. 2015) are two
of the most widely tested DL architectures. CNN and ResNet have

8 https://github.com/desihub/redrock/releases/tag/0.15.4
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Figure 6. Example spectra of 5 extragalactic sub-classes of the 4MOST
sample (simulated), as listed in Table 2, From top to bottom, there are
COSMO_AGN, ClusB, WAVES, RedGAL, and tides_host.
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Figure 7. The redshift distribution of the 4MOST dataset. The mean and
range of redshift are already shown in Table 2.

been extensively applied to classification and regression problems
in astronomy, such as the photometric strong lens detection (Petrillo
et al. 2019; Li et al. 2021, 2019; Huang et al. 2020), galaxies morphol-
ogy classification (Ball et al. 2004; de Diego et al. 2020; Domínguez
Sánchez et al. 2022), star, galaxy, or quasars identification (Kim &
Brunner 2017; Parks et al. 2018; Busca & Balland 2018; Guo &
Martini 2019), photometric redshift predictions (Hoyle 2016; Pas-
quet et al. 2019; Li et al. 2022a), and stellar parametrization (Fabbro
et al. 2018; Leung & Bovy 2019; Guiglion et al. 2024).

In this paper, we construct a multi-network pipeline system, which
is constituted by several, small, self-similar ResNet network models.
The pipeline intends to map the pixel-level 1D spectra to return a clas-
sification probability and redshift. The classifier first is able to distin-
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Figure 8. The typical DESI spectra of QSO, STAR, GALAXY classes.
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Figure 9. The redshift distribution of the DESI dataset. The mean and range
of redshift are shown in Table 3.

Table 3. DESI dataset. Col 1: the name of different classes. Col 1: the label.
Col 3: the mean redshift of the subset. Col 4: the redshift range. Col 5: mean
signal-to-noise, 𝑆𝑁𝑅.

Col. 1 2 3 4 5

class label �̄� [𝑧𝑚𝑖𝑛 , 𝑧𝑚𝑎𝑥 ] 𝑆𝑁𝑅

STAR 0 – – 19.1

QSO 1 1.59 [0.06, 4.27] 6.54

GALAXY 2 0.196 [0, 1.69] 7.53

guish between subclasses. For instance, in the case of SDSS-DR16
(see Table 1), it separates the 7 subclasses of stars (A0, F5, FG, K1,
K3, K5) that, being “galactic” objects, are assumed to have redshift
𝑧 = 0, and the 6 extragalactic objects, 4 of galaxies (nan, AGN, STAR-
BURST, STARFORMING) and 2 of QSOs (nan, BROADLINE). In
total, there are 13 different classes. Then, on these extragalactic
classes, GaSNet-II performs the redshift predictions and error esti-
mates. Similarly, for 4MOST (see Table 2), the classifier separates
the objects in the 5 star classes (Dyn, GalHR, ESN, GalDiskLR,
MCsn) and extragalactic classes (COSMO_AGN, ClusB, WAVES,
RedGAL, tides_host), then, for these latter, the GaSNet-II predicts
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the redshift and the errors. For DESI the classifier just separates into
three coarse classes (Table 3) and the redshift is measured for the
galaxies and QSOs.

In this section, we introduce the details of the GaSNet-II architec-
ture, the strategy for network training, and error estimates. We start
by discussing in detail the training of the pipeline using the reference
dataset over which we want to test the capabilities of the pipeline, i.e.,
the SDSS-DR16 sample. The structure and training of the pipeline
will be the same for the other two datasets, i.e., 4MOST and DESI,
except that, due to the different numbers of labels (see §2), only the
structure of the output will be different. For the latter datasets, we
will discuss directly the performances on the test sample in §4.

3.1 GaSNet-II: Philosophy and Architecture

The philosophy behind the GaSNet-II architecture is based on two
principles: simplicity and efficiency. Simplicity, because we want to
build a network made of “lighter”, self-similar ResNets. The reason
is that, by controlling each small network performance, we can easily
check and control the whole pipeline performance. Also, having sev-
eral ResNet blocks makes it easy to customize different sub-networks
for different tasks. Efficiency, because GaSNet-II is able to parallelize
classification and redshift predictions, which generally are part of a
serial two-step process in classical pipelines, as the redshift accuracy
is class dependent. Indeed, it is more difficult to determine the red-
shift for specific classes. An obvious example is passive vs. active
galaxies, as the former does not have as many high SNR features as
the emission lines of the latter (Mateus et al. 2006).

To achieve this second objective, for GaSNet-II we decided to
use a particular architecture made of parallel sub-networks, each
one specialized on a specific task. This is sketched in Fig. 10𝑎,
where a sub-network is used to classify and give the probability to
each object to belong to a series of predefined classes, while other
parallel sub-networks, trained on each and only classes that need
redshift estimates, are used to give the redshift predictions and error
estimates. Obviously, the numbers of sub-networks are preassigned
according to the number of those classes with redshift, i.e. the training
sample. In fact, being GaSNet-II a supervised network, the classes
and redshifts need to be known as labels of the training sample used
to train the networks.

However, all sub-networks are almost the same, in terms of their
internal structure. Specifically, the multi-network pipeline consists
of 1 ResNet_P model to predict the probability, �̂�, of each subclass
for classification, and 6 (identical) ResNet_i to predict the redshift,
𝑧, of different extragalactic objects, respectively. The index 𝑖 corre-
sponds to the label in Table 1. The input of all sub-networks are the
1-D spectra, in flux units. As we will detail later, in this latter phase,
GaSNet-II performs a Monte Carlo (MC) test, that allows us to esti-
mate the errors, 𝜎𝑧 , on the redshift predictions. Hence, the output of
the GaSNet-II pipeline is a 13-dimensional array of terns (�̂�, 𝑧, 𝜎𝑧).
The final input/output can be schematically summarized as:

𝐹 ( 𝑓 𝑙𝑢𝑥) =
{
(𝑃𝑖 , 0), 𝑖 ∈ [0, 6],
(𝑃𝑖 , 𝑧𝑖 , 𝜎𝑧,𝑖), 𝑖 ∈ [7, 12]

, (1)

where �̂�𝑖 are the probability from the ResNet_i classifier, 𝑧𝑖 are the
redshift predictions and 𝜎𝑧,𝑖 are the redshift uncertainty, from the 6
ResNet regression models.

In terms of workflow, the classification is performed in parallel to
(and hence independently from) the redshift prediction, hence this
latter does not impact the classification. In principle, one can guess
that this is a disadvantage as the knowledge of the redshift could

improve the classification (for instance this is easy to understand for
stars that have 𝑧 ∼ 0). However, the GaSNet-II seems to reach al-
ready very high classification performaces (∼ 99%, see Appendix
B, Fig. B1) without this information. On the other hand, there are
advantages of this “parallel” approach: a) one can scale-up the net-
work by adding training samples for more classes, making it easy to
extend the classification to other objects or even other targets, such
as stellar parameters; b) parallelization reduces the impact of corre-
lations between different quantities; c) for this reason it is extremely
flexible and can effectively applied to different SNRs and various
surveys, as we will demonstrate later in this paper; d) it provides a
reasonable uncertainty estimation, which is a robust starting point
for subsequent Bayesian analyses; e) neural networks are powerful
interpolators, thus also good at classifying spectra that lie within a
learned multi-dimensional surface that cross-correlation won’t grasp.

3.2 GaSNet-II: pipeline description

In this section, we describe in detail the full end-to-end pipeline,
which we have broadly described in the previous section. In the
following, for brevity, we define the input of the sub-networks, 𝑥, and
the fitting labels of sub-networks, 𝑦, as:

𝑥 = flux/
√
𝑁, 𝑁 =

5001∑︁
𝑗=1

flux2
𝑗 (2)

�̂� = one − hot(𝑖), 𝑖 ∈ [0, 12] (3)
𝑦𝑖 = 𝑧𝑖 , 𝑖 ∈ [7, 12], (4)

where the 𝑗 represents the pixel index, from 1 to 5001, and the one-
hot encoder converts the categorical data into digits for example,
one-hot(0)=001, one-hot(1)=010, one-hot(2)=100, etc. In Eq. 2, the
flux is normalized just like a vector. The fitting labels �̂� are the
labels converted by the one-hot encoder from Table 1. The fitting
parameters 𝑦𝑖 are the spectroscopic redshifts provided by the catalog.
To prevent the prediction of very high-redshift values, where the
currently available training samples are too poor to give accurate
results, we limit them to the range 𝑧 ∈ [0, 5]. The loss functions used
are

loss = −�̂�𝑡 · log( �̂�𝑝), (categorical cross-entropy) (5)

loss𝑖 =

{
1
2 (𝑦𝑖𝑡 − 𝑦𝑖 𝑝)2, |𝑦𝑖𝑡 − 𝑦𝑖 𝑝 | ≤ 𝛿

𝛿 |𝑦𝑖𝑡 − 𝑦𝑖 𝑝 | − 1
2 𝛿

2, |𝑦𝑖𝑡 − 𝑦𝑖 𝑝 | > 𝛿
, (Huber loss).

