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Active solids emerge from self-actuating components interacting with each other to form crystalline
patterns. In equilibrium, commensurability underpins our understanding of nanoscale friction and
particle-level dynamics of crystals. However, these concepts have yet to be imported into the realm
of active matter. Here, we develop an experimental platform and a theoretical description for
microscopic clusters composed of active particles confined and self-assembled into small crystals. In
our experiments, these crystallites form upon circular confinement of active rollers, with a magic
number of 61 rollers per well. Competition between solidity and self–propulsion leads to self–
shearing and complex flow–inversion behaviour, along with self–sliding states and activity–induced
melting. We discover active stick–slip dynamics, which periodically switch between a commensurate
static state and an incommensurate self-sliding state characterised by a train of localised defects.
We describe the steady–state behaviour using a discretised model of active hydrodynamics. We
then quantify the intermittent stick–slip dynamics using a self-propelled extension of the Frenkel-
Kontorova (FK) model, a fundamental workhorse of slipping and flow in crystals. Our findings in a
colloidal model system point to a wealth of phenomena in incommensurate active solids as design
principles for both assembly and robotics down to the nanoscale.

I. INTRODUCTION

Active self–assembly goes beyond the minimisation of
free energy to design exotic structures and dynamics.
Perhaps the simplest self–assembled structures are crys-
tallites. When created from active components, crys-
talline clusters exhibit complex assembly based on either
external stimuli [1] or internal self–propulsion [2]. Once
assembled, crystallite behaviour remains profoundly af-
fected by the underlying activity of individual building
blocks. For example, crystal structure interplays with ac-
tive dynamics, leading to characteristic patterns of self–
kneading [3] and synchronization of collective modes [4].
However, the physical principles behind active crystal-
lites have only recently begun to be explored.

Self-organisation in active matter takes many forms,
from flock formation [5–7], to clustering through motility-
induced phase separation [8, 9]. One way to control self-
assembly is confinement, which has been developed as a
workhorse from the molecular to the colloidal scale by
perturbing systems at their boundaries [10–12]. Addi-
tional pathways of controlling these systems can be ac-
cessed by taking them out of mechanical equilibrium by
supplying energy from the boundaries, e.g., by shear-
ing [13–15]. However, an exciting way to take a system
out of equilibrium is by using active components, which
supply energy throughout the bulk rather than exclu-
sively at boundaries or surfaces.

Active solids exhibit pattern formation, and collec-
tive dynamics not seen in active fluids. Living sys-
tems present many examples of active solids, from col-

lections of organisms [2], gastrulation [16], to confluent
tissues [17]. These biological systems are complex, and
considerable insight can be gained from examples of these
exotic phenomena in a minimally simple setting. To this
end, tunable colloidal model systems provide a means to
realize such behavior in a wide variety of situations [7].
However, increasing the packing fraction such that self-
propelled colloidal systems solidify has proven challeng-
ing due to limitations in colloidal stability. Among the
relatively few examples that have been studied are active
colloidal glasses [18, 19]. Addressing the challenges of
working with active colloids at high density has allowed
us to perform experiments to explore many of the open
questions about active colloidal crystals.

Here, we use an experimental colloidal system to ex-
plore how the competition between crystalline order and
self–propulsion leads to self–shearing of active crystal-
lites. We characterise the activity-induced rotation,
melting, and complex flow behaviour due to the dynamic
frustration between self–propulsion and collective rota-
tion. We observe that increasing self–propulsion leads to
a sequence of rigid–body rotation, faster angular veloc-
ity at the edge and, finally, an inversion to faster angular
velocity at the centre. We quantify this behaviour by
discretising a version of the Toner–Tu equations. Using
a minimal model of self–sliding, we connect our active
clusters to the Frenkel–Kontorova (FK) model and nan-
otribological phenomena [20, 21]. In particular, slipping
is associated with a breakdown in local crystalline order.
We expect these active analogues of sliding friction to
be generically present in active colloids that form crys-
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FIG. 1. Confinement induced self–assembly of active Quincke rotors. a. The confinement of Quincke rollers into
circular regions is achieved by the application of a localised electric field E. b. Different populations N , indicated by the
labels, are found across the confining regions. Scale bar represents 50µm. c. Polarisation Πφ and bond orientational order,
ψ6, parameters measured for different populations as they become active, i.e. at E ≈ EQ. d–e. Phase diagrams indicating (d)
the hexagonal ψ6 and (e) polar Πφ order for passive and active rollers under strong confinement. Above EQ (solid horizontal
line), clusters become active and give rise to apolar (disordered) gas and polar (ordered) fluid phases. Colourbars indicate the
magnitude of order parameters. Symbols are: (hexagon) passive aggregates, active (squares) apolar (Πφ ≤ 0.5) and (circles)
polar states (Πφ > 0.5). Open white circles indicate polar fluids (ψ6 ≤ 0.5), whereas solid black circles indicate active crystallites
(ψ6 > 0.5). Colours in data points for Nmax correspond to data in Fig. 2.

