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Abstract

Small-angle X-ray and neutron scattering (SAXS and SANS) are powerful techniques

in material science and soft matter. In this study, it was addressed how multiple SAXS

or SANS datasets are best weighted when doing simultaneous fitting. Three weight-

ing schemes were tested: (1) equal weighting of all datapoints, (2) equal weighting

of each dataset through normalization with the number of datapoints, (3) weight-

ing proportional to the information content. The weighing schemes were assessed by

model refinement against synthetic data under numerous conditions. The first weight-

ing scheme led to the most accurate parameter estimation, especially when one dataset

substantially outnumbered the other(s). Furthermore, it was demonstrated that inclu-

sion of Gaussian priors significantly improved the accuracy of the refined parameters,

as compared to common practice, where each parameter is constrained uniformly

within an allowed interval.

1. Introduction

Small-angle X-ray and neutron scattering (SAXS and SANS) provide structural infor-

mation about nanoscale structures, ranging from a few to hundreds of nanometers.

PREPRINT: Journal of Applied Crystallography A Journal of the International Union of Crystallography

ar
X

iv
:2

31
1.

06
40

8v
2 

 [
co

nd
-m

at
.s

of
t]

  1
3 

N
ov

 2
02

4



2

It has applications across diverse fields, including investigations of amorphous mate-

rials like gels, polymers and glasses, as well as biological macromolecules such as

proteins, DNA, lipids and their complexes. Hard materials, including nanoparticles

also fall within the scope of investigation. By combining SAXS or SANS measure-

ments which have different scattering length contrasts, structural domains can be

highlighted, resulting in more accurate refinement of structural parameters.

Contrast variation can be achieved in SAXS by changing the ionic strength of

the solvent (Gabel et al., 2019), or by ASAXS (Ballauff & Jusufi, 2006). In SANS,

the contrast can be varied using hydrogen-deuterium exchange in sample or sol-

vent (Heller, 2010). SAXS and SANS have elegantly been combined, e.g., in stud-

ies of toroidal polymers assemblies (Hollamby et al., 2016), protein/DNA complexes

(Sonntag et al., 2017), multishell-nanoparticles (Lin et al., 2020), block copolymer

micelles (Manet et al., 2011), multilamellar lipid vesicles (Heftberger et al., 2014), and

lipid nanodiscs (Kynde et al., 2014), to mention a few examples. However, choosing

proper weights to each dataset is not trivial: should one simply weight with the num-

ber of points, or should the number of points be normalized out in the minimization?

Should the noise level and information content be taken into account in the minimiza-

tion algorithm? In this paper, three weighting schemes were compared: (1) a naive

weighting scheme, where each datapoint is weighted according to its statistical uncer-

tainty with no additional weighting, meaning that datasets with more points have more

weight; (2) a so-called reduced weighting scheme, where each dataset is given equal

weight, corresponding to minimizing the reduced χ2, and (3) an information-based

weighting scheme, where each dataset is weighted proportional to their information

content. Model parameters were co-refined against synthetic data, and the refined val-

ues were compared to the known ground truth to evaluate and compare the different

weighting schemes.
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Another central aspect in modeling, is the inclusion of molecular constraints (Zemb

& Diat, 2010) or prior knowledge. The present study advocates for the use of Bayesian

refinement with Gaussian priors for enhanced accuracy in co-refinement against mul-

tiple SAXS or SANS datasets. This is inspired by successful applications of Bayesian

refinement in X-ray crystallography (Headd et al., 2012), electron microscopy (Scheres,

2012a; Scheres, 2012b), reflectometry (Nelson & Prescott, 2019; McCluskey et al.,

2020; McCluskey et al., 2023), and for the combining of SAXS with molecular dynam-

ics simulations (Hummer & Köfinger, 2015).

2. Methods

This paper relies on fitting simulated or synthetic data. Thus, the ground truth is

known, allowing for quantitative evaluation of different weighting schemes and prior

inclusion. For the generation and analysis of synthetic data, two form factors were

applied.

2.1. Core-multishell form factor

The core-shell model is built up using the form factor amplitude for a sphere with

radius R:

ψs(qR) = 3
sin(qR)− qR cos(qR)

(qR)3
(1)

The amplitude of the scattering vector is q = 4π sin(θ)/λ, where 2θ is the scattering

angle and λ is the wavelength of the incoming wave. The volume of the sphere is

Vs(R) = 4πR3/3. The core radius of the model is denoted Rc, and the outer radius

of the ith shell is denoted Ri. The difference in scattering length density between the

ith shells and the solvent, i.e. the contrast, is denoted ∆ρi. The form factor for a
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core-multishell particle with ns shells can be written as:

Pcs(q) =

[
Vs(Rc)ψs(q,Rc) +

∑ns
j=1

∆ρj
∆ρc

[Vs(Rj)ψs(qRj)− Vc(Rj−1)ψs(qRj−1)]

Vs(Rc) +
∑ns

j=1
∆ρj
∆ρc

(Vs(Rj)− Vs(Rj−1))

]2
(2)

For this paper, we used three shells (ns = 3). The intensity is modeled with a

scaling and a constant background, Ics(q) = aPcs(q) + b. Only the relative values

of the contrasts affect P (q), so the model has 9 parameters (K = 9): four radii

(Rc, R1, R2, R3), three relative contrasts (∆ρi/∆ρc), as well as scaling and constant

background. When fitting two datasets with the model, five additional parameters

were introduced, namely three relative contrasts, scaling, and background for the sec-

ond dataset (K = 14).