(6)

where �̂�𝑝 , 𝑦𝑖 𝑝 are the prediction values and �̂�𝑡 , 𝑦𝑡 𝑝 are the true
values, and parameter 𝛿 = 0.1. Huber loss combines the advantages
of mean absolute error and mean square error, and alleviates the
sensitivity to outliers.

As seen in the previous section, the GaSNet-II pipeline is consti-
tuted by 7 almost identical ResNet sub-networks. This is shown now
in more detail in Fig. 10𝑏, where we offer a complete schematic view
of the full architecture, which we describe below. Starting from the
general structure seen in Panel 𝑎, we see that the sub-network archi-
tecture consists of a series of ResNet "blocks". One of the advantages
of using the sub-network architecture, discussed in §3.1, is that it
is particularly convenient to perform MC tests, which are the foun-
dation of the GaSNet-II error estimates, as shown by the “zoom-in”
inset (top-right) in the same Fig. 10𝑏.

The idea behind the MC run is to use the different (10) sub-
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Figure 10. Panel a): the general structure of the multi-networks pipeline. ResNet_P is used as a classifier and ResNet_7 − 12 is used for redshift prediction
of extragalactic targets (note that ResNet_0 − 6 are missing because we do not need to predict the redshift of stars). One of the advantages of this structure is
that it is simple and controllable, and can be trained and predicted in parallel. Panel b): the detailed description of single sub-network ResNeti (bottom figures)
architecture, made by small blocks. The input of the network is 5001-pixel spectrum flux, and the output is the probability or redshift. The difference between
classification (n = 13, softmax) and redshift prediction (n = 1, None) is the output dimension and the activation in the last layer. A feature-extract block
Block(n) and a fully connected block Dense(n) are shown. cov1d is the 1-D convolution layer. In one cov1d rectangle, 5 is the kernel size; /3 is the stride size;
𝑛 is the number of channels. relu, softmax are the activate function, None represents no activate function here, that means liner. The left cov1d in the Block(n)
shortcut is used to match the shape. pool1d is a 1-D Maxpooling layer. As a schematic, the top right panel shows how to predict the redshift error of the label
7 (GALAXY_nan) subclass in parallel. Though 10 (customized) same sub-networks, trained by the same data but with different initial weights, 10 different
redshifts were obtained from a single spectrum input. The expectation and error can be calculated. Other redshift errors are obtained in the same way.

networks9 with the same data, e.g., a spectrum of an object of a
given class, but with different initial network weights. In practice,
the initial sub-network parameters are set by a random Gaussian dis-
tribution, which establishes a random initial condition for the entire
process, thus mimicking a MC experiment. However, this can also
be seen as an ensemble training/MC, which is a relatively common
practice in deep learning (e.g., Lakshminarayanan et al. 2016; Ganaie

9 The choice of 10 networks is primarily to optimize the computational
resources, to make GaSNet-II usable in small medium scale servers with no
much impact on the final results. For instance, considering the convergence
of uncertainty in high SNR, Fig. 17 shows that 10 sub-networks are sufficient
to robustly assess uncertainties and we do not expect to improve this result
by increasing the number of sub-networks.

et al. 2021), and applied in the synthetic stellar spectra physical prop-
erties estimating(e.g., Bialek et al. 2020). This allows us to evaluate
the stability of the output, by changing the initial condition of the
training process. For the robust data points, different sub-networks
are expected to predict values that are close to the ground truth, like
the best-fit values that find a global (or even a local) minimum in the
𝜒2 topology.

On the other hand, for the “unstable” points different sub-networks
are expected to find different predictions, like happens in best-fitting
if the 𝜒2 has many local minima. In this way (despite the number
of parallel experiments being only 10) we can separate the robust
from unstable prediction targets. Hence, estimating the cumulative
uncertainties on the final target estimates has two main objectives: 1)
to associate a redshift and an error based on a probability distribution
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Table 4. Models detail. "pars" is the number of network parameters. "Num"
is the number of training spectra used. "loss" is the minimal loss on the
validation set. "acc" is the max accuracy on the validation set, and "MAE" is
the minimum mean absolute error on the validation set. 11

Name pars (106) Num (103) loss (10−3) acc/MAE

ResNet_P 4.16 182 218 91.9% (acc)

ResNet_7 4.16 14 0.868 0.011

ResNet_8 4.16 14 0.152 0.003

ResNet_9 4.16 14 0.066 0.001

ResNet_10 4.16 14 0.112 0.002

ResNet_11 4.16 14 10.2 0.107

ResNet_12 4.16 14 2.32 0.027

function (PDF) to every given target; 2) to test the robustness of the
network, by quantifying the overall predictions scatter with respect
to the ground truth.

Indeed, from the “zoom-in” inset of the MC test, in Fig. 10𝑏, we
can see that the MC step provides a mean value, 𝑧 and a variance, 𝜎.

This is also done in parallel for the 6 extragalactic classes to obtain:

𝑧𝑖 =

9∑︁
𝑗=0

𝑧𝑖 𝑗/10 (7)

𝜎𝑖 =

√√√√ 9∑︁
𝑗=0

(𝑧𝑖 𝑗 − 𝑧𝑖)2/10, (8)

as shown in Fig. 10𝑏. The predicted expectations and errors will be
shown in section 4. In Table 4 we show the number of parameters, and
the number of spectra adopted for the training of the sub-networks.

To check the effectiveness of the use of the mean redshifts and their
errors from Eqs. 7 and 8, we also provide the point estimate redshift
for each target. These are based on a version of the network with only
one ResNet in the MC module in Fig. 10𝑎 for each of the classes, and
compare these with the ones we obtain from the MC run. These point
estimates are analogous to individual measurements from standard
techniques, like cross-correlation (redmonster) or template fitting
(redrock) and are meant to provide a realistic scatter of the estimates
due to the combination of the data quality and the deep learning
method.

Finally, Fig. 10𝑏 (top right) shows the convenience of the sub-
network architecture as the structure of each ResNet is the same for
each one of the sub-networks, regardless of whether it is used to
classify (e.g., ResNet_P) or to predict redshifts (ResNet_i 0−9).

3.3 GaSNet-II training: SDSS-DR16

The training of GaSNet-II aims to minimize the loss function and
maximize the accuracy (of the classification and predictions). As
mentioned, all “specialized” sub-networks are trained in parallel.

As a training set for the classifier network (ResNet_P, in Fig. 10𝑎),
we use a total of 182,000 SDSS-DR16 spectra, incorporating the 13
subclasses, each of them covered by 14,000 spectra for their training.

11 Both trained by an NVIDIA Tesla P40 GPU
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Figure 11. The training results for 50 epochs. We adopted a dropout rate of
0.5 in the dense layer to prevent overfitting during training. The first panel is
the loss and accuracy of ResNet, which is used to classify the spectra. The
second and third panels are the loss and the MAE of ResNet_i, which are used
to predict the redshift. The dashed lines are the results of the training set, and
the solid lines are the results of the validation set. The significant fluctuation
in the first 20 epochs is due to the significant varying of learning rates. The
overall worse performance in the training set is because we only employed
the dropout in the training processes.

By definition, each of the redshift prediction networks (ResNet_i in
Fig. 10𝑎), makes use of the same 14,000 used by the classifier for
each subclass 𝑖, but with the purpose of mapping the input spectra to
the labeled redshifts.