tallites, due to the frustration between particle motility
and periodic order.

II. EXPERIMENTAL SET-UP

We address the challenge of stablising active colloids
at high density with the time–honoured colloid science
method of steric stabilisation. In particular, we use a sus-
pension of active colloidal rollers powered by the Quincke
electro–rotation mechanism [22]. Spontaneous rotation
of colloids emerges with the application of a DC elec-
tric field, E, with amplitude above a critical value, EQ.
When adjacent to a surface, these particles roll in a ran-
dom direction, as rotation couples with translation [6],
forming a quasi-two-dimensional ensemble of active par-
ticles. Our particular system uses colloids of diameter
σ = 2.92µm dispersed in a solvent with low dielectric

constant containing an ionic surfactant (See Methods for
more details). The particles are laterally confined by ap-
plying the electric field only in a circular region of radius
Rc ≈ 5σ (Fig. 1a). At low amplitudes of the field, i.e.,
E < EQ, where EQ ≈ 0.8Vµm−1, a population of N col-
loids moves towards the confining regions and assembles
into clusters. Figure 1b shows nine confining regions,
each with a different population N . The maximum pop-
ulation observed is Nmax = 61. Full experimental details
may be found in the Methods and the nature of the dy-
namics is shown in Supplementary Movie 1.

III. PHASE BEHAVIOUR IN THE
POPULATION–ACTIVITY PLANE

The structural and dynamic behaviour in the
population–activity (N–E) plane is summarised in
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FIG. 2. The magic number rotor with N = Nmax = 61. a. Time-averaged angular velocity as a function of E in layers
n = 2 (black squares) and n = 4 (white circles), with n counting outwards from the central particle (labelled n = 0). At
intermediate field strength E ≈ 1.5EQ the outer layer rotates faster than the inner layer, but this situation is inverted at
high E > 1.6EQ, where the inner layers rotate faster than the outer layer. Colours correspond to the state points shown in
Figs. 1d–e. b. Radial density profiles characterising structures obtained at different fields E, indicated in the legend. Numbers
over the peaks indicate the layer number n. Curves are offset vertically for clarity. c. Angular velocity profiles as function of
the layer number n, where n = 0 is the central particle. Symbols are experimental data, solid lines are fits obtained using Eq. 5
in the SI, and dotted lines are step guides. d. Distortion order parameter, ⟨Θ⟩, as a function of layer n. e. Hexagonal order
parameter, ⟨ψ6⟩, as function of layer n. For all panels, colours correspond to the electric field values indicated by the colourbar
in b.

Fig. 1b–e. For E < EQ, passive, hexagonally ordered
crystallites are formed due to the electro–hydrodynamic
interactions induced by the application of E, as de-
tailed in Ref. [23]. To elucidate the local hexago-
nal order, we use the particle–averaged bond orienta-

tional order parameter ψ6 = ⟨ 1
N

∑N
j |ψj

6|⟩t, where ψ
j
6 ≡

1
zj

∑zj
k=1 exp(i6θ

j
k) quantifies the local order. The quan-

tity zj is the co–ordination number of particle j from

a Voronoi tessellation, and θjk is the angle between the
bond from i to k and a reference axis. The parameter
ψj
6 runs between perfect ordering (ψ6 = 1) and complete

disorder (ψ6 = 0). The collective dynamics are char-
acterised by the time-averaged polar order parameter,

Πφ = ⟨| 1N
∑N

i (ûi · êφ)|⟩t, which quantifies the degree of
alignment between rollers. Here ûi is the local orienta-
tion of roller i, and êφ is a unit vector along the azimuthal
direction. Πφ = 1 indicates perfect azimuthal alignment,
and Πφ = 0 represents random particle orientations.