2.2. Stacked cylinder form factor

For testing the method against a less symmetric model with a different contrast

situation, a stacked cylinder form factor was used. The model is based on the form

factor amplitude for cylinders with radius R and length L (Pedersen, 1997):

ψc(q,R, L, α) =
2B1(qR sinα)

qR sinα

sin(qL cosα/2)

qL cosα/2
(3)

This form factor amplitude should be integrated over α to yield the cylinder form

factor. The volume of the cylinder is Vc(R,L) = πR2L. The form factor for nc stacked

cylinders with radii Ri, lengths Li and contrasts ∆ρi is:

Pc(q) =

∫ π/2

0

∣∣∣∣∣
∑nc

j=1
∆ρj
∆ρ1

Vc(Rj , Lj)ψc(q,Rj , Lj , α)ϕj(α,L1, ..., Lj)∑nc
j=1

∆ρj
∆ρ1

Vc(Rj , Lj)

∣∣∣∣∣
2

sinαdα (4)

where ϕi is the phase factor of the j
th cylinder, which depends on the center-to-center

distance to the first cylinder:

ϕj(α,L1, ..., Lj) = exp

(
iq

(
−L1 + Lj

2
+

j∑
k=1

Lk

)
cosα

)
(5)

In the special case j = 1 then ϕj is unity. For this paper, we used three stacked

cylinders (nc = 3), each with the same radii, but with varying lengths. The intensity
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was modeled with a scale and a background, Ic(q) = aPc(q) + b. This model had 7

parameters (K = 7), when refined against a single dataset, and eleven parameters

(K = 11), when two datasets were simultaneously fitted.

2.3. Model implementation and validation

The form factors were implemented in BayesFit (github.com/andreashlarsen/BayesFit),

and validated against simulated data generated in Shape2SAS (Larsen et al., 2023).

2.4. Simulated SAXS and SANS data

First, q was defined, with qmin = 0.001 Å−1 and qmax = 0.5 Å−1 for the spherical

core-multishell particles and qmin = 0.0001 Å−1 and qmax = 0.3 Å−1 for the stacked

cylinders. The simulated SANS-like data contained 50 or 300 points, and the simulated

SAXS-like data contained either 300, 400, 900 or 2000 points. Theoretical curves were

then calculated and evaluated at these q-values, using Imodel(q) = aP (q) + b. The

SAXS data were scaled by aSAXS = 0.5 cm−1 and the SANS data by aSANS = 0.8

cm−1, and a constant background of b = 10−5 cm−1 was added to the SAXS data

and b = 10−4 cm−1 was added to the SANS data. To ensure realistic errors, similar

to what would be obtained from an experiment, the errors were modelled using an

empirical model (Sedlak et al., 2017):

σi =

√
Is(qi) + 2cIs(0.2Å

−1
)/(1− c)

4500qi
, (6)

where Is(qi) = sImodel(qi)/I(0) is the normalized and scaled model intensity evaluated

at qi, and σi are the standard deviations, which in an experiment are estimated through

counting statistics and error propagation. For simulated SAXS-like data, s = 100

and c = 0.85 were used (high signal-to-noise ratio), whereas for simulated SANS-like

data, s = 10 and c = 0.95 were used (lower signal-to-noise ratio). The simulated

intensities (Ii) were then pulled stochastically from normal distributions with mean
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µi = Imodel(qi) and standard deviation σi.

To simulate data with increasing noise, the variance (σ2i ) was multiplied with a

noise factor, before simulation of the intensities, i.e. σ2i → fnoiseσ
2
i . The noise was

increased logarithmically, by varying log(fnoise) from −4 to 10. In order to simulate

data with over- or underestimated errors, a factor was multiplied on σi after simulation

of the data, such that σi no longer reflected the fluctuations of the simulated intensities

(Smales & Pauw, 2021; Larsen & Pedersen, 2021). For each condition, i.e., the different

weight schemes and priors described in the results section, 50,000 SAXS and 50,000

SANS datasets were simulated and fitted with the model.

Due to wavelength spread, divergence and pixel size, there are instrumental smearing

effects or resolution effects (Pedersen et al., 1990). These are usually negligible in

synchrotron SAXS data, but not in SANS and lab-source SAXS data. Based on the

instrumental settings, the resolution effects can in many cases be expressed as a normal

distributed error, σq for each q-value, and included in the model by smearing the

theoretical intensity:

Imodel,res(q) =
1

σq
√
2π

∫ ∞

−∞
Imodel(q

′) exp

(
−1

2

(
q′ − q

σq

)2
)
dq′ (7)

At many SANS instruments, the values of σq are provided as a fourth column in the

datafile. To investigate the effect of smearing, the fourth column of a SANS dataset

from D22 was used (SASBDB: SASDL53) (Lycksell et al., 2021). The experimental σq

values were imported and linearly extrapolated to the simulated q values. To investi-

gate the effect of larger resolution effects, data were also simulated with σq multiplied

by a factor of 2 or 3. The resolution effects were taken into account when fitting these

data, using the same σq values that were used to simulated data.
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2.5. BayesFit - fitting multiple datasets with priors

BayesFit (github.com/andreashlarsen/BayesFit) is a program that can fit SAXS

and SANS data simultaneously with an analytical model, and use Gaussian priors.

BayesFit was originally implemented in FORTRAN (Larsen et al., 2018). For this

paper, a new implementation was written in Python, to facilitate fitting of multiple

datasets. BayesFit reads an input file, which contains information about the data, the

name of the model, the prior values for each model parameter (µprior,k and σprior,k)

and the weights (wj) used to balance different datasets. The weight given to the prior

is adjusted by a hyperparameter, α (Hansen, 2000; Larsen et al., 2018). BayesFit

minimizes:

min

Ndataset∑
j=1

wjχ
2
j

+ αS

 , (8)

where χ2 and S are given as:

χ2 =
M∑
i=1

(
Ii − Imodel(qi)

σi

)2

, (9)

S =

K∑
k=1

(
xk − µprior,k
σprior,k

)2

. (10)

xk is the refined value of the kth model parameter andM is the number of datapoints.