Under such partitioning of the training data, one can imagine that
the classifier is set to search for the redshift in a larger parameter
space, while the redshift “regressor” networks, ResNet_i, are set to
search for the specific redshifts of each subclass of spectra.

The result of the training process over the validation set is shown
in Fig. 11, where a step learning rate is used. The learning rate
starts at 10−3, then slowly decays to 10−6 at the end (halving every
5 epochs when the epoch < 50) during 50 training epochs. The
loss curves in the upper panel of the figure might indicate some
slight overfitting, while the accuracy curves show that it does not
affect the performance. The accuracy curve remains flat as more
training epochs are implemented, meaning that it has achieved its
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Figure 12. Confusion matrix results for the classification of the SDSS test set.
The predicted and actual labels for each subclass (see Table 1) are listed on
the left and bottom sides, respectively. Each subclass has 3 000 test samples.
The average accuracy is 92.4%, and most are larger than 90% (except the
GALAXY_STARFORMING subclass). The matrix should be read along
columns, that is the direction along which 100% of the actual labels are
distributed by the classifier.

upper limit. We have used a 0.5 dropout rate in the final layer to
mitigate potential overfitting in the training set. Overfitting could
be further reduced by using fewer network parameters or increasing
the size of the training data (e.g., through online additive-noise data
augmentation), however, due to the small amount of overfitting to
correct we decided to test these strategies in future analyses. The
checkpoints with maximum accuracy or minimum Mean Absolute
Error (MAE) are used as the model of the pipeline. Table 4 shows an
average classification accuracy of 91.9% from ResNet_P, as well as
a range of MAE for redshift estimation across different subclasses,
ranging from 0.001 to 0.107. The number of trainable parameters
of the sub-network and the number of training samples are also
provided.

4 RESULTS

In this section, we show the results of the pipeline using the same
SDSS DR16 dataset and test sample. However, in the second part of
the section, we also show the results of GaSNet-II, customized for
the 4MOST mock data and DESI early data release, to demonstrate
the potential for future application on Stage-IV surveys.

4.1 Statistical parameters

Before looking into the results, we introduce the statistical indicators
to quantify the performance of GaSNet-II, specifically for the redshift

accuracy. The first parameter is the Bias, defined as:

Bias = | ln( 1 + 𝑧𝑡

1 + 𝑧𝑝
) |, (9)

where 𝑧𝑡 represents the real value and 𝑧𝑝 represents the prediction
value. The Bias measures the deviation of 𝑧𝑝 from 𝑧𝑡 . In partic-
ular, we can use it to define the fraction of the “good” estimates,
Good_Frac (GF), as the fraction over the total number of spectra, 𝑁 ,
of the redshift estimates for which the Bias is smaller than the related
threshold, 𝑡ℎ𝑟_𝑥, that can differ for different classes (x = gal, qso).
Hence:

Good_Frac_x =
N (Bias < thr_x)

𝑁
. (10)

We set the threshold of the galaxy species (nan, star-forming, star-
bursts and AGN), thr_gal= 0.0015, such that optimal predictions are
defined as Bias < 0.0015, and the threshold of the QSO (nan and
broadlines), thr_qso=0.015, which qualify as good the predictions
with Bias < 0.015.

The second parameter is redshift relative bias Δ𝑧, defined as:

Δ𝑧 = |𝑧𝑝 − 𝑧𝑡 |/|1 + 𝑧𝑡 |, (11)

which is more intuitive than the Bias to interpret redshift discrepan-
cies. In particular, this is closely related to the 𝑀𝐴𝐸 , which is the
mean of the Δ𝑧 numerator, i.e.:

MAE = Mean( |𝑧𝑝 − 𝑧𝑡 |). (12)

As a reference, for the SDSS and DESI pipelines, Δ𝑧 < 0.01 was
essentially used as the catastrophic prediction threshold (Bolton et al.
2012; Dawson et al. 2016; Alexander et al. 2023), although it was
less strict for high-velocity dispersion QSOs.

4.2 SDSS-DR16 spectra

4.2.1 Classification

As discussed in §3, the ResNet_P sub-network gives the classifi-
cation probability (𝑃𝑖) for each of the input spectra. This is the
fastest task performed by GaSNet-II; it can perform the classifica-
tion prediction of the 39,000 spectra belonging to the test sample
in about one minute (excluding read time). The corresponding con-
fusion matrix is shown in Fig. 12. Here we see that most of the
subclass accuracies are larger than 90%, except for the subclasses
GALAXY_STARFORMING. The average accuracy of the 13 sub-
classes is 92.4%. This average accuracy is certainly driven by the
SNR of the spectra, as higher SNRs allow the network to better sep-
arate the spectra. This is shown in Appendix C, where we use the
same GaSNet-II to classify increasingly higher SNR spectra and find
that the average accuracy can reach a limit of ∼ 96% for the highest
SNRs. The star-forming galaxies are the class with lower accuracy,
possibly due to a larger overlap (and thus a more uncertain classifi-
cation) with other “emission line” classes, e.g. AGN and starburst,
but also with normal galaxies (GALAXY_nan class), possibly be-
cause low star-forming galaxies do not have strong enough emission
lines to distinguish against non-star-forming systems. Some addi-
tional confusion can have a more physical origin, such as the smooth
transition between AGN-dominated and host-galaxy-dominated sig-
nals. Furthermore, the accuracy of QSO_nan is also relatively low,
but in this case, we track the reason for the typically low SNR, as
seen in Fig. 4. Despite QSO_nan (GALAXY_STARFORMING) per-
forming at 91% (87%) level, the missing sources are misclassified
as QSO_BROADLINE (GALAXY_nan, GALAXY_STARBURST,
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Figure 13. Redshift predictions of 6 extragalactic SDSS subclasses, each of which used one sub-network. The subclasses GALAXY_STARBUSRST and
GALAXY_STARFORMING have the best redshift estimations, with an error of Δ𝑧 = 0.001. This can be attributed to the presence of significant emission lines
in their spectra, as shown in Figure 2. The subclass QSO_nan has the worst estimation with an error of Δ𝑧 = 0.047. This subclass is characterized by the lowest
signal-to-noise ratio (SNR), a high redshift range (Table 1), and a weaker broad emission line signal in the spectrum (Figure 2). Error bars on each redshift bin
(10 bins) are plotted at the top of the panel. The MAE for each bin is used as the error bar. The plot clearly indicates that errors become significant at the higher
redshift end, which is attributed to the lack of training samples in that region.

GALAXY_AGN), which means that only the level of activity (in-
tensity of the lines) moves some objects from one subclass to the
other. If we also consider the arbitrariness in the separation of these
subclasses in the SDSS classification, we believe that the accuracy
reached by the GaSNet-II represents possibly a lower limit.

In Appendix B, we have collapsed all the sub-classes on the three
major classes of star/galaxy/QSO, which shows an average of 99%
accuracy. This test is important to reproduce the “primary” coarse
classification each of the forthcoming surveys will implement (see,
e.g., DESI in §4.4.1, for comparison). The main result is that a higher
accuracy can be achieved (99% on average) with fewer classes, using
the same training data and network architecture.

4.2.2 Redshifts: point estimates

As anticipated in §3.2, we want to first derive the redshift point
estimate for a single measurement from the spectra. This has an
intrinsic error, which is due to a series of factors that we simplify
into two categories: 1) SNR of the spectra and 2) measurement
method. The former is linked to the structure of the data and how
the features used for the redshift estimates are detected and measured
(emission/absorption lines, 4,000Å break, etc.). The latter is linked to
the accuracy of the method: for the DL tools, this lies in the impact of
the weights and random seeds in the network. These two factors are
not independent as, for instance, high SNR spectra make the impact
of the weights minimal as the network tends to converge to a more

robust estimate, and vice versa. Hence, the point estimate should
reflect more the scatter due to these intrinsic sources of errors.