Figure 1c shows the dynamical order parameter Πφ

compared to ψ6 as a function of N at the onset of in-
stability, E ≈ EQ. A transition from theisotropic gas
to a polar state is seen from the polarisation order pa-
rameter Πφ, even for populations with decreasing struc-
tural order, i.e., N ≈ 0.5Nmax. This is accompanied by
an analogous increase in hexagonal order ψ6. These two
concurrent signatures indicate the emergence of an active
crystallite at high densities.

In Fig. 1d, we consider the hexagonal order parame-
ter ψ6 in the (N,E) plane. For E < EQ, i.e., passive
systems, we see moderate values of ψ6 even at low pop-
ulations, N/Nmax < 0.5, corresponding to the formation
of inactive clusters formed due to electrohydrodynamic
attractions. In these passive systems, ψ6 increases with
population, and clusters become increasingly crystalline

for N approaching Nmax. Switching on activity by in-
creasing the field strength to E > EQ leads to a drop
in ψ6 as hexagonal ordering competes with activity [23].
For the highest field strengths of E/EQ = 2.3, we ob-
serve the formation of a layered fluid structure in which
particles are organised in concentric layers [13] (see right
side of Fig. 1e).
At the onset of Quincke rotation (E = EQ), the role

of density becomes apparent. With population N ≲
0.5Nmax, activity causes hexagonal ordering ψ6 to de-
crease, but for larger populations, ψ6 remains at values
similar to those of passive crystallites.
Figure 1e depicts the experimental phase diagram ob-

tained from the polar order parameter, Πφ, in the same
(N,E) plane. The passive and active phases are sepa-
rated by the instability at field E = EQ. Below EQ, the
polar order parameter is close to zero, however, when the
system is active, we find a transition between an apolar
gas (low Πφ) at low population to a polar fluid (high
Πφ) as N increases. The boundary between these states
is insensitive to field strength. Comparing Figs. 1d and
e, we find two ordered regimes: a polar fluid at medium
density (N/Nmax ≥ 0.4) and an active crystalline phase
at even higher densities in which both parameters Πφ

and ψ6 approach 1. At the highest densities, we observe
that sufficiently strong activity is still able to melt the
crystalline order, a phenomenon we now turn to.

IV. STEADY–STATE SLIPPING: ACTIVITY VS
THE BOUNDARY

To investigate the interplay between crystalline or-
der and dynamics, we focus on a specific population,
N = Nmax = 61, and the activity–dependent rota-
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tional dynamics of both rigid–hexagonal and layered–
fluid structures. In its quiescent state for E ≲ EQ, this
population forms a nearly perfect hexagonal shape, see
Fig. 1. At high field strengths, i.e., E ≈ 2.3EQ, the
structure is fluid–like with four concentric layers around
a central stationary particle. The active state exhibits
field–dependent structures with different dynamics, see
Fig. 2a. For both hexagonal and layered–fluid cases, the
different layers are well resolved by the radial density
profiles N(r) in Fig. 2b. One signature of hexagonal
structure is a split peak which continuously merges into
a single peak as the system becomes more fluidized.

Upon increasing activity E, we observe a range of dy-
namical scenarios, including rigid–body rotation and pe-
riodic rearrangements, as illustrated by the angular ve-
locity, ω, profiles in Fig. 2c. In particular, in order of
ascending field strength: (i), for E < EQ, no rotation
is measured (grey triangles); (ii), at the onset of activ-
ity, we observe rigid–body rotation (yellow pentagons);
(iii), the cluster rotates fastest at the outside (magenta
circles); (iv), we find rigid–body rotation (purple trian-
gles); (v), the cluster rotates fastest in the interior (blue
hexagons and teal squares). Therefore, we find an in-
version in the flow profile as a function of field strength.
This complex dynamical behaviour in Fig. 2c contrasts
with our time–averaged measure of structure, Fig. 2b,
which shows little change until the very highest field
strength. The bond–orientational parameter ψ6 is a more
sensitive measure of structure (Fig. 2e), and shows ad-
ditional detail such as a drop in hexagonal order when
the outer layers rotate faster (magenta data). However,
the lack of sensitivity of these time–averaged structural
measures motivate a time–resolved approach, which we
pursue below.