For the refinements in this paper, BayesFit scanned 11 logarithmically spaced values

of α and the range was manually adjusted to ensure that it contained the α values

giving rise to the highest probabilities. BayesFit utilizes Scipy’s curve fit function

(Virtanen et al., 2020). In order to use the curve fit function, an array was defined

with all q-values from both SAXS and SANS data, and dummy q-values for each

of the prior values. A corresponding array was defined with all simulated intensities

(Ii) from the SAXS and SANS datasets and the prior means (µprior,k). An array was

finally constructed, with the errors of the simulated data (σi) as well as the prior

standard deviations (σprior,k). The experimental errors were scaled with w
−1/2
j before

IUCr macros version 2.1.10: 2016/01/28



8

fitting, to obtain the weighting in equation (8). The prior means (µprior,k) were used

as initial guesses in the subsequent nonlinear minimization. The upper and lower

limits were set to ±5σprior,k, and parameters were constrained to positive values when

relevant. To apply uniform priors, α was fixed at 10−10, effectively quenching the effect

of the prior, except for the upper and lower limits, which were adjusted by changing

σprior,k. The means, µprior,k, were also used as initial guesses when fitting with uniform

priors. Parameter values for all priors are listed in Table 2 and Table 3. Normalized

Hessian matrices and their eigenvalues were used to calculate the information content

(Vestergaard & Hansen, 2006). The Hessian matrices were constructed numerically

from χ2 using the forward Euler method, and eigenvalues were found using NumPy

(Harris et al., 2020). The total probability of the solution, taking into account the

likelihood and priors, were derived from Bayes theorem (Hansen, 2000; Larsen et al.,

2018). Each refined model parameter was then calculated as a probability-weighted

average:

xrefined,k =

Nα∑
i=1

p(αi)xk(αi), (11)

where p(αi) is the probability density of the solution at αi, and xk(αi) is the refined

value of the kth parameter at αi. Nα is the number of α values that were scanned. The

program is meant as a proof-of-concept, and the goal is that inclusion of Gaussian pri-

ors and optimal weighting should be implemented in other software packages for SAXS

and SANS analysis, which are superior in the number of verified models, user interface,

performance and additional features. Such programs include WillItFit (Pedersen et al.,

2013) and SasView (www.sasview.org). From SasView version 6, it was made possible

to adjust weights in simultaneous fitting (www.sasview.org/downloads/modifying weights in sasview v6.pdf),

which calls for thorough investigations of which weighting scheme is most optimal.
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2.6. Calculating information content

The number of good parameters (Ng,BIFT) was used as a measure for the informa-

tion content in data. Ng,BIFT was chosen instead of the number Shannon channels

(Shannon, 1949; Nyquist, 1928), as Ng,BIFT takes into account the noise level of data

(Vestergaard & Hansen, 2006) (Figure S1). Ng,BIFT was calculated with a Bayesian

indirect Fourier transformation (BIFT) algorithm (Hansen, 2000), as implemented in

BayesApp (version1.1) (Hansen, 2012; Larsen & Pedersen, 2021). BIFT cannot fit all

data, so one may in those cases replace Ng,BIFT by the number of Shannon channels.

2.7. Estimating degrees of freedom to calculate reduced χ2 values

The number of good parameters is a good measure for the degrees of freedom

(DOF ) in a fit and therefore provide a correct estimate of the reduced χ2, namely

DOF =M −Ng, where M is the number of datapoints (Larsen et al., 2018; Larsen &

Pedersen, 2021). That is also the case for simultaneous fitting against multiple data

(Figure S2). However, it is not evident what the degrees of freedom (and reduced

χ2 values) should be for each dataset in a simultaneous fit. The number of good

parameters for each dataset (Ng,j) should sum up to the total Ng for the simultaneous

fit. An upper limit of Ng,j can be estimated following the usual approach (Larsen

et al., 2018) for each dataset, and is denoted ng,j . By requiring that the sum of Ng,j

values should equal the total Ng, we reach that

Ng,j = ng,j −
Σng,j − ng,j

Σng,j
(Σng,j −Ng), (12)

This is a good measure for the degrees of freedom, as assessed by monitoring the

reduced χ2 from simultaneously fitting against simulated data (Figure S3).
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2.8. Molecular dynamics simulations

The deposited structure ”model-1 (pdb)” (SASBDB entry SASDNK2) was used as

initial frame. The structure was solvated in TIP3P water with 100 mM NaCl, in a

cubic box with box lengths 27 nm and periodic boundary conditions. Simulations were

run in GROMACS 2021.4 with force fields AMBER14SB OL15 or CHARMM36-IDP.

The structure was minimized, then equilibrated with constant number of particles,

volume and temperature (NVT) for 100 ps, then with constant number of particles,

pressure and temperature (NPT) for another 100 ps. The protein was position restraint

during these equilibration steps. Temperature 300 K, time constant 0.1 ps kept with

the v-rescale algorithm. Pressure was kept at 1 bar using Parrinello-Rahman pressure

coupling and a time constant of 2 ps. The restraints were released and the simulation

was run for 100 ns with NPT.

2.9. Calculating theoretical scattering from the molecular dynamics simulations

The first 40 ns of the simulations were excluded to avoid the results being dependent

on the initial frame. The theoretical scattering was calculated from the remaining 60 ns

with Pepsi-SANS (for Linux) version 3.0 (https://team.inria.fr/nano-d/software/pepsi-

sans). For the SANS data, the scattering from the KaiA domain only was compared

to data, as the KaiB and KaiC domains were matched out in the experiment.

3. Results

The results section contains two parts. In the first, it is investigated which weighting

schemes is best, when simultaneously fitting multiple SAXS or SANS contrasts. In the

second part, the inclusion of priors is investigated.
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3.1. Finding the best weighting scheme

When refining a model against multiple datasets, e.g. a SAXS and a SANS dataset,

or multiple SANS contrasts, a central question is how to weight each datasets. The

model refinement is done by minimizing the weighted sum:

min

Ndataset∑
j=1

wjχ
2
j

 , (13)

where χ2 is defined in equation (9). Assuming independent datapoints, the sum of χ2

should be minimized with no additional weighting, i.e., wj = 1. This naive weight-

ing scheme is the first that will be tested. However, equation (13) is a sum over the

non-reduced χ2, which scales with the number of datapoints, so the result is domi-

nated by the larger dataset. To counteract this, one may use the weight, wj = 1/Mj .