Fig. 13 shows the “point estimate” redshift predictions of the 6
extragalactic SDSS-DR16 subclasses, described in §3.2. The over-
all impression is a rather good agreement between the predictions
from GaSNet-II and the SDSS-DR16 redshifts, with rather small
Δ𝑧 and MAE, and a minimal fraction of catastrophic estimates, ex-
cept for the QSO_nan subclass. The best accuracy is found for the
GALAXY_STARBUSRST and GALAXY_STARFORMING , sub-
classes, Δ𝑧 = 0.001, while QSO_nan shows the worst Δ𝑧 = 0.047.
These accuracies are still about one order of magnitude larger than
the ones required for redshift catalogs (see e.g. Bolton et al. 2012),
but this is not a major concern for this analysis that is not meant to
optimize the redshift accuracies12. The GF is generally larger than
∼ 50% but reaches 80% relevant fractions only for three classes.
We see an increasing scatter of the predictions at higher redshifts
in almost all categories, mainly driven by the poor coverage from
the training samples of high redshifts. As we will see, training on
mock spectra can strongly alleviate this problem. The relatively poor
performance of the QSO_nan sample, as we mentioned above, is ad-
ditionally driven by the low SNR of the spectra. As we will discuss
later, the SNR has a large impact on the accuracy of the predictions.

The values of Bias of all subclasses are shown in Fig. 14. In this
figure, we present the Bias values as a function of the redshift and

12 Preliminary tests considering anomaly detection show that we can achieve
Δ𝑧 ∼ 10−4. This will be discussed in upcoming analyses.
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Figure 14. Bias as a function of the redshift for different extragalactic SDSS
classes as indicated by the legend on the right. The spectra are divided into
low (red), medium (green), and high (blue) SNR to show the performance at
different noise levels. The GF within each SNR bin is reported in the legend.
The plot shows clearly that estimate deviations exhibit more scatter as the
SNR decreases, implying larger statistical errors. The errors increase at the
high redshift end, where the SNR is typically lower. Another source of scatter
is that as the redshift increases, the training samples become smaller. See also
§2.1.

color-coded by their SNR. The GF is reported in the legend for each
SNR bin. It is evident that the number of “good” predictions in-
creases with SNR, which also correlates with redshifts; the lower
SNR spectra generally correspond to the higher redshift ones. This
also explains why even classes with lower GF, like the GALAXY_nan
(GF=0.63), reach a rather large GF∼ 90%, for SNR>10 spectra. If
we exclude the QSO_nan, which has too few SNR>10 spectra to
have reliable statistics (see §2.1), all classes have GF going between
63% and 94%, while the average GF is larger than 90% for star-
burst, starforming and broadline QSO, clearly because of their well
detectable emission lines. On the other hand, the lower accuracy of
the normal galaxies (GALXY_nan) is due to the fact that GaSNet-II
learns the redshift mainly from the continuum shape and possibly
the absorption lines, whereby the spectra have lower SNR for key
features compared to the emission line galaxies; this can limit the
performance of the former subclass.

4.2.3 Redshifts: MC estimates

We finally discuss the redshifts and errors of the 6 extragalactic
subclasses predicted by the MC test discussed in §3.2, which are
shown in Fig. 15. The main evidence emerging from a quick view of
the predicted values is that the accuracy is comparable to the point
estimates, as measured by MAE and Δ𝑧, which are very close, or
even identical to the ones shown in Fig. 13. Looking at the errors,
they are extremely small for the predicted values that distribute along
the 1-to-1 relation and become bigger for the (few) highly scattered
predictions.

As discussed in the previous section, QSO_nan is the most prob-
lematic subclass, showing a larger scatter, and, consequently, larger

errors. Looking at the high-𝑧 end in all classes, we see the effect again
of the sparse training samples which contribute to the larger errors,
which are mirrored by the increased scatter in the estimates already
noticed in §4.2.2. This is quantified in Fig. 15, where the upper pan-
els show the mean 𝜎𝑧 of the redshift estimates in different redshift
bins. Here, we can clearly see that the mean errors increase with
increasing redshift in almost all classes, except the GALAXY_AGN.
Some points’ errors are underestimated, particularly at the high red-
shift end. This is due to a lack of training samples in those regions,
which results in lower accuracy in this region. The bottom line is
that the estimated errors are indeed a measure of the reliability of
the GaSNet-II predictions, as large error bars emerge either because
the estimated values are far from their true value, or because the pre-
dicted value is poor due to the poor knowledge base. In particular, we
can use the estimated error, 𝜎𝑧 , to determine whether an estimate is
“robust” or “unstable”, using the MAE (listed in Table 4) as a lower
limit for an estimate to be unstable.

Before we discuss the predicted errors, we want to see whether the
mean redshift estimates behave similarly to the point estimates, or,
in other words, whether the point estimates are drawn by the redshift
probability distribution function (PDF) derived by the MC run. This
is needed to check if the point estimates are “unbiased” predictions
of the “ground truth”. To do that, in Fig. 16, we plot the relative
scatter normalized to the errors, 𝑡 = |𝑧𝑡 − 𝑧𝑝 |/𝜎𝑧 , for the different
test sets, which should be enclosed in the range [0, 3] for a Gaussian
distribution. Here we see that the great majority of the point estimates
are within the 3𝜎𝑧 distribution with fractions of the order of 0.96 or
higher. This is not fully compatible with a pure Gaussian distribution
(expected to be ∼ 0.99), but rather shows some excess outliers,
which we can roughly estimate to be no more than 5%. Also, we
see that some subclasses are more prone to systematics than others,
like the ‘GALAXY_AGN’ and ‘GALAXY_STARBURST’, that have
a tendency to provide overestimated “point” redshifts. We stress
here that the point estimates are obtained by a separate, independent
pipeline, trained to optimize the redshift estimate on a single run, so
they cannot be considered a random sample of the MC run, which is
trained to optimize the mean 𝑧. We take this into consideration in the
discussion below.

Moving to the error estimate, we start by connecting these errors
with the data structure. If the errors are artificially produced by in-
ternal network errors, due to the stochasticity of some processes,
then these should not have any correlation with the spectra uncer-
tainties. To show that, in Fig. 17 we compare the 𝜎𝑧 and SNR of
the spectra, where we see a correlation between the error size and
the SNR, as quantified by the median values (dashed line), show-
ing that the lower the SNR the larger the 𝜎𝑧 tends to be. This is
proof that the errors are driven by the data noise, which was as-
sumed without proof so far in this section, and is consistent with
the impact of the SNR in classification, discussed in §4.2.1 and
Appendix C. However, at any fixed SNR value, we also see the scat-
ter of the 𝜎𝑧 from class to class, with the QSO generally showing
larger errors. If we exclude the regions with sparse sampling (see
e.g., SNR∼ 5 for ‘GALAXY_STARFORMING’, or SNR∼ 6 − 8
for ‘GALAXY_AGN’), where the larger scatter of the errors might
reflect lower precisions due to a poor training sample, the reason
of the 𝜎𝑧 variation from class to class should reside in the type of
features that GaSNet-II used for the predictions. For instance, in the
case of the ‘QSO_BROADLINE’ (and perhaps also partially true
for ‘QSO_nan’) it is the line broadening that leads to more insecure
estimates, especially at lower SNR. Interestingly this is not seen for
‘GALAXY_nan’, which lets us speculate that for these systems the
absorption lines are not driving the redshift estimates, but rather
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Figure 15. The mean redshift predictions and errors of the 6 extragalactic SDSS subclasses. The error bar of each sample point represents the standard deviation
obtained from the MC estimation of 10 sub-networks. In the top left of each main panel the subclass name, MAE, Δ𝑧, and the GF are displayed. The points in
the top panels display the mean of the distribution of the 𝑧𝑝 residuals (𝑧𝑝 − 𝑧𝑡 ) with respect to the true values (𝑧𝑡 ) in each bin, and error bars corresponding
mean 𝜎𝑧 values (see text).

the full spectrum and there is a smooth and regular degradation of
the errors for smaller and smaller SNRs, similar to what is seen for
GALAXY_AGN. Direct analysis of the impact of the spectral fea-
tures on the accuracy is beyond the purpose of this paper and would
require more sophisticated techniques like self-attention methods of
anomaly detection, which we will address in forthcoming analyses.
However, to give a preliminary insight into the importance of the
spectral features in classification and redshift predictions, in Ap-
pendix D, we show the gradients of the classification probability
and the output redshift with respect to input flux, which allows us
to visualize the impact of spectral features in the GaSNet predic-
tions, although they cannot give a real measure of the impact of the
continuum.