Before exploring the time–resolved behaviour, we now
consider a minimal model to describe the steady-state
behaviour [24]. This model has two key ingredients: (i)
a constant preferred self-propulsion velocity for an indi-
vidual particle layer in isolation (captured by preferred
speed u0 and friction ξ that speeds up or slows down
a particle towards the preferred speed) and (ii) a sliding
friction between adjacent layers (captured by viscosity ν̃),
generated by particle-particle interactions, which favour
rigid-body rotation of the cluster as a whole. In addition,
the particles at the boundary have velocity uR > u0.
This higher velocity at the boundary captures the ex-
perimental fact that although each bulk layer has two
neighbouring layers, the outermost layer has only one
neighbour and therefore is slowed down less by its neigh-
bours. In the continuum, this balance of friction and
self–propulsion leads to an equation for the velocity v(r)
of layer at radius r = |r| in the steady state:

ν̃∇2v(r)− ξ (v(r)− u0êφ) = 0, (1)

which can be obtained by linearising the steady-state
Toner-Tu equations [24]. For our small system, it is
natural to discretise into the five particle layers around
the central particle within the rotating cluster. With

0.4
0.6
0.8
1.0

0.4
0.6
0.8
1.0

0.0 0.1 0.2 0.3 0.4 0.5

0.4
0.6
0.8
1.0

c

n = 4

a

b

t / s

n = 3

n = 2

FIG. 3. Slipping layers and order evolution. a–b. Time
sequence for a single layer–slipping event, showing the change
of the distortion parameter Θ (a) and the hexagonal order
parameter ψ6 (b). c. Evolution of ψ6 in layers n = 2, 3,
and 4. Incommensurate and commensurate configurations are
indicated by the loss and recovery of ψ6. Horizontal dashed
lines indicate ψ6 = 0.5. Shaded region corresponds to the
sequence in a–b.

n = 1, . . . , 4, vn = v(rn) for the azimuthal velocity in
plane polar coordinates, we obtain,

ν̃
(
[∆2

rv]n + r−1
n [∆rv]n − r−2

n vn
)
− ξ (vn − u0) = 0, (2)

where [∆rv]n is the discrete radial difference operator
(see Supplementary Information for more details).
Equation (2) represents a system of 6 linear equations

for the layer velocities (including the two boundary condi-
tions v0 = 0 and v5 = uR), which we solve simultaneously.
The results are shown as the solid lines in Fig. 2c, which
show quantitative agreement with the experimental pro-
files at intermediate field strengths. At higher fields, we
obtain only qualitative agreement but observe, impor-
tantly, the inversion in flow profile. Our experimental
discovery of flow field inversion is reproduced in a model
with only two ingredients: a preferred active particle ve-
locity, and friction between adjacent particle layers.

V. STICK–SLIP BEHAVIOUR

The steady–state description that we have discussed
so far assumes velocities that are constant in time. In
reality, particle motion is intermittent, characterised by
periods without relative motion between adjacent lay-
ers (“sticking”) interspersed with slipping events between
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adjacent layers. Slipping is associated with the creation
and annihilation of localised defects in the hexagonal or-
der. To identify these defects, we introduce the local
bond–angle distortion parameter, Θ(t) = (1/θc)

∑
i |θi −

θc|, computed at time t, for every simplex obtained from
a Delaunay triangulation, where θc = π

3 . Here, Θ = 0
represents equal bond angles in a perfectly ordered struc-
ture, whereas Θ = 1 indicates a severe distortion to
θi = 2π

3 . In Fig. 2d, we show the time–averaged ra-
dial profile of angular distortion Θ for a range of field
strengths. As anticipated, Θ is largest under conditions
that generate significant slipping between layers, both
in the case that the outer layers move faster than the
inner layers (E ≈ 1.4EQ) and after the flow inversion
when the inner layers move faster than the outer layers
(E ≈ 2.3EQ).