This is the second weighting scheme that will be tested, and roughly corresponds to

replacing χ2 with the reduced χ2 in equation (13), so it will be denoted the reduced

weighting scheme. A third approach is to weight by the information content in data,

e.g., by the number of good parameters Ng,BIFT (Vestergaard & Hansen, 2006). That

way, the data with the highest information content also get the highest weight, i.e.,

wj = Ng,BIFT,j/Mj . A similar information-based weighting scheme has previously

been applied to combine SAXS and molecular dynamics simulations (Shevchuk &

Hub, 2017).

In order to test which weighting scheme performs best, two datasets were simulated

for a sample of core-multishell particles. The particles had three shells, so a total of

four radii were refined from the data. The true values were 10, 30, 50 and 70 Å. The

first dataset contained 400 datapoints with a relatively high signal-to-noise ratio, and

the second dataset contained only 50 datapoints and a lower signal-to-noise ratio.

These data mimic an experiment, where the sample is measured with two different

contrast situation, e.g. with synchrotron SAXS and with SANS (Figure 1). Most SANS
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data contain more points than 50 and often there will be multiple SANS contrast, so

the total amount of SANS datapoints could often exceed the number of SAXS data-

points. However, the low number was chosen to explore a situation with substantial

difference between the size of the two datasets, i.e., where the weight schemes are

more important. The true model that was used to generate the simulated data, were

then refined against the simulated SAXS-like and SANS-like datasets using the three

weighting schemes wj = 1, wj = 1/Mj , or wj = Ng,BIFT,j/Mj , to estimate the geo-

metric parameters and compare with the true values. The model parameters were also

refined against SAXS data alone and SANS data alone. To mimic an experiment, the

simulated data were generated stochastically. Therefore, the simulation and analysis

protocol was repeated 50,000 times (nrep) for each weighting scheme, to get a distri-

bution of refined parameter values. The best weighting scheme is the one that gives

the most accurate parameters values after refinement, i.e., closest to the ground truth.

To quantify the accuracy of the determination of each parameter, the deviation from

the true value was defined as:

∆xj =

√√√√ 1

nrep

nrep∑
i=1

(xj,true − xj,refined,i)2. (14)

Since the true value is known, there are zero degrees of freedom, and the denominator

is nrep and not nrep − 1 as in the standard deviation, where the true value must be

estimated as the mean. We use the relative deviations ∆xj/|xj,true|, to calculate an

average relative deviation of a set of parameters:

average relative deviation =
1

K

K∑
j

(∆xj/|xj,true|) (15)

Which weighting scheme is best for refinement of the core-multishell model?

This can be answered by comparing how accurately the structural parameters of the

core-multishell model were refined with the different weighting schemes. The radius

of the core (Rc) was ill-determined by the data due to the contrast situation (Figure

IUCr macros version 2.1.10: 2016/01/28
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1A). Therefore, it was not uniquely determined using any of the weighting schemes

(Figure 1D). The average relative deviation from the true value, ∆Rc, was 1.7 Å irre-

spective of applied weighting scheme, so no weighting scheme was substantially better

than the others for this parameter. However, the outer radius of the first and sec-

ond shells (R1 and R2) were refined most accurately when using the naive weighting

scheme wj = 1 (simply using experimental errors as weights), closely followed by the

information-based weighting scheme wj = Ng,BIFT,j/Mj (weighting with information

content), whereas when using the reduced weighting scheme wj = 1/Mj (correspond-

ing to using reduced χ2 instead of χ2), the refined values were substantially less accu-

rate (Figure 1E-F). For the outer radius of the third shell (R3), the naive weighting

scheme (wj = 1) and the information-based weighting scheme (wj = Ng,BIFT,j/Mj)

resulted in equally accurate results (Figure 1G).

In order to assess the accuracy of a given weighting scheme using a single number,

the average deviation across the radii were calculated, as in equation (15). The average

deviation across all radii were 6.4% for the naive weighting scheme (wj = 1), 6.5%

for the information-based weighting scheme (wj = Ng,j/Mj) and 7.8% for the reduced

weighting scheme (wj = 1/Mj). So the naive weighting scheme performed best for

these data, as the average deviation was smallest.

To investigate the generality of the result, other conditions were tested using the

same approach, as summarized in Table 1. This included changing the number of points

in each dataset, adding a SANS dataset for highlighting the core radius, and adding

interparticle interactions. The effect of an inaccurate model as well as resolution effects

were also investigated. This were all done with the spherical core-multishell model

(Figure 1). Finally, the weighting schemes were evaluated against a stacked cylinder

model (Figure 2).

IUCr macros version 2.1.10: 2016/01/28
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core-multishell model (with 3 shells)
Rc = 10 Å, R1 = 30 Å,  R2 = 50 Å,  R3 = 70 Å

SAXS
Δ⍴1/Δ⍴c = 2
Δ⍴s/Δ⍴c = 3
Δ⍴3/Δ⍴c = 4

SANS
Δ⍴1/Δ⍴c = -0.10
Δ⍴2/Δ⍴c = 0.10
Δ⍴3/Δ⍴c = 0.05

core

shell 1

shell 2

shell 3
A

Fig. 1. Refinement of a core-multishell model using different weighting schemes. (A)
Core-multishell particle with relative contrasts and radii annotated. (B) Simulated
SAXS-like data with 400 points. (C) Simulated SANS-like data with 50 points.
(D-G) Refined values of Rc, R1, R2 and R3 from 50,000 fits (new data simulated
each time). The parameters were either refined against SANS alone (green area),
SAXS alone (red area), or SAXS and SANS with naive weighting scheme (red line),
reduced weighting scheme (green line) or information-based weighting scheme (red
line). The gray vertical line is the true value.
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Effect of changing the number of points in each contrast. To investigate the

effect of the number of points in data, the same spherical core-multishell model was

used, but new pairs of SAXS- and SANS-like data were simulated with the number of

points in the datasets being varied. The ratios of points in the two datasets spanned

from 1:1 (300 points in each dataset) to 1:40 (respectively 50 and 2000 points). When

the number of points were the same, all weighting schemes performed equally well.