On the other hand, GALAXY_STARFORMING seems to be in-
sensitive to SNR until they reach SNR∼ 7, below which prominent
emission lines start to blend into the noise, and then the continuum
takes over dominating the larger errors, similar to GALAXY_nan. We
also notice different behavior between GALAXY_STARFORMING
and STARBURST, as, for the latter, 𝜎𝑧 is increasingly noisier toward
low SNR. As the most important features for these two classes are the
emission lines, one would expect a similar behavior for 𝜎𝑧 . There are
two reasons for this: 1) emission lines in starburst galaxies dominate
the spectra and GaSNet-II does not learn much from the continuum
for star-forming systems. Thus the redshifts are fully determined by
the ability of the ResNets to cross-correlate emission lines over a large
wavelength range; 2) ResNets is perhaps not the ideal tool for this
emission line redshift estimation task, which is typically well-handled
by other deep learning structures, like “self-attention” networks (e.g.,
Han et al. 2020). We will discuss this in detail in §5. Finally, another

source of uncertainty in both redshift and classification can be the
velocity dispersion, as this can produce a different broadening of the
line that might reduce the accuracy of both tasks. In Appendix E, we
demonstrate that both 𝜎𝑧 and classification accuracy show almost no
correlation with the velocity dispersion, inside the different classes.

The bottom line is that the estimated error sizes as a function of
SNR and redshift seem to be mainly driven by the data quality and
data features as one should expect from standard analysis methods,
rather than the stochasticity of the deep learning network. As a conse-
quence, we are motivated to use 𝜎𝑧 as a proxy of the ‘robustness” of
the redshift estimates, as we now can interpret 𝜎𝑧 as the cumulative
effect of the variance of the weights of the network (see §3.2) and
the data noise. Also, we can expect that the estimates with smaller
𝜎𝑧 are more tightly distributed around the true value. In Fig. 18, we
show again the Bias vs. 𝑧, which is split into “robust” or “unstable”
categories based on whether their 𝜎𝑧 ≤ MAE or > MAE, respec-
tively, where MAE is the mean absolute error in the validation set
(Table 4). The robust limit is very close to the GF limit, and only
in the ‘GALAXY_nan’ or ‘QSO_nan’ subclasses it is significantly
larger. Thus, the robust estimates have a fraction over the total sam-
ples that are larger than the GF defined by the Bias threshold. This
result is particularly relevant for practical applications, as for new
spectra with no a priori information on the redshift, the use of the
redshift errors proposed here allows us to discard unstable estimates
(larger deviation points) without knowing the ground truth.
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Figure 16. The distribution of 𝑡 vs redshift, where 𝑡 is defined as 𝑡 =

|𝑧𝑡 − �̄�𝑝 |/𝜎𝑧 . In the legend, ‘frac’ denotes the proportion of the sample with
𝑡 ≤ 3.

4.3 4MOST mock spectra

Next, we analyze the 4MOST dataset introduced in §2.2. The main
reason to use this dataset is to test GaSNet-II with spectra close to
expected data from major Stage-IV upcoming spectroscopic surveys,
but classified on the basis of the survey requirements, thus providing
a different classification approach, more survey-oriented. Overall,
this would allow us to test the versatility of the pipeline, to respond
to different requirements, both in classification and in redshift pre-
dictions.

The training of GaSNet-II with the 4MOST spectra follows the
same procedure discussed for SDSS-DR16 in §3.3. As anticipated,
the size of the sample for each class (total of 10 classes) is the same
as SDSS-DR16 (20,000) and we use the same training, validation,
and test division (70%, 15%, 15%).

In the 4MOST observation phase, the labeled training data rely
on the classification of the first months of 4MOST observations to
develop a customized training sample based on data collected from
the different survey teams. Alternative approaches might rely on the
use of mock data, or using visually classified data.

4.3.1 Classification

Starting with the classification, in Fig. 19 we show the confusion ma-
trix obtained over the test samples. GaSNet-II achieves an accuracy
beyond 90.0% for the majority of subclasses, and an average overall
accuracy of 93.4%, which is slightly better than the one found for
SDSS-DR16 (92.4%). One reason can be the absence of contam-
ination discussed above, which we will address at the end of this
section; another reason is likely to be the even stronger disparity in
SNR between subclasses. Before we check that, we first discuss some
other relevant features from the confusion matrix.

In particular, we notice a striking 100% score by the
COSMO_AGN class that is superior to the 91% scored by the
GaSNet-II on the SDSS AGN sample. Since the mean SNR of the two
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Figure 17. The distribution of |𝑧𝑝 − 𝑧𝑡 | vs. SNR for the SDSS test data,
tracking the performance of error estimations in different noise levels. Median
𝜎𝑧 is indicated by a dashed red line. It demonstrates the MC method can
reflect the uncertainty realistically. In low SNR regions, the value of median
𝜎𝑧 is larger compared to the high SNR regions, as expected.
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Figure 18. Bias of the 10 sub-networks used. The x-axis is the real redshift
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set. This demonstrates that unstable points (larger deviation points) can be
automatically found without knowing the ground truth.
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datasets is very close in galaxy and AGN, (see Tables 1 and 2), we
identify the reason for this overperformance on the COSMOS_AGN
sample to the different redshift distributions, whereby the 4MOST
sample lies at a much higher average redshift compared to the SDSS
AGN. This makes it easier for GaSNet-II to unequivocally distinguish
the brightest AGN features from, e.g., starburst/starforming galaxy
emission lines, for faraway systems than for closer ones. However,
another factor that might help this outperformance is the limited
chance of cross-contamination among the training/testing classes,
which have been constructed here on distinct templates to obtain the
mock spectra (see also below).

The only clear case of such contamination is the mixing between
subclass ‘ClusB’ (label 6, corresponding to bright cluster galaxies)
and ‘RedGAL’ (label 8, i.e., red galaxies). ClusB likely systems are
a peculiar sub-sample of the RedGAL systems, at least at low red-
shift, as bright central cluster galaxies are generally old, red galaxies,
particularly in their centers (see e.g. Bernardi et al. 2007), which is
where 4MOST fibers would be placed. Fig. 20 shows the templates
of two ClusB spectra at redshift 0.3 and 0.9, respectively vs. two
redGAL templates at the same redshifts, normalized to the same flux
at 6000Å at each redshift. We are asking the classifier to separate
spectra that are nearly indistinguishable at the same redshift. Sur-
prisingly, in Fig. 19, we see that GaSNet-II can correctly predict the
clusB galaxies, while it confuses the RedGAL for ClusB in ∼ 29%
of the cases. We can possibly explain this with the fact that ClusB
galaxies often systematically show emission lines in their spectra,
while the RedGAL mostly do not (see again Fig. 20), hence we ar-
gue that the emission lines are features that GaSNet-II associates to
ClusB galaxies and not RedGAL, where they are not dominant. This
means that RedGAL spectra with emission lines have a larger chance
of being classified as ClusB. To conclude this section, we refer the
reader to Appendix B where, as for SDSS, we have performed the
classification of the spectra by grouping the different star, galaxy, and
AGN classes to emulate a coarse STAR-GALAXY-AGN classifica-
tion, to be compared with a similar one from SDSS and DESI. We
stress here that this experiment, besides putting the performances on
4MOST templates in the context of other reference surveys, provides
us also a test on a more physically-oriented sample, rather than a
survey-oriented classification discussed so far. This is closer to what
GaSNet will be required to perform in the early stage of 4MOST op-
erations. In this case, we can see that the coarse classifier can reach
an even higher mean accuracy of 98%, comparable with what we
have seen for SDSS.