The non-monotonic behaviour observed in Θ is re-
flected in the layer–resolved bond orientational order pa-
rameter ψ6, shown in Fig. 2e. At low field strength,
the system rotates rigidly, preserving hexagonal order-
ing and high ψ6 in all layers. At the onset of slip-
ping (E ≈ 1.4EQ), hexagonal order is disrupted and
ψ6 is reduced. Hexagonality recovers at the higher field
strengths (1.8 ≲ E ≲ 2.0EQ), as the system quickly re-
laxes to a locally hexagonal structure following each slip
event (see Supplementary Movie 3). At the highest field
strength (E ≈ 2.3EQ), there is a significant drop in ψ6

indicating fluidisation.
We investigate slipping in more detail in Fig. 3. To do

so, we plot spatially resolved maps of Θ and ψ6 as func-
tions of time for a field strength of 1.4EQ in Fig. 3a,b (see
also Supplementary Movie 3). During a slipping event,
the two outer layers exhibit deviations from local hexag-
onal order at the vertices of the hexagon. This is reminis-
cent of slipping in driven assemblies of passive discs [13].
We see that locally high values of the distortion param-
eter Θ are correlated with low values of ψ6. These devi-
ations from perfect hexagonal order are confined to the
outer two layers. The solid–body nature of the interior
protects the hexagonal order from any bond distortion.
We illustrate the intermittent dynamics of ψ6 showing
sharp transitions between high and low values that are
highly correlated between the two layers in Fig. 3c.

VI. SLIPPING MECHANISM:
FRENKEL–KONTOROVA MODEL IN PERIODIC

GEOMETRY

Slip in crystalline materials, in the form of layers slid-
ing past each other, has long been understood in the con-
text of the Frenkel–Kontorova model [25]. This model
refers to frictional dynamics in the transition between
commensurate and incommensurate states when thermal
fluctuations can be neglected [21, 26]. Figure 4a–c il-
lustrates the one–dimensional Frenkel–Kontorova model,
in which a harmonic chain of particles with interactions
modelled by springs of rest length a is situated on a peri-

odic potential corresponding to a substrate with period b.
For a sliding chain in one dimension, the mechanism by
which two lattices slip past each other involves the prop-
agation of topological solitons known as kinks or anti–
kinks. A kink corresponds to a localised compression
of the chain that promotes a substrate spacing shared
by two particles, as illustrated in Fig. 4b. Every kink
propagation corresponds to the displacement of the lo-
cal chain compression. On the other hand, anti–kinks
are local extensions of the particle chain (Fig. 4c), which
significantly reduce the friction between the particles.

Unlike the classical Frenkel–Kontorova model with
an infinite chain, our confined system consists of pe-
riodic layers in the azimuthal direction, as shown in
Fig. 4d,e. These illustrations show commensurate and
incommensurate configurations during stick-slip dynam-
ics and demonstrate that our system allows only for anti–
kinks due to local extensions of the chain. The hard–core
interactions between particles prohibit compression and
the formation of Frenkel–Kontorova kinks in these close-
packed crystallites. However, in our system, anti-kinks
correspond to stretching the system against the cohesive
force between the particles, i.e., the electrohydroynamic
interaction which binds the crystallite together.

To interpret the slipping in our system in terms of the
Frenkel–Kontorova model, we estimate the energetics of
the process. Following Ref. [23], the interactions between
the particles are modelled by an attractive Yukawa poten-
tial with a well depth −βU(σ) = 10, where β = (kBT )

−1

is the inverse temperature. We use this to determine
the potential energy of the assembly, which we plot as a
function of time in Fig. 4f. The time–evolution is highly
correlated with the structural order parameter ψ6 shown
in Fig. 3c.

To measure the commensurability, we estimate the rest
length a as the nearest–neighbour separation in each slip-
ping layer, with substrate period b from the next layer
internal to the slipping layer. In Fig. 4g, we see that
these are anti–correlated with the potential energy. To
consider the formation of anti–kinks, i.e., chain exten-
sions, we determine the quantity

√
|∆βU |/(κσ) which is

of order unity at the onset of slipping in the Frenkel–
Kontorova model [25]. To evaluate this quantity, we esti-
mate the difference in potential energy between the slip-
ping and non–slipping states ∆βU and the stiffness κ for
our system.

We find ∆βU by subtracting the potential energy per
particle, βU , of the minima (corresponding to the com-
mensurate states) from that of the maxima (correspond-
ing to the incommensurate states, see Figs. 4d–f). We
determine κ by fitting a parabola to βU(r) (see SFig.