However, as the difference in number of points increased, the naive weighting scheme

(wj = 1) gave the most accurate results (Table 1). Intriguingly, all weighting schemes

were superior to fitting against SAXS or SANS data alone. The ratio between num-

ber of points in each dataset had to be high (a factor of 6 or higher), before there

were substantial difference between the naive weighting scheme (wj = 1) and the

information-based weighting scheme (wj = Ng,j/Mj), whereas the reduced weighting

scheme (wj = 1/Mj) always resulted in less accurate parameter refinement (Table 1,

rows 1-4).

More than two contrasts included. Additional contrasts are often measured if

the sample contains multiple internal scattering length densities. Therefore, a SANS-

like contrast was simulated, where only the core had non-zero contrast with respect

to the buffer. The spherical core-multishell model was then fitted against the two

original datasets (Figure 1) and the new SANS core contrast. Unsurprisingly, this

addition dramatically improved the accuracy of the core radius refinement, Rc (Figure

S4). However, the conclusions regarding the choice of weighting scheme remained

the same; the naive weighting scheme (wj = 1) gave the most accurate refinement,

especially when there were significant difference between the number of datapoints in

each contrast (Table 1, rows 5-6).
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Interparticle interactions. If there is interparticle interactions and correlation

between the location of individual particles, a simple form factor is not a sufficient

description, and addition of a structure factor is necessary. To investigate that situa-

tion, data were simulated with a hard-sphere structure factor to consider interparticle

interactions of highly concentrated samples. The same hard-sphere structure factor

was used when fitting the data. For the combination of a simulated SAXS dataset

with 400 points and a simulated SANS dataset with 50 points, the information-based

weighting scheme (wj = Ng,j/Mj) had the smallest deviation from the true parameter

values. However, as the difference in number of points between the datasets increased,

the naive weighting scheme (wj = 1) gave the smallest average deviation (Table 1,

rows 7-8).

Systematic errors: inaccurate models and resolution effects. Examples

of systematic errors include interparticle interactions where the structure factor is

assumed to be unity, aggregation or oligomerization of a sample that is assumed to

be monodisperse, or roughness of surfaces that are modeled as smooth. Systematic

errors may also stem from undesired experimental effects, including reflections from

the sample holder or buffer mismatches.

To investigate one of these systematic errors, data were simulated using a model

with a raspberry-like surface. This model was similar to the core-multishell model,

except that the outer shell (shell number 3) was removed and instead, the surface

of shell number 2 was covered by small spheres. The data were, however, still fitted

with the simpler core-multishell model. So the data were simulated with one model,

but fitted with a simpler, inaccurate model. This resulted in large variation of the

refined values (Table 1, rows 9-10) due to ambiguous determinations of the outer two

shells (Figure S5). However, despite the inaccurate model, the naive weighting scheme

(wj = 1) remained the most accurate (Table 1, rows 9-10).
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Resolution effects is another important aspect to consider, especially in SANS. As

neighboring points are related through smearing effects, one may suspect that the

naive weighting scheme (wj = 1), which assumes independent datapoints, would per-

form worse. Therefore, resolution effects were applied to the simulated SANS data.

The resolution effects were likewise included in the subsequent fitting process. The

resolution effects, which are described as an uncertainty in q, were multiplied by fac-

tors of 2 or 3 to simulate more severe resolution effects. In all cases, however, the naive

weighting scheme (wj = 1) outperformed the other weighting schemes (Table 1, rows

11-16).

Changing the model: stacked cylinders To challenge the generality of the results,

a cylinder model was tested. This model consisted of three cylinders stacked along the

longitudinal axis. Each cylinder had the same radius, but the cylinder lengths and

scattering length densities varied (Figure 2). This model was less symmetric than

the core-shell model and represented a different contrast situation. However, the con-

clusion remained the same: the naive weighting scheme (wj = 1) provided the most

accurate results, followed by the information-based weighting scheme (wj = Ng,j/Mj),

which were both much better than the reduced weighting scheme (wj = 1/Mj) (Table

1). Notably, when fitting against simulated SAXS data with 2000 points and simulated

SANS data with 50 points, only the naive weighting scheme (wj = 1) was superior to

refinement against SAXS data alone. For the two other weighing schemes, the refined

parameters became less accurate from inclusion of an additional SANS dataset with

different contrast, but much fewer points (Table 1, bottom two rows).
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Fig. 2. Refinement of a stacked cylinder model against simulated data, using different
weighting schemes. (A) Stacked cylinders with dimensions and relative contrasts
annotated. (B) Simulated SAXS-like data with 400 points. (C) Simulated SANS-
like data with 50 points. (D-G) Histograms of refined values of R, L1, L2 and L3

(gray line is the true value), after simultaneous fits to 50,000 pairs of simulated
SAXS and SANS data.
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Table 1. Average relative deviation of each weighting schemes for all condition described in

the main text (lower deviation is better). Calculated as in equation (15). For the

core-multishell model, the structural parameters Rc, R1, R2 and R3 were included in the

deviation metric, but nuisance parameters like scaling, background and contrasts were not.