4.3.2 Redshifts

We finally show the results for the redshift predictions, limiting our-
selves to the MC estimates with errors. In Fig. 21, we show the
predicted redshifts for all the 4MOST extragalactic subclasses. The
figure indicates an average Δ𝑧 of 0.0055 for galaxy types (ClusB,
WAVES, RedGAL, and tides_host), while it becomes 0.003 for AGN.
The average GF for the galaxy is 0.68, while for AGN is 0.71. These
latter are the class for which GaSNet-II also provides the most accu-
rate classification, meaning that the combination of good SNR and
emission lines, permits high performances for both tasks. Among
the galaxy types the average error is dominated by the WAVES class
which has the largest errors, possibly due to the low average SNR (see
Table 2). The same WAVES class also shows the highest relative scat-
ter Δ𝑧 = 0.014 compared to Δ𝑧 ∼ 0.004 shown by the majority of the
other subclasses. Overall the Δ𝑧 found for the 4MOST mock sample
seems slightly worse than the one measured for SDSS (Δ𝑧 ∼ 0.003),
although a direct comparison is not appropriate, with the two sam-
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Figure 19. The figure displays the classification results of the 4MOST model
on the testing set. It presents a confusion matrix where the legends are the
same as Fig. 12. This figure indicates an average accuracy of 93.4%. The worst
performance is observed in the subclass RedGAL, which has an accuracy of
only 66%. 29% of the spectra in RedGAL are misclassified as ClusB. Note
that the matrix has to be read along columns, that is the direction along which
the 100% of the true labels are distributed by the classifier.
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Figure 20. We randomly pick 4 spectra. The upper panel shows ClusB and
RedGAL spectra with a redshift of 0.3. The bottom panel shows the spectra
with a redshift of 0.9.

ples having different observational constraints, especially in terms
of SNR, for instance, 4MOST AGNs and galaxies have a lower SNR
except the “tide_host" subclass (e.g., comparing Tables 1 and 2). The
4MOST redshifts also show a GF on average slightly lower than the
one of SDSS as reported by the mean good fractions in the legends
of Fig. 21, against the GFs reported in Fig. 15, for SDSS. Once again
the WAVES spectra are the ones with the worst GF, which are a
consequence of the systematically larger errors, ultimately driven by
the low SNR.

As for the comparison with standard methods, here a full detailed
check of the relative performance of GaSNet-II with respect to tools
like redrock and redmonster is beyond the scope of this paper. How-
ever, to put the GaSNet-II performances into perspective, on a series
of benchmarking tests on simulated 4MOST consortium datasets,
we have found GaSNet-II GF to be ∼20% worse than redrock and
redmonster, although, for some classes, like AGN/QSO, GaSNet-II
shows a GF even better than classical tools. For instance, redmonster
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Figure 21. Redshift predictions for the five extragalactic 4MOST mock subclasses. It is worth noting that the simulated spectra are produced on a coarse grid of
redshifts, hence the quantization. Legends are identical to Fig. 15.

shows an average GF of 0.71 (GF for AGN/QSO is 0.43), Mean Ab-
solute Deviation (MAD) of 0.00042, and Time (in the unit of seconds
per spectrum per core, sec/spec/core) of 1.02; Redrock shows an av-
erage GF of 0.48 (GF for AGN/QSO is 0.23), MAD of 0.051, and
untested Time; while for GaSNet-II we find an average GF of 0.40
(GF for AGN/QSO is 0.70), MAD of 0.0086, and Time of 0.00089 on
the AGN/QSO/GALAXY redshift testsets. This indicates that there
is still room for GaSNet improvements, which can be consolidated
with final, more sophisticated, mock data, and eventually with the
first 4MOST observations.

4.4 DESI spectra

We finally apply GaSNet-II to the early release DESI data. As seen
in §2.3, the DESI classification taxonomy is less complex only a very
broad classification (i.e. star, galaxy, and quasars), and their numbers
are less abundant, as we could test our tools over ∼1050 classified
spectra for each class. This allows us, besides testing GaSNet-II
on a further dataset, with a different observation set-up and size, to
perform a basic analysis over a ‘coarse’ classification which is similar
to what we expect to implement for 4MOST earlier data releases
(see also Appendix B). The classification and redshift estimates are
quickly discussed below.

4.4.1 Classification

The separation of the test sample on the 3 DESI classes is shown in
Fig. 22, where the confusion matrix indicates the accuracy of each of
the 3 classes is larger than 93%, and the average accuracy is 96%. The

high accuracy is obviously highly dominated by the small number of
classes, however, this also shows an almost absent ambiguity of the
classification for classes notoriously prone to confusion, e.g., stars
and galaxies. This is likely due to the ability of GaSNet-II to guess
the redshift and (eventually) the shapes of the spectral features. We
expect though that with a larger training sample the accuracy will
be further increased. To put these results in perspective with other
datasets, in Appendix B we have performed a similar analysis for
SDSS-DR16, by collapsing all spectra sub-classes into three broad
classes as for the DESI dataset. We anticipate that, using the same
number of SDSS training samples, we find a 99% accuracy for such a
coarse classification, that seems rather higher than the one obtained
for DESI. This implies that the quality of the spectra, rather than
the number of training samples, is the major factor contributing to
the accuracy. We expect to return to such a test in upcoming DESI
releases to confirm this result.

4.4.2 Redshifts

Finally, we show the MC predictions of the redshifts and their errors
for the DESI GALAXY and QSO objects. In Fig. 23, we can see
a good agreement between the predictions with the ground truth
and an average redshift error (Δ𝑧) of the two classes of 2.8% for
galaxies and 4.8% for QSOs. These errors are larger than the ones
obtained for former datasets for two main reasons. The first is the
unbalanced redshift distribution, especially in the high redshift part
(i.e., 𝑧 > 0.4 for galaxies and 𝑧 > 2.5 for QSO), where there are
fewer systems, especially for the galaxies. The second is the overall
smaller training samples available for these early-release data from
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Figure 22. The DESI classification on the test set. Legends are identical to Fig.
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Figure 23. Redshift predictions of two DESI classes (GALAXY and QSO).
Legends are identical to Fig.15.

DESI (about 1/10 of the former datasets), resulting in typically larger
errors on the individual spectra. Once we can include more DESI
training samples, and use customized sub-networks for the special
subclasses, we expect the accuracy will rise to the level found for
SDSS and 4MOST.

5 DISCUSSION

In this section, we will discuss the potential strategies for improve-
ments in performance and further developments.

As far as classification is concerned, a key problem is how to
improve the “absolute” accuracy of the classification method. So far,
we have benchmarked GaSNet-II with respect to the labels assigned
from the different datasets (relative performances). For the SDSS
and DESI datasets, the labels are deduced from the PCA fitting, and
this can bring some systematics. In fact, when using a classification
based on real spectra as labels for the training of the DL tools, the
upper limit of the “absolute” accuracy of the trained networks is
decided by the accuracy of the training set, which in turn is set by the
accuracy of the “traditional” pipeline used for labeling it. A viable
alternative is to incorporate human-labeled data, like, e.g., SDSS-
DR12 superset (Pâris et al. 2017, 2018). However, this approach
is not bias-free either, introducing a different form of bias: human
judgment. Another physically motivated alternative is to utilize mock
data, based on theoretical templates, e.g., similar to those used for the

class i template/SED with zi mock spectra

networks

training on the simulation

trained networks

observation flux

i & zi

F (flux) = (Pi, zi)

observational realism

training

recovery i & zi

Figure 24. The general process of networks trained by simulation involves
training on mock samples, finding the mapping 𝐹, and predicting real data.
The training data is generated with specific parameters (𝑖, 𝑧𝑖) and obser-
vational realism. The networks are trained to recover the labels 𝑖, 𝑧𝑖 , and
ultimately, the well-trained networks are used to fit the parameters 𝑖, 𝑧𝑖 based
on observational data input. It is a first-principles-based method rather than
an empirical-based one.

4MOST sample in §4.3.1. In Fig. 24, we describe a general procedure
for training on simulated data. Here, the function 𝐹 represents:

𝐹 ( 𝑓 𝑙𝑢𝑥) =
{
(𝑃𝑖 , 0), 𝑖 ∈ galatic
(𝑃𝑖 , 𝑧𝑖), 𝑖 ∈ extragalactic.