1). We evaluate
√

|∆βU |/(κσ) for layers n = 2 and 3
(0.107) (c.f., measured value from Fig. 4g is 0.094) and
between the outer layers n = 3 and 4 (0.075) (c.f., mea-
sured value from Fig. 4g is 0.079). The geometry of our
system enables slipping layers to dilate. We quantify the
dilation through the deviation of each particle from their
positions in the undeformed hexagonal case, ∆r. This
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FIG. 4. Frenkel–Kontorova behaviour in Quincke rotors. a. Schematic representation of the Frenkel–Kontorova model.
A slipping layer is modelled by a chain, comprising particles connected by springs of length a. The lattice periodicity is b, and
the interaction between the static lattice and the sliding layer is given by a commensurate sinusoidal potential. b. Kink and
c. anti–kink representation. A kink forms when two particles are contained in the same well, producing a local compression
of the chain. The opposite case of an anti–kink is a local expansion of the chain, which leads to a vacancy. For our confined
geometry, the slipping layers are treated as chains forming d. commensurate and e. incommensurate configurations. f. The
evolution of the rescaled interaction potential βU , g. chain extension a, and h. layer dilation follow the oscillations of ψ6 in
Fig. 3c. In d–f, the blue lines are the outermost layer (n = 4) and the dashed crimson lines are the adjacent internal layer,
n = 3. Shaded regions in panels f–h correspond to sequences shown in Fig. 3a–b. Here the field strength is 1.4EQ.

is shown in Fig. 4h where we see that the dilation of
the slipping layers is highly correlated with the potential
energy and the chain extension (Figs. 4f–g).

While in the classic Frenkel–Kontorova model, slipping
is expected when

√
|∆βU |/(κσ) ∼ 1, here we find slip-

ping at values around 0.10. This discrepancy can be re-
solved by observing (in Fig. 3c and Figs. 4f–h) that the
system undergoes slipping for only a small fraction of the
time and, therefore, that

√
|∆βU |/(κσ) ≪ 1. If we eval-

uate the fraction of time the system spends slipping using
the cutoff ψ6 < 0.5 (plotted as dashed lines in Fig. 3c), we
find that the system slips only 17% of the time. Hence,
the apparent discrepancy between the FK model and our
calculations can be resolved due to the intermittent stick-
slip dynamics which result from the interplay between
dynamic frustration and crystalline order.

VII. DISCUSSION AND CONCLUSION

We have investigated the behaviour of a model system
of Quincke rollers under strong confinement. At low par-
ticle populations, this active system forms an apolar gas
with a transition to a polar fluid for a higher number of
rollers. Further increase of roller population leads to a
hexagonally ordered packing.

For the magic number Nmax = 61, corresponding to a
perfect hexagonal packing, these rollers exhibit a complex

sequence of steady states as the activity is increased. At
the level of individual layers, a phenomenological model
based on self-propulsion and friction captures this be-
haviour. As activity is increased, the quiescent state
gives way first to a state with rigid rotation, and then
subsequently to a state with sliding layers. At lower
fields, the outermost layer moves fastest but at higher
fields, we experimentally observe a flow–inversion tran-
sition to a state with the inner regions rotating faster
than the boundary. Our model shows that this flow–field
inversion is a direct consequence of the dynamic frustra-
tion between the linear velocity of self–propulsion and
the collective angular velocity of a rotating rigid body.

At the particle–resolved level, our experiments reveal
intermittent stick–slip dynamics between the layers. We
use measurements of the interactions between the parti-
cles [23] to compare with predictions for continuous slip-
ping from the Frenkel–Kontorova model. We find these
parameters are much less than the criterion at which slip-
ping is predicted (by a factor of ten). We interpret that
this discrepancy is caused by our rotors slipping inter-
mittently rather than continuously. Indeed we estimate
that slipping occurs only 17% of the time. At the highest
activities, we observe a transition to continuous slipping
which coincides with fluidisation.

A related passive system of a hard–sphere colloidal
“corral” being driven from the boundary, like a tiny
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rheometer, has been investigated previously [12–14].
Both the passive and active systems exhibit a fluidisa-
tion transition from a hexagonal configuration to a lay-
ered fluid. However, unlike the active system, the passive
rotors show neither flow-field inversion nor intermittent
slipping. This highlights how the new phenomenology
characteristic of active solids results in our current ex-
periments from a combination of interparticle cohesion
and activity.