For the raspberry model, the core radius and the thickness of the first two layers were

considered. For the stacked cylinder model, the structural parameters R, L1, L2 and L3 were

included in the deviation measure. Using bootstrapping, the 99% confidence intervals were

determined to be approximately 1% across the different test cases, which is reflected in the

number of significant digits displayed in the table. MN and MX are the number of points in

the simulated SANS-like and SAXS-like datasets, respectively. *when the number of points in

SAXS and SANS datasets are the same, then wj = 1/Mj is equivalent to wj = 1 .** The

additional SANS contrast for the core contained 50 points.
Core-multishell model MN:MX wj = 1 wj = 1/Mj wj = Ng,j/Mj SANS SAXS
SAXS + SANS 300:300 4.8 * 4.8 8.1 20.4
SAXS + SANS 50:400 6.4 7.3 6.5 12.5 19.4
SAXS + SANS 50:900 6.2 7.8 6.6 12.7 21.5
SAXS + SANS 50:2000 4.7 7.1 5.8 12.6 14.3
add core contrast 50:400** 2.1 2.8 2.2 12.8 27.7
add core contrast 50:2000** 1.2 2.7 1.8 12.8 15.3
add structure factor 50:400 12.4 13.0 12.3 18.9 24.1
add structure factor 50:2000 9.6 12.7 10.8 18.9 19.6
Raspberry-like surface 50:400 50 55 52 77 65
Raspberry-like surface 50:2000 45 52 50 69 60
SANS res. eff. (×1.0) 50:400 6.5 7.3 6.5 13.0 19.6
SANS res. eff. (×1.0) 50:2000 4.9 7.6 6.2 13.3 15.3
SANS res. eff. (×2.0) 50:400 6.8 7.8 7.0 13.3 19.4
SANS res. eff. (×2.0) 50:2000 5.1 8.9 7.2 13.8 15.5
SANS res. eff. (×3.0) 50:400 8.3 9.3 8.4 13.9 19.5
SANS res. eff. (×3.0) 50:2000 6.1 10.8 9.9 14.1 15.4
Stacked cylinder model MN:MX wj = 1 wj = 1/Mj wj = Ng,j/Mj SANS SAXS
SAXS + SANS 50:400 10.2 12.0 11.6 19.3 25.5
SAXS + SANS 50:2000 5.1 10.4 9.8 18.0 8.0

3.2. Effect of over- or underestimated errors

To investigate the effect of poor error estimates, data were simulated again using

the core-multishell model, but this time, the errors of either the SANS or the SAXS

data were multiplied with a factor between 0.1 and 10, after they had been simulated.

Thus, the reported errors of the simulated data did no longer reflect the fluctuations

of the data around the true value. The errors ranged from highly underestimated (a

factor of 0.1) to highly overestimated (a factor of 10).
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In the first round, the SAXS data were kept unchanged while the SANS errors

were changed to be either underestimated or overestimated. The radii of the core-

multishell model were then estimated against the SAXS and altered SANS data. Not

surprisingly, the radii were determined most accurately when the errors were correct

(Figure 3). Overestimation of SANS errors had severe effects on the core radius in the

core-multishell model (Rc), because this parameter was predominantly determined

by the SANS data. On the other hand, underestimation of the SANS errors had

little on Rc, but made the estimation of the outermost radius, R2 worse, as this

parameter was predominantly determined from the SAXS data, and too low SANS

errors effectively gave to little weight to the SAXS data (Figure 3). In the second

iteration, the roles were shifted, and the errors in the SAXS data were varied, while

keeping SANS errors at the correct level (Figure S6). In that case, the most severe

effects were observed for Rc when SAXS errors were underestimated. These results

illustrate that over- or underestimation of errors can led to poorer estimates of the

refined model parameters. The effect depends on the contrast situation, the signal-to-

noise ratio of the datasets, and on the degree of over- or underestimation. Therefore,

errors should be assessed and, if possible, corrected before model refinement against

multiple SAXS/SANS contrasts (Larsen & Pedersen, 2021; Smales & Pauw, 2021).
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Fig. 3. Effect of over- or underestimated errors on parameter refinement. (A) Examples
of simulated SANS data with over- or underestimated errors. (B-E) Radii of the
core-multishell model when refined 50,000 times against SAXS and SANS data,
with the latter having over- or underestimated the errors by a factor between 0.1
(highly underestimated) to 10 (highly overestimated).
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3.3. Inclusion of priors

Now we turn our focus towards how prior information can be included in the model-

ing. In conventional model refinement, no prior distribution is explicitly attributed the

parameters, but most fitting programs, allow the user to set a minimum and a max-

imum value for each parameter (Kohlbrecher et al., 2022; Ilavsky & Jemian, 2009).

This is equivalent to applying a uniform distribution for each parameter. So far in

this paper, we have used such uniform priors, only limiting the parameters to a cer-

tain range around the true value, and preventing negative values where relevant. The

simplest alternative is Gaussian priors, which are defined by a mean µprior and a stan-

dard deviation σprior. Gaussian priors can be included using Bayesian refinement. It

has previously been shown, that inclusion of Gaussian priors (as opposed to uniform

priors) improves the robustness of the refinement (Larsen et al., 2018). However, this

was only shown for the refinement against a single SAXS/SANS contrast. Multiple

datasets can be fitted simultaneously by minimizing the sum:

min

Ndataset∑
j=1

wjχ
2
j

+ αS

 , (16)

where S represents the prior, and α is the effective weight given to the prior. To

investigate the effect of the prior, the naive weighting scheme was used (wj = 1)

on simulated data of core-multishell particles. The model parameters were co-refined

against a SAXS-like dataset with 400 points and a SANS-like dataset with 50 points.

Description of prior distributions. Three sets of Gaussian prior distributions

were generated (”poor prior”, ”good prior” and ”best prior”), where the best prior is

the set of priors that are closest to the true values. The Gaussian priors were truncated,

with the minimum and maximum values defined as being five standard deviations from

the mean (µ± 5σ). For the radii, a lower limit of 0 was also set if µ− 5σ < 0. A non-

informative uniform prior was also generated for comparative analysis (Uniform5σ),
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which was constant between the upper and lower limits and zero outside this interval.

Prior values for the radii are given in Table 2. All priors had the same values for all

other parameter, i.e. contrasts, scaling and background (Table 3).

Gaussian priors improve the accuracy of the refined parameters. The esti-

mates of Rc, R1 and R2 were substantially improved by all tested Gaussian priors

compared to the non-informative uniform prior (Figure 4). The best prior resulted

in a very narrow distribution of refined values, although the prior width was rela-

tively wide (Figure S7 and Table 2). The refinement of R3, on the other hand, ws

not improved by inclusion of Gaussian priors, as this parameter is very well defined

by the data. Generally, the better a parameter was determined from data itself, the

smaller was the effect of the prior. Importantly, the priors did not worsen the refined

parameter values, even when the priors were relatively poor (Figure 4).