(13)

The networks shown in the figure serve as a powerful fitting tool that
minimizes the need for manual adjustments. The mock data, pro-
duced under specific physical conditions (𝑖, 𝑧𝑖), are used as training
data for the networks. Subsequently, well-trained networks are set up
by optimizing the prediction accuracy of the parameters (𝑖, 𝑧𝑖). If the
training sample is complete and accurate, these well-trained networks
can be considered, by construction, as the optimal tools maximiz-
ing the “absolute” accuracy of the predicting parameters (𝑖, 𝑧𝑖) when
applied to real observational data. In practice, this is possibly true
only if: 1) the theoretical models are correct, 2) one introduces into
the process all the observational conditions to maximize the fidelity
between mock train/test sets and observations, including Poissonian
noise, realistic distributions of SNR, seeing, intrinsic broadening of
the features (e.g., galaxy kinematics), artifacts, etc. (see e.g., Fig. 24).
The former condition is generally satisfied for most of the objects one
expects to classify in galactic and extragalactic surveys as there are
rather robust theoretical stellar (e.g., Coelho 2014) and galaxy/QSO
templates (e.g., Kewley et al. 2001). However, there might still be
remaining systematics due to specific model shortcomings or even
“unknown” phenomena that are not fully accounted for by standard
theories or empirical models. In principle, these latter systems would
possibly appear as “anomalies” in theoretical-based classifications
that can be studied separately either to improve models or explore
new phenomena. With regard to “observational realism”, the inclu-
sion of more observational conditions is something that is currently
under development (in the case of imaging data, see, e.g. Yin et al.
2022). Despite these difficulties, which we aim to address in future
analyses, the main advantage of using mock datasets is the freedom
to choose the hyperparameters that one is expected to predict with
spectra, and then optimize the training sample accordingly (a kind of
active learning loop), e.g., using theoretical-based simulation spectra
covering a wide and physical range of these hyperparameters. An-
other advantage of using the mock spectra is that they do not suffer
the poor sampling problem, which plagues empirical datasets (e.g.,
rare events, like strong gravitational lenses, or high-redshift galaxy
samples, etc.). As a result, they eliminate the biases introduced by
incomplete or poor sampling.

Regardless of the philosophy behind the training sets, there might
be further strategies that can help improve the classification. One is
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the hierarchy. Classifications can be done in one step (as we have
proposed in §4.2.1, 4.3.1, 4.4.1) or multiple steps. Spectra can be
roughly classified in the first step, followed by a more sophisticated
sub-classification in subsequent steps (see, e.g., Sánchez-Sáez et al.
2021). This decision-tree-like classification can allow us to have a
more fine-grained and detailed classification process. The architec-
ture of multiple identical sub-networks, similar to what we currently
use, can be easily rearranged into a decision-tree-like hierarchical
structure to realize a multi-ML model combination "tree" structure,
with more branches and deeper layers.

Moving to the redshift estimates, we foresee that relevant improve-
ments can be obtained using “self-attention” (Vaswani et al. 2017),
which is becoming popular as the state-of-the-art model in DL appli-
cations. For instance, Fig. 20 is an example where the classifier based
on the ResNet struggles to effectively recognize the slight difference
in the spectrum when there is a mix of features like the spectrum
continuum and emission lines. “self-attention” has shown to be su-
perior in recognizing the global features and “long-range correlation"
compared to CNNs (Han et al. 2020) with the net effect that both
classification and redshift estimates can highly be improved (see also
§4.2.3). We plan to implement these alternative approaches in future
work by replacing the convolutions with "self-attention" in the small
blocks of our network.

Finally, alternative methods of estimating the redshift error exist.
In standard networks, keeping the inputs the same leads to the same
outputs, which is stable but does not allow us to generalize the error
estimates. Apart from introducing multiple sub-networks to estimate
the errors, as we have already experimented with in this paper, there
are other approaches to introduce uncertainty, such as MC drop-
out techniques (Podsztavek et al. 2022) or Bayesian neural networks
(Perreault Levasseur et al. 2017; Zhou et al. 2022; Gentile et al. 2023).
We stress though that we expect that these methods are unlikely to
yield significant differences with respect to our approach as these
methods obtain the error by repeating predictions. We aim to test
these different techniques in future analyses.

6 CONCLUSION

We have developed new tools for spectroscopy classification and
redshift prediction using deep learning techniques and constructed a
pipeline that we have tested on SDSS, 4MOST, and DESI datasets.
The performance of our pipeline on these three different datasets
can be summarised as follows: on SDSS, the classifier achieves an
average accuracy of 92.4% for a 13-subclass classification task (with
most types exceeding 90%), and redshift prediction accuracy around
0.23% for galaxy and 2.1% for QSO subclasses. On 4MOST, the
classifier achieves an average accuracy of 93.4% for a 10-subclass
classification task and redshift prediction accuracy of around 0.55%
for galaxy and 0.3% for AGN. On DESI, the classifier achieves an
average accuracy of 96% for a 3-class classification task and redshift
prediction accuracy of around 2.8% for galaxy and 4.8% for AGN.
The accuracy of classifiers is strikingly consistent. However, the
aspect of redshift prediction is clearly dependent on various factors
such as the types of subclasses/classes, the average spectral element
signal-to-noise ratio, and the sample size of the training data. For
example, the poor SNR of subclass WAVES results in the highest
error on the 4MOST dataset, while the relatively sparse training data
for DESI contributes to a larger redshift error compared to SDSS and
4MOST.

GaSNet-II’s efficiency and accuracy make this tool suitable for
real-time analyses of nightly observations. The predictions for 39,000

spectra can be completed in less than one minute. Among the data
products, GaSNet-II can provide realistic redshift errors from a built-
in sud-network architecture simulating an MC test. As seen in the
discussion of the SDSS-DR16 results. The redshift error of each
data point can be also used to assess the robustness of the predicted
redshifts.

In summary, deep learning methods offer significant advantages
for Stage-IV spectroscopic infrastructures like DESI, 4MOST, and
MOONS in various aspects, such as efficiency, “data-driven", better
performance in low SNR, better consistency and systematics, and so
on. Although the current redshift accuracy leaves room for improve-
ment, deep learning, as a new tool, holds huge potential for further
development. Many aspects of improvement can be done with the fu-
ture 4MOST simulations. Further datasets such as theoretical spectra
and improvements such as a ‘self-attention’ structure will be applied
to GaSNet-II in the future to improve the “absolute” accuracy of
classification and redshift estimates, respectively.
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APPENDIX A: CROSS-CONTAMINATION ON DATASET

We have anticipated in §2.1 that the empirical classification of the
SDSS-DR16 cannot guarantee full accuracy, and we cannot exclude
cross-contamination among the different classes. This might have an
impact both on the classification and the accuracy of the redshifts. As
discussed in §5, a possible workaround is to train on a purer sample of
mock spectra based on well-established theoretical or observational
templates (Robotham et al. 2020; Bellstedt et al. 2020; Thorne et al.
2021). An example of how this might lead to higher performances
has been offered by the 4MOST sample, where for some classes
we have reached 100% accuracy (e.g. COSMOS_AGN, ESN, and
GAL_HR) for a combination of clean templates and rich training
sample, although the 4MOST training sample is not exactly built over
physically motivated templates, but, rather, specific survey targets,
that might have very specific properties, including high SNR, that
make the spectra easier to classify (e.g., tides_host).

Here we intend to check, more quantitatively, the possible impact
of the misclassified spectra in a given class. We use the SDSS-DR16
dataset as a reference for this test and add, to each class, 5% or
10% contamination from the relatively similar classes seen from the
confusion matrix. For the sake of brevity and clarity, we use only three
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Figure A1. Confusion matrix of a 3-class classification (AGN, STARBURST,
STARFORMING), showing how this changes with increasing random con-
tamination (0% - 5% - 10 %). The contamination fraction refers to randomly
selected and shuffled labels in the dataset. As expected, as contamination
increases, the accuracy decreases. Roughly speaking, with respect to the orig-
inal sample (0% artificial contamination), we observe an average decrease in
accuracy by 3.3% for 5% contaminants and 7.7% for 10% contaminants.

extragalactic classes: AGN, STARBURST, and STARFORMING.
The result is shown in the confusion matrix in Fig. A1. All of those
3 classes belong to the subclass of GALAXY and show some degree
of mixing with each other in the SDSS sample.

As additional testing, the results of cross-contamination on the
4MOST dataset (RedGAL, clusB, COSMO_AGN) are also shown
in Fig. A2. In §4.3.1, the confusion matrix shows some strong de-
generacy between the class RedGAL and clusB, so we test the cross-
contamination on those two classes and COSMO_AGN. The addi-
tional class COSMO_AGN was used to reflect the upper limit of
classification (the cross-contamination rate). We find an average de-
crease in accuracy by 5.7% for 5% contamination and 9% for 10%
contamination.