Activity allows for solids in which complex dynamics
emerge from simple ingredients. In our Quincke roller
system, the formation of coherent active rotation due
to confinement suggests a route towards the extraction
of useful work from synthetic active matter. We have
demonstrated how cohesion and activity can be used to
design soft nanomachines in which flow fields and inter-
mittent dynamics can be manipulated at the microscopic
scale.

APPENDIX A: EXPERIMENTAL METHODS

We employ a colloidal suspension of poly(methyl
methacrylate) (PMMA) spheres, of diameter σ = 3µm.
Spheres are suspended in a low conductive solution of
AOT surfactant 0.15 mM in hexadecane. Spheres are in-
jected in a sample cell made of ITO-coated glass slides
(Solems, ITOSOL12), separated by a layer of adhesive
tape (100µm in thickness). Sedimentation occurs due to
density mismatch with the solvent, and colloids form a
quasi two–dimensional layer, as represented in Fig. 1 a
in the main text. Quincke rotation is achieved with the
application of a dc field E using a potential amplifier
(TREK 609E-6) connected to the sample cell.

Strong confinement is introduced by patterning the top
electrode of the sampling cell. Circular regions of ra-
dius Rc ≈ 5σ are produced employing conventional pho-
tolithography methods. The thickness of the photoresist
layer is ≈ 1σ, sufficient for charge screening on the top
electrode. A non–zero electric current thus results only
within the circular regions upon the application of the
field E. This yields an electro–osmotic flow which traps
rollers within the regions of interest. The origin of this
flow is the transport of electric charges in the direction
of the circular regions, which produces an inward flow at
the bottom electrode [27].

In the absence of the electric field, colloids are prone
to escape the circular regions due to thermal motion.
At low amplitudes of the field, e.g. E < EQ, where
EQ ≈ 0.8Vµm−1, a population of N colloids is dragged
towards the confining regions and self–assemble into clus-
ters. Figure 1 b (main text) shows nine confining regions,
each with a different population N . The maximum pop-
ulation observed corresponds to Nmax = 61.
Quincke rollers are imaged using brightfield microscopy

(Leica DMI 3000B) with a 10x magnification, and
recorded at high speed (900 fps, Basler ACE) in regions
of 128x128 px. The motion of individual rollers is recon-

structed using a Python version of a common tracking
algorithm [28].
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 / 
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FIG. 5. Measured interaction potential βU from experiments
in the bulk [23] (symbols) and parabolic fit (solid line) from
which a stiffness constant κ is extracted.

APPENDIX B: MODEL OF DISCRETE
HYDRODYNAMICS IN CIRCULAR

CONFINEMENT

We combine an effective friction, which penalises rel-
ative motion between nearest neighbour particles, and
self–propulsion with average speed u0. For the circu-
lar domain, we assume that the motion is only in the
azimuthal direction (i.e. the radial component of the
velocity of each particle is zero) and that this veloc-
ity is on the same in each layer which we label by
the number n ∈ [1, 4]. Taking the particle diameter σ
(or the separation a), we can denote the radial posi-
tion of the centre of each particle in layer n by rn =
σ(n − 1). Given an azimuthal velocity vn = v(rn), we
can define discrete radial difference operator, [∆rv]n =
v(rn)−v(rn−1)

rn−rn−1
= 1

σ (vn − vn−1). Applying it twice we get

[∆2
rv]n = 1

σ2 (vn+1 − 2vn + vn−1). Balancing the local
relative friction with self–propulsion leads to the equa-
tion,

ν̃
(
[∆2

rv]n + r−1
n [∆rv]n − r−2

n vn
)
− ξ (vn − u0) = 0, (3)

where ν = ν̃/ξ measures the local friction. The “bound-
ary conditions” are v0 = 0 and v5 = uR. Due to its posi-
tion at the boundary with lower friction, we expect that
the critical field is lower for the particles at the bound-
ary than those in the bulk. Hence uR > u0. If the
bulk critical field is EQ we take here that u0 = A0∆E

α

where α = 1/2 [6] for a single ∆E = (E − EQ) and
uR = BR +AR∆E.
This discrete dynamics can be mapped to a discre-

tised version of the steady state of linearised Toner–Tu
type equations for dry active matter for the local self–
propulsion velocity v(r) which in this setting is