Improving the uniform priors The uniform prior was stepwise improved by nar-

rowing the upper and lower bounds from µbest±5σbest to µbest±1/2σbest. The results

got increasingly more accurate, but even the narrowest uniform prior, gave substan-

tially larger deviations than the best Gaussian prior (Figure S8). Remarkably, the

poor prior resulted in smaller deviation compared to all uniform priors with minimum

and maximum values of ±1σbest or higher. This illustrates that Gaussian priors are

better than uniform priors at guiding the minimization algorithm towards the correct

solution, while being less restrictive.
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Table 2. True values and prior values for the radii of the core-multishell model. For the

Gaussian priors, the mean (µ) and standard deviation (σ) are given along with the upper

and lower limits, which are µ± 5σ, or zero for the lower limit. For the uniform priors, the

mean values, µ, were used as the initial value in the fit. For Uniform5σ, the minimum and

maximum values were the same as for the Gaussian priors, namely µ± 5σ. The other

uniform priors are narrower, with subscript indicating the distance from µ to upper/lower

limit.
Prior name Rc (min,max) [Å] R1 (min,max) [Å] R2 (min,max) [Å] R3 (min,max) [Å]
True value 10 30 50 70
Uniform5σ 10 (0,35) 30 (0,80) 50 (0,125) 70 (0,170)
Uniform4σ 10 (0,30) 30 (0,70) 50 (0,110) 70 (0,150)
Uniform3σ 10 (0,25) 30 (0,60) 50 (5,95) 70 (10,130)
Uniform2σ 10 (0,20) 30 (10,50) 50 (20,80) 70 (30,110)
Uniform1σ 10 (5,15) 30 (20,40) 50 (35,65) 70 (50,90)
Uniform 1

2σ
10 (7.5,12.5) 30 (25,35) 50 (40,55) 70 (60,80)

Gaussianpoor 5± 5 (0,30) 40± 10 (0,90) 45± 15 (0,120) 90± 20 (0,190)
Gaussiangood 8± 4 (0,28) 35± 10 (0,85) 40± 20 (0,140) 80± 10 (30,130)
Gaussianbest 10± 5 (0,35) 30± 10 (0,80) 50± 15 (0,125) 70± 20 70 (0,170)

Table 3. True values and prior values for all model parameters except radii, which are given

in Table 2). The same means (µ) and standard deviations (σ) were used in all Gaussian

priors. For the uniform priors, the means were used as initial guesses. In all priors, uniform

and Gaussian, the upper and lower limits were µ± 5σ.
Parameter True value µ± σ (µ− 5σ, µ+ 5σ)

(∆ρ1

∆ρc
)SAXS 2 2.0± 0.2 (1.0, 3.0)

(∆ρ1

∆ρc
)SANS -0.1 −0.10± 0.01 (−0.15,−0.05)

(∆ρ2

∆ρc
)SAXS 3 3± 3 (1.5, 4.5)

(∆ρ2

∆ρc
)SANS 0.1 0.10± 0.01 (0.05, 0.15)

(∆ρ3

∆ρc
)SAXS 4 4.0± 0.4 (2.0, 6.0)

(∆ρ3

∆ρc
)SANS 0.05 0.050± 0.005 (0.025, 0.075)

aSAXS [cm−1] 0.5 0.50± 0.05 (0.25, 0.75)
aSANS [cm−1] 0.8 0.80± 0.08 (0.1, 0.9)
bSAXS [10−4 cm−1] 0.1 0.1± 100 (−500, 500)
bSANS [10−4 cm−1] 1.0 1.0± 100 (−499, 501)
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Fig. 4. Radii of the core-multishell model were refined against SAXS and SANS data,
using a non-informative uniform prior (red), a poor Gaussian prior (light blue), a
good Gaussian prior (dark blue) or the best Gaussian prior (black). The probability
distributions were normalized, such that their maximum value is unity.

4. Experimental example: cardian clock protein complex

In an elegant study by Yunoki et al., the structure of the circadian clock protein

complex was determined with SAXS and SANS (Yunoki et al., 2022). The hexameric

protein complex consists of multiple domains, KaiA, KaiB, and KaiC, and in the

SANS experiment, the KaiB and KaiC domains were matched out. SAXS and SANS

data were thus complementary and could exclude different structural candidates, in

particular the SANS data excluded two proposed structure classes (Type 2 and Type

3) (Yunoki et al., 2022). The data were deposited on SASBDB with IDs SASDNK2

(SANS data) SASDNJ2 (SAXS data).
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Here, the data were used to showcase the use of priors and weights in simultaneous

fitting of multiple SAS datasets. First, the experimental errors were assessed using

the BIFT algorithm (Larsen & Pedersen, 2021). The SANS errors were assessed to

be correct, whereas the SAXS errors were assessed to be slightly underestimated, so

these were rescaled by a factor of 1.6, to obtain a better balance between SAXS and

SANS data.

A model structure deposited at the SASBDB entry was used as initial structure and

a 100 ns simulation was run with two different force fields to probe various structural

arrangements and their consistency with the SAXS and SANS data. The first force

field, AMBER14SB provides an ensemble of relatively symmetric structures, whereas

the second force field, CHARMM36-IDP was developed for intrinsically disordered

proteins and breaks the symmetry of the complex (Figure 5). The symmetric struc-

tural ensemble generated with the AMBER14SB force field was consistent with the

data, with a reduced χ2 value of 1.7 for the simultaneous fit. The asymmetric struc-

tural ensemble generated with the CHARMM36-IDP force field was less consistent

with the data (χ2 6.6). However, there could be a minor fraction of asymmetric struc-

tures in the sample, as observed for other protein multimers (Johansen et al., 2022). To

determine whether this was the case for the circadian clock protein complex, a mixture

of the structural ensemble was used to fit the data, where fsym and fasym are the frac-

tion of structures from the symmetric (AMBER14SB) or asymmetric (CHARMM36-

IDP) ensembles, and the calculated scattering from each ensemble are Isym and Iasym,

respectively. The mixed scattering can then be described as:

Imodel(q) = s

(
fsym
fasym

Isym(q) + Iasym(q)

)
(17)

where s is an overall scaling parameter. A non-informative log-normal prior distribu-

tion was used for the stoichiometric ratio, log(fsym/fasym) = 0 ± 2, corresponding to

assuming that half of the ensemble structures are symmetric and half are asymmetric.
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By simultaneous fitting of the SAXS and SANS data using the naive weight scheme

(wj = 1), the stoichiometry was refined to 90% [88, 91] (68% confidence interval) sym-

metric structures from the AMBER force field ensemble and 10% [9, 12] asymmetric

structures from the CHARMM36-IDP force field ensemble, with a χ2
r of 1.7 for the

total simultaneous fit. χ2
r was 1.8 for the simultaneous fit against the SAXS data and

it was χ2
r 1.2 for the fit to SANS.

Using the reduced weight scheme (wj = 1/Mj), the stoichiometry was instead

refined to 89% [15,98] symmetric and 11% [2, 85] asymmetric with the same goodness

of fit as above, but much higher uncertainty on the refined parameters.

Refining against SAXS data alone gave the same result as for the naive weighting

scheme, whereas refinement against SANS alone gave 77% [57, 89] symmetric and 23%

[11, 43] asymmetric structures.

If the SAXS errors were not rescaled, the resulting stoichiometry (and confidence

interval) were, in this case, essentially unchanged, but with a larger χ2
r of 4.1 for the

fit (and 4.5 for SAXS and 1.2 for SANS).

That is, in this example, SAXS is dominating in discriminating between the two

structural ensembles. But this was not obvious, and using optimal weighting ensures

that the most accurate solution is robustly found. The structural conclusion is that

the addition of the asymmetric structure does not improve the fit to data compared

to only using the symmetric ensemble, which supports the modeling strategy taken

by Yonoki et al. (Yunoki et al., 2022), namely using the AMBER14SB force field.
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CHARMM36-IDP AMBER14SBA

B

Fig. 5. (A) Representative snapshots from the two simulated ensembles, with the
CHARMM36-IDP force field leading to asymmetric structures, and with the
AMBER14SB force field, leading to symmetric structures. The central part of the
protein complex was matched out in SANS (KaiB and KaiC) (Yunoki et al., 2022).
(B) Simultaneous fitting of SAXS (with rescaled errors, SASDNJ2, red) and SANS
data (SASDNK2, blue), displaying also the prior, with equal amounts of the two
structural ensembles. Normalized residuals displayed below the fits.
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5. Discussion

5.1. Why is the model refinement not dominated by the dataset with many datapoints?

Even when one dataset had 2000 datapoints and the other only 50 datapoints,

the refined parameters were still affected by both datasets. This is because the data

contained orthogonal information. For some structural domains the contrast was low in

SAXS and high in SANS. Therefore, an additional dataset can contain much structural

information albeit having a low signal-to-noise ratio. On the other hand, if the contrast

situation is similar in multiple small-angle scattering datasets that are simultaneously

fitted, then the refined parameters will be dominated by the dataset having the better

signal-to-noise ratio (Pedersen et al., 2014; Larsen et al., 2020; Larsen & Pedersen,

2021).

When datapoints are statistically independent, no additional weighting is neces-

sary, i.e., the naive weighting scheme (wj = 1) leads to the most accurate result, as

demonstrated with the simulated data. Oversampling of data, i.e. that the number

of datapoints exceeds the number of Shannon channels, which was the case for the

simulated data, does not lead to statistical dependency. However, it is crucial to avoid

operations in the data reduction process that introduce dependence, or take these into

account in the error propagation (Heybrock et al., 2023).

5.2. When experimental errors are ill-defined

Error estimates are important for getting the correct balance between multiple

datasets, when doing model co-refinement (Figure 3). Methods have previously been

presented to identify, and in some cases, correct over- or underestimated errors (Larsen

& Pedersen, 2021; Smales & Pauw, 2021). However, there is only limited work on how

to identify systematic errors, e.g., from non-optimal buffer subtraction (Shevchuk &

Hub, 2017). This becomes particularly important when high flux, long exposure times,
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and stable samples at high concentrations allow the statistical errors to reach a level,

where the fluctuations in data are dominated by errors that are not accounted for.

Such effects may likely be the cause that the SAXS dataset used in the experimental

example (SASBDB ID: SASDNJ2) was assessed to have underestimated errors by the

BIFT algorithm. Goodness of fit measures that exploit runs tests do not depend on

statistical errors and are therefore valuable tools for identifying variations that are

not reflected in the counting statistics-based errors (Franke et al., 2015; Koefinger

et al., 2021).

6. Conclusion

The most optimal weighting scheme for simultaneous fitting of multiple datasets is

simply wj = 1. That is, the sum of the (non-reduced) χ2 values should be minimized.

This was compared to a weighting scheme with the information content taken into

account (wj = Ng,j/Mj) and with a weighing scheme relying on reduced χ2 values

rather than χ2 values (wj = 1/Mj). The naive weighting scheme (wj = 1) gave most

accurate results, in particular when there was substantial difference in the number of

points in each included dataset.

Inclusion of Gaussian priors gave more accurate refinement of structural parameters

than uniform priors. This has previously been demonstrated for single SAXS datasets

(Larsen et al., 2018), but here it was demonstrated that this was also the case when

simultaneously fitting multiple SAXS or SANS datasets.

Implementing optimal strategies for data analysis, as proposed in this study, is a

pragmatic approach to enhance accuracy of structural refinements. These strategies

require minimal resources compared to the immense work that is needed to prepare

samples and built and maintain SAXS and SANS instruments. Still, they offer sub-

stantial improvement in the accuracy of the refined parameters, and ultimately aid
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scientists reaching more accurate and consistent conclusions.
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