We end this section by showing the redshift predictions for the sam-
ples with contamination, discussed at the end of the §4.3.1. Fig. A3
shows the redshift prediction results for 3 subclasses (AGN, STAR-
BURST, STARFORMING) in the 3 different cross-contamination
levels (0% - 5% - 10 %). The figure shows that the small contamina-
tion among subclasses does not significantly decrease the accuracy
of redshift prediction, but it still causes performance degradation,
such as the average decrease in GF by 2% for 5% contamination and
3.3% for 10% contamination.

APPENDIX B: THE COARSE CLASSIFIER OF SDSS-DR16
AND 4MOST

In this appendix, we briefly describe a more homogeneous com-
parative check of the performances of the GaSNet-II on the three
datasets discussed in the paper, by emulating the situation where we
have the same data size and number of classes. We use the DESI
sample as a reference, as it contains the smaller dataset (21 000 en-
tries) and coarser classification (GALAXY, QSO/AGN, and STAR).
To do that, we have regrouped the spectra belonging to these three

COSMO_AGN ClusB RedGAL
Actual

CO
SM

O_
AG

N
Cl

us
B

Re
dG

AL
Pr

ed
ict

ed

2436
1.00

0
0.00

2
0.00

0
0.00

2746
0.91

869
0.29

4
0.00

274
0.09

2102
0.71

COSMO_AGN ClusB RedGAL
Actual

CO
SM

O_
AG

N
Cl

us
B

Re
dG

AL
Pr

ed
ict

ed

2346
0.95

37
0.01

53
0.02

52
0.02

2340
0.78

776
0.26

68
0.03

636
0.21

2125
0.72

COSMO_AGN ClusB RedGAL
Actual

CO
SM

O_
AG

N
Cl

us
B

Re
dG

AL
Pr

ed
ict

ed

2258
0.92

91
0.03

139
0.05

101
0.04

2320
0.77

876
0.29

99
0.04

584
0.19

1965
0.66

Figure A2. Confusion matrix of a 3-class classification (COMOS_AGN,
ClusB, RedGAL), showing how this changes with increasing random con-
tamination (0% - 5% - 10 %). The contamination fraction refers to randomly
selected and shuffled labels in the dataset. As contamination increases, the
accuracy of both the COMOS_AGN and ClusB decreases. Roughly speaking,
with respect to the original sample (0% artificial contamination), we observe
an average decrease in accuracy by 5.7% for 5% contamination and 9% for
10% contamination.

broader classes for SDSS (STAR: raw 1-7; GALAXY: raw 8-11;
QSO: raw 12-13, in Table 1) and 4MOST (STAR: raw 1-5; AGN:
raw 6; GALAXY: raw 7-10, in Table 2) respectively. To be uniform
with the DESI case, we have also randomly extracted 7 000 spectra
from these re-grouped classes, to train and test the GaSNet-II, using
the same set-up of DESI training/testing. Fig. B1 shows the results
of this ‘coarse’ classification of SDSS and 4MOST datasets, to be
compared with the same for DESI in Fig. 22. The figure indicates
that GaSNet-II can achieve an average accuracy of 99% for classifica-
tion. The STAR class nearly achieved 100% accuracy. The class with
the lowest accuracy is QSO, but it still achieved an impressive 98%
accuracy. Compared to the DESI classification, it exhibits a higher
accuracy for the same coarse classes and the same amount of training
data, with an improvement of about 3%, which can be attributed to
the qualities of the SDSS spectrum. For instance, the mean SNR of
stars and galaxies in SDSS spectra is higher than that of DESI. This
can be seen by comparing Tables 1 and 3.

APPENDIX C: RELATIONSHIP BETWEEN AVERAGE
CLASSIFICATION ACCURACY AND SNR

Here, we want to test the dependence of the classification accuracy on
the SNR of the spectra (see also §4.2.3 for the redshift estimates). In
Fig. C1, we show the average classification accuracy over the SDSS
13-subclasses with respect to the SNR. We consider 14 bins in the
SNR range of 0-50. The figure shows that as the SNR increases, the
accuracy systematically increases and finally reaches an upper limit
of an average classification accuracy of ∼ 96%.

MNRAS 000, 1–23 (2023)
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Figure A3. Redshift prediction results of 3 subclass (AGN, STARBURST, STARFORMINGL) in the 3 different cross-contamination levels (0% - 5% - 10 %).
The first row represents 0% contamination. The second row represents 5% contamination. The third row represents 10 % contamination. The figure indicates
that the small contamination on subclasses does not significantly decrease the accuracy of redshift prediction, but we still observe an average decrease of GF by
2% for 5% contamination and 3.3% for 10% contamination.
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Figure B1. Results of the ‘coarse’ classification of the SDSS (left) and
4MOST (right) dataset. The spectra are categorized into 3 classes: GALAXY,
QSO (AGN), and STAR. GaSNet-II achieved an average accuracy of 99%.
The STAR class nearly achieved 100% accuracy. The class with the lowest
accuracy is QSO, but it still achieved an impressive 98% accuracy.

APPENDIX D: VISUALIZATION, THE GRADIENTS OF
OUTPUT

As discussed in Nepal et al. 2023, target (i.e. output label) gradients
as a function of input neuron (or wavelength), in the form of partial
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Figure C1. The average classification accuracy of the SDSS 13-subclasses
classification with respect to the SNR. We only consider the SNR range of
0-50.

derivatives of the output with respect to 𝜆 can give information about
the sensitivity of output labels to each of the input fluxes. This allows
us to visualize whether the CNN is learning from the spectral features.
In Fig D1 we have selected 6 SDSS extragalactic random spectra
including objects from different classes. We have paid attention to
avoiding too low SNR to avoid the gradient being dominated by
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Figure D1. The normalized flux and gradients of 6 SDSS extragalactic spec-
tra. The red line (z_grad) represents the absolute redshift gradients, | 𝑑𝑧

𝑑𝜆
|,

which is shifted by -1; the green line (P_grad) represents the absolute proba-
bility gradients, | 𝑑𝑃

𝑑𝜆
|, which is shifted by -2.

noise rather than the impact of the spectral features. As it can be
seen, the gradients of both the classification probability, | 𝑑𝑃

𝑑𝜆
|, and

the redshift predictions, | 𝑑𝑧
𝑑𝜆

|, show strong increases around the most
prominent features (e.g. emission lines in star-forming and starburst
galaxies) and possibly some absorption lines from normal galaxies.
Interestingly, they seem to be less sensitive to the very broad lines
from quasars, meaning that these are too smoothly varying, maybe
looking more like a continuum feature. Also interesting is the fact
that the gradients show a burst around the “redshifted” 4000Å break
for the GALAXY_nan spectrum (at ∼ 7000Å), implying that this is
a feature that can be seen by the CNN.

APPENDIX E: CLASSIFICATION ACCURACY, REDSHIFT
UNCERTAINTY, AND VELOCITY DISPERSION

In this appendix, we test the impact of the velocity dispersion on
the spectra classification and redshift estimates. The line broadening
caused by the velocity dispersion might enlarge the width of emission
or absorption lines, affecting the accuracy of redshift prediction. In
Fig E1 (left panel), we demonstrate that the predicted 𝜎𝑧 of the
SDSS dataset is slightly correlated with the velocity dispersion of
galaxies, as the larger the velocity dispersion of the galaxy, the larger
the predicted uncertainty. However, in the same figure, we also show
the 𝜎𝑧 separated in the different subclasses and we see that, for each
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Figure E1. The predicted 𝜎𝑧 values by the MC and the velocity dispersion
of four SDSS subclasses of galaxies are plotted. The x-axis represents the
velocity dispersion, limited to values up to 450 km/s.

subclass, the 𝜎𝑧 is almost independent of the velocity dispersion
(VDISP). This is mirrored by the classification accuracy (bottom
panel) where we see that, except for ‘GALAXY_STARFORMING’
which has a sparser sampling, the accuracy also stays almost constant
with the velocity dispersion. Hence, we conclude that the accuracy of
classifications and redshift estimates are mainly driven by the class
type (meaning spectral features) and SNR (see §4.2.3 and Appendix
C), rather than the velocity dispersion.
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