ν̃∇2v(r)− ξ (v(r)− u0) = 0, (4)

where u0 = u0ϕ̂. For a circular domain, in plane polars

we have r = (r, ϕ) or r = rr̂+ϕϕ̂ and v = vr(r)r̂+vϕ(r)ϕ̂
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with 0 ≤ r ≤ R and ϕ ∈ [0, 2π]. We consider the situation
where vr = 0 and radially symmetric, such that vϕ(r)
satisfies

ν̃
(
∂2rvϕ + r−1∂rvϕ − r−2vϕ

)
− ξ (vϕ − u0) = 0 (5)

where the boundary conditions are vϕ(0) = 0, vϕ(R) =
uR.
The dynamics of equation (3) can be expressed by the

matrix equation

5∑
m=0

Snmvm = bn , (6)

where Smn is a tridiagonal matrix and bn = −σ2u0n
2

ν .
Note that R = 5σ. We fix the boundary conditions v0 =
0, v5 = uR by setting the values of the 1st and 6th row
of the matrix. The matrix is

S =



−1 0 0 0 0 0

0 −2− σ2

ν 1 0 0 0

0 2 −7− 4σ2

ν 4 0 0

0 0 6 −16− 9σ2

ν 9 0

0 0 0 12 −29− 16σ2

ν 16
0 0 0 0 0 λ5


where λ5 = −25σ2u0

νuR
is chosen to implement the boundary conditions. Then we can invert the matrix to solve for vn.

Once we have vn we can obtain the angular velocity ωn = vn/rn. Parameters here are a = 1, ν = 10, A0 = 1, AR =
0.7, BR = 0.5, so that

ω =


0

(5760000(0.5 + 0.7∆E) + 5607396∆E)/39975156
(6048000(0.5 + 0.7∆E) + 3889008∆E)/39975156
(6499200(0.5 + 0.7∆E) + 2529372∆E)/39975156
(7137040(0.5 + 0.7∆E) + 1266484∆E)/39975156

 (7)

APPENDIX C: DESCRIPTION OF
SUPPLEMENTARY MOVIES

Movie 1 — Experimental set-up. Movie shows
multiple wells of diameter R = 30µm containing dif-
ferent populations of Quincke rollers. Electric strength
is E = 1.4EQ. Scale bar represents 100µm. Movie is
reproduced at 30 fps.

Movie 2 — Rigid behaviour at E = EQ. Movie
shows a roller population of N = 61 showing rigid
body rotation. a) Experimental acquisition, and b)
Shows guides to the eye for individual rollers located at
different layers and over symmetry lines. Scale bar in a)
represents 10µm. Movie is reproduced at 6 fps.

Movie 3 — Slipping behaviour at E = 1.4EQ.
Same roller population showing steady-state slipping
of the outermost layers. a) Experimental acquisition.
b) Guides to the eye for individual rollers in different
layers. c) Shows local hexagonal order ψ6 and d) is the

local distortion Θ. Scale bar in a) represents 10µm.
Movie is reproduced at 6 fps.

Movie 4 — Onset of the flow inversion at E = 2.0EQ.
Movie shows the overtaking of internal layers past over
the outermost layers. a) Experimental acquisition.
b) Guides to the eye for individual rollers. c) Local
hexagonal order ψ6. Scale bar in a) represents 10µm.
Movie is reproduced at 6 fps.

Movie 5 — Fluid behaviour at E = 2.3EQ. Movie
shows the complete fluidisation of the structure, with
every layer rotating with an independent angular ve-
locity ω. The flow inversion becomes more evident at
this value of the field strength, where the internal layers
rotate faster. a) Experimental acquisition. b) Guides to
the eye for individual rollers at different layers. c) Local
hexagonal order ψ6. Scale bar in a) represents 10µm.
Movie is reproduced at 6 fps.
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C. Bechinger, and T. Speck, Dynamical Clustering and
Phase Separation in Suspensions of Self-Propelled Col-
loidal Particles, Phys. Rev. Lett. 110, 238301 (2013).

[10] C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak,
K. Gubbins, R. Radhakrishnan, and M. Sliwinska-
Bartkowiak, Effects of confinement on freezing and melt-
ing, Journal of Physics: Condensed Matter 18, R15
(2006).
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